1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* Crypto operations for filesystems */ 63 struct fscrypt_operations { 64 65 /* 66 * If set, then fs/crypto/ will allocate a global bounce page pool the 67 * first time an encryption key is set up for a file. The bounce page 68 * pool is required by the following functions: 69 * 70 * - fscrypt_encrypt_pagecache_blocks() 71 * - fscrypt_zeroout_range() for files not using inline crypto 72 * 73 * If the filesystem doesn't use those, it doesn't need to set this. 74 */ 75 unsigned int needs_bounce_pages : 1; 76 77 /* 78 * This field exists only for backwards compatibility reasons and should 79 * only be set by the filesystems that are setting it already. It 80 * contains the filesystem-specific key description prefix that is 81 * accepted for "logon" keys for v1 fscrypt policies. This 82 * functionality is deprecated in favor of the generic prefix 83 * "fscrypt:", which itself is deprecated in favor of the filesystem 84 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that 85 * are newly adding fscrypt support should not set this field. 86 */ 87 const char *legacy_key_prefix; 88 89 /* 90 * Get the fscrypt context of the given inode. 91 * 92 * @inode: the inode whose context to get 93 * @ctx: the buffer into which to get the context 94 * @len: length of the @ctx buffer in bytes 95 * 96 * Return: On success, returns the length of the context in bytes; this 97 * may be less than @len. On failure, returns -ENODATA if the 98 * inode doesn't have a context, -ERANGE if the context is 99 * longer than @len, or another -errno code. 100 */ 101 int (*get_context)(struct inode *inode, void *ctx, size_t len); 102 103 /* 104 * Set an fscrypt context on the given inode. 105 * 106 * @inode: the inode whose context to set. The inode won't already have 107 * an fscrypt context. 108 * @ctx: the context to set 109 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 110 * @fs_data: If called from fscrypt_set_context(), this will be the 111 * value the filesystem passed to fscrypt_set_context(). 112 * Otherwise (i.e. when called from 113 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 114 * 115 * i_rwsem will be held for write. 116 * 117 * Return: 0 on success, -errno on failure. 118 */ 119 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 120 void *fs_data); 121 122 /* 123 * Get the dummy fscrypt policy in use on the filesystem (if any). 124 * 125 * Filesystems only need to implement this function if they support the 126 * test_dummy_encryption mount option. 127 * 128 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 129 * mounted with test_dummy_encryption; otherwise NULL. 130 */ 131 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 132 133 /* 134 * Check whether a directory is empty. i_rwsem will be held for write. 135 */ 136 bool (*empty_dir)(struct inode *inode); 137 138 /* 139 * Check whether the filesystem's inode numbers and UUID are stable, 140 * meaning that they will never be changed even by offline operations 141 * such as filesystem shrinking and therefore can be used in the 142 * encryption without the possibility of files becoming unreadable. 143 * 144 * Filesystems only need to implement this function if they want to 145 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 146 * flags are designed to work around the limitations of UFS and eMMC 147 * inline crypto hardware, and they shouldn't be used in scenarios where 148 * such hardware isn't being used. 149 * 150 * Leaving this NULL is equivalent to always returning false. 151 */ 152 bool (*has_stable_inodes)(struct super_block *sb); 153 154 /* 155 * Get the number of bits that the filesystem uses to represent inode 156 * numbers and file logical block numbers. 157 * 158 * By default, both of these are assumed to be 64-bit. This function 159 * can be implemented to declare that either or both of these numbers is 160 * shorter, which may allow the use of the 161 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 162 * inline crypto hardware whose maximum DUN length is less than 64 bits 163 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 164 * to be implemented if support for one of these features is needed. 165 */ 166 void (*get_ino_and_lblk_bits)(struct super_block *sb, 167 int *ino_bits_ret, int *lblk_bits_ret); 168 169 /* 170 * Return an array of pointers to the block devices to which the 171 * filesystem may write encrypted file contents, NULL if the filesystem 172 * only has a single such block device, or an ERR_PTR() on error. 173 * 174 * On successful non-NULL return, *num_devs is set to the number of 175 * devices in the returned array. The caller must free the returned 176 * array using kfree(). 177 * 178 * If the filesystem can use multiple block devices (other than block 179 * devices that aren't used for encrypted file contents, such as 180 * external journal devices), and wants to support inline encryption, 181 * then it must implement this function. Otherwise it's not needed. 182 */ 183 struct block_device **(*get_devices)(struct super_block *sb, 184 unsigned int *num_devs); 185 }; 186 187 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 188 { 189 /* 190 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 191 * I.e., another task may publish ->i_crypt_info concurrently, executing 192 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 193 * ACQUIRE the memory the other task published. 