1 #ifndef __LINUX_GFP_H 2 #define __LINUX_GFP_H 3 4 #include <linux/mmdebug.h> 5 #include <linux/mmzone.h> 6 #include <linux/stddef.h> 7 #include <linux/linkage.h> 8 #include <linux/topology.h> 9 10 struct vm_area_struct; 11 12 /* 13 * In case of changes, please don't forget to update 14 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 15 */ 16 17 /* Plain integer GFP bitmasks. Do not use this directly. */ 18 #define ___GFP_DMA 0x01u 19 #define ___GFP_HIGHMEM 0x02u 20 #define ___GFP_DMA32 0x04u 21 #define ___GFP_MOVABLE 0x08u 22 #define ___GFP_RECLAIMABLE 0x10u 23 #define ___GFP_HIGH 0x20u 24 #define ___GFP_IO 0x40u 25 #define ___GFP_FS 0x80u 26 #define ___GFP_COLD 0x100u 27 #define ___GFP_NOWARN 0x200u 28 #define ___GFP_RETRY_MAYFAIL 0x400u 29 #define ___GFP_NOFAIL 0x800u 30 #define ___GFP_NORETRY 0x1000u 31 #define ___GFP_MEMALLOC 0x2000u 32 #define ___GFP_COMP 0x4000u 33 #define ___GFP_ZERO 0x8000u 34 #define ___GFP_NOMEMALLOC 0x10000u 35 #define ___GFP_HARDWALL 0x20000u 36 #define ___GFP_THISNODE 0x40000u 37 #define ___GFP_ATOMIC 0x80000u 38 #define ___GFP_ACCOUNT 0x100000u 39 #define ___GFP_NOTRACK 0x200000u 40 #define ___GFP_DIRECT_RECLAIM 0x400000u 41 #define ___GFP_WRITE 0x800000u 42 #define ___GFP_KSWAPD_RECLAIM 0x1000000u 43 #ifdef CONFIG_LOCKDEP 44 #define ___GFP_NOLOCKDEP 0x2000000u 45 #else 46 #define ___GFP_NOLOCKDEP 0 47 #endif 48 /* If the above are modified, __GFP_BITS_SHIFT may need updating */ 49 50 /* 51 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 52 * 53 * Do not put any conditional on these. If necessary modify the definitions 54 * without the underscores and use them consistently. The definitions here may 55 * be used in bit comparisons. 56 */ 57 #define __GFP_DMA ((__force gfp_t)___GFP_DMA) 58 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 59 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 60 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 61 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 62 63 /* 64 * Page mobility and placement hints 65 * 66 * These flags provide hints about how mobile the page is. Pages with similar 67 * mobility are placed within the same pageblocks to minimise problems due 68 * to external fragmentation. 69 * 70 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be 71 * moved by page migration during memory compaction or can be reclaimed. 72 * 73 * __GFP_RECLAIMABLE is used for slab allocations that specify 74 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 75 * 76 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible, 77 * these pages will be spread between local zones to avoid all the dirty 78 * pages being in one zone (fair zone allocation policy). 79 * 80 * __GFP_HARDWALL enforces the cpuset memory allocation policy. 81 * 82 * __GFP_THISNODE forces the allocation to be satisified from the requested 83 * node with no fallbacks or placement policy enforcements. 84 * 85 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 86 */ 87 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 88 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 89 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 90 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 91 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 92 93 /* 94 * Watermark modifiers -- controls access to emergency reserves 95 * 96 * __GFP_HIGH indicates that the caller is high-priority and that granting 97 * the request is necessary before the system can make forward progress. 98 * For example, creating an IO context to clean pages. 99 * 100 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 101 * high priority. Users are typically interrupt handlers. This may be 102 * used in conjunction with __GFP_HIGH 103 * 104 * __GFP_MEMALLOC allows access to all memory. This should only be used when 105 * the caller guarantees the allocation will allow more memory to be freed 106 * very shortly e.g. process exiting or swapping. Users either should 107 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 108 * 109 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 110 * This takes precedence over the __GFP_MEMALLOC flag if both are set. 111 */ 112 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 113 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 114 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 115 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 116 117 /* 118 * Reclaim modifiers 119 * 120 * __GFP_IO can start physical IO. 121 * 122 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the 123 * allocator recursing into the filesystem which might already be holding 124 * locks. 125 * 126 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 127 * This flag can be cleared to avoid unnecessary delays when a fallback 128 * option is available. 129 * 130 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 131 * the low watermark is reached and have it reclaim pages until the high 132 * watermark is reached. A caller may wish to clear this flag when fallback 133 * options are available and the reclaim is likely to disrupt the system. The 134 * canonical example is THP allocation where a fallback is cheap but 135 * reclaim/compaction may cause indirect stalls. 136 * 137 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 138 * 139 * The default allocator behavior depends on the request size. We have a concept 140 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER). 141 * !costly allocations are too essential to fail so they are implicitly 142 * non-failing by default (with some exceptions like OOM victims might fail so 143 * the caller still has to check for failures) while costly requests try to be 144 * not disruptive and back off even without invoking the OOM killer. 