xref: /linux-6.15/include/linux/hugetlb.h (revision 577a6766)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 void free_huge_folio(struct folio *folio);
24 
25 #ifdef CONFIG_HUGETLB_PAGE
26 
27 #include <linux/pagemap.h>
28 #include <linux/shm.h>
29 #include <asm/tlbflush.h>
30 
31 /*
32  * For HugeTLB page, there are more metadata to save in the struct page. But
33  * the head struct page cannot meet our needs, so we have to abuse other tail
34  * struct page to store the metadata.
35  */
36 #define __NR_USED_SUBPAGE 3
37 
38 struct hugepage_subpool {
39 	spinlock_t lock;
40 	long count;
41 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
42 	long used_hpages;	/* Used count against maximum, includes */
43 				/* both allocated and reserved pages. */
44 	struct hstate *hstate;
45 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
46 	long rsv_hpages;	/* Pages reserved against global pool to */
47 				/* satisfy minimum size. */
48 };
49 
50 struct resv_map {
51 	struct kref refs;
52 	spinlock_t lock;
53 	struct list_head regions;
54 	long adds_in_progress;
55 	struct list_head region_cache;
56 	long region_cache_count;
57 	struct rw_semaphore rw_sema;
58 #ifdef CONFIG_CGROUP_HUGETLB
59 	/*
60 	 * On private mappings, the counter to uncharge reservations is stored
61 	 * here. If these fields are 0, then either the mapping is shared, or
62 	 * cgroup accounting is disabled for this resv_map.
63 	 */
64 	struct page_counter *reservation_counter;
65 	unsigned long pages_per_hpage;
66 	struct cgroup_subsys_state *css;
67 #endif
68 };
69 
70 /*
71  * Region tracking -- allows tracking of reservations and instantiated pages
72  *                    across the pages in a mapping.
73  *
74  * The region data structures are embedded into a resv_map and protected
75  * by a resv_map's lock.  The set of regions within the resv_map represent
76  * reservations for huge pages, or huge pages that have already been
77  * instantiated within the map.  The from and to elements are huge page
78  * indices into the associated mapping.  from indicates the starting index
79  * of the region.  to represents the first index past the end of  the region.
80  *
81  * For example, a file region structure with from == 0 and to == 4 represents
82  * four huge pages in a mapping.  It is important to note that the to element
83  * represents the first element past the end of the region. This is used in
84  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85  *
86  * Interval notation of the form [from, to) will be used to indicate that
87  * the endpoint from is inclusive and to is exclusive.
88  */
89 struct file_region {
90 	struct list_head link;
91 	long from;
92 	long to;
93 #ifdef CONFIG_CGROUP_HUGETLB
94 	/*
95 	 * On shared mappings, each reserved region appears as a struct
96 	 * file_region in resv_map. These fields hold the info needed to
97 	 * uncharge each reservation.
98 	 */
99 	struct page_counter *reservation_counter;
100 	struct cgroup_subsys_state *css;
101 #endif
102 };
103 
104 struct hugetlb_vma_lock {
105 	struct kref refs;
106 	struct rw_semaphore rw_sema;
107 	struct vm_area_struct *vma;
108 };
109 
110 extern struct resv_map *resv_map_alloc(void);
111 void resv_map_release(struct kref *ref);
112 
113 extern spinlock_t hugetlb_lock;
114 extern int hugetlb_max_hstate __read_mostly;
115 #define for_each_hstate(h) \
116 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117 
118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 						long min_hpages);
120 void hugepage_put_subpool(struct hugepage_subpool *spool);
121 
122 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124 int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 			     struct vm_area_struct *new_vma,
126 			     unsigned long old_addr, unsigned long new_addr,
127 			     unsigned long len);
128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 			    struct vm_area_struct *, struct vm_area_struct *);
130 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
131 				      unsigned long address, unsigned int flags,
132 				      unsigned int *page_mask);
133 void unmap_hugepage_range(struct vm_area_struct *,
134 			  unsigned long, unsigned long, struct page *,
135 			  zap_flags_t);
136 void __unmap_hugepage_range(struct mmu_gather *tlb,
137 			  struct vm_area_struct *vma,
138 			  unsigned long start, unsigned long end,
139 			  struct page *ref_page, zap_flags_t zap_flags);
140 void hugetlb_report_meminfo(struct seq_file *);
141 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
142 void hugetlb_show_meminfo_node(int nid);
143 unsigned long hugetlb_total_pages(void);
144 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
145 			unsigned long address, unsigned int flags);
146 #ifdef CONFIG_USERFAULTFD
