1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* 63 * If set, the fscrypt bounce page pool won't be allocated (unless another 64 * filesystem needs it). Set this if the filesystem always uses its own bounce 65 * pages for writes and therefore won't need the fscrypt bounce page pool. 66 */ 67 #define FS_CFLG_OWN_PAGES (1U << 1) 68 69 /* Crypto operations for filesystems */ 70 struct fscrypt_operations { 71 72 /* Set of optional flags; see above for allowed flags */ 73 unsigned int flags; 74 75 /* 76 * If set, this is a filesystem-specific key description prefix that 77 * will be accepted for "logon" keys for v1 fscrypt policies, in 78 * addition to the generic prefix "fscrypt:". This functionality is 79 * deprecated, so new filesystems shouldn't set this field. 80 */ 81 const char *key_prefix; 82 83 /* 84 * Get the fscrypt context of the given inode. 85 * 86 * @inode: the inode whose context to get 87 * @ctx: the buffer into which to get the context 88 * @len: length of the @ctx buffer in bytes 89 * 90 * Return: On success, returns the length of the context in bytes; this 91 * may be less than @len. On failure, returns -ENODATA if the 92 * inode doesn't have a context, -ERANGE if the context is 93 * longer than @len, or another -errno code. 94 */ 95 int (*get_context)(struct inode *inode, void *ctx, size_t len); 96 97 /* 98 * Set an fscrypt context on the given inode. 99 * 100 * @inode: the inode whose context to set. The inode won't already have 101 * an fscrypt context. 102 * @ctx: the context to set 103 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 104 * @fs_data: If called from fscrypt_set_context(), this will be the 105 * value the filesystem passed to fscrypt_set_context(). 106 * Otherwise (i.e. when called from 107 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 108 * 109 * i_rwsem will be held for write. 110 * 111 * Return: 0 on success, -errno on failure. 112 */ 113 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 114 void *fs_data); 115 116 /* 117 * Get the dummy fscrypt policy in use on the filesystem (if any). 118 * 119 * Filesystems only need to implement this function if they support the 120 * test_dummy_encryption mount option. 121 * 122 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 123 * mounted with test_dummy_encryption; otherwise NULL. 124 */ 125 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 126 127 /* 128 * Check whether a directory is empty. i_rwsem will be held for write. 129 */ 130 bool (*empty_dir)(struct inode *inode); 131 132 /* 133 * Check whether the filesystem's inode numbers and UUID are stable, 134 * meaning that they will never be changed even by offline operations 135 * such as filesystem shrinking and therefore can be used in the 136 * encryption without the possibility of files becoming unreadable. 137 * 138 * Filesystems only need to implement this function if they want to 139 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 140 * flags are designed to work around the limitations of UFS and eMMC 141 * inline crypto hardware, and they shouldn't be used in scenarios where 142 * such hardware isn't being used. 143 * 144 * Leaving this NULL is equivalent to always returning false. 145 */ 146 bool (*has_stable_inodes)(struct super_block *sb); 147 148 /* 149 * Get the number of bits that the filesystem uses to represent inode 150 * numbers and file logical block numbers. 151 * 152 * By default, both of these are assumed to be 64-bit. This function 153 * can be implemented to declare that either or both of these numbers is 154 * shorter, which may allow the use of the 155 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 156 * inline crypto hardware whose maximum DUN length is less than 64 bits 157 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 158 * to be implemented if support for one of these features is needed. 159 */ 160 void (*get_ino_and_lblk_bits)(struct super_block *sb, 161 int *ino_bits_ret, int *lblk_bits_ret); 162 163 /* 164 * Return the number of block devices to which the filesystem may write 165 * encrypted file contents. 166 * 167 * If the filesystem can use multiple block devices (other than block 168 * devices that aren't used for encrypted file contents, such as 169 * external journal devices), and wants to support inline encryption, 170 * then it must implement this function. Otherwise it's not needed. 171 */ 172 int (*get_num_devices)(struct super_block *sb); 173 174 /* 175 * If ->get_num_devices() returns a value greater than 1, then this 176 * function is called to get the array of request_queues that the 177 * filesystem is using -- one per block device. (There may be duplicate 178 * entries in this array, as block devices can share a request_queue.) 