xref: /linux-6.15/include/linux/huge_mm.h (revision dd7c445b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGE_MM_H
3 #define _LINUX_HUGE_MM_H
4 
5 #include <linux/sched/coredump.h>
6 #include <linux/mm_types.h>
7 
8 #include <linux/fs.h> /* only for vma_is_dax() */
9 #include <linux/kobject.h>
10 
11 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
12 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
13 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
14 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
15 void huge_pmd_set_accessed(struct vm_fault *vmf);
16 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
17 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
18 		  struct vm_area_struct *vma);
19 
20 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
21 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
22 #else
23 static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
24 {
25 }
26 #endif
27 
28 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
29 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
30 			   pmd_t *pmd, unsigned long addr, unsigned long next);
31 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
32 		 unsigned long addr);
33 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
34 		 unsigned long addr);
35 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
36 		   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
37 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
38 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
39 		    unsigned long cp_flags);
40 
41 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write);
42 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write);
43 
44 enum transparent_hugepage_flag {
45 	TRANSPARENT_HUGEPAGE_UNSUPPORTED,
46 	TRANSPARENT_HUGEPAGE_FLAG,
47 	TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
48 	TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
49 	TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
50 	TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
51 	TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
52 	TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
53 	TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
54 };
55 
56 struct kobject;
57 struct kobj_attribute;
58 
59 ssize_t single_hugepage_flag_store(struct kobject *kobj,
60 				   struct kobj_attribute *attr,
61 				   const char *buf, size_t count,
62 				   enum transparent_hugepage_flag flag);
63 ssize_t single_hugepage_flag_show(struct kobject *kobj,
64 				  struct kobj_attribute *attr, char *buf,
65 				  enum transparent_hugepage_flag flag);
66 extern struct kobj_attribute shmem_enabled_attr;
67 extern struct kobj_attribute thpsize_shmem_enabled_attr;
68 
69 /*
70  * Mask of all large folio orders supported for anonymous THP; all orders up to
71  * and including PMD_ORDER, except order-0 (which is not "huge") and order-1
72  * (which is a limitation of the THP implementation).
73  */
74 #define THP_ORDERS_ALL_ANON	((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
75 
76 /*
77  * Mask of all large folio orders supported for file THP. Folios in a DAX
78  * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to
79  * it.
80  */
81 #define THP_ORDERS_ALL_FILE_DAX		\
82 	(BIT(PMD_ORDER) | BIT(PUD_ORDER))
83 #define THP_ORDERS_ALL_FILE_DEFAULT	\
84 	((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0))
85 
86 /*
87  * Mask of all large folio orders supported for THP.
88  */
89 #define THP_ORDERS_ALL	\
90 	(THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DAX | THP_ORDERS_ALL_FILE_DEFAULT)
91 
92 #define TVA_SMAPS		(1 << 0)	/* Will be used for procfs */
93 #define TVA_IN_PF		(1 << 1)	/* Page fault handler */
94 #define TVA_ENFORCE_SYSFS	(1 << 2)	/* Obey sysfs configuration */
95 
96 #define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \
97 	(!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order)))
98 
99 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
100 #define HPAGE_PMD_SHIFT PMD_SHIFT
101 #define HPAGE_PUD_SHIFT PUD_SHIFT
102 #else
103 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
104 #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
105 #endif
106 
107 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
108 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
109 #define HPAGE_PMD_MASK	(~(HPAGE_PMD_SIZE - 1))
110 #define HPAGE_PMD_SIZE	((1UL) << HPAGE_PMD_SHIFT)
111 
112 #define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
113 #define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
114 #define HPAGE_PUD_MASK	(~(HPAGE_PUD_SIZE - 1))
115 #define HPAGE_PUD_SIZE	((1UL) << HPAGE_PUD_SHIFT)
116 
117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
118 
119 extern unsigned long transparent_hugepage_flags;
120 extern unsigned long huge_anon_orders_always;
121 extern unsigned long huge_anon_orders_madvise;
122 extern unsigned long huge_anon_orders_inherit;
123 
124 static inline bool hugepage_global_enabled(void)
125 {
126 	return transparent_hugepage_flags &
127 			((1<<TRANSPARENT_HUGEPAGE_FLAG) |
128 			(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
129 }
130 
131 static inline bool hugepage_global_always(void)
132 {
133 	return transparent_hugepage_flags &
134 			(1<<TRANSPARENT_HUGEPAGE_FLAG);
135 }
136 
137 static inline int highest_order(unsigned long orders)
138 {
139 	return fls_long(orders) - 1;
140 }
141 
142 static inline int next_order(unsigned long *orders, int prev)
143 {
144 	*orders &= ~BIT(prev);
145 	return highest_order(*orders);
146 }
147 
148 /*
149  * Do the below checks:
150  *   - For file vma, check if the linear page offset of vma is
151  *     order-aligned within the file.  The hugepage is
152  *     guaranteed to be order-aligned within the file, but we must
153  *     check that the order-aligned addresses in the VMA map to
154  *     order-aligned offsets within the file, else the hugepage will
155  *     not be mappable.