147 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
148 			     struct vm_area_struct *dst_vma,
149 			     unsigned long dst_addr,
150 			     unsigned long src_addr,
151 			     uffd_flags_t flags,
152 			     struct folio **foliop);
153 #endif /* CONFIG_USERFAULTFD */
154 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
155 						struct vm_area_struct *vma,
156 						vm_flags_t vm_flags);
157 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
158 						long freed);
159 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
160 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
161 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
162 				bool *migratable_cleared);
163 void folio_putback_active_hugetlb(struct folio *folio);
164 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
165 void hugetlb_fix_reserve_counts(struct inode *inode);
166 extern struct mutex *hugetlb_fault_mutex_table;
167 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
168 
169 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
170 		      unsigned long addr, pud_t *pud);
171 bool hugetlbfs_pagecache_present(struct hstate *h,
172 				 struct vm_area_struct *vma,
173 				 unsigned long address);
174 
175 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
176 
177 extern int sysctl_hugetlb_shm_group;
178 extern struct list_head huge_boot_pages[MAX_NUMNODES];
179 
180 /* arch callbacks */
181 
182 #ifndef CONFIG_HIGHPTE
183 /*
184  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
185  * which may go down to the lowest PTE level in their huge_pte_offset() and
186  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
187  */
188 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
189 {
190 	return pte_offset_kernel(pmd, address);
191 }
192 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
193 				    unsigned long address)
194 {
195 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
196 }
197 #endif
198 
199 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
200 			unsigned long addr, unsigned long sz);
201 /*
202  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
203  * Returns the pte_t* if found, or NULL if the address is not mapped.
204  *
205  * IMPORTANT: we should normally not directly call this function, instead
206  * this is only a common interface to implement arch-specific
207  * walker. Please use hugetlb_walk() instead, because that will attempt to
208  * verify the locking for you.
209  *
210  * Since this function will walk all the pgtable pages (including not only
211  * high-level pgtable page, but also PUD entry that can be unshared
212  * concurrently for VM_SHARED), the caller of this function should be
213  * responsible of its thread safety.  One can follow this rule:
214  *
215  *  (1) For private mappings: pmd unsharing is not possible, so holding the
216  *      mmap_lock for either read or write is sufficient. Most callers
217  *      already hold the mmap_lock, so normally, no special action is
218  *      required.
219  *
220  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
221  *      pgtable page can go away from under us!  It can be done by a pmd
222  *      unshare with a follow up munmap() on the other process), then we
223  *      need either:
224  *
225  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
226  *           won't happen upon the range (it also makes sure the pte_t we
227  *           read is the right and stable one), or,
228  *
229  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
230  *           sure even if unshare happened the racy unmap() will wait until
231  *           i_mmap_rwsem is released.
232  *
233  * Option (2.1) is the safest, which guarantees pte stability from pmd
234  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
235  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
236  * access.
237  */
238 pte_t *huge_pte_offset(struct mm_struct *mm,
239 		       unsigned long addr, unsigned long sz);
240 unsigned long hugetlb_mask_last_page(struct hstate *h);
241 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
242 				unsigned long addr, pte_t *ptep);
243 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
244 				unsigned long *start, unsigned long *end);
245 
246 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
247 				unsigned long *begin, unsigned long *end);
248 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
249 			      struct zap_details *details);
250 
251 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
252 				     unsigned long *start, unsigned long *end)
253 {
254 	if (is_vm_hugetlb_page(vma))
255 		__hugetlb_zap_begin(vma, start, end);
256 }
257 
258 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
259 				   struct zap_details *details)
260 {
261 	if (is_vm_hugetlb_page(vma))
262 		__hugetlb_zap_end(vma, details);
