1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 20 #define FS_CRYPTO_BLOCK_SIZE 16 21 22 struct fscrypt_ctx; 23 struct fscrypt_info; 24 25 struct fscrypt_str { 26 unsigned char *name; 27 u32 len; 28 }; 29 30 struct fscrypt_name { 31 const struct qstr *usr_fname; 32 struct fscrypt_str disk_name; 33 u32 hash; 34 u32 minor_hash; 35 struct fscrypt_str crypto_buf; 36 bool is_ciphertext_name; 37 }; 38 39 #define FSTR_INIT(n, l) { .name = n, .len = l } 40 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 41 #define fname_name(p) ((p)->disk_name.name) 42 #define fname_len(p) ((p)->disk_name.len) 43 44 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 45 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 28 46 47 #ifdef CONFIG_FS_ENCRYPTION 48 /* 49 * fscrypt superblock flags 50 */ 51 #define FS_CFLG_OWN_PAGES (1U << 1) 52 53 /* 54 * crypto operations for filesystems 55 */ 56 struct fscrypt_operations { 57 unsigned int flags; 58 const char *key_prefix; 59 int (*get_context)(struct inode *, void *, size_t); 60 int (*set_context)(struct inode *, const void *, size_t, void *); 61 bool (*dummy_context)(struct inode *); 62 bool (*empty_dir)(struct inode *); 63 unsigned int max_namelen; 64 }; 65 66 struct fscrypt_ctx { 67 union { 68 struct { 69 struct page *bounce_page; /* Ciphertext page */ 70 struct page *control_page; /* Original page */ 71 } w; 72 struct { 73 struct bio *bio; 74 struct work_struct work; 75 } r; 76 struct list_head free_list; /* Free list */ 77 }; 78 u8 flags; /* Flags */ 79 }; 80 81 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 82 { 83 /* pairs with cmpxchg_release() in fscrypt_get_encryption_info() */ 84 return READ_ONCE(inode->i_crypt_info) != NULL; 85 } 86 87 static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 88 { 89 return inode->i_sb->s_cop->dummy_context && 90 inode->i_sb->s_cop->dummy_context(inode); 91 } 92 93 /* 94 * When d_splice_alias() moves a directory's encrypted alias to its decrypted 95 * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME 96 * must be cleared. Note that we don't have to support arbitrary moves of this 97 * flag because fscrypt doesn't allow encrypted aliases to be the source or 98 * target of a rename(). 99 */ 100 static inline void fscrypt_handle_d_move(struct dentry *dentry) 101 { 102 dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME; 103 } 104 105 /* crypto.c */ 106 extern void fscrypt_enqueue_decrypt_work(struct work_struct *); 107 extern struct fscrypt_ctx *fscrypt_get_ctx(gfp_t); 108 extern void fscrypt_release_ctx(struct fscrypt_ctx *); 109 extern struct page *fscrypt_encrypt_page(const struct inode *, struct page *, 110 unsigned int, unsigned int, 111 u64, gfp_t); 112 extern int fscrypt_decrypt_page(const struct inode *, struct page *, unsigned int, 113 unsigned int, u64); 114 115 static inline struct page *fscrypt_control_page(struct page *page) 116 { 117 return ((struct fscrypt_ctx *)page_private(page))->w.control_page; 118 } 119 120 extern void fscrypt_restore_control_page(struct page *); 121 122 /* policy.c */ 123 extern int fscrypt_ioctl_set_policy(struct file *, const void __user *); 124 extern int fscrypt_ioctl_get_policy(struct file *, void __user *); 125 extern int fscrypt_has_permitted_context(struct inode *, struct inode *); 126 extern int fscrypt_inherit_context(struct inode *, struct inode *, 127 void *, bool); 128 /* keyinfo.c */ 129 extern int fscrypt_get_encryption_info(struct inode *); 130 extern void fscrypt_put_encryption_info(struct inode *); 131 extern void fscrypt_free_inode(struct inode *); 132 133 /* fname.c */ 134 extern int fscrypt_setup_filename(struct inode *, const struct qstr *, 135 int lookup, struct fscrypt_name *); 136 137 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 138 { 139 kfree(fname->crypto_buf.name); 140 } 141 142 extern int fscrypt_fname_alloc_buffer(const struct inode *, u32, 143 struct fscrypt_str *); 144 extern void fscrypt_fname_free_buffer(struct fscrypt_str *); 145 extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32, 146 const struct fscrypt_str *, struct fscrypt_str *); 147 148 #define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 32 149 150 /* Extracts the second-to-last ciphertext block; see explanation below */ 151 #define FSCRYPT_FNAME_DIGEST(name, len) \ 152 ((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \ 153 FS_CRYPTO_BLOCK_SIZE)) 154 155 #define FSCRYPT_FNAME_DIGEST_SIZE FS_CRYPTO_BLOCK_SIZE 156 157 /** 158 * fscrypt_digested_name - alternate identifier for an on-disk filename 159 * 160 * When userspace lists an encrypted directory without access to the key, 161 * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 162 * bytes are shown in this abbreviated form (base64-encoded) rather than as the 163 * full ciphertext (base64-encoded). This is necessary to allow supporting 164 * filenames up to NAME_MAX bytes, since base64 encoding expands the length. 