156  *   - For all vmas, check if the haddr is in an aligned hugepage
157  *     area.
158  */
159 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
160 		unsigned long addr, int order)
161 {
162 	unsigned long hpage_size = PAGE_SIZE << order;
163 	unsigned long haddr;
164 
165 	/* Don't have to check pgoff for anonymous vma */
166 	if (!vma_is_anonymous(vma)) {
167 		if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
168 				hpage_size >> PAGE_SHIFT))
169 			return false;
170 	}
171 
172 	haddr = ALIGN_DOWN(addr, hpage_size);
173 
174 	if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
175 		return false;
176 	return true;
177 }
178 
179 /*
180  * Filter the bitfield of input orders to the ones suitable for use in the vma.
181  * See thp_vma_suitable_order().
182  * All orders that pass the checks are returned as a bitfield.
183  */
184 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
185 		unsigned long addr, unsigned long orders)
186 {
187 	int order;
188 
189 	/*
190 	 * Iterate over orders, highest to lowest, removing orders that don't
191 	 * meet alignment requirements from the set. Exit loop at first order
192 	 * that meets requirements, since all lower orders must also meet
193 	 * requirements.
194 	 */
195 
196 	order = highest_order(orders);
197 
198 	while (orders) {
199 		if (thp_vma_suitable_order(vma, addr, order))
200 			break;
201 		order = next_order(&orders, order);
202 	}
203 
204 	return orders;
205 }
206 
207 static inline bool file_thp_enabled(struct vm_area_struct *vma)
208 {
209 	struct inode *inode;
210 
211 	if (!vma->vm_file)
212 		return false;
213 
214 	inode = vma->vm_file->f_inode;
215 
216 	return (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) &&
217 	       !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
218 }
219 
220 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
221 					 unsigned long vm_flags,
222 					 unsigned long tva_flags,
223 					 unsigned long orders);
224 
225 /**
226  * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
227  * @vma:  the vm area to check
228  * @vm_flags: use these vm_flags instead of vma->vm_flags
229  * @tva_flags: Which TVA flags to honour
230  * @orders: bitfield of all orders to consider
231  *
232  * Calculates the intersection of the requested hugepage orders and the allowed
233  * hugepage orders for the provided vma. Permitted orders are encoded as a set
234  * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
235  * corresponds to order-3, etc). Order-0 is never considered a hugepage order.
236  *
237  * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
238  * orders are allowed.