263 }
264 
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
266 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
267 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
268 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
269 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
270 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
271 void hugetlb_vma_lock_release(struct kref *kref);
272 long hugetlb_change_protection(struct vm_area_struct *vma,
273 		unsigned long address, unsigned long end, pgprot_t newprot,
274 		unsigned long cp_flags);
275 bool is_hugetlb_entry_migration(pte_t pte);
276 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
277 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
278 
279 #else /* !CONFIG_HUGETLB_PAGE */
280 
281 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
282 {
283 }
284 
285 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
286 {
287 }
288 
289 static inline unsigned long hugetlb_total_pages(void)
290 {
291 	return 0;
292 }
293 
294 static inline struct address_space *hugetlb_folio_mapping_lock_write(
295 							struct folio *folio)
296 {
297 	return NULL;
298 }
299 
300 static inline int huge_pmd_unshare(struct mm_struct *mm,
301 					struct vm_area_struct *vma,
302 					unsigned long addr, pte_t *ptep)
303 {
304 	return 0;
305 }
306 
307 static inline void adjust_range_if_pmd_sharing_possible(
308 				struct vm_area_struct *vma,
309 				unsigned long *start, unsigned long *end)
310 {
311 }
312 
313 static inline void hugetlb_zap_begin(
314 				struct vm_area_struct *vma,
315 				unsigned long *start, unsigned long *end)
316 {
317 }
318 
319 static inline void hugetlb_zap_end(
320 				struct vm_area_struct *vma,
321 				struct zap_details *details)
322 {
323 }
324 
325 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
326 					  struct mm_struct *src,
327 					  struct vm_area_struct *dst_vma,
328 					  struct vm_area_struct *src_vma)
329 {
330 	BUG();
331 	return 0;
332 }
333 
334 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
335 					   struct vm_area_struct *new_vma,
336 					   unsigned long old_addr,
337 					   unsigned long new_addr,
338 					   unsigned long len)
339 {
340 	BUG();
341 	return 0;
342 }
343 
344 static inline void hugetlb_report_meminfo(struct seq_file *m)
345 {
346 }
347 
348 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
349 {
350 	return 0;
351 }
352 
353 static inline void hugetlb_show_meminfo_node(int nid)
354 {
355 }
356 
357 static inline int prepare_hugepage_range(struct file *file,
358 				unsigned long addr, unsigned long len)
359 {
360 	return -EINVAL;
361 }
362 
363 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
364 {
365 }
366 
367 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
368 {
369 }
370 
371 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
372 {
373 }
374 
375 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
376 {
377 }
378 
379 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
380 {
381 	return 1;
382 }
383 
384 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
385 {
386 }
387 
388 static inline int is_hugepage_only_range(struct mm_struct *mm,
389 					unsigned long addr, unsigned long len)
390 {
391 	return 0;
392 }
393 
394 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
395 				unsigned long addr, unsigned long end,
396 				unsigned long floor, unsigned long ceiling)
397 {
398 	BUG();
399 }
400 
401 #ifdef CONFIG_USERFAULTFD
402 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
403 					   struct vm_area_struct *dst_vma,
404 					   unsigned long dst_addr,
405 					   unsigned long src_addr,
406 					   uffd_flags_t flags,
407 					   struct folio **foliop)
408 {
409 	BUG();
410 	return 0;
411 }
412 #endif /* CONFIG_USERFAULTFD */
413 
414 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
415 					unsigned long sz)
416 {
417 	return NULL;
418 }
419 
420 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
421 {
422 	return false;
423 }
424 
425 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
426 {
427 	return 0;
428 }
429 
430 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
431 					bool *migratable_cleared)
432 {
433 	return 0;
434 }
435 
436 static inline void folio_putback_active_hugetlb(struct folio *folio)
437 {
438 }
439 
440 static inline void move_hugetlb_state(struct folio *old_folio,
441 					struct folio *new_folio, int reason)
442 {
443 }
444 
445 static inline long hugetlb_change_protection(
446 			struct vm_area_struct *vma, unsigned long address,
447 			unsigned long end, pgprot_t newprot,
448 			unsigned long cp_flags)
449 {
450 	return 0;
451 }
452 
453 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
454 			struct vm_area_struct *vma, unsigned long start,
455 			unsigned long end, struct page *ref_page,