194 */ 195 return smp_load_acquire(&inode->i_crypt_info); 196 } 197 198 /** 199 * fscrypt_needs_contents_encryption() - check whether an inode needs 200 * contents encryption 201 * @inode: the inode to check 202 * 203 * Return: %true iff the inode is an encrypted regular file and the kernel was 204 * built with fscrypt support. 205 * 206 * If you need to know whether the encrypt bit is set even when the kernel was 207 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 208 */ 209 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 210 { 211 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 212 } 213 214 /* 215 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 216 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 217 * cleared. Note that we don't have to support arbitrary moves of this flag 218 * because fscrypt doesn't allow no-key names to be the source or target of a 219 * rename(). 220 */ 221 static inline void fscrypt_handle_d_move(struct dentry *dentry) 222 { 223 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 224 } 225 226 /** 227 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 228 * @dentry: the dentry to check 229 * 230 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 231 * dentry that was created in an encrypted directory that hasn't had its 232 * encryption key added yet. Such dentries may be either positive or negative. 233 * 234 * When a filesystem is asked to create a new filename in an encrypted directory 235 * and the new filename's dentry is a no-key dentry, it must fail the operation 236 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 237 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 238 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 239 * 240 * This is necessary because creating a filename requires the directory's 241 * encryption key, but just checking for the key on the directory inode during 242 * the final filesystem operation doesn't guarantee that the key was available 243 * during the preceding dentry lookup. And the key must have already been 244 * available during the dentry lookup in order for it to have been checked 245 * whether the filename already exists in the directory and for the new file's 246 * dentry not to be invalidated due to it incorrectly having the no-key flag. 247 * 248 * Return: %true if the dentry is a no-key name 249 */ 250 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 251 { 252 return dentry->d_flags & DCACHE_NOKEY_NAME; 253 } 254 255 /* crypto.c */ 256 void fscrypt_enqueue_decrypt_work(struct work_struct *); 257 258 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 259 unsigned int len, 260 unsigned int offs, 261 gfp_t gfp_flags); 262 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 263 unsigned int len, unsigned int offs, 264 u64 lblk_num, gfp_t gfp_flags); 265 266 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 267 size_t offs); 268 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 269 unsigned int len, unsigned int offs, 270 u64 lblk_num); 271 272 static inline bool fscrypt_is_bounce_page(struct page *page) 273 { 274 return page->mapping == NULL; 275 } 276 277 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 278 { 279 return (struct page *)page_private(bounce_page); 280 } 281 282 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 283 { 284 return folio->mapping == NULL; 285 } 286 287 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 288 { 289 return bounce_folio->private; 290 } 291 292 void fscrypt_free_bounce_page(struct page *bounce_page); 293 294 /* policy.c */ 295 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 296 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 297 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 298 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 299 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 300 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 301 int fscrypt_set_context(struct inode *inode, void *fs_data); 302 303 struct fscrypt_dummy_policy { 304 const union fscrypt_policy *policy; 305 }; 306 307 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 308 struct fscrypt_dummy_policy *dummy_policy); 309 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 310 const struct fscrypt_dummy_policy *p2); 311 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 312 struct super_block *sb); 313 static inline bool 314 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 315 { 316 return dummy_policy->policy != NULL; 317 } 318 static inline void 319 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 320 { 321 kfree(dummy_policy->policy); 322 dummy_policy->policy = NULL; 323 } 324 325 /* keyring.c */ 326 void fscrypt_destroy_keyring(struct super_block *sb); 327 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 328 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 329 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 330 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 331 332 /* keysetup.c */ 333 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 