1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HIGHMEM_H 3 #define _LINUX_HIGHMEM_H 4 5 #include <linux/fs.h> 6 #include <linux/kernel.h> 7 #include <linux/bug.h> 8 #include <linux/cacheflush.h> 9 #include <linux/mm.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 13 #include "highmem-internal.h" 14 15 /** 16 * kmap - Map a page for long term usage 17 * @page: Pointer to the page to be mapped 18 * 19 * Returns: The virtual address of the mapping 20 * 21 * Can only be invoked from preemptible task context because on 32bit 22 * systems with CONFIG_HIGHMEM enabled this function might sleep. 23 * 24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 25 * this returns the virtual address of the direct kernel mapping. 26 * 27 * The returned virtual address is globally visible and valid up to the 28 * point where it is unmapped via kunmap(). The pointer can be handed to 29 * other contexts. 30 * 31 * For highmem pages on 32bit systems this can be slow as the mapping space 32 * is limited and protected by a global lock. In case that there is no 33 * mapping slot available the function blocks until a slot is released via 34 * kunmap(). 35 */ 36 static inline void *kmap(struct page *page); 37 38 /** 39 * kunmap - Unmap the virtual address mapped by kmap() 40 * @page: Pointer to the page which was mapped by kmap() 41 * 42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 43 * pages in the low memory area. 44 */ 45 static inline void kunmap(struct page *page); 46 47 /** 48 * kmap_to_page - Get the page for a kmap'ed address 49 * @addr: The address to look up 50 * 51 * Returns: The page which is mapped to @addr. 52 */ 53 static inline struct page *kmap_to_page(void *addr); 54 55 /** 56 * kmap_flush_unused - Flush all unused kmap mappings in order to 57 * remove stray mappings 58 */ 59 static inline void kmap_flush_unused(void); 60 61 /** 62 * kmap_local_page - Map a page for temporary usage 63 * @page: Pointer to the page to be mapped 64 * 65 * Returns: The virtual address of the mapping 66 * 67 * Can be invoked from any context. 68 * 69 * Requires careful handling when nesting multiple mappings because the map 70 * management is stack based. The unmap has to be in the reverse order of 71 * the map operation: 72 * 73 * addr1 = kmap_local_page(page1); 74 * addr2 = kmap_local_page(page2); 75 * ... 76 * kunmap_local(addr2); 77 * kunmap_local(addr1); 78 * 79 * Unmapping addr1 before addr2 is invalid and causes malfunction. 80 * 81 * Contrary to kmap() mappings the mapping is only valid in the context of 82 * the caller and cannot be handed to other contexts. 83 * 84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 85 * virtual address of the direct mapping. Only real highmem pages are 86 * temporarily mapped. 87 * 88 * While it is significantly faster than kmap() for the higmem case it 89 * comes with restrictions about the pointer validity. Only use when really 90 * necessary. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96 static inline void *kmap_local_page(struct page *page); 97 98 /** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the higmem case it 123 * comes with restrictions about the pointer validity. Only use when really 124 * necessary. 125 * 126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 127 * disabling migration in order to keep the virtual address stable across 128 * preemption. No caller of kmap_local_folio() can rely on this side effect. 129 * 130 * Context: Can be invoked from any context. 131 * Return: The virtual address of @offset. 132 */ 133 static inline void *kmap_local_folio(struct folio *folio, size_t offset); 134 135 /** 136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 137 * @page: Pointer to the page to be mapped 138 * 139 * Returns: The virtual address of the mapping 140 * 141 * In fact a wrapper around kmap_local_page() which also disables pagefaults 142 * and, depending on PREEMPT_RT configuration, also CPU migration and 143 * preemption. Therefore users should not count on the latter two side effects. 144 * 145 * Mappings should always be released by kunmap_atomic(). 