456 			zap_flags_t zap_flags)
457 {
458 	BUG();
459 }
460 
461 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
462 			struct vm_area_struct *vma, unsigned long address,
463 			unsigned int flags)
464 {
465 	BUG();
466 	return 0;
467 }
468 
469 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
470 
471 #endif /* !CONFIG_HUGETLB_PAGE */
472 
473 #ifndef pgd_write
474 static inline int pgd_write(pgd_t pgd)
475 {
476 	BUG();
477 	return 0;
478 }
479 #endif
480 
481 #define HUGETLB_ANON_FILE "anon_hugepage"
482 
483 enum {
484 	/*
485 	 * The file will be used as an shm file so shmfs accounting rules
486 	 * apply
487 	 */
488 	HUGETLB_SHMFS_INODE     = 1,
489 	/*
490 	 * The file is being created on the internal vfs mount and shmfs
491 	 * accounting rules do not apply
492 	 */
493 	HUGETLB_ANONHUGE_INODE  = 2,
494 };
495 
496 #ifdef CONFIG_HUGETLBFS
497 struct hugetlbfs_sb_info {
498 	long	max_inodes;   /* inodes allowed */
499 	long	free_inodes;  /* inodes free */
500 	spinlock_t	stat_lock;
501 	struct hstate *hstate;
502 	struct hugepage_subpool *spool;
503 	kuid_t	uid;
504 	kgid_t	gid;
505 	umode_t mode;
506 };
507 
508 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
509 {
510 	return sb->s_fs_info;
511 }
512 
513 struct hugetlbfs_inode_info {
514 	struct inode vfs_inode;
515 	unsigned int seals;
516 };
517 
518 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
519 {
520 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
521 }
522 
523 extern const struct vm_operations_struct hugetlb_vm_ops;
524 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
525 				int creat_flags, int page_size_log);
526 
527 static inline bool is_file_hugepages(const struct file *file)
528 {
529 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
530 }
531 
532 static inline struct hstate *hstate_inode(struct inode *i)
533 {
534 	return HUGETLBFS_SB(i->i_sb)->hstate;
535 }
536 #else /* !CONFIG_HUGETLBFS */
537 
538 #define is_file_hugepages(file)			false
539 static inline struct file *
540 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
541 		int creat_flags, int page_size_log)
542 {
543 	return ERR_PTR(-ENOSYS);
544 }
545 
546 static inline struct hstate *hstate_inode(struct inode *i)
547 {
548 	return NULL;
549 }
550 #endif /* !CONFIG_HUGETLBFS */
551 
552 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
553 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
554 					unsigned long len, unsigned long pgoff,
555 					unsigned long flags);
556 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
557 
558 unsigned long
559 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 				  unsigned long len, unsigned long pgoff,
561 				  unsigned long flags);
562 
563 /*
564  * huegtlb page specific state flags.  These flags are located in page.private
565  * of the hugetlb head page.  Functions created via the below macros should be
566  * used to manipulate these flags.
567  *
568  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
569  *	allocation time.  Cleared when page is fully instantiated.  Free
570  *	routine checks flag to restore a reservation on error paths.
571  *	Synchronization:  Examined or modified by code that knows it has
572  *	the only reference to page.  i.e. After allocation but before use
573  *	or when the page is being freed.
574  * HPG_migratable  - Set after a newly allocated page is added to the page
575  *	cache and/or page tables.  Indicates the page is a candidate for
576  *	migration.
577  *	Synchronization:  Initially set after new page allocation with no
578  *	locking.  When examined and modified during migration processing
579  *	(isolate, migrate, putback) the hugetlb_lock is held.
580  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
581  *	allocator.  Typically used for migration target pages when no pages
582  *	are available in the pool.  The hugetlb free page path will
583  *	immediately free pages with this flag set to the buddy allocator.
584  *	Synchronization: Can be set after huge page allocation from buddy when
585  *	code knows it has only reference.  All other examinations and
586  *	modifications require hugetlb_lock.
587  * HPG_freed - Set when page is on the free lists.
588  *	Synchronization: hugetlb_lock held for examination and modification.
589  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
590  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
591  *     that is not tracked by raw_hwp_page list.
592  */
593 enum hugetlb_page_flags {
594 	HPG_restore_reserve = 0,
595 	HPG_migratable,
596 	HPG_temporary,
597 	HPG_freed,
598 	HPG_vmemmap_optimized,
599 	HPG_raw_hwp_unreliable,
600 	__NR_HPAGEFLAGS,
601 };
602 
603 /*
604  * Macros to create test, set and clear function definitions for
605  * hugetlb specific page flags.
