1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* 63 * If set, the fscrypt bounce page pool won't be allocated (unless another 64 * filesystem needs it). Set this if the filesystem always uses its own bounce 65 * pages for writes and therefore won't need the fscrypt bounce page pool. 66 */ 67 #define FS_CFLG_OWN_PAGES (1U << 1) 68 69 /* Crypto operations for filesystems */ 70 struct fscrypt_operations { 71 72 /* Set of optional flags; see above for allowed flags */ 73 unsigned int flags; 74 75 /* 76 * If set, this is a filesystem-specific key description prefix that 77 * will be accepted for "logon" keys for v1 fscrypt policies, in 78 * addition to the generic prefix "fscrypt:". This functionality is 79 * deprecated, so new filesystems shouldn't set this field. 80 */ 81 const char *key_prefix; 82 83 /* 84 * Get the fscrypt context of the given inode. 85 * 86 * @inode: the inode whose context to get 87 * @ctx: the buffer into which to get the context 88 * @len: length of the @ctx buffer in bytes 89 * 90 * Return: On success, returns the length of the context in bytes; this 91 * may be less than @len. On failure, returns -ENODATA if the 92 * inode doesn't have a context, -ERANGE if the context is 93 * longer than @len, or another -errno code. 94 */ 95 int (*get_context)(struct inode *inode, void *ctx, size_t len); 96 97 /* 98 * Set an fscrypt context on the given inode. 99 * 100 * @inode: the inode whose context to set. The inode won't already have 101 * an fscrypt context. 102 * @ctx: the context to set 103 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 104 * @fs_data: If called from fscrypt_set_context(), this will be the 105 * value the filesystem passed to fscrypt_set_context(). 106 * Otherwise (i.e. when called from 107 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 108 * 109 * i_rwsem will be held for write. 110 * 111 * Return: 0 on success, -errno on failure. 112 */ 113 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 114 void *fs_data); 115 116 /* 117 * Get the dummy fscrypt policy in use on the filesystem (if any). 118 * 119 * Filesystems only need to implement this function if they support the 120 * test_dummy_encryption mount option. 121 * 122 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 123 * mounted with test_dummy_encryption; otherwise NULL. 124 */ 125 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 126 127 /* 128 * Check whether a directory is empty. i_rwsem will be held for write. 129 */ 130 bool (*empty_dir)(struct inode *inode); 131 132 /* 133 * Check whether the filesystem's inode numbers and UUID are stable, 134 * meaning that they will never be changed even by offline operations 135 * such as filesystem shrinking and therefore can be used in the 136 * encryption without the possibility of files becoming unreadable. 137 * 138 * Filesystems only need to implement this function if they want to 139 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 140 * flags are designed to work around the limitations of UFS and eMMC 141 * inline crypto hardware, and they shouldn't be used in scenarios where 142 * such hardware isn't being used. 143 * 144 * Leaving this NULL is equivalent to always returning false. 145 */ 146 bool (*has_stable_inodes)(struct super_block *sb); 147 148 /* 149 * Get the number of bits that the filesystem uses to represent inode 150 * numbers and file logical block numbers. 151 * 152 * By default, both of these are assumed to be 64-bit. This function 153 * can be implemented to declare that either or both of these numbers is 154 * shorter, which may allow the use of the 155 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 156 * inline crypto hardware whose maximum DUN length is less than 64 bits 157 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 158 * to be implemented if support for one of these features is needed. 159 */ 160 void (*get_ino_and_lblk_bits)(struct super_block *sb, 161 int *ino_bits_ret, int *lblk_bits_ret); 162 163 /* 164 * Return the number of block devices to which the filesystem may write 165 * encrypted file contents. 166 * 167 * If the filesystem can use multiple block devices (other than block 168 * devices that aren't used for encrypted file contents, such as 169 * external journal devices), and wants to support inline encryption, 170 * then it must implement this function. Otherwise it's not needed. 171 */ 172 int (*get_num_devices)(struct super_block *sb); 173 174 /* 175 * If ->get_num_devices() returns a value greater than 1, then this 176 * function is called to get the array of request_queues that the 177 * filesystem is using -- one per block device. (There may be duplicate 178 * entries in this array, as block devices can share a request_queue.) 179 */ 180 void (*get_devices)(struct super_block *sb, 181 struct request_queue **devs); 182 }; 183 184 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 185 { 186 /* 187 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 188 * I.e., another task may publish ->i_crypt_info concurrently, executing 189 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 190 * ACQUIRE the memory the other task published. 