1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HUGE_MM_H 3 #define _LINUX_HUGE_MM_H 4 5 #include <linux/mm_types.h> 6 7 #include <linux/fs.h> /* only for vma_is_dax() */ 8 #include <linux/kobject.h> 9 10 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); 11 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 14 void huge_pmd_set_accessed(struct vm_fault *vmf); 15 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 17 struct vm_area_struct *vma); 18 19 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 20 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); 21 #else 22 static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 23 { 24 } 25 #endif 26 27 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf); 28 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 29 pmd_t *pmd, unsigned long addr, unsigned long next); 30 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, 31 unsigned long addr); 32 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, 33 unsigned long addr); 34 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); 36 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 37 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 38 unsigned long cp_flags); 39 40 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write); 41 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write); 42 43 enum transparent_hugepage_flag { 44 TRANSPARENT_HUGEPAGE_UNSUPPORTED, 45 TRANSPARENT_HUGEPAGE_FLAG, 46 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 47 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 48 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 49 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 50 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 51 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, 52 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, 53 }; 54 55 struct kobject; 56 struct kobj_attribute; 57 58 ssize_t single_hugepage_flag_store(struct kobject *kobj, 59 struct kobj_attribute *attr, 60 const char *buf, size_t count, 61 enum transparent_hugepage_flag flag); 62 ssize_t single_hugepage_flag_show(struct kobject *kobj, 63 struct kobj_attribute *attr, char *buf, 64 enum transparent_hugepage_flag flag); 65 extern struct kobj_attribute shmem_enabled_attr; 66 extern struct kobj_attribute thpsize_shmem_enabled_attr; 67 68 /* 69 * Mask of all large folio orders supported for anonymous THP; all orders up to 70 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1 71 * (which is a limitation of the THP implementation). 72 */ 73 #define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1))) 74 75 /* 76 * Mask of all large folio orders supported for file THP. Folios in a DAX 77 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to 78 * it. Same to PFNMAPs where there's neither page* nor pagecache. 79 */ 80 #define THP_ORDERS_ALL_SPECIAL \ 81 (BIT(PMD_ORDER) | BIT(PUD_ORDER)) 82 #define THP_ORDERS_ALL_FILE_DEFAULT \ 83 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0)) 84 85 /* 86 * Mask of all large folio orders supported for THP. 87 */ 88 #define THP_ORDERS_ALL \ 89 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT) 90 91 #define TVA_SMAPS (1 << 0) /* Will be used for procfs */ 92 #define TVA_IN_PF (1 << 1) /* Page fault handler */ 93 #define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */ 94 95 #define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \ 96 (!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order))) 97 98 #define split_folio(f) split_folio_to_list(f, NULL) 99 100 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 101 #define HPAGE_PMD_SHIFT PMD_SHIFT 102 #define HPAGE_PUD_SHIFT PUD_SHIFT 103 #else 104 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) 105 #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) 106 #endif 107 108 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) 109 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) 110 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) 111 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) 112 113 #define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT) 114 #define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER) 115 #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) 116 #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) 117 118 enum mthp_stat_item { 119 MTHP_STAT_ANON_FAULT_ALLOC, 120 MTHP_STAT_ANON_FAULT_FALLBACK, 121 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE, 122 MTHP_STAT_ZSWPOUT, 123 MTHP_STAT_SWPIN, 124 MTHP_STAT_SWPOUT, 125 MTHP_STAT_SWPOUT_FALLBACK, 126 MTHP_STAT_SHMEM_ALLOC, 127 MTHP_STAT_SHMEM_FALLBACK, 128 MTHP_STAT_SHMEM_FALLBACK_CHARGE, 129 MTHP_STAT_SPLIT, 130 MTHP_STAT_SPLIT_FAILED, 131 MTHP_STAT_SPLIT_DEFERRED, 132 MTHP_STAT_NR_ANON, 133 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 134 __MTHP_STAT_COUNT 135 }; 136 137 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 138 struct mthp_stat { 139 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT]; 