xref: /linux-6.15/include/linux/fscrypt.h (revision 5b118884)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 /*
22  * The lengths of all file contents blocks must be divisible by this value.
23  * This is needed to ensure that all contents encryption modes will work, as
24  * some of the supported modes don't support arbitrarily byte-aligned messages.
25  *
26  * Since the needed alignment is 16 bytes, most filesystems will meet this
27  * requirement naturally, as typical block sizes are powers of 2.  However, if a
28  * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29  * compression), then it will need to pad to this alignment before encryption.
30  */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32 
33 union fscrypt_policy;
34 struct fscrypt_info;
35 struct fs_parameter;
36 struct seq_file;
37 
38 struct fscrypt_str {
39 	unsigned char *name;
40 	u32 len;
41 };
42 
43 struct fscrypt_name {
44 	const struct qstr *usr_fname;
45 	struct fscrypt_str disk_name;
46 	u32 hash;
47 	u32 minor_hash;
48 	struct fscrypt_str crypto_buf;
49 	bool is_nokey_name;
50 };
51 
52 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
53 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p)		((p)->disk_name.name)
55 #define fname_len(p)		((p)->disk_name.len)
56 
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
59 
60 #ifdef CONFIG_FS_ENCRYPTION
61 
62 /* Crypto operations for filesystems */
63 struct fscrypt_operations {
64 
65 	/*
66 	 * If set, then fs/crypto/ will allocate a global bounce page pool the
67 	 * first time an encryption key is set up for a file.  The bounce page
68 	 * pool is required by the following functions:
69 	 *
70 	 * - fscrypt_encrypt_pagecache_blocks()
71 	 * - fscrypt_zeroout_range() for files not using inline crypto
72 	 *
73 	 * If the filesystem doesn't use those, it doesn't need to set this.
74 	 */
75 	unsigned int needs_bounce_pages : 1;
76 
77 	/*
78 	 * If set, then fs/crypto/ will allow the use of encryption settings
79 	 * that assume inode numbers fit in 32 bits (i.e.
80 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81 	 * prerequisites for these settings are also met.  This is only useful
82 	 * if the filesystem wants to support inline encryption hardware that is
83 	 * limited to 32-bit or 64-bit data unit numbers and where programming
84 	 * keyslots is very slow.
85 	 */
86 	unsigned int has_32bit_inodes : 1;
87 
88 	/*
89 	 * If set, then fs/crypto/ will allow users to select a crypto data unit
90 	 * size that is less than the filesystem block size.  This is done via
91 	 * the log2_data_unit_size field of the fscrypt policy.  This flag is
92 	 * not compatible with filesystems that encrypt variable-length blocks
93 	 * (i.e. blocks that aren't all equal to filesystem's block size), for
94 	 * example as a result of compression.  It's also not compatible with
95 	 * the fscrypt_encrypt_block_inplace() and
96 	 * fscrypt_decrypt_block_inplace() functions.
97 	 */
98 	unsigned int supports_subblock_data_units : 1;
99 
100 	/*
101 	 * This field exists only for backwards compatibility reasons and should
102 	 * only be set by the filesystems that are setting it already.  It
103 	 * contains the filesystem-specific key description prefix that is
104 	 * accepted for "logon" keys for v1 fscrypt policies.  This
105 	 * functionality is deprecated in favor of the generic prefix
106 	 * "fscrypt:", which itself is deprecated in favor of the filesystem
107 	 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY.  Filesystems that
108 	 * are newly adding fscrypt support should not set this field.
109 	 */
110 	const char *legacy_key_prefix;
111 
112 	/*
113 	 * Get the fscrypt context of the given inode.
114 	 *
115 	 * @inode: the inode whose context to get
116 	 * @ctx: the buffer into which to get the context
117 	 * @len: length of the @ctx buffer in bytes
118 	 *
119 	 * Return: On success, returns the length of the context in bytes; this
120 	 *	   may be less than @len.  On failure, returns -ENODATA if the
121 	 *	   inode doesn't have a context, -ERANGE if the context is
122 	 *	   longer than @len, or another -errno code.
123 	 */
124 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
125 
126 	/*
127 	 * Set an fscrypt context on the given inode.
128 	 *
129 	 * @inode: the inode whose context to set.  The inode won't already have
130 	 *	   an fscrypt context.