239  */
240 static inline
241 unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
242 				       unsigned long vm_flags,
243 				       unsigned long tva_flags,
244 				       unsigned long orders)
245 {
246 	/* Optimization to check if required orders are enabled early. */
247 	if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) {
248 		unsigned long mask = READ_ONCE(huge_anon_orders_always);
249 
250 		if (vm_flags & VM_HUGEPAGE)
251 			mask |= READ_ONCE(huge_anon_orders_madvise);
252 		if (hugepage_global_always() ||
253 		    ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
254 			mask |= READ_ONCE(huge_anon_orders_inherit);
255 
256 		orders &= mask;
257 		if (!orders)
258 			return 0;
259 	}
260 
261 	return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders);
262 }
263 
264 struct thpsize {
265 	struct kobject kobj;
266 	struct list_head node;
267 	int order;
268 };
269 
270 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
271 
272 enum mthp_stat_item {
273 	MTHP_STAT_ANON_FAULT_ALLOC,
274 	MTHP_STAT_ANON_FAULT_FALLBACK,
275 	MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
276 	MTHP_STAT_SWPOUT,
277 	MTHP_STAT_SWPOUT_FALLBACK,
278 	MTHP_STAT_SHMEM_ALLOC,
279 	MTHP_STAT_SHMEM_FALLBACK,
280 	MTHP_STAT_SHMEM_FALLBACK_CHARGE,
281 	MTHP_STAT_SPLIT,
282 	MTHP_STAT_SPLIT_FAILED,
283 	MTHP_STAT_SPLIT_DEFERRED,
284 	__MTHP_STAT_COUNT
285 };
286 
287 struct mthp_stat {
288 	unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
289 };
290 
291 #ifdef CONFIG_SYSFS
292 DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
293 
294 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
295 {
296 	if (order <= 0 || order > PMD_ORDER)
297 		return;
298 
299 	this_cpu_inc(mthp_stats.stats[order][item]);
300 }
301 #else
302 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
303 {
304 }
305 #endif
306 
307 #define transparent_hugepage_use_zero_page()				\
308 	(transparent_hugepage_flags &					\
309 	 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
310 
311 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
312 		unsigned long len, unsigned long pgoff, unsigned long flags);
313 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
314 		unsigned long len, unsigned long pgoff, unsigned long flags,
315 		vm_flags_t vm_flags);
316 
317 bool can_split_folio(struct folio *folio, int *pextra_pins);
318 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
319 		unsigned int new_order);
320 static inline int split_huge_page(struct page *page)
321 {
322 	return split_huge_page_to_list_to_order(page, NULL, 0);
323 }
324 void deferred_split_folio(struct folio *folio);
325 
326 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
327 		unsigned long address, bool freeze, struct folio *folio);
328 
329 #define split_huge_pmd(__vma, __pmd, __address)				\
330 	do {								\
331 		pmd_t *____pmd = (__pmd);				\
332 		if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd)	\
333 					|| pmd_devmap(*____pmd))	\
334 			__split_huge_pmd(__vma, __pmd, __address,	\
335 						false, NULL);		\
336 	}  while (0)
337 
338 
339 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
340 		bool freeze, struct folio *folio);
341 
342 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
343 		unsigned long address);
344 
345 #define split_huge_pud(__vma, __pud, __address)				\
346 	do {								\
347 		pud_t *____pud = (__pud);				\
348 		if (pud_trans_huge(*____pud)				\
349 					|| pud_devmap(*____pud))	\
350 			__split_huge_pud(__vma, __pud, __address);	\
351 	}  while (0)
352 
353 int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags,
354 		     int advice);
355 int madvise_collapse(struct vm_area_struct *vma,
356 		     struct vm_area_struct **prev,
357 		     unsigned long start, unsigned long end);
358 void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
359 			   unsigned long end, long adjust_next);
360 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
361 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
362 
363 static inline int is_swap_pmd(pmd_t pmd)
364 {
365 	return !pmd_none(pmd) && !pmd_present(pmd);
366 }
367 
368 /* mmap_lock must be held on entry */
369 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
370 		struct vm_area_struct *vma)
371 {
372 	if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd))
373 		return __pmd_trans_huge_lock(pmd, vma);
374 	else
375 		return NULL;
376 }
377 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
378 		struct vm_area_struct *vma)
379 {
380 	if (pud_trans_huge(*pud) || pud_devmap(*pud))
381 		return __pud_trans_huge_lock(pud, vma);
382 	else
383 		return NULL;
384 }
385 
386 /**
387  * folio_test_pmd_mappable - Can we map this folio with a PMD?