334 bool *encrypt_ret); 335 void fscrypt_put_encryption_info(struct inode *inode); 336 void fscrypt_free_inode(struct inode *inode); 337 int fscrypt_drop_inode(struct inode *inode); 338 339 /* fname.c */ 340 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 341 u8 *out, unsigned int olen); 342 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 343 u32 max_len, u32 *encrypted_len_ret); 344 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 345 int lookup, struct fscrypt_name *fname); 346 347 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 348 { 349 kfree(fname->crypto_buf.name); 350 } 351 352 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 353 struct fscrypt_str *crypto_str); 354 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 355 int fscrypt_fname_disk_to_usr(const struct inode *inode, 356 u32 hash, u32 minor_hash, 357 const struct fscrypt_str *iname, 358 struct fscrypt_str *oname); 359 bool fscrypt_match_name(const struct fscrypt_name *fname, 360 const u8 *de_name, u32 de_name_len); 361 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 362 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 363 364 /* bio.c */ 365 bool fscrypt_decrypt_bio(struct bio *bio); 366 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 367 sector_t pblk, unsigned int len); 368 369 /* hooks.c */ 370 int fscrypt_file_open(struct inode *inode, struct file *filp); 371 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 372 struct dentry *dentry); 373 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 374 struct inode *new_dir, struct dentry *new_dentry, 375 unsigned int flags); 376 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 377 struct fscrypt_name *fname); 378 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); 379 int __fscrypt_prepare_readdir(struct inode *dir); 380 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 381 int fscrypt_prepare_setflags(struct inode *inode, 382 unsigned int oldflags, unsigned int flags); 383 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 384 unsigned int len, unsigned int max_len, 385 struct fscrypt_str *disk_link); 386 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 387 unsigned int len, struct fscrypt_str *disk_link); 388 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 389 unsigned int max_size, 390 struct delayed_call *done); 391 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 392 static inline void fscrypt_set_ops(struct super_block *sb, 393 const struct fscrypt_operations *s_cop) 394 { 395 sb->s_cop = s_cop; 396 } 397 #else /* !CONFIG_FS_ENCRYPTION */ 398 399 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 400 { 401 return NULL; 402 } 403 404 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 405 { 406 return false; 407 } 408 409 static inline void fscrypt_handle_d_move(struct dentry *dentry) 410 { 411 } 412 413 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 414 { 415 return false; 416 } 417 418 /* crypto.c */ 419 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 420 { 421 } 422 423 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 424 unsigned int len, 425 unsigned int offs, 426 gfp_t gfp_flags) 427 { 428 return ERR_PTR(-EOPNOTSUPP); 429 } 430 431 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 432 struct page *page, 433 unsigned int len, 434 unsigned int offs, u64 lblk_num, 435 gfp_t gfp_flags) 436 { 437 return -EOPNOTSUPP; 438 } 439 440 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 441 size_t len, size_t offs) 442 { 443 return -EOPNOTSUPP; 444 } 445 446 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 447 struct page *page, 448 unsigned int len, 449 unsigned int offs, u64 lblk_num) 450 { 451 return -EOPNOTSUPP; 452 } 453 454 static inline bool fscrypt_is_bounce_page(struct page *page) 455 { 456 return false; 457 } 458 459 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 460 { 461 WARN_ON_ONCE(1); 462 return ERR_PTR(-EINVAL); 463 } 464 465 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 466 { 467 return false; 468 } 469 470 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 471 { 472 WARN_ON_ONCE(1); 473 return ERR_PTR(-EINVAL); 474 } 475 476 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 477 { 478 } 479 480 /* policy.c */ 481 static inline int fscrypt_ioctl_set_policy(struct file *filp, 482 const void __user *arg) 483 { 484 return -EOPNOTSUPP; 485 } 486 487 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 488 { 489 return -EOPNOTSUPP; 490 } 491 492 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 493 void __user *arg) 494 { 495 return -EOPNOTSUPP; 496 } 497 498 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 499 { 500 return -EOPNOTSUPP; 501 } 502 503 static inline int fscrypt_has_permitted_context(struct inode *parent, 504 struct inode *child) 505 { 506 return 0; 507 } 508 509 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 510 { 511 return -EOPNOTSUPP; 512 } 513 514 struct fscrypt_dummy_policy { 515 }; 516 517 static inline int 518 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 519 struct fscrypt_dummy_policy *dummy_policy) 520 { 521 return -EINVAL; 522 } 523 524 static inline bool 525 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 526 const struct