131 	 * @ctx: the context to set
132 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133 	 * @fs_data: If called from fscrypt_set_context(), this will be the
134 	 *	     value the filesystem passed to fscrypt_set_context().
135 	 *	     Otherwise (i.e. when called from
136 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137 	 *
138 	 * i_rwsem will be held for write.
139 	 *
140 	 * Return: 0 on success, -errno on failure.
141 	 */
142 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143 			   void *fs_data);
144 
145 	/*
146 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
147 	 *
148 	 * Filesystems only need to implement this function if they support the
149 	 * test_dummy_encryption mount option.
150 	 *
151 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152 	 *	   mounted with test_dummy_encryption; otherwise NULL.
153 	 */
154 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155 
156 	/*
157 	 * Check whether a directory is empty.  i_rwsem will be held for write.
158 	 */
159 	bool (*empty_dir)(struct inode *inode);
160 
161 	/*
162 	 * Check whether the filesystem's inode numbers and UUID are stable,
163 	 * meaning that they will never be changed even by offline operations
164 	 * such as filesystem shrinking and therefore can be used in the
165 	 * encryption without the possibility of files becoming unreadable.
166 	 *
167 	 * Filesystems only need to implement this function if they want to
168 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
169 	 * flags are designed to work around the limitations of UFS and eMMC
170 	 * inline crypto hardware, and they shouldn't be used in scenarios where
171 	 * such hardware isn't being used.
172 	 *
173 	 * Leaving this NULL is equivalent to always returning false.
174 	 */
175 	bool (*has_stable_inodes)(struct super_block *sb);
176 
177 	/*
178 	 * Return an array of pointers to the block devices to which the
179 	 * filesystem may write encrypted file contents, NULL if the filesystem
180 	 * only has a single such block device, or an ERR_PTR() on error.
181 	 *
182 	 * On successful non-NULL return, *num_devs is set to the number of
183 	 * devices in the returned array.  The caller must free the returned
184 	 * array using kfree().
185 	 *
186 	 * If the filesystem can use multiple block devices (other than block
187 	 * devices that aren't used for encrypted file contents, such as
188 	 * external journal devices), and wants to support inline encryption,
189 	 * then it must implement this function.  Otherwise it's not needed.
190 	 */
191 	struct block_device **(*get_devices)(struct super_block *sb,
192 					     unsigned int *num_devs);
193 };
194 
195 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
196 {
197 	/*
198 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
199 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
200 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
201 	 * ACQUIRE the memory the other task published.
202 	 */
203 	return smp_load_acquire(&inode->i_crypt_info);
204 }
205 
206 /**
207  * fscrypt_needs_contents_encryption() - check whether an inode needs
208  *					 contents encryption
209  * @inode: the inode to check
210  *
211  * Return: %true iff the inode is an encrypted regular file and the kernel was
212  * built with fscrypt support.
213  *
214  * If you need to know whether the encrypt bit is set even when the kernel was
215  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
216  */
217 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
218 {
219 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
220 }
221 
222 /*
223  * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
224  * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
225  * cleared.  Note that we don't have to support arbitrary moves of this flag
226  * because fscrypt doesn't allow no-key names to be the source or target of a
227  * rename().
228  */
229 static inline void fscrypt_handle_d_move(struct dentry *dentry)
230 {
231 	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
232 }
233 
234 /**
235  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
236  * @dentry: the dentry to check
237  *
238  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
239  * dentry that was created in an encrypted directory that hasn't had its
240  * encryption key added yet.  Such dentries may be either positive or negative.
241  *
242  * When a filesystem is asked to create a new filename in an encrypted directory
243  * and the new filename's dentry is a no-key dentry, it must fail the operation
244  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
245  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
246  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
247  *
248  * This is necessary because creating a filename requires the directory's
249  * encryption key, but just checking for the key on the directory inode during
250  * the final filesystem operation doesn't guarantee that the key was available
251  * during the preceding dentry lookup.  And the key must have already been
252  * available during the dentry lookup in order for it to have been checked
253  * whether the filename already exists in the directory and for the new file's
254  * dentry not to be invalidated due to it incorrectly having the no-key flag.
