1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* 63 * If set, the fscrypt bounce page pool won't be allocated (unless another 64 * filesystem needs it). Set this if the filesystem always uses its own bounce 65 * pages for writes and therefore won't need the fscrypt bounce page pool. 66 */ 67 #define FS_CFLG_OWN_PAGES (1U << 1) 68 69 /* Crypto operations for filesystems */ 70 struct fscrypt_operations { 71 72 /* Set of optional flags; see above for allowed flags */ 73 unsigned int flags; 74 75 /* 76 * This field exists only for backwards compatibility reasons and should 77 * only be set by the filesystems that are setting it already. It 78 * contains the filesystem-specific key description prefix that is 79 * accepted for "logon" keys for v1 fscrypt policies. This 80 * functionality is deprecated in favor of the generic prefix 81 * "fscrypt:", which itself is deprecated in favor of the filesystem 82 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that 83 * are newly adding fscrypt support should not set this field. 84 */ 85 const char *legacy_key_prefix; 86 87 /* 88 * Get the fscrypt context of the given inode. 89 * 90 * @inode: the inode whose context to get 91 * @ctx: the buffer into which to get the context 92 * @len: length of the @ctx buffer in bytes 93 * 94 * Return: On success, returns the length of the context in bytes; this 95 * may be less than @len. On failure, returns -ENODATA if the 96 * inode doesn't have a context, -ERANGE if the context is 97 * longer than @len, or another -errno code. 98 */ 99 int (*get_context)(struct inode *inode, void *ctx, size_t len); 100 101 /* 102 * Set an fscrypt context on the given inode. 103 * 104 * @inode: the inode whose context to set. The inode won't already have 105 * an fscrypt context. 106 * @ctx: the context to set 107 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 108 * @fs_data: If called from fscrypt_set_context(), this will be the 109 * value the filesystem passed to fscrypt_set_context(). 110 * Otherwise (i.e. when called from 111 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 112 * 113 * i_rwsem will be held for write. 114 * 115 * Return: 0 on success, -errno on failure. 116 */ 117 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 118 void *fs_data); 119 120 /* 121 * Get the dummy fscrypt policy in use on the filesystem (if any). 122 * 123 * Filesystems only need to implement this function if they support the 124 * test_dummy_encryption mount option. 125 * 126 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 127 * mounted with test_dummy_encryption; otherwise NULL. 128 */ 129 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 130 131 /* 132 * Check whether a directory is empty. i_rwsem will be held for write. 133 */ 134 bool (*empty_dir)(struct inode *inode); 135 136 /* 137 * Check whether the filesystem's inode numbers and UUID are stable, 138 * meaning that they will never be changed even by offline operations 139 * such as filesystem shrinking and therefore can be used in the 140 * encryption without the possibility of files becoming unreadable. 141 * 142 * Filesystems only need to implement this function if they want to 143 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 144 * flags are designed to work around the limitations of UFS and eMMC 145 * inline crypto hardware, and they shouldn't be used in scenarios where 146 * such hardware isn't being used. 147 * 148 * Leaving this NULL is equivalent to always returning false. 149 */ 150 bool (*has_stable_inodes)(struct super_block *sb); 151 152 /* 153 * Get the number of bits that the filesystem uses to represent inode 154 * numbers and file logical block numbers. 155 * 156 * By default, both of these are assumed to be 64-bit. This function 157 * can be implemented to declare that either or both of these numbers is 158 * shorter, which may allow the use of the 159 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 160 * inline crypto hardware whose maximum DUN length is less than 64 bits 161 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 162 * to be implemented if support for one of these features is needed. 163 */ 164 void (*get_ino_and_lblk_bits)(struct super_block *sb, 165 int *ino_bits_ret, int *lblk_bits_ret); 166 167 /* 168 * Return an array of pointers to the block devices to which the 169 * filesystem may write encrypted file contents, NULL if the filesystem 170 * only has a single such block device, or an ERR_PTR() on error. 171 * 172 * On successful non-NULL return, *num_devs is set to the number of 173 * devices in the returned array. The caller must free the returned 174 * array using kfree(). 175 * 176 * If the filesystem can use multiple block devices (other than block 177 * devices that aren't used for encrypted file contents, such as 178 * external journal devices), and wants to support inline encryption, 179 * then it must implement this function. Otherwise it's not needed. 180 */ 181 struct block_device **(*get_devices)(struct super_block *sb, 182 unsigned int *num_devs); 183 }; 184 185 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 186 { 187 /* 188 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 189 * I.e., another task may publish ->i_crypt_info concurrently, executing 190 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 191 * ACQUIRE the memory the other task published. 