179 */ 180 void (*get_devices)(struct super_block *sb, 181 struct request_queue **devs); 182 }; 183 184 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 185 { 186 /* 187 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 188 * I.e., another task may publish ->i_crypt_info concurrently, executing 189 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 190 * ACQUIRE the memory the other task published. 191 */ 192 return smp_load_acquire(&inode->i_crypt_info); 193 } 194 195 /** 196 * fscrypt_needs_contents_encryption() - check whether an inode needs 197 * contents encryption 198 * @inode: the inode to check 199 * 200 * Return: %true iff the inode is an encrypted regular file and the kernel was 201 * built with fscrypt support. 202 * 203 * If you need to know whether the encrypt bit is set even when the kernel was 204 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 205 */ 206 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 207 { 208 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 209 } 210 211 /* 212 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 213 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 214 * cleared. Note that we don't have to support arbitrary moves of this flag 215 * because fscrypt doesn't allow no-key names to be the source or target of a 216 * rename(). 217 */ 218 static inline void fscrypt_handle_d_move(struct dentry *dentry) 219 { 220 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 221 } 222 223 /** 224 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 225 * @dentry: the dentry to check 226 * 227 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 228 * dentry that was created in an encrypted directory that hasn't had its 229 * encryption key added yet. Such dentries may be either positive or negative. 230 * 231 * When a filesystem is asked to create a new filename in an encrypted directory 232 * and the new filename's dentry is a no-key dentry, it must fail the operation 233 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 234 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 235 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 236 * 237 * This is necessary because creating a filename requires the directory's 238 * encryption key, but just checking for the key on the directory inode during 239 * the final filesystem operation doesn't guarantee that the key was available 240 * during the preceding dentry lookup. And the key must have already been 241 * available during the dentry lookup in order for it to have been checked 242 * whether the filename already exists in the directory and for the new file's 243 * dentry not to be invalidated due to it incorrectly having the no-key flag. 244 * 245 * Return: %true if the dentry is a no-key name 246 */ 247 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 248 { 249 return dentry->d_flags & DCACHE_NOKEY_NAME; 250 } 251 252 /* crypto.c */ 253 void fscrypt_enqueue_decrypt_work(struct work_struct *); 254 255 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 256 unsigned int len, 257 unsigned int offs, 258 gfp_t gfp_flags); 259 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 260 unsigned int len, unsigned int offs, 261 u64 lblk_num, gfp_t gfp_flags); 262 263 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 264 unsigned int offs); 265 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 266 unsigned int len, unsigned int offs, 267 u64 lblk_num); 268 269 static inline bool fscrypt_is_bounce_page(struct page *page) 270 { 271 return page->mapping == NULL; 272 } 273 274 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 275 { 276 return (struct page *)page_private(bounce_page); 277 } 278 279 void fscrypt_free_bounce_page(struct page *bounce_page); 280 281 /* policy.c */ 282 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 283 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 284 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 285 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 286 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 287 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 288 int fscrypt_set_context(struct inode *inode, void *fs_data); 289 290 struct fscrypt_dummy_policy { 291 const union fscrypt_policy *policy; 292 }; 293 294 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 295 struct fscrypt_dummy_policy *dummy_policy); 296 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 297 const struct fscrypt_dummy_policy *p2); 298 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 299 struct super_block *sb); 300 static inline bool 301 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 302 { 303 return dummy_policy->policy != NULL; 304 } 305 static inline void 306 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 307 { 308 kfree(dummy_policy->policy); 309 dummy_policy->policy = NULL; 310 } 311 312 /* keyring.c */ 313 void fscrypt_sb_free(struct super_block *sb); 314 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 