255  *
256  * Return: %true if the dentry is a no-key name
257  */
258 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
259 {
260 	return dentry->d_flags & DCACHE_NOKEY_NAME;
261 }
262 
263 /* crypto.c */
264 void fscrypt_enqueue_decrypt_work(struct work_struct *);
265 
266 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
267 					      unsigned int len,
268 					      unsigned int offs,
269 					      gfp_t gfp_flags);
270 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
271 				  unsigned int len, unsigned int offs,
272 				  u64 lblk_num, gfp_t gfp_flags);
273 
274 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
275 				     size_t offs);
276 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
277 				  unsigned int len, unsigned int offs,
278 				  u64 lblk_num);
279 
280 static inline bool fscrypt_is_bounce_page(struct page *page)
281 {
282 	return page->mapping == NULL;
283 }
284 
285 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
286 {
287 	return (struct page *)page_private(bounce_page);
288 }
289 
290 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
291 {
292 	return folio->mapping == NULL;
293 }
294 
295 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
296 {
297 	return bounce_folio->private;
298 }
299 
300 void fscrypt_free_bounce_page(struct page *bounce_page);
301 
302 /* policy.c */
303 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
304 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
305 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
306 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
307 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
308 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
309 int fscrypt_set_context(struct inode *inode, void *fs_data);
310 
311 struct fscrypt_dummy_policy {
312 	const union fscrypt_policy *policy;
313 };
314 
315 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
316 				    struct fscrypt_dummy_policy *dummy_policy);
317 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
318 				  const struct fscrypt_dummy_policy *p2);
319 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
320 					struct super_block *sb);
321 static inline bool
322 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
323 {
324 	return dummy_policy->policy != NULL;
325 }
326 static inline void
327 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
328 {
329 	kfree(dummy_policy->policy);
330 	dummy_policy->policy = NULL;
331 }
332 
333 /* keyring.c */
334 void fscrypt_destroy_keyring(struct super_block *sb);
335 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
336 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
337 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
338 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
339 
340 /* keysetup.c */
341 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
342 			      bool *encrypt_ret);
343 void fscrypt_put_encryption_info(struct inode *inode);
344 void fscrypt_free_inode(struct inode *inode);
345 int fscrypt_drop_inode(struct inode *inode);
346 
347 /* fname.c */
348 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
349 			  u8 *out, unsigned int olen);
350 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
351 				  u32 max_len, u32 *encrypted_len_ret);
352 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
353 			   int lookup, struct fscrypt_name *fname);
354 
355 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
356 {
357 	kfree(fname->crypto_buf.name);
358 }
359 
360 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
361 			       struct fscrypt_str *crypto_str);
362 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
363 int fscrypt_fname_disk_to_usr(const struct inode *inode,
364 			      u32 hash, u32 minor_hash,
365 			      const struct fscrypt_str *iname,
366 			      struct fscrypt_str *oname);
367 bool fscrypt_match_name(const struct fscrypt_name *fname,
368 			const u8 *de_name, u32 de_name_len);
369 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
370 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
371 
372 /* bio.c */
373 bool fscrypt_decrypt_bio(struct bio *bio);
374 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
375 			  sector_t pblk, unsigned int len);
376 
377 /* hooks.c */
378 int fscrypt_file_open(struct inode *inode, struct file *filp);
379 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
380 			   struct dentry *dentry);
381 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
382 			     struct inode *new_dir, struct dentry *new_dentry,
383 			     unsigned int flags);
384 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
385 			     struct fscrypt_name *fname);
386 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
387 int __fscrypt_prepare_readdir(struct inode *dir);
388 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
389 int fscrypt_prepare_setflags(struct inode *inode,
390 			     unsigned int oldflags, unsigned int flags);