192 */ 193 return smp_load_acquire(&inode->i_crypt_info); 194 } 195 196 /** 197 * fscrypt_needs_contents_encryption() - check whether an inode needs 198 * contents encryption 199 * @inode: the inode to check 200 * 201 * Return: %true iff the inode is an encrypted regular file and the kernel was 202 * built with fscrypt support. 203 * 204 * If you need to know whether the encrypt bit is set even when the kernel was 205 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 206 */ 207 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 208 { 209 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 210 } 211 212 /* 213 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 214 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 215 * cleared. Note that we don't have to support arbitrary moves of this flag 216 * because fscrypt doesn't allow no-key names to be the source or target of a 217 * rename(). 218 */ 219 static inline void fscrypt_handle_d_move(struct dentry *dentry) 220 { 221 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 222 } 223 224 /** 225 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 226 * @dentry: the dentry to check 227 * 228 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 229 * dentry that was created in an encrypted directory that hasn't had its 230 * encryption key added yet. Such dentries may be either positive or negative. 231 * 232 * When a filesystem is asked to create a new filename in an encrypted directory 233 * and the new filename's dentry is a no-key dentry, it must fail the operation 234 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 235 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 236 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 237 * 238 * This is necessary because creating a filename requires the directory's 239 * encryption key, but just checking for the key on the directory inode during 240 * the final filesystem operation doesn't guarantee that the key was available 241 * during the preceding dentry lookup. And the key must have already been 242 * available during the dentry lookup in order for it to have been checked 243 * whether the filename already exists in the directory and for the new file's 244 * dentry not to be invalidated due to it incorrectly having the no-key flag. 245 * 246 * Return: %true if the dentry is a no-key name 247 */ 248 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 249 { 250 return dentry->d_flags & DCACHE_NOKEY_NAME; 251 } 252 253 /* crypto.c */ 254 void fscrypt_enqueue_decrypt_work(struct work_struct *); 255 256 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 257 unsigned int len, 258 unsigned int offs, 259 gfp_t gfp_flags); 260 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 261 unsigned int len, unsigned int offs, 262 u64 lblk_num, gfp_t gfp_flags); 263 264 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 265 size_t offs); 266 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 267 unsigned int len, unsigned int offs, 268 u64 lblk_num); 269 270 static inline bool fscrypt_is_bounce_page(struct page *page) 271 { 272 return page->mapping == NULL; 273 } 274 275 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 276 { 277 return (struct page *)page_private(bounce_page); 278 } 279 280 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 281 { 282 return folio->mapping == NULL; 283 } 284 285 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 286 { 287 return bounce_folio->private; 288 } 289 290 void fscrypt_free_bounce_page(struct page *bounce_page); 291 292 /* policy.c */ 293 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 294 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 295 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 296 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 297 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 298 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 299 int fscrypt_set_context(struct inode *inode, void *fs_data); 300 301 struct fscrypt_dummy_policy { 302 const union fscrypt_policy *policy; 303 }; 304 305 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 306 struct fscrypt_dummy_policy *dummy_policy); 307 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 308 const struct fscrypt_dummy_policy *p2); 309 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 310 struct super_block *sb); 311 static inline bool 312 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 313 { 314 return dummy_policy->policy != NULL; 315 } 316 static inline void 317 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 318 { 319 kfree(dummy_policy->policy); 320 dummy_policy->policy = NULL; 321 } 322 323 /* keyring.c */ 324 void fscrypt_destroy_keyring(struct super_block *sb); 325 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 326 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 327 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 328 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 329 330 /* keysetup.c */ 331 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 332 bool *encrypt_ret); 333 void