165 * 166 * To make it possible for filesystems to still find the correct directory entry 167 * despite not knowing the full on-disk name, we encode any filesystem-specific 168 * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups, 169 * followed by the second-to-last ciphertext block of the filename. Due to the 170 * use of the CBC-CTS encryption mode, the second-to-last ciphertext block 171 * depends on the full plaintext. (Note that ciphertext stealing causes the 172 * last two blocks to appear "flipped".) This makes accidental collisions very 173 * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they 174 * share the same filesystem-specific hashes. 175 * 176 * However, this scheme isn't immune to intentional collisions, which can be 177 * created by anyone able to create arbitrary plaintext filenames and view them 178 * without the key. Making the "digest" be a real cryptographic hash like 179 * SHA-256 over the full ciphertext would prevent this, although it would be 180 * less efficient and harder to implement, especially since the filesystem would 181 * need to calculate it for each directory entry examined during a search. 182 */ 183 struct fscrypt_digested_name { 184 u32 hash; 185 u32 minor_hash; 186 u8 digest[FSCRYPT_FNAME_DIGEST_SIZE]; 187 }; 188 189 /** 190 * fscrypt_match_name() - test whether the given name matches a directory entry 191 * @fname: the name being searched for 192 * @de_name: the name from the directory entry 193 * @de_name_len: the length of @de_name in bytes 194 * 195 * Normally @fname->disk_name will be set, and in that case we simply compare 196 * that to the name stored in the directory entry. The only exception is that 197 * if we don't have the key for an encrypted directory and a filename in it is 198 * very long, then we won't have the full disk_name and we'll instead need to 199 * match against the fscrypt_digested_name. 200 * 201 * Return: %true if the name matches, otherwise %false. 202 */ 203 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 204 const u8 *de_name, u32 de_name_len) 205 { 206 if (unlikely(!fname->disk_name.name)) { 207 const struct fscrypt_digested_name *n = 208 (const void *)fname->crypto_buf.name; 209 if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_')) 210 return false; 211 if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) 212 return false; 213 return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len), 214 n->digest, FSCRYPT_FNAME_DIGEST_SIZE); 215 } 216 217 if (de_name_len != fname->disk_name.len) 218 return false; 219 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 220 } 221 222 /* bio.c */ 223 extern void fscrypt_decrypt_bio(struct bio *); 224 extern void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx, 225 struct bio *bio); 226 extern void fscrypt_pullback_bio_page(struct page **, bool); 227 extern int fscrypt_zeroout_range(const struct inode *, pgoff_t, sector_t, 228 unsigned int); 229 230 /* hooks.c */ 231 extern int fscrypt_file_open(struct inode *inode, struct file *filp); 232 extern int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 233 struct dentry *dentry); 234 extern int __fscrypt_prepare_rename(struct inode *old_dir, 235 struct dentry *old_dentry, 236 struct inode *new_dir, 237 struct dentry *new_dentry, 238 unsigned int flags); 239 extern int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 240 struct fscrypt_name *fname); 241 extern int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len, 242 unsigned int max_len, 243 struct fscrypt_str *disk_link); 244 extern int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 245 unsigned int len, 246 struct fscrypt_str *disk_link); 247 extern const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 248 unsigned int max_size, 249 struct delayed_call *done); 250 #else /* !CONFIG_FS_ENCRYPTION */ 251 252 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 253 { 254 return false; 255 } 256 257 static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 258 { 259 return false; 260 } 261 262 static inline void fscrypt_handle_d_move(struct