1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_inode_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* Crypto operations for filesystems */ 63 struct fscrypt_operations { 64 65 /* 66 * If set, then fs/crypto/ will allocate a global bounce page pool the 67 * first time an encryption key is set up for a file. The bounce page 68 * pool is required by the following functions: 69 * 70 * - fscrypt_encrypt_pagecache_blocks() 71 * - fscrypt_zeroout_range() for files not using inline crypto 72 * 73 * If the filesystem doesn't use those, it doesn't need to set this. 74 */ 75 unsigned int needs_bounce_pages : 1; 76 77 /* 78 * If set, then fs/crypto/ will allow the use of encryption settings 79 * that assume inode numbers fit in 32 bits (i.e. 80 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other 81 * prerequisites for these settings are also met. This is only useful 82 * if the filesystem wants to support inline encryption hardware that is 83 * limited to 32-bit or 64-bit data unit numbers and where programming 84 * keyslots is very slow. 85 */ 86 unsigned int has_32bit_inodes : 1; 87 88 /* 89 * If set, then fs/crypto/ will allow users to select a crypto data unit 90 * size that is less than the filesystem block size. This is done via 91 * the log2_data_unit_size field of the fscrypt policy. This flag is 92 * not compatible with filesystems that encrypt variable-length blocks 93 * (i.e. blocks that aren't all equal to filesystem's block size), for 94 * example as a result of compression. It's also not compatible with 95 * the fscrypt_encrypt_block_inplace() and 96 * fscrypt_decrypt_block_inplace() functions. 97 */ 98 unsigned int supports_subblock_data_units : 1; 99 100 /* 101 * This field exists only for backwards compatibility reasons and should 102 * only be set by the filesystems that are setting it already. It 103 * contains the filesystem-specific key description prefix that is 104 * accepted for "logon" keys for v1 fscrypt policies. This 105 * functionality is deprecated in favor of the generic prefix 106 * "fscrypt:", which itself is deprecated in favor of the filesystem 107 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that 108 * are newly adding fscrypt support should not set this field. 109 */ 110 const char *legacy_key_prefix; 111 112 /* 113 * Get the fscrypt context of the given inode. 114 * 115 * @inode: the inode whose context to get 116 * @ctx: the buffer into which to get the context 117 * @len: length of the @ctx buffer in bytes 118 * 119 * Return: On success, returns the length of the context in bytes; this 120 * may be less than @len. On failure, returns -ENODATA if the 121 * inode doesn't have a context, -ERANGE if the context is 122 * longer than @len, or another -errno code. 123 */ 124 int (*get_context)(struct inode *inode, void *ctx, size_t len); 125 126 /* 127 * Set an fscrypt context on the given inode. 128 * 129 * @inode: the inode whose context to set. The inode won't already have 130 * an fscrypt context. 131 * @ctx: the context to set 132 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 133 * @fs_data: If called from fscrypt_set_context(), this will be the 134 * value the filesystem passed to fscrypt_set_context(). 135 * Otherwise (i.e. when called from 136 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 137 * 138 * i_rwsem will be held for write. 139 * 140 * Return: 0 on success, -errno on failure. 141 */ 142 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 143 void *fs_data); 144 145 /* 146 * Get the dummy fscrypt policy in use on the filesystem (if any). 147 * 148 * Filesystems only need to implement this function if they support the 149 * test_dummy_encryption mount option. 150 * 151 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 152 * mounted with test_dummy_encryption; otherwise NULL. 153 */ 154 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 155 156 /* 157 * Check whether a directory is empty. i_rwsem will be held for write. 158 */ 159 bool (*empty_dir)(struct inode *inode); 160 161 /* 162 * Check whether the filesystem's inode numbers and UUID are stable, 163 * meaning that they will never be changed even by offline operations 164 * such as filesystem shrinking and therefore can be used in the 165 * encryption without the possibility of files becoming unreadable. 166 * 167 * Filesystems only need to implement this function if they want to 168 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 169 * flags are designed to work around the limitations of UFS and eMMC 170 * inline crypto hardware, and they shouldn't be used in scenarios where 171 * such hardware isn't being used. 172 * 173 * Leaving this NULL is equivalent to always returning false. 