fscrypt_put_encryption_info(struct inode *inode); 334 void fscrypt_free_inode(struct inode *inode); 335 int fscrypt_drop_inode(struct inode *inode); 336 337 /* fname.c */ 338 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 339 u8 *out, unsigned int olen); 340 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 341 u32 max_len, u32 *encrypted_len_ret); 342 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 343 int lookup, struct fscrypt_name *fname); 344 345 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 346 { 347 kfree(fname->crypto_buf.name); 348 } 349 350 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 351 struct fscrypt_str *crypto_str); 352 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 353 int fscrypt_fname_disk_to_usr(const struct inode *inode, 354 u32 hash, u32 minor_hash, 355 const struct fscrypt_str *iname, 356 struct fscrypt_str *oname); 357 bool fscrypt_match_name(const struct fscrypt_name *fname, 358 const u8 *de_name, u32 de_name_len); 359 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 360 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 361 362 /* bio.c */ 363 bool fscrypt_decrypt_bio(struct bio *bio); 364 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 365 sector_t pblk, unsigned int len); 366 367 /* hooks.c */ 368 int fscrypt_file_open(struct inode *inode, struct file *filp); 369 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 370 struct dentry *dentry); 371 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 372 struct inode *new_dir, struct dentry *new_dentry, 373 unsigned int flags); 374 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 375 struct fscrypt_name *fname); 376 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); 377 int __fscrypt_prepare_readdir(struct inode *dir); 378 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 379 int fscrypt_prepare_setflags(struct inode *inode, 380 unsigned int oldflags, unsigned int flags); 381 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 382 unsigned int len, unsigned int max_len, 383 struct fscrypt_str *disk_link); 384 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 385 unsigned int len, struct fscrypt_str *disk_link); 386 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 387 unsigned int max_size, 388 struct delayed_call *done); 389 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 390 static inline void fscrypt_set_ops(struct super_block *sb, 391 const struct fscrypt_operations *s_cop) 392 { 393 sb->s_cop = s_cop; 394 } 395 #else /* !CONFIG_FS_ENCRYPTION */ 396 397 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 398 { 399 return NULL; 400 } 401 402 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 403 { 404 return false; 405 } 406 407 static inline void fscrypt_handle_d_move(struct dentry *dentry) 408 { 409 } 410 411 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 412 { 413 return false; 414 } 415 416 /* crypto.c */ 417 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 418 { 419 } 420 421 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 422 unsigned int len, 423 unsigned int offs, 424 gfp_t gfp_flags) 425 { 426 return ERR_PTR(-EOPNOTSUPP); 427 } 428 429 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 430 struct page *page, 431 unsigned int len, 432 unsigned int offs, u64 lblk_num, 433 gfp_t gfp_flags) 434 { 435 return -EOPNOTSUPP; 436 } 437 438 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 439 size_t len, size_t offs) 440 { 441 return -EOPNOTSUPP; 442 } 443 444 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 445 struct page *page, 446 unsigned int len, 447 unsigned int offs, u64 lblk_num) 448 { 449 return -EOPNOTSUPP; 450 } 451 452 static inline bool fscrypt_is_bounce_page(struct page *page) 453 { 454 return false; 455 } 456 457 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 458 { 459 WARN_ON_ONCE(1); 460 return ERR_PTR(-EINVAL); 461 } 462 463 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 464 { 465 return false; 466 } 467 468 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 469 { 470 WARN_ON_ONCE(1); 471 return ERR_PTR(-EINVAL); 472 } 473 474 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 475 { 476 } 477 478 /* policy.c */ 479 static inline int fscrypt_ioctl_set_policy(struct file *filp, 480 const void __user *arg) 481 { 482 return -EOPNOTSUPP; 483 } 484 485 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 486 { 487 return -EOPNOTSUPP; 488 } 489 490 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 491 void __user *arg) 492 { 493 return -EOPNOTSUPP; 494 } 495 496 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 497 { 498 return -EOPNOTSUPP; 499 } 500 501 static inline int fscrypt_has_permitted_context(struct inode *parent, 502 struct inode *child) 503 { 504 return 0; 505 } 506 507 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 508 { 509 return -EOPNOTSUPP; 510 } 511 512 struct fscrypt_dummy_policy { 513 }; 514 515 static inline int 516 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 517 struct fscrypt_dummy_policy *dummy_policy) 518 { 519 return -EINVAL; 520 } 521 522 static inline bool 523 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 524 const struct fscrypt_dummy_policy *p2) 525 { 526 