391 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
392 			    unsigned int len, unsigned int max_len,
393 			    struct fscrypt_str *disk_link);
394 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
395 			      unsigned int len, struct fscrypt_str *disk_link);
396 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
397 				unsigned int max_size,
398 				struct delayed_call *done);
399 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
400 static inline void fscrypt_set_ops(struct super_block *sb,
401 				   const struct fscrypt_operations *s_cop)
402 {
403 	sb->s_cop = s_cop;
404 }
405 #else  /* !CONFIG_FS_ENCRYPTION */
406 
407 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
408 {
409 	return NULL;
410 }
411 
412 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
413 {
414 	return false;
415 }
416 
417 static inline void fscrypt_handle_d_move(struct dentry *dentry)
418 {
419 }
420 
421 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
422 {
423 	return false;
424 }
425 
426 /* crypto.c */
427 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
428 {
429 }
430 
431 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
432 							    unsigned int len,
433 							    unsigned int offs,
434 							    gfp_t gfp_flags)
435 {
436 	return ERR_PTR(-EOPNOTSUPP);
437 }
438 
439 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
440 						struct page *page,
441 						unsigned int len,
442 						unsigned int offs, u64 lblk_num,
443 						gfp_t gfp_flags)
444 {
445 	return -EOPNOTSUPP;
446 }
447 
448 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
449 						   size_t len, size_t offs)
450 {
451 	return -EOPNOTSUPP;
452 }
453 
454 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
455 						struct page *page,
456 						unsigned int len,
457 						unsigned int offs, u64 lblk_num)
458 {
459 	return -EOPNOTSUPP;
460 }
461 
462 static inline bool fscrypt_is_bounce_page(struct page *page)
463 {
464 	return false;
465 }
466 
467 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
468 {
469 	WARN_ON_ONCE(1);
470 	return ERR_PTR(-EINVAL);
471 }
472 
473 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
474 {
475 	return false;
476 }
477 
478 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
479 {
480 	WARN_ON_ONCE(1);
481 	return ERR_PTR(-EINVAL);
482 }
483 
484 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
485 {
486 }
487 
488 /* policy.c */
489 static inline int fscrypt_ioctl_set_policy(struct file *filp,
490 					   const void __user *arg)
491 {
492 	return -EOPNOTSUPP;
493 }
494 
495 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
496 {
497 	return -EOPNOTSUPP;
498 }
499 
500 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
501 					      void __user *arg)
502 {
503 	return -EOPNOTSUPP;
504 }
505 
506 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
507 {
508 	return -EOPNOTSUPP;
509 }
510 
511 static inline int fscrypt_has_permitted_context(struct inode *parent,
512 						struct inode *child)
513 {
514 	return 0;
515 }
516 
517 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
518 {
519 	return -EOPNOTSUPP;
520 }
521 
522 struct fscrypt_dummy_policy {
523 };
524 
525 static inline int
526 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
527 				    struct fscrypt_dummy_policy *dummy_policy)
528 {
529 	return -EINVAL;
530 }
531 
532 static inline bool
533 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
534 			     const struct fscrypt_dummy_policy *p2)
535 {
536 	return true;
537 }
538 
539 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
540 						      char sep,
541 						      struct super_block *sb)
542 {
543 }
544 
545 static inline bool
546 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
547 {
548 	return false;
549 }
550 
551 static inline void
552 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
553 {
554 }
555 
556 /* keyring.c */
557 static inline void fscrypt_destroy_keyring(struct super_block *sb)
558 {
559 }
560 
561 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
562 {
563 	return -EOPNOTSUPP;
564 }
565 
566 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
567 {
568 	return -EOPNOTSUPP;
569 }
570 
571 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
572 						     void __user *arg)
573 {
574 	return -EOPNOTSUPP;
575 }
576 
577 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
578 					       void __user *arg)
579 {
580 	return -EOPNOTSUPP;
581 }
582 
583 /* keysetup.c */
584 
585 static inline int fscrypt_prepare_new_inode(struct inode *dir,
586 					    struct inode *inode,
587 					    bool *encrypt_ret)
588 {
589 	if (IS_ENCRYPTED(dir))
590 		return -EOPNOTSUPP;
591 	return 0;
592 }
593 
594 static inline void fscrypt_put_encryption_info(struct inode *inode)
595 {
596 	return;
597 }
598 
599 static inline void fscrypt_free_inode(struct inode *inode)
600 {
601 }
602 