174 */ 175 bool (*has_stable_inodes)(struct super_block *sb); 176 177 /* 178 * Return an array of pointers to the block devices to which the 179 * filesystem may write encrypted file contents, NULL if the filesystem 180 * only has a single such block device, or an ERR_PTR() on error. 181 * 182 * On successful non-NULL return, *num_devs is set to the number of 183 * devices in the returned array. The caller must free the returned 184 * array using kfree(). 185 * 186 * If the filesystem can use multiple block devices (other than block 187 * devices that aren't used for encrypted file contents, such as 188 * external journal devices), and wants to support inline encryption, 189 * then it must implement this function. Otherwise it's not needed. 190 */ 191 struct block_device **(*get_devices)(struct super_block *sb, 192 unsigned int *num_devs); 193 }; 194 195 static inline struct fscrypt_inode_info * 196 fscrypt_get_inode_info(const struct inode *inode) 197 { 198 /* 199 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 200 * I.e., another task may publish ->i_crypt_info concurrently, executing 201 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 202 * ACQUIRE the memory the other task published. 203 */ 204 return smp_load_acquire(&inode->i_crypt_info); 205 } 206 207 /** 208 * fscrypt_needs_contents_encryption() - check whether an inode needs 209 * contents encryption 210 * @inode: the inode to check 211 * 212 * Return: %true iff the inode is an encrypted regular file and the kernel was 213 * built with fscrypt support. 214 * 215 * If you need to know whether the encrypt bit is set even when the kernel was 216 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 217 */ 218 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 219 { 220 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 221 } 222 223 /* 224 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 225 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 226 * cleared. Note that we don't have to support arbitrary moves of this flag 227 * because fscrypt doesn't allow no-key names to be the source or target of a 228 * rename(). 229 */ 230 static inline void fscrypt_handle_d_move(struct dentry *dentry) 231 { 232 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 233 } 234 235 /** 236 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 237 * @dentry: the dentry to check 238 * 239 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 240 * dentry that was created in an encrypted directory that hasn't had its 241 * encryption key added yet. Such dentries may be either positive or negative. 242 * 243 * When a filesystem is asked to create a new filename in an encrypted directory 244 * and the new filename's dentry is a no-key dentry, it must fail the operation 245 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 246 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 247 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 248 * 249 * This is necessary because creating a filename requires the directory's 250 * encryption key, but just checking for the key on the directory inode during 251 * the final filesystem operation doesn't guarantee that the key was available 252 * during the preceding dentry lookup. And the key must have already been 253 * available during the dentry lookup in order for it to have been checked 254 * whether the filename already exists in the directory and for the new file's 255 * dentry not to be invalidated due to it incorrectly having the no-key flag. 256 * 257 * Return: %true if the dentry is a no-key name 258 */ 259 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 260 { 261 return dentry->d_flags & DCACHE_NOKEY_NAME; 262 } 263 264 static inline void fscrypt_prepare_dentry(struct dentry *dentry, 265 bool is_nokey_name) 266 { 267 /* 268 * This code tries to only take ->d_lock when necessary to write 269 * to ->d_flags. We shouldn't be peeking on d_flags for 270 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case 271 * there is a race, the worst it can happen is that we fail to 272 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra 273 * d_revalidate. 274 */ 275 if (is_nokey_name) { 276 spin_lock(&dentry->d_lock); 277 dentry->d_flags |= DCACHE_NOKEY_NAME; 278 spin_unlock(&dentry->d_lock); 279 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE && 280 dentry->d_op->d_revalidate == fscrypt_d_revalidate) { 281 /* 282 * Unencrypted dentries and encrypted dentries where the 283 * key is available are always valid from fscrypt 284 * perspective. Avoid the cost of calling 285 * fscrypt_d_revalidate unnecessarily. 