606  */
607 #ifdef CONFIG_HUGETLB_PAGE
608 #define TESTHPAGEFLAG(uname, flname)				\
609 static __always_inline						\
610 bool folio_test_hugetlb_##flname(struct folio *folio)		\
611 	{	void *private = &folio->private;		\
612 		return test_bit(HPG_##flname, private);		\
613 	}
614 
615 #define SETHPAGEFLAG(uname, flname)				\
616 static __always_inline						\
617 void folio_set_hugetlb_##flname(struct folio *folio)		\
618 	{	void *private = &folio->private;		\
619 		set_bit(HPG_##flname, private);			\
620 	}
621 
622 #define CLEARHPAGEFLAG(uname, flname)				\
623 static __always_inline						\
624 void folio_clear_hugetlb_##flname(struct folio *folio)		\
625 	{	void *private = &folio->private;		\
626 		clear_bit(HPG_##flname, private);		\
627 	}
628 #else
629 #define TESTHPAGEFLAG(uname, flname)				\
630 static inline bool						\
631 folio_test_hugetlb_##flname(struct folio *folio)		\
632 	{ return 0; }
633 
634 #define SETHPAGEFLAG(uname, flname)				\
635 static inline void						\
636 folio_set_hugetlb_##flname(struct folio *folio) 		\
637 	{ }
638 
639 #define CLEARHPAGEFLAG(uname, flname)				\
640 static inline void						\
641 folio_clear_hugetlb_##flname(struct folio *folio)		\
642 	{ }
643 #endif
644 
645 #define HPAGEFLAG(uname, flname)				\
646 	TESTHPAGEFLAG(uname, flname)				\
647 	SETHPAGEFLAG(uname, flname)				\
648 	CLEARHPAGEFLAG(uname, flname)				\
649 
650 /*
651  * Create functions associated with hugetlb page flags
652  */
653 HPAGEFLAG(RestoreReserve, restore_reserve)
654 HPAGEFLAG(Migratable, migratable)
655 HPAGEFLAG(Temporary, temporary)
656 HPAGEFLAG(Freed, freed)
657 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
658 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
659 
660 #ifdef CONFIG_HUGETLB_PAGE
661 
662 #define HSTATE_NAME_LEN 32
663 /* Defines one hugetlb page size */
664 struct hstate {
665 	struct mutex resize_lock;
666 	struct lock_class_key resize_key;
667 	int next_nid_to_alloc;
668 	int next_nid_to_free;
669 	unsigned int order;
670 	unsigned int demote_order;
671 	unsigned long mask;
672 	unsigned long max_huge_pages;
673 	unsigned long nr_huge_pages;
674 	unsigned long free_huge_pages;
675 	unsigned long resv_huge_pages;
676 	unsigned long surplus_huge_pages;
677 	unsigned long nr_overcommit_huge_pages;
678 	struct list_head hugepage_activelist;
679 	struct list_head hugepage_freelists[MAX_NUMNODES];
680 	unsigned int max_huge_pages_node[MAX_NUMNODES];
681 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
682 	unsigned int free_huge_pages_node[MAX_NUMNODES];
683 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
684 	char name[HSTATE_NAME_LEN];
685 };
686 
687 struct huge_bootmem_page {
688 	struct list_head list;
689 	struct hstate *hstate;
690 };
691 
692 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
693 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
694 				unsigned long addr, int avoid_reserve);
695 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
696 				nodemask_t *nmask, gfp_t gfp_mask,
697 				bool allow_alloc_fallback);
698 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
699 			pgoff_t idx);
700 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
701 				unsigned long address, struct folio *folio);
702 
703 /* arch callback */
704 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
705 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
706 bool __init hugetlb_node_alloc_supported(void);
707 
708 void __init hugetlb_add_hstate(unsigned order);
709 bool __init arch_hugetlb_valid_size(unsigned long size);
710 struct hstate *size_to_hstate(unsigned long size);
711 
712 #ifndef HUGE_MAX_HSTATE
713 #define HUGE_MAX_HSTATE 1
714 #endif
715 
716 extern struct hstate hstates[HUGE_MAX_HSTATE];
717 extern unsigned int default_hstate_idx;
718 
719 #define default_hstate (hstates[default_hstate_idx])
720 
721 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
722 {
723 	return folio->_hugetlb_subpool;
724 }
725 
726 static inline void hugetlb_set_folio_subpool(struct folio *folio,
727 					struct hugepage_subpool *subpool)
728 {
729 	folio->_hugetlb_subpool = subpool;
730 }
731 
732 static inline struct hstate *hstate_file(struct file *f)
733 {
734 	return hstate_inode(file_inode(f));
735 }
736 
737 static inline struct hstate *hstate_sizelog(int page_size_log)
738 {
739 	if (!page_size_log)
740 		return &default_hstate;
741 
742 	if (page_size_log < BITS_PER_LONG)
743 		return size_to_hstate(1UL << page_size_log);
744 
745 	return NULL;
746 }
747 
748 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
749 {
750 	return hstate_file(vma->vm_file);
751 }
752 
753 static inline unsigned long huge_page_size(const struct hstate *h)
754 {
755 	return (unsigned long)PAGE_SIZE << h->order;
756 }
757 
758 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
759 
760 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
761 
762 static inline unsigned long huge_page_mask(struct hstate *h)
763 {
764 	return h->mask;
765 }
766 
767 static inline unsigned int huge_page_order(struct hstate *h)
768 {
769 	return h->order;
770 }
771 
772 static inline unsigned huge_page_shift(struct hstate *h)
773 {
774 	return h->order + PAGE_SHIFT;
775 }
776 