fscrypt_dummy_policy *p2) 527 { 528 return true; 529 } 530 531 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 532 char sep, 533 struct super_block *sb) 534 { 535 } 536 537 static inline bool 538 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 539 { 540 return false; 541 } 542 543 static inline void 544 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 545 { 546 } 547 548 /* keyring.c */ 549 static inline void fscrypt_destroy_keyring(struct super_block *sb) 550 { 551 } 552 553 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 554 { 555 return -EOPNOTSUPP; 556 } 557 558 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 559 { 560 return -EOPNOTSUPP; 561 } 562 563 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 564 void __user *arg) 565 { 566 return -EOPNOTSUPP; 567 } 568 569 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 570 void __user *arg) 571 { 572 return -EOPNOTSUPP; 573 } 574 575 /* keysetup.c */ 576 577 static inline int fscrypt_prepare_new_inode(struct inode *dir, 578 struct inode *inode, 579 bool *encrypt_ret) 580 { 581 if (IS_ENCRYPTED(dir)) 582 return -EOPNOTSUPP; 583 return 0; 584 } 585 586 static inline void fscrypt_put_encryption_info(struct inode *inode) 587 { 588 return; 589 } 590 591 static inline void fscrypt_free_inode(struct inode *inode) 592 { 593 } 594 595 static inline int fscrypt_drop_inode(struct inode *inode) 596 { 597 return 0; 598 } 599 600 /* fname.c */ 601 static inline int fscrypt_setup_filename(struct inode *dir, 602 const struct qstr *iname, 603 int lookup, struct fscrypt_name *fname) 604 { 605 if (IS_ENCRYPTED(dir)) 606 return -EOPNOTSUPP; 607 608 memset(fname, 0, sizeof(*fname)); 609 fname->usr_fname = iname; 610 fname->disk_name.name = (unsigned char *)iname->name; 611 fname->disk_name.len = iname->len; 612 return 0; 613 } 614 615 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 616 { 617 return; 618 } 619 620 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 621 struct fscrypt_str *crypto_str) 622 { 623 return -EOPNOTSUPP; 624 } 625 626 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 627 { 628 return; 629 } 630 631 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 632 u32 hash, u32 minor_hash, 633 const struct fscrypt_str *iname, 634 struct fscrypt_str *oname) 635 { 636 return -EOPNOTSUPP; 637 } 638 639 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 640 const u8 *de_name, u32 de_name_len) 641 { 642 /* Encryption support disabled; use standard comparison */ 643 if (de_name_len != fname->disk_name.len) 644 return false; 645 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 646 } 647 648 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 649 const struct qstr *name) 650 { 651 WARN_ON_ONCE(1); 652 return 0; 653 } 654 655 static inline int fscrypt_d_revalidate(struct dentry *dentry, 656 unsigned int flags) 657 { 658 return 1; 659 } 660 661 /* bio.c */ 662 static inline bool fscrypt_decrypt_bio(struct bio *bio) 663 { 664 return true; 665 } 666 667 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 668 sector_t pblk, unsigned int len) 669 { 670 return -EOPNOTSUPP; 671 } 672 673 /* hooks.c */ 674 675 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 676 { 677 if (IS_ENCRYPTED(inode)) 678 return -EOPNOTSUPP; 679 return 0; 680 } 681 682 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 683 struct dentry *dentry) 684 { 685 return -EOPNOTSUPP; 686 } 687 688 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 689 struct dentry *old_dentry, 690 struct inode *new_dir, 691 struct dentry *new_dentry, 692 unsigned int flags) 693 { 694 return -EOPNOTSUPP; 695 } 696 697 static inline int __fscrypt_prepare_lookup(struct inode *dir, 698 struct dentry *dentry, 699 struct fscrypt_name *fname) 700 { 701 return -EOPNOTSUPP; 702 } 703 704 static inline int fscrypt_prepare_lookup_partial(struct inode *dir, 705 struct dentry *dentry) 706 { 707 return -EOPNOTSUPP; 708 } 709 710 static inline int __fscrypt_prepare_readdir(struct inode *dir) 711 { 712 return -EOPNOTSUPP; 713 } 714 715 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 716 struct iattr *attr) 717 { 718 return -EOPNOTSUPP; 719 } 720 721 static inline int fscrypt_prepare_setflags(struct inode *inode, 722 unsigned int oldflags, 723 unsigned int flags) 724 { 725 return 0; 726 } 727 728 static inline int fscrypt_prepare_symlink(struct inode *dir, 729 const char *target, 730 unsigned int len, 731 unsigned int max_len, 732 struct fscrypt_str *disk_link) 733 { 734 if (IS_ENCRYPTED(dir)) 735 return -EOPNOTSUPP; 736 disk_link->name = (unsigned char *)target; 737 disk_link->len = len + 1; 738 if (disk_link->len > max_len) 739 return -ENAMETOOLONG; 740 return 0; 741 } 742 743 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 744 const char *target, 745 unsigned int len, 746 struct fscrypt_str *disk_link) 747 { 748 return -EOPNOTSUPP; 749 } 750 751 static inline const char *fscrypt_get_symlink(struct inode *inode, 752 const void *caddr, 753 unsigned int max_size, 754 struct delayed_call *done) 755 { 756 return ERR_PTR(-EOPNOTSUPP); 757 } 758 759 static inline int fscrypt_symlink_getattr(const struct path *path, 760 struct kstat *stat) 761 { 762 return -EOPNOTSUPP; 763 } 764 765 static inline void