286 */ 287 spin_lock(&dentry->d_lock); 288 dentry->d_flags &= ~DCACHE_OP_REVALIDATE; 289 spin_unlock(&dentry->d_lock); 290 } 291 } 292 293 /* crypto.c */ 294 void fscrypt_enqueue_decrypt_work(struct work_struct *); 295 296 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 297 unsigned int len, 298 unsigned int offs, 299 gfp_t gfp_flags); 300 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 301 unsigned int len, unsigned int offs, 302 u64 lblk_num, gfp_t gfp_flags); 303 304 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 305 size_t offs); 306 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 307 unsigned int len, unsigned int offs, 308 u64 lblk_num); 309 310 static inline bool fscrypt_is_bounce_page(struct page *page) 311 { 312 return page->mapping == NULL; 313 } 314 315 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 316 { 317 return (struct page *)page_private(bounce_page); 318 } 319 320 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 321 { 322 return folio->mapping == NULL; 323 } 324 325 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 326 { 327 return bounce_folio->private; 328 } 329 330 void fscrypt_free_bounce_page(struct page *bounce_page); 331 332 /* policy.c */ 333 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 334 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 335 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 336 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 337 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 338 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 339 int fscrypt_set_context(struct inode *inode, void *fs_data); 340 341 struct fscrypt_dummy_policy { 342 const union fscrypt_policy *policy; 343 }; 344 345 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 346 struct fscrypt_dummy_policy *dummy_policy); 347 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 348 const struct fscrypt_dummy_policy *p2); 349 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 350 struct super_block *sb); 351 static inline bool 352 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 353 { 354 return dummy_policy->policy != NULL; 355 } 356 static inline void 357 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 358 { 359 kfree(dummy_policy->policy); 360 dummy_policy->policy = NULL; 361 } 362 363 /* keyring.c */ 364 void fscrypt_destroy_keyring(struct super_block *sb); 365 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 366 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 367 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 368 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 369 370 /* keysetup.c */ 371 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 372 bool *encrypt_ret); 373 void fscrypt_put_encryption_info(struct inode *inode); 374 void fscrypt_free_inode(struct inode *inode); 375 int fscrypt_drop_inode(struct inode *inode); 376 377 /* fname.c */ 378 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 379 u8 *out, unsigned int olen); 380 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 381 u32 max_len, u32 *encrypted_len_ret); 382 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 383 int lookup, struct fscrypt_name *fname); 384 385 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 386 { 387 kfree(fname->crypto_buf.name); 388 } 389 390 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 391 struct fscrypt_str *crypto_str); 392 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 393 int fscrypt_fname_disk_to_usr(const struct inode *inode, 394 u32 hash, u32 minor_hash, 395 const struct fscrypt_str *iname, 396 struct fscrypt_str *oname); 397 bool fscrypt_match_name(const struct fscrypt_name *fname, 398 const u8 *de_name, u32 de_name_len); 399 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 400 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 401 402 /* bio.c */ 403 bool fscrypt_decrypt_bio(struct bio *bio); 404 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 405 sector_t pblk, unsigned int len); 406 407 /* hooks.c */ 408 int fscrypt_file_open(struct inode *inode, struct file *filp); 409 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 410 struct dentry *dentry); 411 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 412 struct inode *new_dir, struct dentry *new_dentry, 413 unsigned int flags); 414 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 415 struct fscrypt_name *fname); 416 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); 417 int __fscrypt_prepare_readdir(struct inode *dir); 418 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 419 int fscrypt_prepare_setflags(struct inode *inode, 420 unsigned int oldflags, unsigned int flags); 421 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 422 unsigned int len, unsigned int max_len, 423 struct fscrypt_str *disk_link); 424 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 425 unsigned int len, struct