777 static inline bool hstate_is_gigantic(struct hstate *h)
778 {
779 	return huge_page_order(h) > MAX_PAGE_ORDER;
780 }
781 
782 static inline unsigned int pages_per_huge_page(const struct hstate *h)
783 {
784 	return 1 << h->order;
785 }
786 
787 static inline unsigned int blocks_per_huge_page(struct hstate *h)
788 {
789 	return huge_page_size(h) / 512;
790 }
791 
792 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
793 				struct address_space *mapping, pgoff_t idx)
794 {
795 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
796 }
797 
798 #include <asm/hugetlb.h>
799 
800 #ifndef is_hugepage_only_range
801 static inline int is_hugepage_only_range(struct mm_struct *mm,
802 					unsigned long addr, unsigned long len)
803 {
804 	return 0;
805 }
806 #define is_hugepage_only_range is_hugepage_only_range
807 #endif
808 
809 #ifndef arch_clear_hugetlb_flags
810 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
811 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
812 #endif
813 
814 #ifndef arch_make_huge_pte
815 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
816 				       vm_flags_t flags)
817 {
818 	return pte_mkhuge(entry);
819 }
820 #endif
821 
822 static inline struct hstate *folio_hstate(struct folio *folio)
823 {
824 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
825 	return size_to_hstate(folio_size(folio));
826 }
827 
828 static inline unsigned hstate_index_to_shift(unsigned index)
829 {
830 	return hstates[index].order + PAGE_SHIFT;
831 }
832 
833 static inline int hstate_index(struct hstate *h)
834 {
835 	return h - hstates;
836 }
837 
838 int dissolve_free_hugetlb_folio(struct folio *folio);
839 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
840 				    unsigned long end_pfn);
841 
842 #ifdef CONFIG_MEMORY_FAILURE
843 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
844 #else
845 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
846 {
847 }
848 #endif
849 
850 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
851 #ifndef arch_hugetlb_migration_supported
852 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
853 {
854 	if ((huge_page_shift(h) == PMD_SHIFT) ||
855 		(huge_page_shift(h) == PUD_SHIFT) ||
856 			(huge_page_shift(h) == PGDIR_SHIFT))
857 		return true;
858 	else
859 		return false;
860 }
861 #endif
862 #else
863 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
864 {
865 	return false;
866 }
867 #endif
868 
869 static inline bool hugepage_migration_supported(struct hstate *h)
870 {
871 	return arch_hugetlb_migration_supported(h);
872 }
873 
874 /*
875  * Movability check is different as compared to migration check.
876  * It determines whether or not a huge page should be placed on
877  * movable zone or not. Movability of any huge page should be
878  * required only if huge page size is supported for migration.
879  * There won't be any reason for the huge page to be movable if
880  * it is not migratable to start with. Also the size of the huge
881  * page should be large enough to be placed under a movable zone
882  * and still feasible enough to be migratable. Just the presence
883  * in movable zone does not make the migration feasible.
884  *
885  * So even though large huge page sizes like the gigantic ones
886  * are migratable they should not be movable because its not
887  * feasible to migrate them from movable zone.
888  */
889 static inline bool hugepage_movable_supported(struct hstate *h)
890 {
891 	if (!hugepage_migration_supported(h))
892 		return false;
893 
894 	if (hstate_is_gigantic(h))
895 		return false;
896 	return true;
897 }
898 
899 /* Movability of hugepages depends on migration support. */
900 static inline gfp_t htlb_alloc_mask(struct hstate *h)
901 {
902 	if (hugepage_movable_supported(h))
903 		return GFP_HIGHUSER_MOVABLE;
904 	else
905 		return GFP_HIGHUSER;
906 }
907 
908 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
909 {
910 	gfp_t modified_mask = htlb_alloc_mask(h);
911 
912 	/* Some callers might want to enforce node */
913 	modified_mask |= (gfp_mask & __GFP_THISNODE);
914 
915 	modified_mask |= (gfp_mask & __GFP_NOWARN);
916 
917 	return modified_mask;
918 }
919 
920 static inline bool htlb_allow_alloc_fallback(int reason)
921 {
922 	bool allowed_fallback = false;
923 
924 	/*
925 	 * Note: the memory offline, memory failure and migration syscalls will
926 	 * be allowed to fallback to other nodes due to lack of a better chioce,
927 	 * that might break the per-node hugetlb pool. While other cases will
928 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
929 	 */
930 	switch (reason) {
931 	case MR_MEMORY_HOTPLUG:
932 	case MR_MEMORY_FAILURE:
933 	case MR_SYSCALL:
934 	case MR_MEMPOLICY_MBIND:
935 		allowed_fallback = true;
936 		break;
937 	default:
938 		break;
939 	}
940 
941 	return allowed_fallback;
942 }
943 
944 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
945 					   struct mm_struct *mm, pte_t *pte)
946 {
947 	const unsigned long size = huge_page_size(h);
948 
949 	VM_WARN_ON(size == PAGE_SIZE);
950 
951 	/*
952 	 * hugetlb must use the exact same PT locks as core-mm page table
953 	 * walkers would. When modifying a PTE table, hugetlb must take the
954 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
955 	 * PT lock etc.