315 int fscrypt_add_test_dummy_key(struct super_block *sb, 316 const struct fscrypt_dummy_policy *dummy_policy); 317 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 318 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 319 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 320 321 /* keysetup.c */ 322 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 323 bool *encrypt_ret); 324 void fscrypt_put_encryption_info(struct inode *inode); 325 void fscrypt_free_inode(struct inode *inode); 326 int fscrypt_drop_inode(struct inode *inode); 327 328 /* fname.c */ 329 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 330 u8 *out, unsigned int olen); 331 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 332 u32 max_len, u32 *encrypted_len_ret); 333 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 334 int lookup, struct fscrypt_name *fname); 335 336 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 337 { 338 kfree(fname->crypto_buf.name); 339 } 340 341 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 342 struct fscrypt_str *crypto_str); 343 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 344 int fscrypt_fname_disk_to_usr(const struct inode *inode, 345 u32 hash, u32 minor_hash, 346 const struct fscrypt_str *iname, 347 struct fscrypt_str *oname); 348 bool fscrypt_match_name(const struct fscrypt_name *fname, 349 const u8 *de_name, u32 de_name_len); 350 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 351 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 352 353 /* bio.c */ 354 void fscrypt_decrypt_bio(struct bio *bio); 355 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 356 sector_t pblk, unsigned int len); 357 358 /* hooks.c */ 359 int fscrypt_file_open(struct inode *inode, struct file *filp); 360 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 361 struct dentry *dentry); 362 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 363 struct inode *new_dir, struct dentry *new_dentry, 364 unsigned int flags); 365 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 366 struct fscrypt_name *fname); 367 int __fscrypt_prepare_readdir(struct inode *dir); 368 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 369 int fscrypt_prepare_setflags(struct inode *inode, 370 unsigned int oldflags, unsigned int flags); 371 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 372 unsigned int len, unsigned int max_len, 373 struct fscrypt_str *disk_link); 374 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 375 unsigned int len, struct fscrypt_str *disk_link); 376 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 377 unsigned int max_size, 378 struct delayed_call *done); 379 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 380 static inline void fscrypt_set_ops(struct super_block *sb, 381 const struct fscrypt_operations *s_cop) 382 { 383 sb->s_cop = s_cop; 384 } 385 #else /* !CONFIG_FS_ENCRYPTION */ 386 387 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 388 { 389 return NULL; 390 } 391 392 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 393 { 394 return false; 395 } 396 397 static inline void fscrypt_handle_d_move(struct dentry *dentry) 398 { 399 } 400 401 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 402 { 403 return false; 404 } 405 406 /* crypto.c */ 407 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 408 { 409 } 410 411 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 412 unsigned int len, 413 unsigned int offs, 414 gfp_t gfp_flags) 415 { 416 return ERR_PTR(-EOPNOTSUPP); 417 } 418 419 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 420 struct page *page, 421 unsigned int len, 422 unsigned int offs, u64 lblk_num, 423 gfp_t gfp_flags) 424 { 425 return -EOPNOTSUPP; 426 } 427 428 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 429 unsigned int len, 430 unsigned int offs) 431 { 432 return -EOPNOTSUPP; 433 } 434 435 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 436 struct page *page, 437 unsigned int len, 438 unsigned int offs, u64 lblk_num) 439 { 440 return -EOPNOTSUPP; 441 } 442 443 static inline bool fscrypt_is_bounce_page(struct page *page) 444 { 445 return false; 446 } 447 448 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 449 { 450 WARN_ON_ONCE(1); 451 return ERR_PTR(-EINVAL); 452 } 453 454 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 455 { 456 } 457 458 /* policy.c */ 459 static inline int fscrypt_ioctl_set_policy(struct file *filp, 460 const void __user *arg) 461 { 462 return -EOPNOTSUPP; 463 } 464 465 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 466 { 467 return -EOPNOTSUPP; 468 } 469 470 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 471 void __user *arg) 472 { 473 return -EOPNOTSUPP; 474 } 475 476 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 477 { 478 return -EOPNOTSUPP; 479 } 480 481 static inline int