145 * The following three modifiers might be used to override some of these 146 * implicit rules 147 * 148 * __GFP_NORETRY: The VM implementation will try only very lightweight 149 * memory direct reclaim to get some memory under memory pressure (thus 150 * it can sleep). It will avoid disruptive actions like OOM killer. The 151 * caller must handle the failure which is quite likely to happen under 152 * heavy memory pressure. The flag is suitable when failure can easily be 153 * handled at small cost, such as reduced throughput 154 * 155 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim 156 * procedures that have previously failed if there is some indication 157 * that progress has been made else where. It can wait for other 158 * tasks to attempt high level approaches to freeing memory such as 159 * compaction (which removes fragmentation) and page-out. 160 * There is still a definite limit to the number of retries, but it is 161 * a larger limit than with __GFP_NORETRY. 162 * Allocations with this flag may fail, but only when there is 163 * genuinely little unused memory. While these allocations do not 164 * directly trigger the OOM killer, their failure indicates that 165 * the system is likely to need to use the OOM killer soon. The 166 * caller must handle failure, but can reasonably do so by failing 167 * a higher-level request, or completing it only in a much less 168 * efficient manner. 169 * If the allocation does fail, and the caller is in a position to 170 * free some non-essential memory, doing so could benefit the system 171 * as a whole. 172 * 173 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 174 * cannot handle allocation failures. The allocation could block 175 * indefinitely but will never return with failure. Testing for 176 * failure is pointless. 177 * New users should be evaluated carefully (and the flag should be 178 * used only when there is no reasonable failure policy) but it is 179 * definitely preferable to use the flag rather than opencode endless 180 * loop around allocator. 181 * Using this flag for costly allocations is _highly_ discouraged. 182 */ 183 #define __GFP_IO ((__force gfp_t)___GFP_IO) 184 #define __GFP_FS ((__force gfp_t)___GFP_FS) 185 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 186 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 187 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 188 #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) 189 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 190 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 191 192 /* 193 * Action modifiers 194 * 195 * __GFP_COLD indicates that the caller does not expect to be used in the near 196 * future. Where possible, a cache-cold page will be returned. 197 * 198 * __GFP_NOWARN suppresses allocation failure reports. 199 * 200 * __GFP_COMP address compound page metadata. 201 * 202 * __GFP_ZERO returns a zeroed page on success. 203 * 204 * __GFP_NOTRACK avoids tracking with kmemcheck. 205 * 206 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of 207 * distinguishing in the source between false positives and allocations that 208 * cannot be supported (e.g. page tables). 209 */ 210 #define __GFP_COLD ((__force gfp_t)___GFP_COLD) 211 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 212 #define __GFP_COMP ((__force gfp_t)___GFP_COMP) 213 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 214 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) 215 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK) 216 217 /* Disable lockdep for GFP context tracking */ 218 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) 219 220 /* Room for N __GFP_FOO bits */ 221 #define __GFP_BITS_SHIFT (25 + IS_ENABLED(CONFIG_LOCKDEP)) 222 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 223 224 /* 225 * Useful GFP flag combinations that are commonly used. It is recommended 226 * that subsystems start with one of these combinations and then set/clear 227 * __GFP_FOO flags as necessary. 228 * 229 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 230 * watermark is applied to allow access to "atomic reserves" 231 * 232 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires 233 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 234 * 235 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 236 * accounted to kmemcg. 237 * 238 * GFP_NOWAIT is for kernel allocations that should not stall for direct 239 * reclaim, start physical IO or use any filesystem callback. 240 * 241 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages 242 * that do not require the starting of any physical IO. 243 * Please try to avoid using this flag directly and instead use 244 * memalloc_noio_{save,restore} to mark the whole scope which cannot 245 * perform any IO with a short explanation why. All allocation requests 246 * will inherit GFP_NOIO implicitly. 247 * 248 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 249 * Please try to avoid using this flag directly and instead use 250 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't 251 * recurse into the FS layer with a short explanation why. All allocation 252 * requests will inherit GFP_NOFS implicitly. 253 * 254 * GFP_USER is for userspace allocations that also need to be directly 255 * accessibly by the kernel or hardware. It is typically used by hardware 256 * for buffers that are mapped to userspace (e.g. graphics) that hardware 257 * still must DMA to. cpuset limits are enforced for these allocations. 258 * 259 * GFP_DMA exists for historical reasons and should be avoided where possible. 260 * The flags indicates that the caller requires that the lowest zone be 261 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 262 * it would require careful auditing as some users really require it and 263 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the 264 * lowest zone as a type of emergency reserve. 265 * 266 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit 267 * address. 268 * 269 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 270 * do not need to be directly accessible by the kernel but that cannot 271 * move once in use. An example may be a hardware allocation that maps 272 * data directly into userspace but has no addressing limitations. 