return true; 527 } 528 529 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 530 char sep, 531 struct super_block *sb) 532 { 533 } 534 535 static inline bool 536 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 537 { 538 return false; 539 } 540 541 static inline void 542 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 543 { 544 } 545 546 /* keyring.c */ 547 static inline void fscrypt_destroy_keyring(struct super_block *sb) 548 { 549 } 550 551 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 552 { 553 return -EOPNOTSUPP; 554 } 555 556 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 557 { 558 return -EOPNOTSUPP; 559 } 560 561 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 562 void __user *arg) 563 { 564 return -EOPNOTSUPP; 565 } 566 567 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 568 void __user *arg) 569 { 570 return -EOPNOTSUPP; 571 } 572 573 /* keysetup.c */ 574 575 static inline int fscrypt_prepare_new_inode(struct inode *dir, 576 struct inode *inode, 577 bool *encrypt_ret) 578 { 579 if (IS_ENCRYPTED(dir)) 580 return -EOPNOTSUPP; 581 return 0; 582 } 583 584 static inline void fscrypt_put_encryption_info(struct inode *inode) 585 { 586 return; 587 } 588 589 static inline void fscrypt_free_inode(struct inode *inode) 590 { 591 } 592 593 static inline int fscrypt_drop_inode(struct inode *inode) 594 { 595 return 0; 596 } 597 598 /* fname.c */ 599 static inline int fscrypt_setup_filename(struct inode *dir, 600 const struct qstr *iname, 601 int lookup, struct fscrypt_name *fname) 602 { 603 if (IS_ENCRYPTED(dir)) 604 return -EOPNOTSUPP; 605 606 memset(fname, 0, sizeof(*fname)); 607 fname->usr_fname = iname; 608 fname->disk_name.name = (unsigned char *)iname->name; 609 fname->disk_name.len = iname->len; 610 return 0; 611 } 612 613 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 614 { 615 return; 616 } 617 618 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 619 struct fscrypt_str *crypto_str) 620 { 621 return -EOPNOTSUPP; 622 } 623 624 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 625 { 626 return; 627 } 628 629 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 630 u32 hash, u32 minor_hash, 631 const struct fscrypt_str *iname, 632 struct fscrypt_str *oname) 633 { 634 return -EOPNOTSUPP; 635 } 636 637 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 638 const u8 *de_name, u32 de_name_len) 639 { 640 /* Encryption support disabled; use standard comparison */ 641 if (de_name_len != fname->disk_name.len) 642 return false; 643 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 644 } 645 646 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 647 const struct qstr *name) 648 { 649 WARN_ON_ONCE(1); 650 return 0; 651 } 652 653 static inline int fscrypt_d_revalidate(struct dentry *dentry, 654 unsigned int flags) 655 { 656 return 1; 657 } 658 659 /* bio.c */ 660 static inline bool fscrypt_decrypt_bio(struct bio *bio) 661 { 662 return true; 663 } 664 665 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 666 sector_t pblk, unsigned int len) 667 { 668 return -EOPNOTSUPP; 669 } 670 671 /* hooks.c */ 672 673 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 674 { 675 if (IS_ENCRYPTED(inode)) 676 return -EOPNOTSUPP; 677 return 0; 678 } 679 680 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 681 struct dentry *dentry) 682 { 683 return -EOPNOTSUPP; 684 } 685 686 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 687 struct dentry *old_dentry, 688 struct inode *new_dir, 689 struct dentry *new_dentry, 690 unsigned int flags) 691 { 692 return -EOPNOTSUPP; 693 } 694 695 static inline int __fscrypt_prepare_lookup(struct inode *dir, 696 struct dentry *dentry, 697 struct fscrypt_name *fname) 698 { 699 return -EOPNOTSUPP; 700 } 701 702 static inline int fscrypt_prepare_lookup_partial(struct inode *dir, 703 struct dentry *dentry) 704 { 705 return -EOPNOTSUPP; 706 } 707 708 static inline int __fscrypt_prepare_readdir(struct inode *dir) 709 { 710 return -EOPNOTSUPP; 711 } 712 713 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 714 struct iattr *attr) 715 { 716 return -EOPNOTSUPP; 717 } 718 719 static inline int fscrypt_prepare_setflags(struct inode *inode, 720 unsigned int oldflags, 721 unsigned int flags) 722 { 723 return 0; 724 } 725 726 static inline int fscrypt_prepare_symlink(struct inode *dir, 727 const char *target, 728 unsigned int len, 729 unsigned int max_len, 730 struct fscrypt_str *disk_link) 731 { 732 if (IS_ENCRYPTED(dir)) 733 return -EOPNOTSUPP; 734 disk_link->name = (unsigned char *)target; 735 disk_link->len = len + 1; 736 if (disk_link->len > max_len) 737 return -ENAMETOOLONG; 738 return 0; 739 } 740 741 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 742 const char *target, 743 unsigned int len, 744 struct fscrypt_str *disk_link) 745 { 746 return -EOPNOTSUPP; 747 } 748 749 static inline const char *fscrypt_get_symlink(struct inode *inode, 750 const void *caddr, 751 unsigned int max_size, 752 struct delayed_call *done) 753 { 754 return ERR_PTR(-EOPNOTSUPP); 755 } 756 757 static inline int fscrypt_symlink_getattr(const struct path *path, 758 struct kstat *stat) 759 { 760 return -EOPNOTSUPP; 761 } 762 763 static inline void fscrypt_set_ops(struct super_block *sb, 764 const struct fscrypt_operations *s_cop) 765 { 766 } 767 768 #endif /* !CONFIG_FS_ENCRYPTION */ 769 770 /* inline_crypt.c */ 771 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 772 773 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 774 775 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 776 const struct inode *inode, u64 first_lblk, 777 gfp_t gfp_mask); 778 779 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 780 const struct buffer_head *first_bh, 781 gfp_t gfp_mask); 782 783 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 784 u64 next_lblk); 785 786 bool fscrypt_mergeable_bio_bh(struct bio *bio, 787 const struct buffer_head *next_bh); 788 789 bool fscrypt_dio_supported(struct inode *inode); 790 791 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 792 793 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 794 795 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 796 { 797 return false; 798 } 799 800 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 801 const struct inode *inode, 802 u64 first_lblk, gfp_t gfp_mask) { } 803 804 static inline void fscrypt_set_bio_crypt_ctx_bh( 805 struct bio *bio, 806 const struct buffer_head *first_bh, 807 gfp_t gfp_mask) { } 808 809 static inline bool fscrypt_mergeable_bio(struct bio *bio, 810 const struct inode *inode, 811 u64 next_lblk) 812 { 813 return true; 814 } 815 816 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 817 const struct buffer_head *next_bh) 818 { 819 return true; 820 } 821 822 static inline bool fscrypt_dio_supported(struct inode *inode) 823 { 824 return !fscrypt_needs_contents_encryption(inode); 825 } 826 827 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 828 u64 nr_blocks) 829 { 830 return nr_blocks; 831 } 832 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 833 834 /** 835 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 836 * encryption 837 * @inode: an inode. If encrypted, its key must be set up. 838 * 839 * Return: true if the inode requires file contents encryption and if the 840 * encryption should be done in the block layer via blk-crypto rather 841 * than in the filesystem layer. 842 */ 843 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 844 { 845 return fscrypt_needs_contents_encryption(inode) && 846 __fscrypt_inode_uses_inline_crypto(inode); 847 } 848 849 /** 850 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 851 * encryption 852 * @inode: an inode. If encrypted, its key must be set up. 853 * 854 * Return: true if the inode requires file contents encryption and if the 855 * encryption should be done in the filesystem layer rather than in the 856 * block layer via blk-crypto. 857 */ 858 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 859 { 860 return fscrypt_needs_contents_encryption(inode) && 861 !__fscrypt_inode_uses_inline_crypto(inode); 862 } 863 864 /** 865 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 866 * @inode: the inode to check 867 * 868 * Return: %true if the inode has had its encryption key set up, else %false. 869 * 870 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 871 * set up the key first. 872 */ 873 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 874 { 875 return fscrypt_get_info(inode) != NULL; 876 } 877 878 /** 879 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 880 * directory 881 * @old_dentry: an existing dentry for the inode being linked 882 * @dir: the target directory 883 * @dentry: negative dentry for the target filename 884 * 885 * A new link can only be added to an encrypted directory if the directory's 886 * encryption key is available --- since otherwise we'd have no way to encrypt 887 * the filename. 888 * 889 * We also verify that the link will not violate the constraint that all files 890 * in an encrypted directory tree use the same encryption policy. 891 * 892 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 893 * -EXDEV if the link would result in an inconsistent encryption policy, or 894 * another -errno code. 895 */ 896 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 897 struct inode *dir, 898 struct dentry *dentry) 899 { 900 if (IS_ENCRYPTED(dir)) 901 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 902 return 0; 903 } 904 905 /** 906 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 907 * directories 908 * @old_dir: source directory 909 * @old_dentry: dentry for source file 910 * @new_dir: target directory 911 * @new_dentry: dentry for target location (may be negative unless exchanging) 912 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 913 * 914 * Prepare for ->rename() where the source and/or target directories may be 915 * encrypted. A new link can only be added to an encrypted directory if the 916 * directory's encryption key is available --- since otherwise we'd have no way 917 * to encrypt the filename. A rename to an existing name, on the other hand, 918 * *is* cryptographically possible without the key. However, we take the more 919 * conservative approach and just forbid all no-key renames. 920 * 921 * We also verify that the rename will not violate the constraint that all files 922 * in an encrypted directory tree use the same encryption policy. 