956 	 *
957 	 * The expectation is that any hugetlb folio smaller than a PMD is
958 	 * always mapped into a single PTE table and that any hugetlb folio
959 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
960 	 * into a single PMD table.
961 	 *
962 	 * If that does not hold for an architecture, then that architecture
963 	 * must disable split PT locks such that all *_lockptr() functions
964 	 * will give us the same result: the per-MM PT lock.
965 	 *
966 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
967 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
968 	 * and core-mm would use pmd_lockptr(). However, in such configurations
969 	 * split PMD locks are disabled -- they don't make sense on a single
970 	 * PGDIR page table -- and the end result is the same.
971 	 */
972 	if (size >= PUD_SIZE)
973 		return pud_lockptr(mm, (pud_t *) pte);
974 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
975 		return pmd_lockptr(mm, (pmd_t *) pte);
976 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
977 	return ptep_lockptr(mm, pte);
978 }
979 
980 #ifndef hugepages_supported
981 /*
982  * Some platform decide whether they support huge pages at boot
983  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
984  * when there is no such support
985  */
986 #define hugepages_supported() (HPAGE_SHIFT != 0)
987 #endif
988 
989 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
990 
991 static inline void hugetlb_count_init(struct mm_struct *mm)
992 {
993 	atomic_long_set(&mm->hugetlb_usage, 0);
994 }
995 
996 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
997 {
998 	atomic_long_add(l, &mm->hugetlb_usage);
999 }
1000 
1001 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1002 {
1003 	atomic_long_sub(l, &mm->hugetlb_usage);
1004 }
1005 
1006 #ifndef huge_ptep_modify_prot_start
1007 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1008 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1009 						unsigned long addr, pte_t *ptep)
1010 {
1011 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1012 }
1013 #endif
1014 
1015 #ifndef huge_ptep_modify_prot_commit
1016 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1017 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1018 						unsigned long addr, pte_t *ptep,
1019 						pte_t old_pte, pte_t pte)
1020 {
1021 	unsigned long psize = huge_page_size(hstate_vma(vma));
1022 
1023 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1024 }
1025 #endif
1026 
1027 #ifdef CONFIG_NUMA
1028 void hugetlb_register_node(struct node *node);
1029 void hugetlb_unregister_node(struct node *node);
1030 #endif
1031 
1032 /*
1033  * Check if a given raw @page in a hugepage is HWPOISON.
1034  */
1035 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1036 
1037 #else	/* CONFIG_HUGETLB_PAGE */
1038 struct hstate {};
1039 
1040 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1041 {
1042 	return NULL;
1043 }
1044 
1045 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1046 				struct address_space *mapping, pgoff_t idx)
1047 {
1048 	return NULL;
1049 }
1050 
1051 static inline int isolate_or_dissolve_huge_page(struct page *page,
1052 						struct list_head *list)
1053 {
1054 	return -ENOMEM;
1055 }
1056 
1057 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1058 					   unsigned long addr,
1059 					   int avoid_reserve)
1060 {
1061 	return NULL;
1062 }
1063 
1064 static inline struct folio *
1065 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1066 			nodemask_t *nmask, gfp_t gfp_mask,
1067 			bool allow_alloc_fallback)
1068 {
1069 	return NULL;
1070 }
1071 
1072 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1073 {
1074 	return 0;
1075 }
1076 
1077 static inline struct hstate *hstate_file(struct file *f)
1078 {
1079 	return NULL;
1080 }
1081 
1082 static inline struct hstate *hstate_sizelog(int page_size_log)
1083 {
1084 	return NULL;
1085 }
1086 
1087 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1088 {
1089 	return NULL;
1090 }
1091 
1092 static inline struct hstate *folio_hstate(struct folio *folio)
1093 {
1094 	return NULL;
1095 }
1096 
1097 static inline struct hstate *size_to_hstate(unsigned long size)
1098 {
1099 	return NULL;
1100 }
1101 
1102 static inline unsigned long huge_page_size(struct hstate *h)
1103 {
1104 	return PAGE_SIZE;
1105 }
1106 
1107 static inline unsigned long huge_page_mask(struct hstate *h)
1108 {
1109 	return PAGE_MASK;
1110 }
1111 
1112 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1113 {
1114 	return PAGE_SIZE;
1115 }
1116 
1117 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1118 {
1119 	return PAGE_SIZE;
1120 }
1121 