dentry *dentry) 263 { 264 } 265 266 /* crypto.c */ 267 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 268 { 269 } 270 271 static inline struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags) 272 { 273 return ERR_PTR(-EOPNOTSUPP); 274 } 275 276 static inline void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 277 { 278 return; 279 } 280 281 static inline struct page *fscrypt_encrypt_page(const struct inode *inode, 282 struct page *page, 283 unsigned int len, 284 unsigned int offs, 285 u64 lblk_num, gfp_t gfp_flags) 286 { 287 return ERR_PTR(-EOPNOTSUPP); 288 } 289 290 static inline int fscrypt_decrypt_page(const struct inode *inode, 291 struct page *page, 292 unsigned int len, unsigned int offs, 293 u64 lblk_num) 294 { 295 return -EOPNOTSUPP; 296 } 297 298 static inline struct page *fscrypt_control_page(struct page *page) 299 { 300 WARN_ON_ONCE(1); 301 return ERR_PTR(-EINVAL); 302 } 303 304 static inline void fscrypt_restore_control_page(struct page *page) 305 { 306 return; 307 } 308 309 /* policy.c */ 310 static inline int fscrypt_ioctl_set_policy(struct file *filp, 311 const void __user *arg) 312 { 313 return -EOPNOTSUPP; 314 } 315 316 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 317 { 318 return -EOPNOTSUPP; 319 } 320 321 static inline int fscrypt_has_permitted_context(struct inode *parent, 322 struct inode *child) 323 { 324 return 0; 325 } 326 327 static inline int fscrypt_inherit_context(struct inode *parent, 328 struct inode *child, 329 void *fs_data, bool preload) 330 { 331 return -EOPNOTSUPP; 332 } 333 334 /* keyinfo.c */ 335 static inline int fscrypt_get_encryption_info(struct inode *inode) 336 { 337 return -EOPNOTSUPP; 338 } 339 340 static inline void fscrypt_put_encryption_info(struct inode *inode) 341 { 342 return; 343 } 344 345 static inline void fscrypt_free_inode(struct inode *inode) 346 { 347 } 348 349 /* fname.c */ 350 static inline int fscrypt_setup_filename(struct inode *dir, 351 const struct qstr *iname, 352 int lookup, struct fscrypt_name *fname) 353 { 354 if (IS_ENCRYPTED(dir)) 355 return -EOPNOTSUPP; 356 357 memset(fname, 0, sizeof(*fname)); 358 fname->usr_fname = iname; 359 fname->disk_name.name = (unsigned char *)iname->name; 360 fname->disk_name.len = iname->len; 361 return 0; 362 } 363 364 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 365 { 366 return; 367 } 368 369 static inline int fscrypt_fname_alloc_buffer(const struct inode *inode, 370 u32 max_encrypted_len, 371 struct fscrypt_str *crypto_str) 372 { 373 return -EOPNOTSUPP; 374 } 375 376 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 377 { 378 return; 379 } 380 381 static inline int fscrypt_fname_disk_to_usr(struct inode *inode, 382 u32 hash, u32 minor_hash, 383 const struct fscrypt_str *iname, 384 struct fscrypt_str *oname) 385 { 386 return -EOPNOTSUPP; 387 } 388 389 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 390 const u8 *de_name, u32 de_name_len) 391 { 392 /* Encryption support disabled; use standard comparison */ 393 if (de_name_len != fname->disk_name.len) 394 return false; 395 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 396 } 397 398 /* bio.c */ 399 static inline void fscrypt_decrypt_bio(struct bio *bio) 400 { 401 } 402 403 static inline void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx, 404 struct bio *bio) 405 { 406 } 407 408 static inline void fscrypt_pullback_bio_page(struct page **page, bool restore) 409 { 410 return; 411 } 412 413 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 414 sector_t pblk, unsigned int len) 415 { 416 return -EOPNOTSUPP; 417 } 418 419 /* hooks.c */ 420 421 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 422 { 423 if (IS_ENCRYPTED(inode)) 424 return -EOPNOTSUPP; 425 return 0; 426 } 427 428 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 429 struct dentry *dentry) 430 { 431 return -EOPNOTSUPP; 432 } 433 434 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 435 struct dentry *old_dentry, 436 struct inode *new_dir, 437 struct dentry *new_dentry, 438 unsigned int flags) 439 { 440 return -EOPNOTSUPP; 441 } 442 443 static inline int __fscrypt_prepare_lookup(struct inode *dir, 444 struct dentry *dentry, 445 struct fscrypt_name *fname) 446 { 447 return -EOPNOTSUPP; 448 } 449 450 static inline int __fscrypt_prepare_symlink(struct inode *dir, 451 unsigned int len, 452 unsigned int max_len, 453 struct fscrypt_str *disk_link) 454 { 455 return -EOPNOTSUPP; 456 } 457 458 459 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 460 const char *target, 461 unsigned int len, 462 struct fscrypt_str *disk_link) 463 { 464 return -EOPNOTSUPP; 465 } 466 467 static inline const char *fscrypt_get_symlink(struct inode *inode, 468 const void *caddr, 469 unsigned int max_size, 470 struct delayed_call *done) 471 { 472 return ERR_PTR(-EOPNOTSUPP); 473 } 474 #endif /* !CONFIG_FS_ENCRYPTION */ 475 476 /** 477 * fscrypt_require_key - require an inode's encryption key 478 * @inode: the inode we need the key for 479 * 480 * If the inode is encrypted, set up its encryption key if not already done. 481 * Then require that the key be present and return -ENOKEY otherwise. 