191 */ 192 return smp_load_acquire(&inode->i_crypt_info); 193 } 194 195 /** 196 * fscrypt_needs_contents_encryption() - check whether an inode needs 197 * contents encryption 198 * @inode: the inode to check 199 * 200 * Return: %true iff the inode is an encrypted regular file and the kernel was 201 * built with fscrypt support. 202 * 203 * If you need to know whether the encrypt bit is set even when the kernel was 204 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 205 */ 206 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 207 { 208 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 209 } 210 211 /* 212 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 213 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 214 * cleared. Note that we don't have to support arbitrary moves of this flag 215 * because fscrypt doesn't allow no-key names to be the source or target of a 216 * rename(). 217 */ 218 static inline void fscrypt_handle_d_move(struct dentry *dentry) 219 { 220 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 221 } 222 223 /** 224 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 225 * @dentry: the dentry to check 226 * 227 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 228 * dentry that was created in an encrypted directory that hasn't had its 229 * encryption key added yet. Such dentries may be either positive or negative. 230 * 231 * When a filesystem is asked to create a new filename in an encrypted directory 232 * and the new filename's dentry is a no-key dentry, it must fail the operation 233 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 234 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 235 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 236 * 237 * This is necessary because creating a filename requires the directory's 238 * encryption key, but just checking for the key on the directory inode during 239 * the final filesystem operation doesn't guarantee that the key was available 240 * during the preceding dentry lookup. And the key must have already been 241 * available during the dentry lookup in order for it to have been checked 242 * whether the filename already exists in the directory and for the new file's 243 * dentry not to be invalidated due to it incorrectly having the no-key flag. 244 * 245 * Return: %true if the dentry is a no-key name 246 */ 247 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 248 { 249 return dentry->d_flags & DCACHE_NOKEY_NAME; 250 } 251 252 /* crypto.c */ 253 void fscrypt_enqueue_decrypt_work(struct work_struct *); 254 255 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 256 unsigned int len, 257 unsigned int offs, 258 gfp_t gfp_flags); 259 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 260 unsigned int len, unsigned int offs, 261 u64 lblk_num, gfp_t gfp_flags); 262 263 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 264 unsigned int offs); 265 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 266 unsigned int len, unsigned int offs, 267 u64 lblk_num); 268 269 static inline bool fscrypt_is_bounce_page(struct page *page) 270 { 271 return page->mapping == NULL; 272 } 273 274 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 275 { 276 return (struct page *)page_private(bounce_page); 277 } 278 279 void fscrypt_free_bounce_page(struct page *bounce_page); 280 281 /* policy.c */ 282 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 283 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 284 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 285 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 286 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 287 int fscrypt_set_context(struct inode *inode, void *fs_data); 288 289 struct fscrypt_dummy_policy { 290 const union fscrypt_policy *policy; 291 }; 292 293 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 294 struct fscrypt_dummy_policy *dummy_policy); 295 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 296 const struct fscrypt_dummy_policy *p2); 297 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, 298 struct fscrypt_dummy_policy *dummy_policy); 299 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 300 struct super_block *sb); 301 static inline bool 302 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 303 { 304 return dummy_policy->policy != NULL; 305 } 306 static inline void 307 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 308 { 309 kfree(dummy_policy->policy); 310 dummy_policy->policy = NULL; 311 } 312 313 /* keyring.c */ 314 void fscrypt_sb_free(struct super_block *sb); 315 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 316 int fscrypt_add_test_dummy_key(struct super_block *sb, 317 const struct fscrypt_dummy_policy *dummy_policy); 318 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 319 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 320 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 321 322 /* keysetup.c */ 323 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 324 bool *encrypt_ret); 325 void fscrypt_put_encryption_info(struct inode *inode); 326 void fscrypt_free_inode(struct inode *inode); 327 int fscrypt_drop_inode(struct