140 }; 141 142 DECLARE_PER_CPU(struct mthp_stat, mthp_stats); 143 144 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 145 { 146 if (order <= 0 || order > PMD_ORDER) 147 return; 148 149 this_cpu_add(mthp_stats.stats[order][item], delta); 150 } 151 152 static inline void count_mthp_stat(int order, enum mthp_stat_item item) 153 { 154 mod_mthp_stat(order, item, 1); 155 } 156 157 #else 158 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 159 { 160 } 161 162 static inline void count_mthp_stat(int order, enum mthp_stat_item item) 163 { 164 } 165 #endif 166 167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 168 169 extern unsigned long transparent_hugepage_flags; 170 extern unsigned long huge_anon_orders_always; 171 extern unsigned long huge_anon_orders_madvise; 172 extern unsigned long huge_anon_orders_inherit; 173 174 static inline bool hugepage_global_enabled(void) 175 { 176 return transparent_hugepage_flags & 177 ((1<<TRANSPARENT_HUGEPAGE_FLAG) | 178 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)); 179 } 180 181 static inline bool hugepage_global_always(void) 182 { 183 return transparent_hugepage_flags & 184 (1<<TRANSPARENT_HUGEPAGE_FLAG); 185 } 186 187 static inline int highest_order(unsigned long orders) 188 { 189 return fls_long(orders) - 1; 190 } 191 192 static inline int next_order(unsigned long *orders, int prev) 193 { 194 *orders &= ~BIT(prev); 195 return highest_order(*orders); 196 } 197 198 /* 199 * Do the below checks: 200 * - For file vma, check if the linear page offset of vma is 201 * order-aligned within the file. The hugepage is 202 * guaranteed to be order-aligned within the file, but we must 203 * check that the order-aligned addresses in the VMA map to 204 * order-aligned offsets within the file, else the hugepage will 205 * not be mappable. 206 * - For all vmas, check if the haddr is in an aligned hugepage 207 * area. 208 */ 209 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 210 unsigned long addr, int order) 211 { 212 unsigned long hpage_size = PAGE_SIZE << order; 213 unsigned long haddr; 214 215 /* Don't have to check pgoff for anonymous vma */ 216 if (!vma_is_anonymous(vma)) { 217 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 218 hpage_size >> PAGE_SHIFT)) 219 return false; 220 } 221 222 haddr = ALIGN_DOWN(addr, hpage_size); 223 224 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end) 225 return false; 226 return true; 227 } 228 229 /* 230 * Filter the bitfield of input orders to the ones suitable for use in the vma. 231 * See thp_vma_suitable_order(). 232 * All orders that pass the checks are returned as a bitfield. 233 */ 234 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 235 unsigned long addr, unsigned long orders) 236 { 237 int order; 238 239 /* 240 * Iterate over orders, highest to lowest, removing orders that don't 241 * meet alignment requirements from the set. Exit loop at first order 242 * that meets requirements, since all lower orders must also meet 243 * requirements. 244 */ 245 246 order = highest_order(orders); 247 248 while (orders) { 249 if (thp_vma_suitable_order(vma, addr, order)) 250 break; 251 order = next_order(&orders, order); 252 } 253 254 return orders; 255 } 256 257 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 258 unsigned long vm_flags, 259 unsigned long tva_flags, 260 unsigned long orders); 261 262 /** 263 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma 264 * @vma: the vm area to check 265 * @vm_flags: use these vm_flags instead of vma->vm_flags 266 * @tva_flags: Which TVA flags to honour 267 * @orders: bitfield of all orders to consider 268 * 269 * Calculates the intersection of the requested hugepage orders and the allowed 270 * hugepage orders for the provided vma. Permitted orders are encoded as a set 271 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3 272 * corresponds to order-3, etc). Order-0 is never considered a hugepage order. 273 * 274 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage 275 * orders are allowed. 276 */ 277 static inline 278 unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 279 unsigned long vm_flags, 280 unsigned long tva_flags, 281 unsigned long orders) 282 { 283 /* Optimization to check if required orders are enabled early. */ 284 if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) { 285 unsigned long mask = READ_ONCE(huge_anon_orders_always); 286 287 if (vm_flags & VM_HUGEPAGE) 288 mask |= READ_ONCE(huge_anon_orders_madvise); 289 if (hugepage_global_always() || 290 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled())) 291 mask |= READ_ONCE(huge_anon_orders_inherit); 292 293 orders &= mask; 294 if (!orders) 295 return 0; 296 } 297 298 return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders); 299 } 300 301 struct thpsize { 302 struct kobject kobj; 303 struct list_head node; 304 int order; 305 }; 306 307 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 308 309 #define transparent_hugepage_use_zero_page() \ 