146 * 147 * Do not use in new code. Use kmap_local_page() instead. 148 * 149 * It is used in atomic context when code wants to access the contents of a 150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 151 * example a page in the pagecache. The API has two functions, and they 152 * can be used in a manner similar to the following: 153 * 154 * -- Find the page of interest. -- 155 * struct page *page = find_get_page(mapping, offset); 156 * 157 * -- Gain access to the contents of that page. -- 158 * void *vaddr = kmap_atomic(page); 159 * 160 * -- Do something to the contents of that page. -- 161 * memset(vaddr, 0, PAGE_SIZE); 162 * 163 * -- Unmap that page. -- 164 * kunmap_atomic(vaddr); 165 * 166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 167 * call, not the argument. 168 * 169 * If you need to map two pages because you want to copy from one page to 170 * another you need to keep the kmap_atomic calls strictly nested, like: 171 * 172 * vaddr1 = kmap_atomic(page1); 173 * vaddr2 = kmap_atomic(page2); 174 * 175 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 176 * 177 * kunmap_atomic(vaddr2); 178 * kunmap_atomic(vaddr1); 179 */ 180 static inline void *kmap_atomic(struct page *page); 181 182 /* Highmem related interfaces for management code */ 183 static inline unsigned int nr_free_highpages(void); 184 static inline unsigned long totalhigh_pages(void); 185 186 #ifndef ARCH_HAS_FLUSH_ANON_PAGE 187 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 188 { 189 } 190 #endif 191 192 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 193 static inline void flush_kernel_vmap_range(void *vaddr, int size) 194 { 195 } 196 static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 197 { 198 } 199 #endif 200 201 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 202 #ifndef clear_user_highpage 203 static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 204 { 205 void *addr = kmap_local_page(page); 206 clear_user_page(addr, vaddr, page); 207 kunmap_local(addr); 208 } 209 #endif 210 211 #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE 212 /** 213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move 214 * @vma: The VMA the page is to be allocated for 215 * @vaddr: The virtual address the page will be inserted into 216 * 217 * Returns: The allocated and zeroed HIGHMEM page 218 * 219 * This function will allocate a page for a VMA that the caller knows will 220 * be able to migrate in the future using move_pages() or reclaimed 221 * 222 * An architecture may override this function by defining 223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own 224 * implementation. 225 */ 226 static inline struct page * 227 alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, 228 unsigned long vaddr) 229 { 230 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 231 232 if (page) 233 clear_user_highpage(page, vaddr); 234 235 return page; 236 } 237 #endif 238 239 static inline void clear_highpage(struct page *page) 240 { 241 void *kaddr = kmap_local_page(page); 242 clear_page(kaddr); 243 kunmap_local(kaddr); 244 } 245 246 static inline void clear_highpage_kasan_tagged(struct page *page) 247 { 248 u8 tag; 249 250 tag = page_kasan_tag(page); 251 page_kasan_tag_reset(page); 252 clear_highpage(page); 253 page_kasan_tag_set(page, tag); 254 } 255 256 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 257 258 static inline void tag_clear_highpage(struct page *page) 259 { 260 } 261 262 #endif 263 264 /* 265 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 266 * If we pass in a head page, we can zero up to the size of the compound page. 267 */ 268 #ifdef CONFIG_HIGHMEM 269 void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 270 unsigned start2, unsigned end2); 271 #else 272 static inline void zero_user_segments(struct page *page, 273 unsigned start1, unsigned end1, 274 unsigned start2, unsigned end2) 275 { 276 void *kaddr = kmap_local_page(page); 277 unsigned int i; 278 279 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 280 281 if (end1 > start1) 282 memset(kaddr + start1, 0, end1 - start1); 283 284 if (end2 > start2) 285 memset(kaddr + start2, 0, end2 - start2); 286 287 kunmap_local(kaddr); 288 for (i = 0; i < compound_nr(page); i++) 289 flush_dcache_page(page + i); 290 } 291 #endif 292 293 static inline void zero_user_segment(struct page *page, 294 unsigned start, unsigned end) 295 { 296 zero_user_segments(page, start, end, 0, 0); 297 } 298 299 static inline void zero_user(struct page *page, 300 unsigned start, unsigned size) 301 { 302 zero_user_segments(page, start, start + size, 0, 0); 303 } 304 305 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 306 307 static inline void copy_user_highpage(struct page *to, struct page *from, 308 unsigned long vaddr, struct vm_area_struct *vma) 309 { 310 char *vfrom, *vto; 311 312 vfrom = kmap_local_page(from); 313 vto = kmap_local_page(to); 314 copy_user_page(vto, vfrom, vaddr, to); 315 kunmap_local(vto); 316 kunmap_local(vfrom); 317 } 318 319 #endif 320 321 #ifndef __HAVE_ARCH_COPY_HIGHPAGE 322 323 static inline void copy_highpage(struct page *to, struct page *from) 324 { 325 char *vfrom, *vto; 326 327 vfrom = kmap_local_page(from); 328 vto = kmap_local_page(to); 329 copy_page(vto, vfrom); 330 kunmap_local(vto); 331 kunmap_local(vfrom); 332 } 333 334 #endif 335 336 static inline void memcpy_page(struct page *dst_page, size_t dst_off, 337 struct page *src_page, size_t src_off, 338 size_t len) 339 { 340 char *dst = kmap_local_page(dst_page); 341 char *src = kmap_local_page(src_page); 342 343 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 344 memcpy(dst + dst_off, src + src_off, len); 345 kunmap_local(src); 346 kunmap_local(dst); 347 } 348 349 static inline void memset_page(struct page *page, size_t offset, int val, 350 size_t len) 351 { 352 char *addr = kmap_local_page(page); 353 354 VM_BUG_ON(offset + len > PAGE_SIZE); 355 memset(addr + offset, val, len); 356 kunmap_local(addr); 357 } 358 359 static inline void memcpy_from_page(char *to, struct page *page, 360 size_t offset, size_t len) 361 { 362 char *from = kmap_local_page(page); 363 364 VM_BUG_ON(offset + len > PAGE_SIZE); 365 memcpy(to, from + offset, len); 366 kunmap_local(from); 367 } 368 369 static inline void memcpy_to_page(struct page *page, size_t offset, 370 const char *from, size_t len) 371 { 372 char *to = kmap_local_page(page); 373 374 VM_BUG_ON(offset + len > PAGE_SIZE); 375 memcpy(to + offset, from, len); 376 flush_dcache_page(page); 377 kunmap_local(to); 378 } 379 380 static inline void memzero_page(struct page *page, size_t offset, size_t len) 381 { 382 char *addr = kmap_local_page(page); 383 384 VM_BUG_ON(offset + len > PAGE_SIZE); 385 memset(addr + offset, 0, len); 386 flush_dcache_page(page); 387 kunmap_local(addr); 388 } 389 390 /** 391 * folio_zero_segments() - Zero two byte ranges in a folio. 392 * @folio: The folio to write to. 393 * @start1: The first byte to zero. 394 * @xend1: One more than the last byte in the first range. 395 * @start2: The first byte to zero in the second range. 396 * @xend2: One more than the last byte in the second range. 397 */ 398 static inline void folio_zero_segments(struct folio *folio, 399 size_t start1, size_t xend1, size_t start2, size_t xend2) 400 { 401 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 402 } 403 404 /** 405 * folio_zero_segment() - Zero a byte range in a folio. 406 * @folio: The folio to write to. 407 * @start: The first byte to zero. 408 * @xend: One more than the last byte to zero. 409 */ 410 static inline void folio_zero_segment(struct folio *folio, 411 size_t start, size_t xend) 412 { 413 zero_user_segments(&folio->page, start, xend, 0, 0); 414 } 415 416 /** 417 * folio_zero_range() - Zero a byte range in a folio. 418 * @folio: The folio to write to. 419 * @start: The first byte to zero. 420 * @length: The number of bytes to zero. 421 */ 422 static inline void folio_zero_range(struct folio *folio, 423 size_t start, size_t length) 424 { 425 zero_user_segments(&folio->page, start, start + length, 0, 0); 426 } 427 428 #endif /* _LINUX_HIGHMEM_H */ 429