fscrypt_str *disk_link); 426 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 427 unsigned int max_size, 428 struct delayed_call *done); 429 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 430 static inline void fscrypt_set_ops(struct super_block *sb, 431 const struct fscrypt_operations *s_cop) 432 { 433 sb->s_cop = s_cop; 434 } 435 #else /* !CONFIG_FS_ENCRYPTION */ 436 437 static inline struct fscrypt_inode_info * 438 fscrypt_get_inode_info(const struct inode *inode) 439 { 440 return NULL; 441 } 442 443 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 444 { 445 return false; 446 } 447 448 static inline void fscrypt_handle_d_move(struct dentry *dentry) 449 { 450 } 451 452 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 453 { 454 return false; 455 } 456 457 static inline void fscrypt_prepare_dentry(struct dentry *dentry, 458 bool is_nokey_name) 459 { 460 } 461 462 /* crypto.c */ 463 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 464 { 465 } 466 467 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 468 unsigned int len, 469 unsigned int offs, 470 gfp_t gfp_flags) 471 { 472 return ERR_PTR(-EOPNOTSUPP); 473 } 474 475 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 476 struct page *page, 477 unsigned int len, 478 unsigned int offs, u64 lblk_num, 479 gfp_t gfp_flags) 480 { 481 return -EOPNOTSUPP; 482 } 483 484 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 485 size_t len, size_t offs) 486 { 487 return -EOPNOTSUPP; 488 } 489 490 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 491 struct page *page, 492 unsigned int len, 493 unsigned int offs, u64 lblk_num) 494 { 495 return -EOPNOTSUPP; 496 } 497 498 static inline bool fscrypt_is_bounce_page(struct page *page) 499 { 500 return false; 501 } 502 503 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 504 { 505 WARN_ON_ONCE(1); 506 return ERR_PTR(-EINVAL); 507 } 508 509 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 510 { 511 return false; 512 } 513 514 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 515 { 516 WARN_ON_ONCE(1); 517 return ERR_PTR(-EINVAL); 518 } 519 520 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 521 { 522 } 523 524 /* policy.c */ 525 static inline int fscrypt_ioctl_set_policy(struct file *filp, 526 const void __user *arg) 527 { 528 return -EOPNOTSUPP; 529 } 530 531 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 532 { 533 return -EOPNOTSUPP; 534 } 535 536 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 537 void __user *arg) 538 { 539 return -EOPNOTSUPP; 540 } 541 542 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 543 { 544 return -EOPNOTSUPP; 545 } 546 547 static inline int fscrypt_has_permitted_context(struct inode *parent, 548 struct inode *child) 549 { 550 return 0; 551 } 552 553 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 554 { 555 return -EOPNOTSUPP; 556 } 557 558 struct fscrypt_dummy_policy { 559 }; 560 561 static inline int 562 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 563 struct fscrypt_dummy_policy *dummy_policy) 564 { 565 return -EINVAL; 566 } 567 568 static inline bool 569 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 570 const struct fscrypt_dummy_policy *p2) 571 { 572 return true; 573 } 574 575 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 576 char sep, 577 struct super_block *sb) 578 { 579 } 580 581 static inline bool 582 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 583 { 584 return false; 585 } 586 587 static inline void 588 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 589 { 590 } 591 592 /* keyring.c */ 593 static inline void fscrypt_destroy_keyring(struct super_block *sb) 594 { 595 } 596 597 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 598 { 599 return -EOPNOTSUPP; 600 } 601 602 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 603 { 604 return -EOPNOTSUPP; 605 } 606 607 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 608 void __user *arg) 609 { 610 return -EOPNOTSUPP; 611 } 612 613 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 614 void __user *arg) 615 { 616 return -EOPNOTSUPP; 617 } 618 619 /* keysetup.c */ 620 621 static inline int fscrypt_prepare_new_inode(struct inode *dir, 622 struct inode *inode, 623 bool *encrypt_ret) 624 { 625 if (IS_ENCRYPTED(dir)) 626 return -EOPNOTSUPP; 627 return 0; 628 } 629 630 static inline void fscrypt_put_encryption_info(struct inode *inode) 631 { 632 return; 633 } 634 635 static inline void fscrypt_free_inode(struct inode *inode) 636 { 637 } 638 639 static inline int fscrypt_drop_inode(struct inode *inode) 640 { 641 return 0; 642 } 643 644 /* fname.c */ 645 static inline int fscrypt_setup_filename(struct inode *dir, 646 const struct qstr *iname, 647 int lookup, struct