603 static inline int fscrypt_drop_inode(struct inode *inode)
604 {
605 	return 0;
606 }
607 
608  /* fname.c */
609 static inline int fscrypt_setup_filename(struct inode *dir,
610 					 const struct qstr *iname,
611 					 int lookup, struct fscrypt_name *fname)
612 {
613 	if (IS_ENCRYPTED(dir))
614 		return -EOPNOTSUPP;
615 
616 	memset(fname, 0, sizeof(*fname));
617 	fname->usr_fname = iname;
618 	fname->disk_name.name = (unsigned char *)iname->name;
619 	fname->disk_name.len = iname->len;
620 	return 0;
621 }
622 
623 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
624 {
625 	return;
626 }
627 
628 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
629 					     struct fscrypt_str *crypto_str)
630 {
631 	return -EOPNOTSUPP;
632 }
633 
634 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
635 {
636 	return;
637 }
638 
639 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
640 					    u32 hash, u32 minor_hash,
641 					    const struct fscrypt_str *iname,
642 					    struct fscrypt_str *oname)
643 {
644 	return -EOPNOTSUPP;
645 }
646 
647 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
648 				      const u8 *de_name, u32 de_name_len)
649 {
650 	/* Encryption support disabled; use standard comparison */
651 	if (de_name_len != fname->disk_name.len)
652 		return false;
653 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
654 }
655 
656 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
657 					const struct qstr *name)
658 {
659 	WARN_ON_ONCE(1);
660 	return 0;
661 }
662 
663 static inline int fscrypt_d_revalidate(struct dentry *dentry,
664 				       unsigned int flags)
665 {
666 	return 1;
667 }
668 
669 /* bio.c */
670 static inline bool fscrypt_decrypt_bio(struct bio *bio)
671 {
672 	return true;
673 }
674 
675 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
676 					sector_t pblk, unsigned int len)
677 {
678 	return -EOPNOTSUPP;
679 }
680 
681 /* hooks.c */
682 
683 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
684 {
685 	if (IS_ENCRYPTED(inode))
686 		return -EOPNOTSUPP;
687 	return 0;
688 }
689 
690 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
691 					 struct dentry *dentry)
692 {
693 	return -EOPNOTSUPP;
694 }
695 
696 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
697 					   struct dentry *old_dentry,
698 					   struct inode *new_dir,
699 					   struct dentry *new_dentry,
700 					   unsigned int flags)
701 {
702 	return -EOPNOTSUPP;
703 }
704 
705 static inline int __fscrypt_prepare_lookup(struct inode *dir,
706 					   struct dentry *dentry,
707 					   struct fscrypt_name *fname)
708 {
709 	return -EOPNOTSUPP;
710 }
711 
712 static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
713 						 struct dentry *dentry)
714 {
715 	return -EOPNOTSUPP;
716 }
717 
718 static inline int __fscrypt_prepare_readdir(struct inode *dir)
719 {
720 	return -EOPNOTSUPP;
721 }
722 
723 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
724 					    struct iattr *attr)
725 {
726 	return -EOPNOTSUPP;
727 }
728 
729 static inline int fscrypt_prepare_setflags(struct inode *inode,
730 					   unsigned int oldflags,
731 					   unsigned int flags)
732 {
733 	return 0;
734 }
735 
736 static inline int fscrypt_prepare_symlink(struct inode *dir,
737 					  const char *target,
738 					  unsigned int len,
739 					  unsigned int max_len,
740 					  struct fscrypt_str *disk_link)
741 {
742 	if (IS_ENCRYPTED(dir))
743 		return -EOPNOTSUPP;
744 	disk_link->name = (unsigned char *)target;
745 	disk_link->len = len + 1;
746 	if (disk_link->len > max_len)
747 		return -ENAMETOOLONG;
748 	return 0;
749 }
750 
751 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
752 					    const char *target,
753 					    unsigned int len,
754 					    struct fscrypt_str *disk_link)
755 {
756 	return -EOPNOTSUPP;
757 }
758 
759 static inline const char *fscrypt_get_symlink(struct inode *inode,
760 					      const void *caddr,
761 					      unsigned int max_size,
762 					      struct delayed_call *done)
763 {
764 	return ERR_PTR(-EOPNOTSUPP);
765 }
766 
767 static inline int fscrypt_symlink_getattr(const struct path *path,
768 					  struct kstat *stat)
769 {
770 	return -EOPNOTSUPP;
771 }
772 
773 static inline void fscrypt_set_ops(struct super_block *sb,
774 				   const struct fscrypt_operations *s_cop)
775 {
776 }
777 
778 #endif	/* !CONFIG_FS_ENCRYPTION */
779 
780 /* inline_crypt.c */
781 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
782 
783 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
784 
785 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
786 			       const struct inode *inode, u64 first_lblk,
787 			       gfp_t gfp_mask);
788 
789 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
790 				  const struct buffer_head *first_bh,
791 				  gfp_t gfp_mask);
792 
793 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
794 			   u64 next_lblk);
795 
796 bool fscrypt_mergeable_bio_bh(struct bio *bio,