310 (transparent_hugepage_flags & \ 311 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) 312 313 static inline bool vma_thp_disabled(struct vm_area_struct *vma, 314 unsigned long vm_flags) 315 { 316 /* 317 * Explicitly disabled through madvise or prctl, or some 318 * architectures may disable THP for some mappings, for 319 * example, s390 kvm. 320 */ 321 return (vm_flags & VM_NOHUGEPAGE) || 322 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags); 323 } 324 325 static inline bool thp_disabled_by_hw(void) 326 { 327 /* If the hardware/firmware marked hugepage support disabled. */ 328 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED); 329 } 330 331 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 332 unsigned long len, unsigned long pgoff, unsigned long flags); 333 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 334 unsigned long len, unsigned long pgoff, unsigned long flags, 335 vm_flags_t vm_flags); 336 337 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins); 338 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 339 unsigned int new_order); 340 int min_order_for_split(struct folio *folio); 341 int split_folio_to_list(struct folio *folio, struct list_head *list); 342 static inline int split_huge_page(struct page *page) 343 { 344 struct folio *folio = page_folio(page); 345 int ret = min_order_for_split(folio); 346 347 if (ret < 0) 348 return ret; 349 350 /* 351 * split_huge_page() locks the page before splitting and 352 * expects the same page that has been split to be locked when 353 * returned. split_folio(page_folio(page)) cannot be used here 354 * because it converts the page to folio and passes the head 355 * page to be split. 356 */ 357 return split_huge_page_to_list_to_order(page, NULL, ret); 358 } 359 void deferred_split_folio(struct folio *folio, bool partially_mapped); 360 361 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 362 unsigned long address, bool freeze, struct folio *folio); 363 364 #define split_huge_pmd(__vma, __pmd, __address) \ 365 do { \ 366 pmd_t *____pmd = (__pmd); \ 367 if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \ 368 || pmd_devmap(*____pmd)) \ 369 __split_huge_pmd(__vma, __pmd, __address, \ 370 false, NULL); \ 371 } while (0) 372 373 374 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 375 bool freeze, struct folio *folio); 376 377 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 378 unsigned long address); 379 380 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 381 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 382 pud_t *pudp, unsigned long addr, pgprot_t newprot, 383 unsigned long cp_flags); 384 #else 385 static inline int 386 change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 387 pud_t *pudp, unsigned long addr, pgprot_t newprot, 388 unsigned long cp_flags) { return 0; } 389 #endif 390 391 #define split_huge_pud(__vma, __pud, __address) \ 392 do { \ 393 pud_t *____pud = (__pud); \ 394 if (pud_trans_huge(*____pud) \ 395 || pud_devmap(*____pud)) \ 396 __split_huge_pud(__vma, __pud, __address); \ 397 } while (0) 398 399 int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, 400 int advice); 401 int madvise_collapse(struct vm_area_struct *vma, 402 struct vm_area_struct **prev, 403 unsigned long start, unsigned long end); 404 void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, 405 unsigned long end, long adjust_next); 406 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); 407 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); 408 409 static inline int is_swap_pmd(pmd_t pmd) 410 { 411 return !pmd_none(pmd) && !pmd_present(pmd); 412 } 413 414 /* mmap_lock must be held on entry */ 415 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 416 struct vm_area_struct *vma) 417 { 418 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) 419 return __pmd_trans_huge_lock(pmd, vma); 420 else 421 return NULL; 422 } 423 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 424 struct vm_area_struct *vma) 425 { 426 if (pud_trans_huge(*pud) || pud_devmap(*pud)) 427 return __pud_trans_huge_lock(pud, vma); 428 else 429 return NULL; 430 } 431 432 /** 433 * folio_test_pmd_mappable - Can we map this folio with a PMD? 434 * @folio: The folio to test 435 */ 436 static inline bool folio_test_pmd_mappable(struct folio *folio) 437 { 438 return folio_order(folio) >= HPAGE_PMD_ORDER; 439 } 440 441 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 442 pmd_t *pmd, int flags, struct dev_pagemap **pgmap); 443 444 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf); 445 446 extern struct folio *huge_zero_folio; 447 extern unsigned long huge_zero_pfn; 448 449 static inline bool is_huge_zero_folio(const struct folio *folio) 450 { 451 return READ_ONCE(huge_zero_folio) == folio; 452 } 453 454 static inline bool is_huge_zero_pmd(pmd_t pmd) 455 { 456 return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd); 457 } 458 459 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm); 460 void