fscrypt_name *fname) 648 { 649 if (IS_ENCRYPTED(dir)) 650 return -EOPNOTSUPP; 651 652 memset(fname, 0, sizeof(*fname)); 653 fname->usr_fname = iname; 654 fname->disk_name.name = (unsigned char *)iname->name; 655 fname->disk_name.len = iname->len; 656 return 0; 657 } 658 659 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 660 { 661 return; 662 } 663 664 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 665 struct fscrypt_str *crypto_str) 666 { 667 return -EOPNOTSUPP; 668 } 669 670 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 671 { 672 return; 673 } 674 675 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 676 u32 hash, u32 minor_hash, 677 const struct fscrypt_str *iname, 678 struct fscrypt_str *oname) 679 { 680 return -EOPNOTSUPP; 681 } 682 683 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 684 const u8 *de_name, u32 de_name_len) 685 { 686 /* Encryption support disabled; use standard comparison */ 687 if (de_name_len != fname->disk_name.len) 688 return false; 689 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 690 } 691 692 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 693 const struct qstr *name) 694 { 695 WARN_ON_ONCE(1); 696 return 0; 697 } 698 699 static inline int fscrypt_d_revalidate(struct dentry *dentry, 700 unsigned int flags) 701 { 702 return 1; 703 } 704 705 /* bio.c */ 706 static inline bool fscrypt_decrypt_bio(struct bio *bio) 707 { 708 return true; 709 } 710 711 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 712 sector_t pblk, unsigned int len) 713 { 714 return -EOPNOTSUPP; 715 } 716 717 /* hooks.c */ 718 719 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 720 { 721 if (IS_ENCRYPTED(inode)) 722 return -EOPNOTSUPP; 723 return 0; 724 } 725 726 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 727 struct dentry *dentry) 728 { 729 return -EOPNOTSUPP; 730 } 731 732 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 733 struct dentry *old_dentry, 734 struct inode *new_dir, 735 struct dentry *new_dentry, 736 unsigned int flags) 737 { 738 return -EOPNOTSUPP; 739 } 740 741 static inline int __fscrypt_prepare_lookup(struct inode *dir, 742 struct dentry *dentry, 743 struct fscrypt_name *fname) 744 { 745 return -EOPNOTSUPP; 746 } 747 748 static inline int fscrypt_prepare_lookup_partial(struct inode *dir, 749 struct dentry *dentry) 750 { 751 return -EOPNOTSUPP; 752 } 753 754 static inline int __fscrypt_prepare_readdir(struct inode *dir) 755 { 756 return -EOPNOTSUPP; 757 } 758 759 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 760 struct iattr *attr) 761 { 762 return -EOPNOTSUPP; 763 } 764 765 static inline int fscrypt_prepare_setflags(struct inode *inode, 766 unsigned int oldflags, 767 unsigned int flags) 768 { 769 return 0; 770 } 771 772 static inline int fscrypt_prepare_symlink(struct inode *dir, 773 const char *target, 774 unsigned int len, 775 unsigned int max_len, 776 struct fscrypt_str *disk_link) 777 { 778 if (IS_ENCRYPTED(dir)) 779 return -EOPNOTSUPP; 780 disk_link->name = (unsigned char *)target; 781 disk_link->len = len + 1; 782 if (disk_link->len > max_len) 783 return -ENAMETOOLONG; 784 return 0; 785 } 786 787 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 788 const char *target, 789 unsigned int len, 790 struct fscrypt_str *disk_link) 791 { 792 return -EOPNOTSUPP; 793 } 794 795 static inline const char *fscrypt_get_symlink(struct inode *inode, 796 const void *caddr, 797 unsigned int max_size, 798 struct delayed_call *done) 799 { 800 return ERR_PTR(-EOPNOTSUPP); 801 } 802 803 static inline int fscrypt_symlink_getattr(const struct path *path, 804 struct kstat *stat) 805 { 806 return -EOPNOTSUPP; 807 } 808 809 static inline void fscrypt_set_ops(struct super_block *sb, 810 const struct fscrypt_operations *s_cop) 811 { 812 } 813 814 #endif /* !CONFIG_FS_ENCRYPTION */ 815 816 /* inline_crypt.c */ 817 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 818 819 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 820 821 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 822 const struct inode *inode, u64 first_lblk, 823 gfp_t gfp_mask); 824 825 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 826 const struct buffer_head *first_bh, 827 gfp_t gfp_mask); 828 829 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 830 u64 next_lblk); 831 832 bool fscrypt_mergeable_bio_bh(struct bio *bio, 833 const struct buffer_head *next_bh); 834 835 bool fscrypt_dio_supported(struct inode *inode); 836 837 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 838 839 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 840 841 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 842 { 843 return false; 844 } 845 846 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 847 const struct