797 			      const struct buffer_head *next_bh);
798 
799 bool fscrypt_dio_supported(struct inode *inode);
800 
801 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
802 
803 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
804 
805 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
806 {
807 	return false;
808 }
809 
810 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
811 					     const struct inode *inode,
812 					     u64 first_lblk, gfp_t gfp_mask) { }
813 
814 static inline void fscrypt_set_bio_crypt_ctx_bh(
815 					 struct bio *bio,
816 					 const struct buffer_head *first_bh,
817 					 gfp_t gfp_mask) { }
818 
819 static inline bool fscrypt_mergeable_bio(struct bio *bio,
820 					 const struct inode *inode,
821 					 u64 next_lblk)
822 {
823 	return true;
824 }
825 
826 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
827 					    const struct buffer_head *next_bh)
828 {
829 	return true;
830 }
831 
832 static inline bool fscrypt_dio_supported(struct inode *inode)
833 {
834 	return !fscrypt_needs_contents_encryption(inode);
835 }
836 
837 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
838 					  u64 nr_blocks)
839 {
840 	return nr_blocks;
841 }
842 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
843 
844 /**
845  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
846  *					encryption
847  * @inode: an inode. If encrypted, its key must be set up.
848  *
849  * Return: true if the inode requires file contents encryption and if the
850  *	   encryption should be done in the block layer via blk-crypto rather
851  *	   than in the filesystem layer.
852  */
853 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
854 {
855 	return fscrypt_needs_contents_encryption(inode) &&
856 	       __fscrypt_inode_uses_inline_crypto(inode);
857 }
858 
859 /**
860  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
861  *					  encryption
862  * @inode: an inode. If encrypted, its key must be set up.
863  *
864  * Return: true if the inode requires file contents encryption and if the
865  *	   encryption should be done in the filesystem layer rather than in the
866  *	   block layer via blk-crypto.
867  */
868 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
869 {
870 	return fscrypt_needs_contents_encryption(inode) &&
871 	       !__fscrypt_inode_uses_inline_crypto(inode);
872 }
873 
874 /**
875  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
876  * @inode: the inode to check
877  *
878  * Return: %true if the inode has had its encryption key set up, else %false.
879  *
880  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
881  * set up the key first.
882  */
883 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
884 {
885 	return fscrypt_get_info(inode) != NULL;
886 }
887 
888 /**
889  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
890  *			    directory
891  * @old_dentry: an existing dentry for the inode being linked
892  * @dir: the target directory
893  * @dentry: negative dentry for the target filename
894  *
895  * A new link can only be added to an encrypted directory if the directory's
896  * encryption key is available --- since otherwise we'd have no way to encrypt
897  * the filename.
898  *
899  * We also verify that the link will not violate the constraint that all files
900  * in an encrypted directory tree use the same encryption policy.
901  *
902  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
903  * -EXDEV if the link would result in an inconsistent encryption policy, or
904  * another -errno code.
905  */
906 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
907 				       struct inode *dir,
908 				       struct dentry *dentry)
909 {
910 	if (IS_ENCRYPTED(dir))
911 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
912 	return 0;
913 }
914 
915 /**
916  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
917  *			      directories
918  * @old_dir: source directory
919  * @old_dentry: dentry for source file
920  * @new_dir: target directory
921  * @new_dentry: dentry for target location (may be negative unless exchanging)
922  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
923  *
924  * Prepare for ->rename() where the source and/or target directories may be
925  * encrypted.  A new link can only be added to an encrypted directory if the
926  * directory's encryption key is available --- since otherwise we'd have no way
927  * to encrypt the filename.  A rename to an existing name, on the other hand,
928  * *is* cryptographically possible without the key.  However, we take the more
929  * conservative approach and just forbid all no-key renames.
930  *
931  * We also verify that the rename will not violate the constraint that all files
932  * in an encrypted directory tree use the same encryption policy.
933  *
934  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
935  * rename would cause inconsistent encryption policies, or another -errno code.