388  * @folio: The folio to test
389  */
390 static inline bool folio_test_pmd_mappable(struct folio *folio)
391 {
392 	return folio_order(folio) >= HPAGE_PMD_ORDER;
393 }
394 
395 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
396 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap);
397 
398 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
399 
400 extern struct folio *huge_zero_folio;
401 extern unsigned long huge_zero_pfn;
402 
403 static inline bool is_huge_zero_folio(const struct folio *folio)
404 {
405 	return READ_ONCE(huge_zero_folio) == folio;
406 }
407 
408 static inline bool is_huge_zero_pmd(pmd_t pmd)
409 {
410 	return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd);
411 }
412 
413 static inline bool is_huge_zero_pud(pud_t pud)
414 {
415 	return false;
416 }
417 
418 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
419 void mm_put_huge_zero_folio(struct mm_struct *mm);
420 
421 #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot))
422 
423 static inline bool thp_migration_supported(void)
424 {
425 	return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
426 }
427 
428 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
429 			   pmd_t *pmd, bool freeze, struct folio *folio);
430 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
431 			   pmd_t *pmdp, struct folio *folio);
432 
433 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
434 
435 static inline bool folio_test_pmd_mappable(struct folio *folio)
436 {
437 	return false;
438 }
439 
440 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
441 		unsigned long addr, int order)
442 {
443 	return false;
444 }
445 
446 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
447 		unsigned long addr, unsigned long orders)
448 {
449 	return 0;
450 }
451 
452 static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
453 					unsigned long vm_flags,
454 					unsigned long tva_flags,
455 					unsigned long orders)
456 {
457 	return 0;
458 }
459 
460 #define transparent_hugepage_flags 0UL
461 
462 #define thp_get_unmapped_area	NULL
463 
464 static inline unsigned long
465 thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
466 			      unsigned long len, unsigned long pgoff,
467 			      unsigned long flags, vm_flags_t vm_flags)
468 {
469 	return 0;
470 }
471 
472 static inline bool
473 can_split_folio(struct folio *folio, int *pextra_pins)
474 {
475 	return false;
476 }
477 static inline int
478 split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
479 		unsigned int new_order)
480 {
481 	return 0;
482 }
483 static inline int split_huge_page(struct page *page)
484 {
485 	return 0;
486 }
487 static inline void deferred_split_folio(struct folio *folio) {}
488 #define split_huge_pmd(__vma, __pmd, __address)	\
489 	do { } while (0)
490 
491 static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
492 		unsigned long address, bool freeze, struct folio *folio) {}
493 static inline void split_huge_pmd_address(struct vm_area_struct *vma,
494 		unsigned long address, bool freeze, struct folio *folio) {}
495 static inline void split_huge_pmd_locked(struct vm_area_struct *vma,
496 					 unsigned long address, pmd_t *pmd,
497 					 bool freeze, struct folio *folio) {}
498 
499 static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma,
500 					 unsigned long addr, pmd_t *pmdp,
501 					 struct folio *folio)
502 {
503 	return false;
504 }
505 
506 #define split_huge_pud(__vma, __pmd, __address)	\
507 	do { } while (0)
508 
509 static inline int hugepage_madvise(struct vm_area_struct *vma,
510 				   unsigned long *vm_flags, int advice)
511 {
512 	return -EINVAL;
513 }
514 
515 static inline int madvise_collapse(struct vm_area_struct *vma,
516 				   struct vm_area_struct **prev,
517 				   unsigned long start, unsigned long end)
518 {
519 	return -EINVAL;
520 }
521 
522 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
523 					 unsigned long start,
524 					 unsigned long end,
525 					 long adjust_next)
526 {
527 }
528 static inline int is_swap_pmd(pmd_t pmd)
529 {
530 	return 0;
531 }
532 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
533 		struct vm_area_struct *vma)
534 {
535 	return NULL;
536 }
537 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
538 		struct vm_area_struct *vma)
539 {
540 	return NULL;
541 }
542 
543 static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
544 {
545 	return 0;
546 }
547 
548 static inline bool is_huge_zero_folio(const struct folio *folio)
549 {
550 	return false;
551 }
552 
553 static inline bool is_huge_zero_pmd(pmd_t pmd)
554 {
555 	return false;
556 }
557 
558 static inline bool is_huge_zero_pud(pud_t pud)
559 {
560 	return false;
561 }
562 
563 static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
564 {
565 	return;
566 }
567 
568 static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma,
569 	unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
570 {
571 	return NULL;
572 }
573 
574 static inline bool thp_migration_supported(void)
575 {
576 	return false;
577 }
578 
579 static inline int highest_order(unsigned long orders)
580 {
581 	return 0;
582 }
583 
584 static inline int next_order(unsigned long *orders, int prev)
585 {
586 	return 0;
587 }
588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
589 
590 static inline int split_folio_to_list_to_order(struct folio *folio,
591 		struct list_head *list, int new_order)
592 {
593 	return split_huge_page_to_list_to_order(&folio->page, list, new_order);
594 }
595 
596 static inline int split_folio_to_order(struct folio *folio, int new_order)
597 {
598 	return split_folio_to_list_to_order(folio, NULL, new_order);
599 }
600 
601 #define split_folio_to_list(f, l) split_folio_to_list_to_order(f, l, 0)
602 #define split_folio(f) split_folio_to_order(f, 0)
603 
604 #endif /* _LINUX_HUGE_MM_H */
605