inode *inode, 848 u64 first_lblk, gfp_t gfp_mask) { } 849 850 static inline void fscrypt_set_bio_crypt_ctx_bh( 851 struct bio *bio, 852 const struct buffer_head *first_bh, 853 gfp_t gfp_mask) { } 854 855 static inline bool fscrypt_mergeable_bio(struct bio *bio, 856 const struct inode *inode, 857 u64 next_lblk) 858 { 859 return true; 860 } 861 862 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 863 const struct buffer_head *next_bh) 864 { 865 return true; 866 } 867 868 static inline bool fscrypt_dio_supported(struct inode *inode) 869 { 870 return !fscrypt_needs_contents_encryption(inode); 871 } 872 873 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 874 u64 nr_blocks) 875 { 876 return nr_blocks; 877 } 878 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 879 880 /** 881 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 882 * encryption 883 * @inode: an inode. If encrypted, its key must be set up. 884 * 885 * Return: true if the inode requires file contents encryption and if the 886 * encryption should be done in the block layer via blk-crypto rather 887 * than in the filesystem layer. 888 */ 889 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 890 { 891 return fscrypt_needs_contents_encryption(inode) && 892 __fscrypt_inode_uses_inline_crypto(inode); 893 } 894 895 /** 896 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 897 * encryption 898 * @inode: an inode. If encrypted, its key must be set up. 899 * 900 * Return: true if the inode requires file contents encryption and if the 901 * encryption should be done in the filesystem layer rather than in the 902 * block layer via blk-crypto. 903 */ 904 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 905 { 906 return fscrypt_needs_contents_encryption(inode) && 907 !__fscrypt_inode_uses_inline_crypto(inode); 908 } 909 910 /** 911 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 912 * @inode: the inode to check 913 * 914 * Return: %true if the inode has had its encryption key set up, else %false. 915 * 916 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 917 * set up the key first. 918 */ 919 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 920 { 921 return fscrypt_get_inode_info(inode) != NULL; 922 } 923 924 /** 925 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 926 * directory 927 * @old_dentry: an existing dentry for the inode being linked 928 * @dir: the target directory 929 * @dentry: negative dentry for the target filename 930 * 931 * A new link can only be added to an encrypted directory if the directory's 932 * encryption key is available --- since otherwise we'd have no way to encrypt 933 * the filename. 934 * 935 * We also verify that the link will not violate the constraint that all files 936 * in an encrypted directory tree use the same encryption policy. 937 * 938 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 939 * -EXDEV if the link would result in an inconsistent encryption policy, or 940 * another -errno code. 941 */ 942 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 943 struct inode *dir, 944 struct dentry *dentry) 945 { 946 if (IS_ENCRYPTED(dir)) 947 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 948 return 0; 949 } 950 951 /** 952 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 953 * directories 954 * @old_dir: source directory 955 * @old_dentry: dentry for source file 956 * @new_dir: target directory 957 * @new_dentry: dentry for target location (may be negative unless exchanging) 958 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 959 * 960 * Prepare for ->rename() where the source and/or target directories may be 961 * encrypted. A new link can only be added to an encrypted directory if the 962 * directory's encryption key is available --- since otherwise we'd have no way 963 * to encrypt the filename. A rename to an existing name, on the other hand, 964 * *is* cryptographically possible without the key. However, we take the more 965 * conservative approach and just forbid all no-key renames. 966 * 967 * We also verify that the rename will not violate the constraint that all files 968 * in an encrypted directory tree use the same encryption policy. 