273 * 274 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 275 * need direct access to but can use kmap() when access is required. They 276 * are expected to be movable via page reclaim or page migration. Typically, 277 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE. 278 * 279 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are 280 * compound allocations that will generally fail quickly if memory is not 281 * available and will not wake kswapd/kcompactd on failure. The _LIGHT 282 * version does not attempt reclaim/compaction at all and is by default used 283 * in page fault path, while the non-light is used by khugepaged. 284 */ 285 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 286 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 287 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 288 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 289 #define GFP_NOIO (__GFP_RECLAIM) 290 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 291 #define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \ 292 __GFP_RECLAIMABLE) 293 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 294 #define GFP_DMA __GFP_DMA 295 #define GFP_DMA32 __GFP_DMA32 296 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 297 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 298 #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 299 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 300 #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 301 302 /* Convert GFP flags to their corresponding migrate type */ 303 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 304 #define GFP_MOVABLE_SHIFT 3 305 306 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 307 { 308 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 309 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 310 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 311 312 if (unlikely(page_group_by_mobility_disabled)) 313 return MIGRATE_UNMOVABLE; 314 315 /* Group based on mobility */ 316 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 317 } 318 #undef GFP_MOVABLE_MASK 319 #undef GFP_MOVABLE_SHIFT 320 321 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 322 { 323 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 324 } 325 326 #ifdef CONFIG_HIGHMEM 327 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 328 #else 329 #define OPT_ZONE_HIGHMEM ZONE_NORMAL 330 #endif 331 332 #ifdef CONFIG_ZONE_DMA 333 #define OPT_ZONE_DMA ZONE_DMA 334 #else 335 #define OPT_ZONE_DMA ZONE_NORMAL 336 #endif 337 338 #ifdef CONFIG_ZONE_DMA32 339 #define OPT_ZONE_DMA32 ZONE_DMA32 340 #else 341 #define OPT_ZONE_DMA32 ZONE_NORMAL 342 #endif 343 344 /* 345 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 346 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT 347 * bits long and there are 16 of them to cover all possible combinations of 348 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 349 * 350 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 351 * But GFP_MOVABLE is not only a zone specifier but also an allocation 352 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 353 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 354 * 355 * bit result 356 * ================= 357 * 0x0 => NORMAL 358 * 0x1 => DMA or NORMAL 359 * 0x2 => HIGHMEM or NORMAL 360 * 0x3 => BAD (DMA+HIGHMEM) 361 * 0x4 => DMA32 or DMA or NORMAL 362 * 0x5 => BAD (DMA+DMA32) 363 * 0x6 => BAD (HIGHMEM+DMA32) 364 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 365 * 0x8 => NORMAL (MOVABLE+0) 366 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 367 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 368 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 369 * 0xc => DMA32 (MOVABLE+DMA32) 370 * 0xd => BAD (MOVABLE+DMA32+DMA) 371 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 372 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 373 * 374 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 375 */ 376 377 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 378 /* ZONE_DEVICE is not a valid GFP zone specifier */ 379 #define GFP_ZONES_SHIFT 2 380 #else 381 #define GFP_ZONES_SHIFT ZONES_SHIFT 382 #endif 383 384 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 385 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 386 #endif 387 388 #define GFP_ZONE_TABLE ( \ 389 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 390 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 391 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 392 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 393 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 394 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 395 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 396 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 397 ) 398 399 /* 400 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 401 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 402 * entry starting with bit 0. Bit is set if the combination is not 403 * allowed. 404 */ 405 #define GFP_ZONE_BAD ( \ 406 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 407 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 408 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 409 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 410 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 411 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 412 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 413 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 414 ) 415 416 static inline enum zone_type gfp_zone(gfp_t flags) 417 { 418 enum zone_type z; 419 int bit = (__force int) (flags & GFP_ZONEMASK); 420 421 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 422 ((1 << GFP_ZONES_SHIFT) - 1); 423 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 424 return z; 425 } 426 427 /* 428 * There is only one page-allocator function, and two main namespaces to 429 * it. The alloc_page*() variants return 'struct page *' and as such 430 * can allocate highmem pages, the *get*page*() variants return 431 * virtual kernel addresses to the allocated page(s). 