fscrypt_has_permitted_context(struct inode *parent, 482 struct inode *child) 483 { 484 return 0; 485 } 486 487 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 488 { 489 return -EOPNOTSUPP; 490 } 491 492 struct fscrypt_dummy_policy { 493 }; 494 495 static inline int 496 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 497 struct fscrypt_dummy_policy *dummy_policy) 498 { 499 return -EINVAL; 500 } 501 502 static inline bool 503 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 504 const struct fscrypt_dummy_policy *p2) 505 { 506 return true; 507 } 508 509 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 510 char sep, 511 struct super_block *sb) 512 { 513 } 514 515 static inline bool 516 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 517 { 518 return false; 519 } 520 521 static inline void 522 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 523 { 524 } 525 526 /* keyring.c */ 527 static inline void fscrypt_sb_free(struct super_block *sb) 528 { 529 } 530 531 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 532 { 533 return -EOPNOTSUPP; 534 } 535 536 static inline int 537 fscrypt_add_test_dummy_key(struct super_block *sb, 538 const struct fscrypt_dummy_policy *dummy_policy) 539 { 540 return 0; 541 } 542 543 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 544 { 545 return -EOPNOTSUPP; 546 } 547 548 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 549 void __user *arg) 550 { 551 return -EOPNOTSUPP; 552 } 553 554 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 555 void __user *arg) 556 { 557 return -EOPNOTSUPP; 558 } 559 560 /* keysetup.c */ 561 562 static inline int fscrypt_prepare_new_inode(struct inode *dir, 563 struct inode *inode, 564 bool *encrypt_ret) 565 { 566 if (IS_ENCRYPTED(dir)) 567 return -EOPNOTSUPP; 568 return 0; 569 } 570 571 static inline void fscrypt_put_encryption_info(struct inode *inode) 572 { 573 return; 574 } 575 576 static inline void fscrypt_free_inode(struct inode *inode) 577 { 578 } 579 580 static inline int fscrypt_drop_inode(struct inode *inode) 581 { 582 return 0; 583 } 584 585 /* fname.c */ 586 static inline int fscrypt_setup_filename(struct inode *dir, 587 const struct qstr *iname, 588 int lookup, struct fscrypt_name *fname) 589 { 590 if (IS_ENCRYPTED(dir)) 591 return -EOPNOTSUPP; 592 593 memset(fname, 0, sizeof(*fname)); 594 fname->usr_fname = iname; 595 fname->disk_name.name = (unsigned char *)iname->name; 596 fname->disk_name.len = iname->len; 597 return 0; 598 } 599 600 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 601 { 602 return; 603 } 604 605 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 606 struct fscrypt_str *crypto_str) 607 { 608 return -EOPNOTSUPP; 609 } 610 611 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 612 { 613 return; 614 } 615 616 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 617 u32 hash, u32 minor_hash, 618 const struct fscrypt_str *iname, 619 struct fscrypt_str *oname) 620 { 621 return -EOPNOTSUPP; 622 } 623 624 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 625 const u8 *de_name, u32 de_name_len) 626 { 627 /* Encryption support disabled; use standard comparison */ 628 if (de_name_len != fname->disk_name.len) 629 return false; 630 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 631 } 632 633 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 634 const struct qstr *name) 635 { 636 WARN_ON_ONCE(1); 637 return 0; 638 } 639 640 static inline int fscrypt_d_revalidate(struct dentry *dentry, 641 unsigned int flags) 642 { 643 return 1; 644 } 645 646 /* bio.c */ 647 static inline void fscrypt_decrypt_bio(struct bio *bio) 648 { 649 } 650 651 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 652 sector_t pblk, unsigned int len) 653 { 654 return -EOPNOTSUPP; 655 } 656 657 /* hooks.c */ 658 659 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 660 { 661 if (IS_ENCRYPTED(inode)) 662 return -EOPNOTSUPP; 663 return 0; 664 } 665 666 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 667 struct dentry *dentry) 668 { 669 return -EOPNOTSUPP; 670 } 671 672 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 673 struct dentry *old_dentry, 674 struct inode *new_dir, 675 struct dentry *new_dentry, 676 unsigned int flags) 677 { 678 return -EOPNOTSUPP; 679 } 680 681 static inline int __fscrypt_prepare_lookup(struct inode *dir, 682 struct dentry *dentry, 683 struct fscrypt_name *fname) 684 { 685 return -EOPNOTSUPP; 686 } 687 688 static inline int __fscrypt_prepare_readdir(struct inode *dir) 689 { 690 return -EOPNOTSUPP; 691 } 692 693 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 694 struct iattr *attr) 695 { 696 return -EOPNOTSUPP; 697 } 698 699 static inline int fscrypt_prepare_setflags(struct inode *inode, 700 unsigned int oldflags, 701 unsigned int flags) 702 { 703 return 0; 704 } 705 706 static inline int fscrypt_prepare_symlink(struct