923 * 924 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 925 * rename would cause inconsistent encryption policies, or another -errno code. 926 */ 927 static inline int fscrypt_prepare_rename(struct inode *old_dir, 928 struct dentry *old_dentry, 929 struct inode *new_dir, 930 struct dentry *new_dentry, 931 unsigned int flags) 932 { 933 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 934 return __fscrypt_prepare_rename(old_dir, old_dentry, 935 new_dir, new_dentry, flags); 936 return 0; 937 } 938 939 /** 940 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 941 * directory 942 * @dir: directory being searched 943 * @dentry: filename being looked up 944 * @fname: (output) the name to use to search the on-disk directory 945 * 946 * Prepare for ->lookup() in a directory which may be encrypted by determining 947 * the name that will actually be used to search the directory on-disk. If the 948 * directory's encryption policy is supported by this kernel and its encryption 949 * key is available, then the lookup is assumed to be by plaintext name; 950 * otherwise, it is assumed to be by no-key name. 951 * 952 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 953 * name. In this case the filesystem must assign the dentry a dentry_operations 954 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 955 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 956 * directory's encryption key is later added. 957 * 958 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 959 * filename isn't a valid no-key name, so a negative dentry should be created; 960 * or another -errno code. 961 */ 962 static inline int fscrypt_prepare_lookup(struct inode *dir, 963 struct dentry *dentry, 964 struct fscrypt_name *fname) 965 { 966 if (IS_ENCRYPTED(dir)) 967 return __fscrypt_prepare_lookup(dir, dentry, fname); 968 969 memset(fname, 0, sizeof(*fname)); 970 fname->usr_fname = &dentry->d_name; 971 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 972 fname->disk_name.len = dentry->d_name.len; 973 return 0; 974 } 975 976 /** 977 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 978 * @dir: the directory inode 979 * 980 * If the directory is encrypted and it doesn't already have its encryption key 981 * set up, try to set it up so that the filenames will be listed in plaintext 982 * form rather than in no-key form. 983 * 984 * Return: 0 on success; -errno on error. Note that the encryption key being 985 * unavailable is not considered an error. It is also not an error if 986 * the encryption policy is unsupported by this kernel; that is treated 987 * like the key being unavailable, so that files can still be deleted. 988 */ 989 static inline int fscrypt_prepare_readdir(struct inode *dir) 990 { 991 if (IS_ENCRYPTED(dir)) 992 return __fscrypt_prepare_readdir(dir); 993 return 0; 994 } 995 996 /** 997 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 998 * attributes 999 * @dentry: dentry through which the inode is being changed 1000 * @attr: attributes to change 1001 * 1002 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 1003 * most attribute changes are allowed even without the encryption key. However, 1004 * without the encryption key we do have to forbid truncates. This is needed 1005 * because the size being truncated to may not be a multiple of the filesystem 1006 * block size, and in that case we'd have to decrypt the final block, zero the 1007 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 1008 * filesystem block boundary, but it's simpler to just forbid all truncates --- 1009 * and we already forbid all other contents modifications without the key.) 1010 * 1011 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 1012 * if a problem occurred while setting up the encryption key. 1013 */ 1014 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 1015 struct iattr *attr) 1016 { 1017 if (IS_ENCRYPTED(d_inode(dentry))) 1018 return __fscrypt_prepare_setattr(dentry, attr); 1019 return 0; 1020 } 1021 1022 /** 1023 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1024 * @inode: symlink inode 1025 * @target: plaintext symlink target 1026 * @len: length of @target excluding null terminator 1027 * @disk_link: (in/out) the on-disk symlink target being prepared 1028 * 1029 * If the symlink target needs to be encrypted, then this function encrypts it 1030 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1031 * previously to compute @disk_link->len. If the filesystem did not allocate a 1032 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1033 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1034 * 1035 * Return: 0 on success, -errno on failure 1036 */ 1037 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1038 const char *target, 1039 unsigned int len, 1040 struct fscrypt_str *disk_link) 1041 { 1042 if (IS_ENCRYPTED(inode)) 1043 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1044 return 0; 1045 } 1046 1047 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1048 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1049 { 1050 struct page *page = *pagep; 1051 1052 if (fscrypt_is_bounce_page(page)) { 1053 *pagep = fscrypt_pagecache_page(page); 1054 fscrypt_free_bounce_page(page); 1055 } 1056 } 1057 1058 #endif /* _LINUX_FSCRYPT_H */ 1059