inode *inode); 328 329 /* fname.c */ 330 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 331 u8 *out, unsigned int olen); 332 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 333 u32 max_len, u32 *encrypted_len_ret); 334 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 335 int lookup, struct fscrypt_name *fname); 336 337 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 338 { 339 kfree(fname->crypto_buf.name); 340 } 341 342 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 343 struct fscrypt_str *crypto_str); 344 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 345 int fscrypt_fname_disk_to_usr(const struct inode *inode, 346 u32 hash, u32 minor_hash, 347 const struct fscrypt_str *iname, 348 struct fscrypt_str *oname); 349 bool fscrypt_match_name(const struct fscrypt_name *fname, 350 const u8 *de_name, u32 de_name_len); 351 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 352 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 353 354 /* bio.c */ 355 void fscrypt_decrypt_bio(struct bio *bio); 356 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 357 sector_t pblk, unsigned int len); 358 359 /* hooks.c */ 360 int fscrypt_file_open(struct inode *inode, struct file *filp); 361 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 362 struct dentry *dentry); 363 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 364 struct inode *new_dir, struct dentry *new_dentry, 365 unsigned int flags); 366 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 367 struct fscrypt_name *fname); 368 int __fscrypt_prepare_readdir(struct inode *dir); 369 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 370 int fscrypt_prepare_setflags(struct inode *inode, 371 unsigned int oldflags, unsigned int flags); 372 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 373 unsigned int len, unsigned int max_len, 374 struct fscrypt_str *disk_link); 375 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 376 unsigned int len, struct fscrypt_str *disk_link); 377 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 378 unsigned int max_size, 379 struct delayed_call *done); 380 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 381 static inline void fscrypt_set_ops(struct super_block *sb, 382 const struct fscrypt_operations *s_cop) 383 { 384 sb->s_cop = s_cop; 385 } 386 #else /* !CONFIG_FS_ENCRYPTION */ 387 388 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 389 { 390 return NULL; 391 } 392 393 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 394 { 395 return false; 396 } 397 398 static inline void fscrypt_handle_d_move(struct dentry *dentry) 399 { 400 } 401 402 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 403 { 404 return false; 405 } 406 407 /* crypto.c */ 408 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 409 { 410 } 411 412 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 413 unsigned int len, 414 unsigned int offs, 415 gfp_t gfp_flags) 416 { 417 return ERR_PTR(-EOPNOTSUPP); 418 } 419 420 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 421 struct page *page, 422 unsigned int len, 423 unsigned int offs, u64 lblk_num, 424 gfp_t gfp_flags) 425 { 426 return -EOPNOTSUPP; 427 } 428 429 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 430 unsigned int len, 431 unsigned int offs) 432 { 433 return -EOPNOTSUPP; 434 } 435 436 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 437 struct page *page, 438 unsigned int len, 439 unsigned int offs, u64 lblk_num) 440 { 441 return -EOPNOTSUPP; 442 } 443 444 static inline bool fscrypt_is_bounce_page(struct page *page) 445 { 446 return false; 447 } 448 449 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 450 { 451 WARN_ON_ONCE(1); 452 return ERR_PTR(-EINVAL); 453 } 454 455 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 456 { 457 } 458 459 /* policy.c */ 460 static inline int fscrypt_ioctl_set_policy(struct file *filp, 461 const void __user *arg) 462 { 463 return -EOPNOTSUPP; 464 } 465 466 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 467 { 468 return -EOPNOTSUPP; 469 } 470 471 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 472 void __user *arg) 473 { 474 return -EOPNOTSUPP; 475 } 476 477 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 478 { 479 return -EOPNOTSUPP; 480 } 481 482 static inline int fscrypt_has_permitted_context(struct inode *parent, 483 struct inode *child) 484 { 485 return 0; 486 } 487 488 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 489 { 490 return -EOPNOTSUPP; 491 } 492 493 struct fscrypt_dummy_policy { 494 }; 495 496 static inline int 497 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 498 struct fscrypt_dummy_policy *dummy_policy) 499 { 500 return -EINVAL; 501 } 502 503 static inline bool 504 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 505 const struct fscrypt_dummy_policy *p2) 506 { 507 return true; 508 } 509 510 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 511 char sep, 512 struct super_block *sb) 513 { 514 } 515 516 static inline bool 517 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 518 { 519 return false; 520 } 521 522 static inline void 523 