432 */ 433 434 static inline int gfp_zonelist(gfp_t flags) 435 { 436 #ifdef CONFIG_NUMA 437 if (unlikely(flags & __GFP_THISNODE)) 438 return ZONELIST_NOFALLBACK; 439 #endif 440 return ZONELIST_FALLBACK; 441 } 442 443 /* 444 * We get the zone list from the current node and the gfp_mask. 445 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 446 * There are two zonelists per node, one for all zones with memory and 447 * one containing just zones from the node the zonelist belongs to. 448 * 449 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 450 * optimized to &contig_page_data at compile-time. 451 */ 452 static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 453 { 454 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 455 } 456 457 #ifndef HAVE_ARCH_FREE_PAGE 458 static inline void arch_free_page(struct page *page, int order) { } 459 #endif 460 #ifndef HAVE_ARCH_ALLOC_PAGE 461 static inline void arch_alloc_page(struct page *page, int order) { } 462 #endif 463 464 struct page * 465 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 466 nodemask_t *nodemask); 467 468 static inline struct page * 469 __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) 470 { 471 return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); 472 } 473 474 /* 475 * Allocate pages, preferring the node given as nid. The node must be valid and 476 * online. For more general interface, see alloc_pages_node(). 477 */ 478 static inline struct page * 479 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 480 { 481 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 482 VM_WARN_ON(!node_online(nid)); 483 484 return __alloc_pages(gfp_mask, order, nid); 485 } 486 487 /* 488 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 489 * prefer the current CPU's closest node. Otherwise node must be valid and 490 * online. 491 */ 492 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 493 unsigned int order) 494 { 495 if (nid == NUMA_NO_NODE) 496 nid = numa_mem_id(); 497 498 return __alloc_pages_node(nid, gfp_mask, order); 499 } 500 501 #ifdef CONFIG_NUMA 502 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 503 504 static inline struct page * 505 alloc_pages(gfp_t gfp_mask, unsigned int order) 506 { 507 return alloc_pages_current(gfp_mask, order); 508 } 509 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 510 struct vm_area_struct *vma, unsigned long addr, 511 int node, bool hugepage); 512 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 513 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 514 #else 515 #define alloc_pages(gfp_mask, order) \ 516 alloc_pages_node(numa_node_id(), gfp_mask, order) 517 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 518 alloc_pages(gfp_mask, order) 519 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 520 alloc_pages(gfp_mask, order) 521 #endif 522 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 523 #define alloc_page_vma(gfp_mask, vma, addr) \ 524 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 525 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 526 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 527 528 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 529 extern unsigned long get_zeroed_page(gfp_t gfp_mask); 530 531 void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 532 void free_pages_exact(void *virt, size_t size); 533 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 534 535 #define __get_free_page(gfp_mask) \ 536 __get_free_pages((gfp_mask), 0) 537 538 #define __get_dma_pages(gfp_mask, order) \ 539 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 540 541 extern void __free_pages(struct page *page, unsigned int order); 542 extern void free_pages(unsigned long addr, unsigned int order); 543 extern void free_hot_cold_page(struct page *page, bool cold); 544 extern void free_hot_cold_page_list(struct list_head *list, bool cold); 545 546 struct page_frag_cache; 547 extern void __page_frag_cache_drain(struct page *page, unsigned int count); 548 extern void *page_frag_alloc(struct page_frag_cache *nc, 549 unsigned int fragsz, gfp_t gfp_mask); 550 extern void page_frag_free(void *addr); 551 552 #define __free_page(page) __free_pages((page), 0) 553 #define free_page(addr) free_pages((addr), 0) 554 555 void page_alloc_init(void); 556 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 557 void drain_all_pages(struct zone *zone); 558 void drain_local_pages(struct zone *zone); 559 560 void page_alloc_init_late(void); 561 562 /* 563 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 564 * GFP flags are used before interrupts are enabled. Once interrupts are 565 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 566 * hibernation, it is used by PM to avoid I/O during memory allocation while 567 * devices are suspended. 568 */ 569 extern gfp_t gfp_allowed_mask; 570 571 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 572 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 573 574 extern void pm_restrict_gfp_mask(void); 575 extern void pm_restore_gfp_mask(void); 576 577 #ifdef CONFIG_PM_SLEEP 578 extern bool pm_suspended_storage(void); 579 #else 580 static inline bool pm_suspended_storage(void) 581 { 582 return false; 583 } 584 #endif /* CONFIG_PM_SLEEP */ 585 586 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 587 /* The below functions must be run on a range from a single zone. */ 588 extern int alloc_contig_range(unsigned long start, unsigned long end, 589 unsigned migratetype, gfp_t gfp_mask); 590 extern void free_contig_range(unsigned long pfn, unsigned nr_pages); 591 #endif 592 593 #ifdef CONFIG_CMA 594 /* CMA stuff */ 595 extern void init_cma_reserved_pageblock(struct page *page); 596 #endif 597 598 #endif /* __LINUX_GFP_H */ 599