fscrypt_set_ops(struct super_block *sb, 766 const struct fscrypt_operations *s_cop) 767 { 768 } 769 770 #endif /* !CONFIG_FS_ENCRYPTION */ 771 772 /* inline_crypt.c */ 773 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 774 775 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 776 777 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 778 const struct inode *inode, u64 first_lblk, 779 gfp_t gfp_mask); 780 781 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 782 const struct buffer_head *first_bh, 783 gfp_t gfp_mask); 784 785 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 786 u64 next_lblk); 787 788 bool fscrypt_mergeable_bio_bh(struct bio *bio, 789 const struct buffer_head *next_bh); 790 791 bool fscrypt_dio_supported(struct inode *inode); 792 793 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 794 795 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 796 797 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 798 { 799 return false; 800 } 801 802 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 803 const struct inode *inode, 804 u64 first_lblk, gfp_t gfp_mask) { } 805 806 static inline void fscrypt_set_bio_crypt_ctx_bh( 807 struct bio *bio, 808 const struct buffer_head *first_bh, 809 gfp_t gfp_mask) { } 810 811 static inline bool fscrypt_mergeable_bio(struct bio *bio, 812 const struct inode *inode, 813 u64 next_lblk) 814 { 815 return true; 816 } 817 818 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 819 const struct buffer_head *next_bh) 820 { 821 return true; 822 } 823 824 static inline bool fscrypt_dio_supported(struct inode *inode) 825 { 826 return !fscrypt_needs_contents_encryption(inode); 827 } 828 829 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 830 u64 nr_blocks) 831 { 832 return nr_blocks; 833 } 834 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 835 836 /** 837 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 838 * encryption 839 * @inode: an inode. If encrypted, its key must be set up. 840 * 841 * Return: true if the inode requires file contents encryption and if the 842 * encryption should be done in the block layer via blk-crypto rather 843 * than in the filesystem layer. 844 */ 845 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 846 { 847 return fscrypt_needs_contents_encryption(inode) && 848 __fscrypt_inode_uses_inline_crypto(inode); 849 } 850 851 /** 852 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 853 * encryption 854 * @inode: an inode. If encrypted, its key must be set up. 855 * 856 * Return: true if the inode requires file contents encryption and if the 857 * encryption should be done in the filesystem layer rather than in the 858 * block layer via blk-crypto. 859 */ 860 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 861 { 862 return fscrypt_needs_contents_encryption(inode) && 863 !__fscrypt_inode_uses_inline_crypto(inode); 864 } 865 866 /** 867 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 868 * @inode: the inode to check 869 * 870 * Return: %true if the inode has had its encryption key set up, else %false. 871 * 872 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 873 * set up the key first. 874 */ 875 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 876 { 877 return fscrypt_get_info(inode) != NULL; 878 } 879 880 /** 881 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 882 * directory 883 * @old_dentry: an existing dentry for the inode being linked 884 * @dir: the target directory 885 * @dentry: negative dentry for the target filename 886 * 887 * A new link can only be added to an encrypted directory if the directory's 888 * encryption key is available --- since otherwise we'd have no way to encrypt 889 * the filename. 890 * 891 * We also verify that the link will not violate the constraint that all files 892 * in an encrypted directory tree use the same encryption policy. 893 * 894 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 895 * -EXDEV if the link would result in an inconsistent encryption policy, or 896 * another -errno code. 897 */ 898 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 899 struct inode *dir, 900 struct dentry *dentry) 901 { 902 if (IS_ENCRYPTED(dir)) 903 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 904 return 0; 905 } 906 907 /** 908 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 909 * directories 910 * @old_dir: source directory 911 * @old_dentry: dentry for source file 912 * @new_dir: target directory 913 * @new_dentry: dentry for target location (may be negative unless exchanging) 914 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 915 * 916 * Prepare for ->rename() where the source and/or target directories may be 917 * encrypted. A new link can only be added to an encrypted directory if the 918 * directory's encryption key is available --- since otherwise we'd have no way 919 * to encrypt the filename. A rename to an existing name, on the other hand, 920 * *is* cryptographically possible without the key. However, we take the more 921 * conservative approach and just forbid all no-key renames. 922 * 923 * We also verify that the rename will not violate the constraint that all files 924 * in an encrypted directory tree use the same encryption policy. 