1122 static inline unsigned int huge_page_order(struct hstate *h)
1123 {
1124 	return 0;
1125 }
1126 
1127 static inline unsigned int huge_page_shift(struct hstate *h)
1128 {
1129 	return PAGE_SHIFT;
1130 }
1131 
1132 static inline bool hstate_is_gigantic(struct hstate *h)
1133 {
1134 	return false;
1135 }
1136 
1137 static inline unsigned int pages_per_huge_page(struct hstate *h)
1138 {
1139 	return 1;
1140 }
1141 
1142 static inline unsigned hstate_index_to_shift(unsigned index)
1143 {
1144 	return 0;
1145 }
1146 
1147 static inline int hstate_index(struct hstate *h)
1148 {
1149 	return 0;
1150 }
1151 
1152 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1153 {
1154 	return 0;
1155 }
1156 
1157 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1158 					   unsigned long end_pfn)
1159 {
1160 	return 0;
1161 }
1162 
1163 static inline bool hugepage_migration_supported(struct hstate *h)
1164 {
1165 	return false;
1166 }
1167 
1168 static inline bool hugepage_movable_supported(struct hstate *h)
1169 {
1170 	return false;
1171 }
1172 
1173 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1174 {
1175 	return 0;
1176 }
1177 
1178 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1179 {
1180 	return 0;
1181 }
1182 
1183 static inline bool htlb_allow_alloc_fallback(int reason)
1184 {
1185 	return false;
1186 }
1187 
1188 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1189 					   struct mm_struct *mm, pte_t *pte)
1190 {
1191 	return &mm->page_table_lock;
1192 }
1193 
1194 static inline void hugetlb_count_init(struct mm_struct *mm)
1195 {
1196 }
1197 
1198 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1199 {
1200 }
1201 
1202 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1203 {
1204 }
1205 
1206 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1207 					  unsigned long addr, pte_t *ptep)
1208 {
1209 #ifdef CONFIG_MMU
1210 	return ptep_get(ptep);
1211 #else
1212 	return *ptep;
1213 #endif
1214 }
1215 
1216 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1217 				   pte_t *ptep, pte_t pte, unsigned long sz)
1218 {
1219 }
1220 
1221 static inline void hugetlb_register_node(struct node *node)
1222 {
1223 }
1224 
1225 static inline void hugetlb_unregister_node(struct node *node)
1226 {
1227 }
1228 
1229 static inline bool hugetlbfs_pagecache_present(
1230     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1231 {
1232 	return false;
1233 }
1234 #endif	/* CONFIG_HUGETLB_PAGE */
1235 
1236 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1237 					struct mm_struct *mm, pte_t *pte)
1238 {
1239 	spinlock_t *ptl;
1240 
1241 	ptl = huge_pte_lockptr(h, mm, pte);
1242 	spin_lock(ptl);
1243 	return ptl;
1244 }
1245 
1246 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1247 extern void __init hugetlb_cma_reserve(int order);
1248 #else
1249 static inline __init void hugetlb_cma_reserve(int order)
1250 {
1251 }
1252 #endif
1253 
1254 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1255 static inline bool hugetlb_pmd_shared(pte_t *pte)
1256 {
1257 	return page_count(virt_to_page(pte)) > 1;
1258 }
1259 #else
1260 static inline bool hugetlb_pmd_shared(pte_t *pte)
1261 {
1262 	return false;
1263 }
1264 #endif
1265 
1266 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1267 
1268 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1269 /*
1270  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1271  * implement this.
1272  */
1273 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1274 #endif
1275 
1276 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1277 {
1278 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1279 }
1280 
1281 bool __vma_private_lock(struct vm_area_struct *vma);
1282 
1283 /*
1284  * Safe version of huge_pte_offset() to check the locks.  See comments
1285  * above huge_pte_offset().
1286  */
1287 static inline pte_t *
1288 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1289 {
1290 #if defined(CONFIG_HUGETLB_PAGE) && \
1291 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1292 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1293 
1294 	/*
1295 	 * If pmd sharing possible, locking needed to safely walk the
1296 	 * hugetlb pgtables.  More information can be found at the comment
1297 	 * above huge_pte_offset() in the same file.
1298 	 *
1299 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1300 	 */
1301 	if (__vma_shareable_lock(vma))
1302 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1303 			     !lockdep_is_held(
1304 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1305 #endif
1306 	return huge_pte_offset(vma->vm_mm, addr, sz);
1307 }
1308 
1309 #endif /* _LINUX_HUGETLB_H */
1310