936  */
937 static inline int fscrypt_prepare_rename(struct inode *old_dir,
938 					 struct dentry *old_dentry,
939 					 struct inode *new_dir,
940 					 struct dentry *new_dentry,
941 					 unsigned int flags)
942 {
943 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
944 		return __fscrypt_prepare_rename(old_dir, old_dentry,
945 						new_dir, new_dentry, flags);
946 	return 0;
947 }
948 
949 /**
950  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
951  *			      directory
952  * @dir: directory being searched
953  * @dentry: filename being looked up
954  * @fname: (output) the name to use to search the on-disk directory
955  *
956  * Prepare for ->lookup() in a directory which may be encrypted by determining
957  * the name that will actually be used to search the directory on-disk.  If the
958  * directory's encryption policy is supported by this kernel and its encryption
959  * key is available, then the lookup is assumed to be by plaintext name;
960  * otherwise, it is assumed to be by no-key name.
961  *
962  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
963  * name.  In this case the filesystem must assign the dentry a dentry_operations
964  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
965  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
966  * directory's encryption key is later added.
967  *
968  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
969  * filename isn't a valid no-key name, so a negative dentry should be created;
970  * or another -errno code.
971  */
972 static inline int fscrypt_prepare_lookup(struct inode *dir,
973 					 struct dentry *dentry,
974 					 struct fscrypt_name *fname)
975 {
976 	if (IS_ENCRYPTED(dir))
977 		return __fscrypt_prepare_lookup(dir, dentry, fname);
978 
979 	memset(fname, 0, sizeof(*fname));
980 	fname->usr_fname = &dentry->d_name;
981 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
982 	fname->disk_name.len = dentry->d_name.len;
983 	return 0;
984 }
985 
986 /**
987  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
988  * @dir: the directory inode
989  *
990  * If the directory is encrypted and it doesn't already have its encryption key
991  * set up, try to set it up so that the filenames will be listed in plaintext
992  * form rather than in no-key form.
993  *
994  * Return: 0 on success; -errno on error.  Note that the encryption key being
995  *	   unavailable is not considered an error.  It is also not an error if
996  *	   the encryption policy is unsupported by this kernel; that is treated
997  *	   like the key being unavailable, so that files can still be deleted.
998  */
999 static inline int fscrypt_prepare_readdir(struct inode *dir)
1000 {
1001 	if (IS_ENCRYPTED(dir))
1002 		return __fscrypt_prepare_readdir(dir);
1003 	return 0;
1004 }
1005 
1006 /**
1007  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1008  *			       attributes
1009  * @dentry: dentry through which the inode is being changed
1010  * @attr: attributes to change
1011  *
1012  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
1013  * most attribute changes are allowed even without the encryption key.  However,
1014  * without the encryption key we do have to forbid truncates.  This is needed
1015  * because the size being truncated to may not be a multiple of the filesystem
1016  * block size, and in that case we'd have to decrypt the final block, zero the
1017  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
1018  * filesystem block boundary, but it's simpler to just forbid all truncates ---
1019  * and we already forbid all other contents modifications without the key.)
1020  *
1021  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1022  * if a problem occurred while setting up the encryption key.
1023  */
1024 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1025 					  struct iattr *attr)
1026 {
1027 	if (IS_ENCRYPTED(d_inode(dentry)))
1028 		return __fscrypt_prepare_setattr(dentry, attr);
1029 	return 0;
1030 }
1031 
1032 /**
1033  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1034  * @inode: symlink inode
1035  * @target: plaintext symlink target
1036  * @len: length of @target excluding null terminator
1037  * @disk_link: (in/out) the on-disk symlink target being prepared
1038  *
1039  * If the symlink target needs to be encrypted, then this function encrypts it
1040  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
1041  * previously to compute @disk_link->len.  If the filesystem did not allocate a
1042  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1043  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1044  *
1045  * Return: 0 on success, -errno on failure
1046  */
1047 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1048 					  const char *target,
1049 					  unsigned int len,
1050 					  struct fscrypt_str *disk_link)
1051 {
1052 	if (IS_ENCRYPTED(inode))
1053 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1054 	return 0;
1055 }
1056 
1057 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1058 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1059 {
1060 	struct page *page = *pagep;
1061 
1062 	if (fscrypt_is_bounce_page(page)) {
1063 		*pagep = fscrypt_pagecache_page(page);
1064 		fscrypt_free_bounce_page(page);
1065 	}
1066 }
1067 
1068 #endif	/* _LINUX_FSCRYPT_H */
1069