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 524 { 525 } 526 527 /* keyring.c */ 528 static inline void fscrypt_sb_free(struct super_block *sb) 529 { 530 } 531 532 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 533 { 534 return -EOPNOTSUPP; 535 } 536 537 static inline int 538 fscrypt_add_test_dummy_key(struct super_block *sb, 539 const struct fscrypt_dummy_policy *dummy_policy) 540 { 541 return 0; 542 } 543 544 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 545 { 546 return -EOPNOTSUPP; 547 } 548 549 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 550 void __user *arg) 551 { 552 return -EOPNOTSUPP; 553 } 554 555 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 556 void __user *arg) 557 { 558 return -EOPNOTSUPP; 559 } 560 561 /* keysetup.c */ 562 563 static inline int fscrypt_prepare_new_inode(struct inode *dir, 564 struct inode *inode, 565 bool *encrypt_ret) 566 { 567 if (IS_ENCRYPTED(dir)) 568 return -EOPNOTSUPP; 569 return 0; 570 } 571 572 static inline void fscrypt_put_encryption_info(struct inode *inode) 573 { 574 return; 575 } 576 577 static inline void fscrypt_free_inode(struct inode *inode) 578 { 579 } 580 581 static inline int fscrypt_drop_inode(struct inode *inode) 582 { 583 return 0; 584 } 585 586 /* fname.c */ 587 static inline int fscrypt_setup_filename(struct inode *dir, 588 const struct qstr *iname, 589 int lookup, struct fscrypt_name *fname) 590 { 591 if (IS_ENCRYPTED(dir)) 592 return -EOPNOTSUPP; 593 594 memset(fname, 0, sizeof(*fname)); 595 fname->usr_fname = iname; 596 fname->disk_name.name = (unsigned char *)iname->name; 597 fname->disk_name.len = iname->len; 598 return 0; 599 } 600 601 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 602 { 603 return; 604 } 605 606 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 607 struct fscrypt_str *crypto_str) 608 { 609 return -EOPNOTSUPP; 610 } 611 612 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 613 { 614 return; 615 } 616 617 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 618 u32 hash, u32 minor_hash, 619 const struct fscrypt_str *iname, 620 struct fscrypt_str *oname) 621 { 622 return -EOPNOTSUPP; 623 } 624 625 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 626 const u8 *de_name, u32 de_name_len) 627 { 628 /* Encryption support disabled; use standard comparison */ 629 if (de_name_len != fname->disk_name.len) 630 return false; 631 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 632 } 633 634 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 635 const struct qstr *name) 636 { 637 WARN_ON_ONCE(1); 638 return 0; 639 } 640 641 static inline int fscrypt_d_revalidate(struct dentry *dentry, 642 unsigned int flags) 643 { 644 return 1; 645 } 646 647 /* bio.c */ 648 static inline void fscrypt_decrypt_bio(struct bio *bio) 649 { 650 } 651 652 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 653 sector_t pblk, unsigned int len) 654 { 655 return -EOPNOTSUPP; 656 } 657 658 /* hooks.c */ 659 660 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 661 { 662 if (IS_ENCRYPTED(inode)) 663 return -EOPNOTSUPP; 664 return 0; 665 } 666 667 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 668 struct dentry *dentry) 669 { 670 return -EOPNOTSUPP; 671 } 672 673 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 674 struct dentry *old_dentry, 675 struct inode *new_dir, 676 struct dentry *new_dentry, 677 unsigned int flags) 678 { 679 return -EOPNOTSUPP; 680 } 681 682 static inline int __fscrypt_prepare_lookup(struct inode *dir, 683 struct dentry *dentry, 684 struct fscrypt_name *fname) 685 { 686 return -EOPNOTSUPP; 687 } 688 689 static inline int __fscrypt_prepare_readdir(struct inode *dir) 690 { 691 return -EOPNOTSUPP; 692 } 693 694 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 695 struct iattr *attr) 696 { 697 return -EOPNOTSUPP; 698 } 699 700 static inline int fscrypt_prepare_setflags(struct inode *inode, 701 unsigned int oldflags, 702 unsigned int flags) 703 { 704 return 0; 705 } 706 707 static inline int fscrypt_prepare_symlink(struct inode *dir, 708 const char *target, 709 unsigned int len, 710 unsigned int max_len, 711 struct fscrypt_str *disk_link) 712 { 713 if (IS_ENCRYPTED(dir)) 714 return -EOPNOTSUPP; 715 disk_link->name = (unsigned char *)target; 716 disk_link->len = len + 1; 717 if (disk_link->len > max_len) 718 return -ENAMETOOLONG; 719 return 0; 720 } 721 722 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 723 const char *target, 724 unsigned int len, 725 struct fscrypt_str *disk_link) 726 { 727 return -EOPNOTSUPP; 728 } 729 730 static inline const char *fscrypt_get_symlink(struct inode *inode, 731 const void *caddr, 732 unsigned int max_size, 733 struct delayed_call *done) 734 { 735 return ERR_PTR(-EOPNOTSUPP); 736 } 737 738 static inline int fscrypt_symlink_getattr(const struct path *path, 739 struct kstat *stat) 740 { 741 return -EOPNOTSUPP; 742 } 743 744 static inline void fscrypt_set_ops(struct super_block *sb, 745 const struct fscrypt_operations *s_cop) 746 { 747 } 748 749 #endif /* !CONFIG_FS_ENCRYPTION */ 750 751 /* inline_crypt.c */ 752 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 753 754 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 