969 * 970 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 971 * rename would cause inconsistent encryption policies, or another -errno code. 972 */ 973 static inline int fscrypt_prepare_rename(struct inode *old_dir, 974 struct dentry *old_dentry, 975 struct inode *new_dir, 976 struct dentry *new_dentry, 977 unsigned int flags) 978 { 979 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 980 return __fscrypt_prepare_rename(old_dir, old_dentry, 981 new_dir, new_dentry, flags); 982 return 0; 983 } 984 985 /** 986 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 987 * directory 988 * @dir: directory being searched 989 * @dentry: filename being looked up 990 * @fname: (output) the name to use to search the on-disk directory 991 * 992 * Prepare for ->lookup() in a directory which may be encrypted by determining 993 * the name that will actually be used to search the directory on-disk. If the 994 * directory's encryption policy is supported by this kernel and its encryption 995 * key is available, then the lookup is assumed to be by plaintext name; 996 * otherwise, it is assumed to be by no-key name. 997 * 998 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 999 * name. In this case the filesystem must assign the dentry a dentry_operations 1000 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 1001 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 1002 * directory's encryption key is later added. 1003 * 1004 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 1005 * filename isn't a valid no-key name, so a negative dentry should be created; 1006 * or another -errno code. 1007 */ 1008 static inline int fscrypt_prepare_lookup(struct inode *dir, 1009 struct dentry *dentry, 1010 struct fscrypt_name *fname) 1011 { 1012 if (IS_ENCRYPTED(dir)) 1013 return __fscrypt_prepare_lookup(dir, dentry, fname); 1014 1015 memset(fname, 0, sizeof(*fname)); 1016 fname->usr_fname = &dentry->d_name; 1017 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 1018 fname->disk_name.len = dentry->d_name.len; 1019 1020 fscrypt_prepare_dentry(dentry, false); 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 1027 * @dir: the directory inode 1028 * 1029 * If the directory is encrypted and it doesn't already have its encryption key 1030 * set up, try to set it up so that the filenames will be listed in plaintext 1031 * form rather than in no-key form. 1032 * 1033 * Return: 0 on success; -errno on error. Note that the encryption key being 1034 * unavailable is not considered an error. It is also not an error if 1035 * the encryption policy is unsupported by this kernel; that is treated 1036 * like the key being unavailable, so that files can still be deleted. 1037 */ 1038 static inline int fscrypt_prepare_readdir(struct inode *dir) 1039 { 1040 if (IS_ENCRYPTED(dir)) 1041 return __fscrypt_prepare_readdir(dir); 1042 return 0; 1043 } 1044 1045 /** 1046 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 1047 * attributes 1048 * @dentry: dentry through which the inode is being changed 1049 * @attr: attributes to change 1050 * 1051 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 1052 * most attribute changes are allowed even without the encryption key. However, 1053 * without the encryption key we do have to forbid truncates. This is needed 1054 * because the size being truncated to may not be a multiple of the filesystem 1055 * block size, and in that case we'd have to decrypt the final block, zero the 1056 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 1057 * filesystem block boundary, but it's simpler to just forbid all truncates --- 1058 * and we already forbid all other contents modifications without the key.) 1059 * 1060 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 1061 * if a problem occurred while setting up the encryption key. 1062 */ 1063 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 1064 struct iattr *attr) 1065 { 1066 if (IS_ENCRYPTED(d_inode(dentry))) 1067 return __fscrypt_prepare_setattr(dentry, attr); 1068 return 0; 1069 } 1070 1071 /** 1072 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1073 * @inode: symlink inode 1074 * @target: plaintext symlink target 1075 * @len: length of @target excluding null terminator 1076 * @disk_link: (in/out) the on-disk symlink target being prepared 1077 * 1078 * If the symlink target needs to be encrypted, then this function encrypts it 1079 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1080 * previously to compute @disk_link->len. If the filesystem did not allocate a 1081 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1082 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1083 * 1084 * Return: 0 on success, -errno on failure 1085 */ 1086 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1087 const char *target, 1088 unsigned int len, 1089 struct fscrypt_str *disk_link) 1090 { 1091 if (IS_ENCRYPTED(inode)) 1092 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1093 return 0; 1094 } 1095 1096 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1097 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1098 { 1099 struct page *page = *pagep; 1100 1101 if (fscrypt_is_bounce_page(page)) { 1102 *pagep = fscrypt_pagecache_page(page); 1103 fscrypt_free_bounce_page(page); 1104 } 1105 } 1106 1107 #endif /* _LINUX_FSCRYPT_H */ 1108