mm_put_huge_zero_folio(struct mm_struct *mm); 461 462 #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot)) 463 464 static inline bool thp_migration_supported(void) 465 { 466 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); 467 } 468 469 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 470 pmd_t *pmd, bool freeze, struct folio *folio); 471 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 472 pmd_t *pmdp, struct folio *folio); 473 474 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 475 476 static inline bool folio_test_pmd_mappable(struct folio *folio) 477 { 478 return false; 479 } 480 481 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 482 unsigned long addr, int order) 483 { 484 return false; 485 } 486 487 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 488 unsigned long addr, unsigned long orders) 489 { 490 return 0; 491 } 492 493 static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 494 unsigned long vm_flags, 495 unsigned long tva_flags, 496 unsigned long orders) 497 { 498 return 0; 499 } 500 501 #define transparent_hugepage_flags 0UL 502 503 #define thp_get_unmapped_area NULL 504 505 static inline unsigned long 506 thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 507 unsigned long len, unsigned long pgoff, 508 unsigned long flags, vm_flags_t vm_flags) 509 { 510 return 0; 511 } 512 513 static inline bool 514 can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 515 { 516 return false; 517 } 518 static inline int 519 split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 520 unsigned int new_order) 521 { 522 return 0; 523 } 524 static inline int split_huge_page(struct page *page) 525 { 526 return 0; 527 } 528 529 static inline int split_folio_to_list(struct folio *folio, struct list_head *list) 530 { 531 return 0; 532 } 533 534 static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {} 535 #define split_huge_pmd(__vma, __pmd, __address) \ 536 do { } while (0) 537 538 static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 539 unsigned long address, bool freeze, struct folio *folio) {} 540 static inline void split_huge_pmd_address(struct vm_area_struct *vma, 541 unsigned long address, bool freeze, struct folio *folio) {} 542 static inline void split_huge_pmd_locked(struct vm_area_struct *vma, 543 unsigned long address, pmd_t *pmd, 544 bool freeze, struct folio *folio) {} 545 546 static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma, 547 unsigned long addr, pmd_t *pmdp, 548 struct folio *folio) 549 { 550 return false; 551 } 552 553 #define split_huge_pud(__vma, __pmd, __address) \ 554 do { } while (0) 555 556 static inline int hugepage_madvise(struct vm_area_struct *vma, 557 unsigned long *vm_flags, int advice) 558 { 559 return -EINVAL; 560 } 561 562 static inline int madvise_collapse(struct vm_area_struct *vma, 563 struct vm_area_struct **prev, 564 unsigned long start, unsigned long end) 565 { 566 return -EINVAL; 567 } 568 569 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 570 unsigned long start, 571 unsigned long end, 572 long adjust_next) 573 { 574 } 575 static inline int is_swap_pmd(pmd_t pmd) 576 { 577 return 0; 578 } 579 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 580 struct vm_area_struct *vma) 581 { 582 return NULL; 583 } 584 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 585 struct vm_area_struct *vma) 586 { 587 return NULL; 588 } 589 590 static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 591 { 592 return 0; 593 } 594 595 static inline bool is_huge_zero_folio(const struct folio *folio) 596 { 597 return false; 598 } 599 600 static inline bool is_huge_zero_pmd(pmd_t pmd) 601 { 602 return false; 603 } 604 605 static inline void mm_put_huge_zero_folio(struct mm_struct *mm) 606 { 607 return; 608 } 609 610 static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, 611 unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 612 { 613 return NULL; 614 } 615 616 static inline bool thp_migration_supported(void) 617 { 618 return false; 619 } 620 621 static inline int highest_order(unsigned long orders) 622 { 623 return 0; 624 } 625 626 static inline int next_order(unsigned long *orders, int prev) 627 { 628 return 0; 629 } 630 631 static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 632 unsigned long address) 633 { 634 } 635 636 static inline int change_huge_pud(struct mmu_gather *tlb, 637 struct vm_area_struct *vma, pud_t *pudp, 638 unsigned long addr, pgprot_t newprot, 639 unsigned long cp_flags) 640 { 641 return 0; 642 } 643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 644 645 static inline int split_folio_to_list_to_order(struct folio *folio, 646 struct list_head *list, int new_order) 647 { 648 return split_huge_page_to_list_to_order(&folio->page, list, new_order); 649 } 650 651 static inline int split_folio_to_order(struct folio *folio, int new_order) 652 { 653 return split_folio_to_list_to_order(folio, NULL, new_order); 654 } 655 656 #endif /* _LINUX_HUGE_MM_H */ 657