755 756 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 757 const struct inode *inode, u64 first_lblk, 758 gfp_t gfp_mask); 759 760 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 761 const struct buffer_head *first_bh, 762 gfp_t gfp_mask); 763 764 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 765 u64 next_lblk); 766 767 bool fscrypt_mergeable_bio_bh(struct bio *bio, 768 const struct buffer_head *next_bh); 769 770 bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter); 771 772 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 773 774 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 775 776 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 777 { 778 return false; 779 } 780 781 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 782 const struct inode *inode, 783 u64 first_lblk, gfp_t gfp_mask) { } 784 785 static inline void fscrypt_set_bio_crypt_ctx_bh( 786 struct bio *bio, 787 const struct buffer_head *first_bh, 788 gfp_t gfp_mask) { } 789 790 static inline bool fscrypt_mergeable_bio(struct bio *bio, 791 const struct inode *inode, 792 u64 next_lblk) 793 { 794 return true; 795 } 796 797 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 798 const struct buffer_head *next_bh) 799 { 800 return true; 801 } 802 803 static inline bool fscrypt_dio_supported(struct kiocb *iocb, 804 struct iov_iter *iter) 805 { 806 const struct inode *inode = file_inode(iocb->ki_filp); 807 808 return !fscrypt_needs_contents_encryption(inode); 809 } 810 811 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 812 u64 nr_blocks) 813 { 814 return nr_blocks; 815 } 816 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 817 818 /** 819 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 820 * encryption 821 * @inode: an inode. If encrypted, its key must be set up. 822 * 823 * Return: true if the inode requires file contents encryption and if the 824 * encryption should be done in the block layer via blk-crypto rather 825 * than in the filesystem layer. 826 */ 827 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 828 { 829 return fscrypt_needs_contents_encryption(inode) && 830 __fscrypt_inode_uses_inline_crypto(inode); 831 } 832 833 /** 834 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 835 * encryption 836 * @inode: an inode. If encrypted, its key must be set up. 837 * 838 * Return: true if the inode requires file contents encryption and if the 839 * encryption should be done in the filesystem layer rather than in the 840 * block layer via blk-crypto. 841 */ 842 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 843 { 844 return fscrypt_needs_contents_encryption(inode) && 845 !__fscrypt_inode_uses_inline_crypto(inode); 846 } 847 848 /** 849 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 850 * @inode: the inode to check 851 * 852 * Return: %true if the inode has had its encryption key set up, else %false. 853 * 854 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 855 * set up the key first. 856 */ 857 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 858 { 859 return fscrypt_get_info(inode) != NULL; 860 } 861 862 /** 863 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 864 * directory 865 * @old_dentry: an existing dentry for the inode being linked 866 * @dir: the target directory 867 * @dentry: negative dentry for the target filename 868 * 869 * A new link can only be added to an encrypted directory if the directory's 870 * encryption key is available --- since otherwise we'd have no way to encrypt 871 * the filename. 872 * 873 * We also verify that the link will not violate the constraint that all files 874 * in an encrypted directory tree use the same encryption policy. 875 * 876 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 877 * -EXDEV if the link would result in an inconsistent encryption policy, or 878 * another -errno code. 879 */ 880 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 881 struct inode *dir, 882 struct dentry *dentry) 883 { 884 if (IS_ENCRYPTED(dir)) 885 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 886 return 0; 887 } 888 889 /** 890 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 891 * directories 892 * @old_dir: source directory 893 * @old_dentry: dentry for source file 894 * @new_dir: target directory 895 * @new_dentry: dentry for target location (may be negative unless exchanging) 896 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 897 * 898 * Prepare for ->rename() where the source and/or target directories may be 899 * encrypted. A new link can only be added to an encrypted directory if the 900 * directory's encryption key is available --- since otherwise we'd have no way 901 * to encrypt the filename. A rename to an existing name, on the other hand, 902 * *is* cryptographically possible without the key. However, we take the more 903 * conservative approach and just forbid all no-key renames. 904 * 905 * We also verify that the rename will not violate the constraint that all files 906 * in an encrypted directory tree use the same encryption policy. 