482 * 483 * No locks are needed, and the key will live as long as the struct inode --- so 484 * it won't go away from under you. 485 * 486 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 487 * if a problem occurred while setting up the encryption key. 488 */ 489 static inline int fscrypt_require_key(struct inode *inode) 490 { 491 if (IS_ENCRYPTED(inode)) { 492 int err = fscrypt_get_encryption_info(inode); 493 494 if (err) 495 return err; 496 if (!fscrypt_has_encryption_key(inode)) 497 return -ENOKEY; 498 } 499 return 0; 500 } 501 502 /** 503 * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory 504 * @old_dentry: an existing dentry for the inode being linked 505 * @dir: the target directory 506 * @dentry: negative dentry for the target filename 507 * 508 * A new link can only be added to an encrypted directory if the directory's 509 * encryption key is available --- since otherwise we'd have no way to encrypt 510 * the filename. Therefore, we first set up the directory's encryption key (if 511 * not already done) and return an error if it's unavailable. 512 * 513 * We also verify that the link will not violate the constraint that all files 514 * in an encrypted directory tree use the same encryption policy. 515 * 516 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 517 * -EXDEV if the link would result in an inconsistent encryption policy, or 518 * another -errno code. 519 */ 520 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 521 struct inode *dir, 522 struct dentry *dentry) 523 { 524 if (IS_ENCRYPTED(dir)) 525 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 526 return 0; 527 } 528 529 /** 530 * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories 531 * @old_dir: source directory 532 * @old_dentry: dentry for source file 533 * @new_dir: target directory 534 * @new_dentry: dentry for target location (may be negative unless exchanging) 535 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 536 * 537 * Prepare for ->rename() where the source and/or target directories may be 538 * encrypted. A new link can only be added to an encrypted directory if the 539 * directory's encryption key is available --- since otherwise we'd have no way 540 * to encrypt the filename. A rename to an existing name, on the other hand, 541 * *is* cryptographically possible without the key. However, we take the more 542 * conservative approach and just forbid all no-key renames. 543 * 544 * We also verify that the rename will not violate the constraint that all files 545 * in an encrypted directory tree use the same encryption policy. 546 * 547 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 548 * rename would cause inconsistent encryption policies, or another -errno code. 549 */ 550 static inline int fscrypt_prepare_rename(struct inode *old_dir, 551 struct dentry *old_dentry, 552 struct inode *new_dir, 553 struct dentry *new_dentry, 554 unsigned int flags) 555 { 556 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 557 return __fscrypt_prepare_rename(old_dir, old_dentry, 558 new_dir, new_dentry, flags); 559 return 0; 560 } 561 562 /** 563 * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory 564 * @dir: directory being searched 565 * @dentry: filename being looked up 566 * @fname: (output) the name to use to search the on-disk directory 567 * 568 * Prepare for ->lookup() in a directory which may be encrypted by determining 569 * the name that will actually be used to search the directory on-disk. Lookups 570 * can be done with or without the directory's encryption key; without the key, 571 * filenames are presented in encrypted form. Therefore, we'll try to set up 572 * the directory's encryption key, but even without it the lookup can continue. 573 * 574 * This also installs a custom ->d_revalidate() method which will invalidate the 575 * dentry if it was created without the key and the key is later added. 