925 * 926 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 927 * rename would cause inconsistent encryption policies, or another -errno code. 928 */ 929 static inline int fscrypt_prepare_rename(struct inode *old_dir, 930 struct dentry *old_dentry, 931 struct inode *new_dir, 932 struct dentry *new_dentry, 933 unsigned int flags) 934 { 935 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 936 return __fscrypt_prepare_rename(old_dir, old_dentry, 937 new_dir, new_dentry, flags); 938 return 0; 939 } 940 941 /** 942 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 943 * directory 944 * @dir: directory being searched 945 * @dentry: filename being looked up 946 * @fname: (output) the name to use to search the on-disk directory 947 * 948 * Prepare for ->lookup() in a directory which may be encrypted by determining 949 * the name that will actually be used to search the directory on-disk. If the 950 * directory's encryption policy is supported by this kernel and its encryption 951 * key is available, then the lookup is assumed to be by plaintext name; 952 * otherwise, it is assumed to be by no-key name. 953 * 954 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 955 * name. In this case the filesystem must assign the dentry a dentry_operations 956 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 957 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 958 * directory's encryption key is later added. 959 * 960 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 961 * filename isn't a valid no-key name, so a negative dentry should be created; 962 * or another -errno code. 963 */ 964 static inline int fscrypt_prepare_lookup(struct inode *dir, 965 struct dentry *dentry, 966 struct fscrypt_name *fname) 967 { 968 if (IS_ENCRYPTED(dir)) 969 return __fscrypt_prepare_lookup(dir, dentry, fname); 970 971 memset(fname, 0, sizeof(*fname)); 972 fname->usr_fname = &dentry->d_name; 973 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 974 fname->disk_name.len = dentry->d_name.len; 975 return 0; 976 } 977 978 /** 979 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 980 * @dir: the directory inode 981 * 982 * If the directory is encrypted and it doesn't already have its encryption key 983 * set up, try to set it up so that the filenames will be listed in plaintext 984 * form rather than in no-key form. 985 * 986 * Return: 0 on success; -errno on error. Note that the encryption key being 987 * unavailable is not considered an error. It is also not an error if 988 * the encryption policy is unsupported by this kernel; that is treated 989 * like the key being unavailable, so that files can still be deleted. 990 */ 991 static inline int fscrypt_prepare_readdir(struct inode *dir) 992 { 993 if (IS_ENCRYPTED(dir)) 994 return __fscrypt_prepare_readdir(dir); 995 return 0; 996 } 997 998 /** 999 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 1000 * attributes 1001 * @dentry: dentry through which the inode is being changed 1002 * @attr: attributes to change 1003 * 1004 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 1005 * most attribute changes are allowed even without the encryption key. However, 1006 * without the encryption key we do have to forbid truncates. This is needed 1007 * because the size being truncated to may not be a multiple of the filesystem 1008 * block size, and in that case we'd have to decrypt the final block, zero the 1009 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 1010 * filesystem block boundary, but it's simpler to just forbid all truncates --- 1011 * and we already forbid all other contents modifications without the key.) 1012 * 1013 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 1014 * if a problem occurred while setting up the encryption key. 1015 */ 1016 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 1017 struct iattr *attr) 1018 { 1019 if (IS_ENCRYPTED(d_inode(dentry))) 1020 return __fscrypt_prepare_setattr(dentry, attr); 1021 return 0; 1022 } 1023 1024 /** 1025 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1026 * @inode: symlink inode 1027 * @target: plaintext symlink target 1028 * @len: length of @target excluding null terminator 1029 * @disk_link: (in/out) the on-disk symlink target being prepared 1030 * 1031 * If the symlink target needs to be encrypted, then this function encrypts it 1032 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1033 * previously to compute @disk_link->len. If the filesystem did not allocate a 1034 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1035 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1036 * 1037 * Return: 0 on success, -errno on failure 1038 */ 1039 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1040 const char *target, 1041 unsigned int len, 1042 struct fscrypt_str *disk_link) 1043 { 1044 if (IS_ENCRYPTED(inode)) 1045 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1046 return 0; 1047 } 1048 1049 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1050 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1051 { 1052 struct page *page = *pagep; 1053 1054 if (fscrypt_is_bounce_page(page)) { 1055 *pagep = fscrypt_pagecache_page(page); 1056 fscrypt_free_bounce_page(page); 1057 } 1058 } 1059 1060 #endif /* _LINUX_FSCRYPT_H */ 1061