907 * 908 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 909 * rename would cause inconsistent encryption policies, or another -errno code. 910 */ 911 static inline int fscrypt_prepare_rename(struct inode *old_dir, 912 struct dentry *old_dentry, 913 struct inode *new_dir, 914 struct dentry *new_dentry, 915 unsigned int flags) 916 { 917 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 918 return __fscrypt_prepare_rename(old_dir, old_dentry, 919 new_dir, new_dentry, flags); 920 return 0; 921 } 922 923 /** 924 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 925 * directory 926 * @dir: directory being searched 927 * @dentry: filename being looked up 928 * @fname: (output) the name to use to search the on-disk directory 929 * 930 * Prepare for ->lookup() in a directory which may be encrypted by determining 931 * the name that will actually be used to search the directory on-disk. If the 932 * directory's encryption policy is supported by this kernel and its encryption 933 * key is available, then the lookup is assumed to be by plaintext name; 934 * otherwise, it is assumed to be by no-key name. 935 * 936 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 937 * name. In this case the filesystem must assign the dentry a dentry_operations 938 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 939 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 940 * directory's encryption key is later added. 941 * 942 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 943 * filename isn't a valid no-key name, so a negative dentry should be created; 944 * or another -errno code. 945 */ 946 static inline int fscrypt_prepare_lookup(struct inode *dir, 947 struct dentry *dentry, 948 struct fscrypt_name *fname) 949 { 950 if (IS_ENCRYPTED(dir)) 951 return __fscrypt_prepare_lookup(dir, dentry, fname); 952 953 memset(fname, 0, sizeof(*fname)); 954 fname->usr_fname = &dentry->d_name; 955 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 956 fname->disk_name.len = dentry->d_name.len; 957 return 0; 958 } 959 960 /** 961 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 962 * @dir: the directory inode 963 * 964 * If the directory is encrypted and it doesn't already have its encryption key 965 * set up, try to set it up so that the filenames will be listed in plaintext 966 * form rather than in no-key form. 967 * 968 * Return: 0 on success; -errno on error. Note that the encryption key being 969 * unavailable is not considered an error. It is also not an error if 970 * the encryption policy is unsupported by this kernel; that is treated 971 * like the key being unavailable, so that files can still be deleted. 972 */ 973 static inline int fscrypt_prepare_readdir(struct inode *dir) 974 { 975 if (IS_ENCRYPTED(dir)) 976 return __fscrypt_prepare_readdir(dir); 977 return 0; 978 } 979 980 /** 981 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 982 * attributes 983 * @dentry: dentry through which the inode is being changed 984 * @attr: attributes to change 985 * 986 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 987 * most attribute changes are allowed even without the encryption key. However, 988 * without the encryption key we do have to forbid truncates. This is needed 989 * because the size being truncated to may not be a multiple of the filesystem 990 * block size, and in that case we'd have to decrypt the final block, zero the 991 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 992 * filesystem block boundary, but it's simpler to just forbid all truncates --- 993 * and we already forbid all other contents modifications without the key.) 994 * 995 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 996 * if a problem occurred while setting up the encryption key. 997 */ 998 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 999 struct iattr *attr) 1000 { 1001 if (IS_ENCRYPTED(d_inode(dentry))) 1002 return __fscrypt_prepare_setattr(dentry, attr); 1003 return 0; 1004 } 1005 1006 /** 1007 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1008 * @inode: symlink inode 1009 * @target: plaintext symlink target 1010 * @len: length of @target excluding null terminator 1011 * @disk_link: (in/out) the on-disk symlink target being prepared 1012 * 1013 * If the symlink target needs to be encrypted, then this function encrypts it 1014 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1015 * previously to compute @disk_link->len. If the filesystem did not allocate a 1016 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1017 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1018 * 1019 * Return: 0 on success, -errno on failure 1020 */ 1021 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1022 const char *target, 1023 unsigned int len, 1024 struct fscrypt_str *disk_link) 1025 { 1026 if (IS_ENCRYPTED(inode)) 1027 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1028 return 0; 1029 } 1030 1031 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1032 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1033 { 1034 struct page *page = *pagep; 1035 1036 if (fscrypt_is_bounce_page(page)) { 1037 *pagep = fscrypt_pagecache_page(page); 1038 fscrypt_free_bounce_page(page); 1039 } 1040 } 1041 1042 #endif /* _LINUX_FSCRYPT_H */ 1043