576 * 577 * Return: 0 on success; -ENOENT if key is unavailable but the filename isn't a 578 * correctly formed encoded ciphertext name, so a negative dentry should be 579 * created; or another -errno code. 580 */ 581 static inline int fscrypt_prepare_lookup(struct inode *dir, 582 struct dentry *dentry, 583 struct fscrypt_name *fname) 584 { 585 if (IS_ENCRYPTED(dir)) 586 return __fscrypt_prepare_lookup(dir, dentry, fname); 587 588 memset(fname, 0, sizeof(*fname)); 589 fname->usr_fname = &dentry->d_name; 590 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 591 fname->disk_name.len = dentry->d_name.len; 592 return 0; 593 } 594 595 /** 596 * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes 597 * @dentry: dentry through which the inode is being changed 598 * @attr: attributes to change 599 * 600 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 601 * most attribute changes are allowed even without the encryption key. However, 602 * without the encryption key we do have to forbid truncates. This is needed 603 * because the size being truncated to may not be a multiple of the filesystem 604 * block size, and in that case we'd have to decrypt the final block, zero the 605 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 606 * filesystem block boundary, but it's simpler to just forbid all truncates --- 607 * and we already forbid all other contents modifications without the key.) 608 * 609 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 610 * if a problem occurred while setting up the encryption key. 611 */ 612 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 613 struct iattr *attr) 614 { 615 if (attr->ia_valid & ATTR_SIZE) 616 return fscrypt_require_key(d_inode(dentry)); 617 return 0; 618 } 619 620 /** 621 * fscrypt_prepare_symlink - prepare to create a possibly-encrypted symlink 622 * @dir: directory in which the symlink is being created 623 * @target: plaintext symlink target 624 * @len: length of @target excluding null terminator 625 * @max_len: space the filesystem has available to store the symlink target 626 * @disk_link: (out) the on-disk symlink target being prepared 627 * 628 * This function computes the size the symlink target will require on-disk, 629 * stores it in @disk_link->len, and validates it against @max_len. An 630 * encrypted symlink may be longer than the original. 631 * 632 * Additionally, @disk_link->name is set to @target if the symlink will be 633 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted 634 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the 635 * on-disk target later. (The reason for the two-step process is that some 636 * filesystems need to know the size of the symlink target before creating the 637 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) 638 * 639 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, 640 * -ENOKEY if the encryption key is missing, or another -errno code if a problem 641 * occurred while setting up the encryption key. 642 */ 643 static inline int fscrypt_prepare_symlink(struct inode *dir, 644 const char *target, 645 unsigned int len, 646 unsigned int max_len, 647 struct fscrypt_str *disk_link) 648 { 649 if (IS_ENCRYPTED(dir) || fscrypt_dummy_context_enabled(dir)) 650 return __fscrypt_prepare_symlink(dir, len, max_len, disk_link); 651 652 disk_link->name = (unsigned char *)target; 653 disk_link->len = len + 1; 654 if (disk_link->len > max_len) 655 return -ENAMETOOLONG; 656 return 0; 657 } 658 659 /** 660 * fscrypt_encrypt_symlink - encrypt the symlink target if needed 661 * @inode: symlink inode 662 * @target: plaintext symlink target 663 * @len: length of @target excluding null terminator 664 * @disk_link: (in/out) the on-disk symlink target being prepared 665 * 666 * If the symlink target needs to be encrypted, then this function encrypts it 667 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 668 * previously to compute @disk_link->len. If the filesystem did not allocate a 669 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 670 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 671 * 672 * Return: 0 on success, -errno on failure 673 */ 674 static inline int fscrypt_encrypt_symlink(struct inode *inode, 675 const char *target, 676 unsigned int len, 677 struct fscrypt_str *disk_link) 678 { 679 if (IS_ENCRYPTED(inode)) 680 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 681 return 0; 682 } 683 684 #endif /* _LINUX_FSCRYPT_H */ 685