inode *dir, 707 const char *target, 708 unsigned int len, 709 unsigned int max_len, 710 struct fscrypt_str *disk_link) 711 { 712 if (IS_ENCRYPTED(dir)) 713 return -EOPNOTSUPP; 714 disk_link->name = (unsigned char *)target; 715 disk_link->len = len + 1; 716 if (disk_link->len > max_len) 717 return -ENAMETOOLONG; 718 return 0; 719 } 720 721 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 722 const char *target, 723 unsigned int len, 724 struct fscrypt_str *disk_link) 725 { 726 return -EOPNOTSUPP; 727 } 728 729 static inline const char *fscrypt_get_symlink(struct inode *inode, 730 const void *caddr, 731 unsigned int max_size, 732 struct delayed_call *done) 733 { 734 return ERR_PTR(-EOPNOTSUPP); 735 } 736 737 static inline int fscrypt_symlink_getattr(const struct path *path, 738 struct kstat *stat) 739 { 740 return -EOPNOTSUPP; 741 } 742 743 static inline void fscrypt_set_ops(struct super_block *sb, 744 const struct fscrypt_operations *s_cop) 745 { 746 } 747 748 #endif /* !CONFIG_FS_ENCRYPTION */ 749 750 /* inline_crypt.c */ 751 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 752 753 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 754 755 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 756 const struct inode *inode, u64 first_lblk, 757 gfp_t gfp_mask); 758 759 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 760 const struct buffer_head *first_bh, 761 gfp_t gfp_mask); 762 763 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 764 u64 next_lblk); 765 766 bool fscrypt_mergeable_bio_bh(struct bio *bio, 767 const struct buffer_head *next_bh); 768 769 bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter); 770 771 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 772 773 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 774 775 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 776 { 777 return false; 778 } 779 780 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 781 const struct inode *inode, 782 u64 first_lblk, gfp_t gfp_mask) { } 783 784 static inline void fscrypt_set_bio_crypt_ctx_bh( 785 struct bio *bio, 786 const struct buffer_head *first_bh, 787 gfp_t gfp_mask) { } 788 789 static inline bool fscrypt_mergeable_bio(struct bio *bio, 790 const struct inode *inode, 791 u64 next_lblk) 792 { 793 return true; 794 } 795 796 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 797 const struct buffer_head *next_bh) 798 { 799 return true; 800 } 801 802 static inline bool fscrypt_dio_supported(struct kiocb *iocb, 803 struct iov_iter *iter) 804 { 805 const struct inode *inode = file_inode(iocb->ki_filp); 806 807 return !fscrypt_needs_contents_encryption(inode); 808 } 809 810 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 811 u64 nr_blocks) 812 { 813 return nr_blocks; 814 } 815 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 816 817 /** 818 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 819 * encryption 820 * @inode: an inode. If encrypted, its key must be set up. 821 * 822 * Return: true if the inode requires file contents encryption and if the 823 * encryption should be done in the block layer via blk-crypto rather 824 * than in the filesystem layer. 825 */ 826 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 827 { 828 return fscrypt_needs_contents_encryption(inode) && 829 __fscrypt_inode_uses_inline_crypto(inode); 830 } 831 832 /** 833 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 834 * encryption 835 * @inode: an inode. If encrypted, its key must be set up. 836 * 837 * Return: true if the inode requires file contents encryption and if the 838 * encryption should be done in the filesystem layer rather than in the 839 * block layer via blk-crypto. 840 */ 841 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 842 { 843 return fscrypt_needs_contents_encryption(inode) && 844 !__fscrypt_inode_uses_inline_crypto(inode); 845 } 846 847 /** 848 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 849 * @inode: the inode to check 850 * 851 * Return: %true if the inode has had its encryption key set up, else %false. 852 * 853 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 854 * set up the key first. 855 */ 856 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 857 { 858 return fscrypt_get_info(inode) != NULL; 859 } 860 861 /** 862 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 863 * directory 864 * @old_dentry: an existing dentry for the inode being linked 865 * @dir: the target directory 866 * @dentry: negative dentry for the target filename 867 * 868 * A new link can only be added to an encrypted directory if the directory's 869 * encryption key is available --- since otherwise we'd have no way to encrypt 870 * the filename. 871 * 872 * We also verify that the link will not violate the constraint that all files 873 * in an encrypted directory tree use the same encryption policy. 874 * 875 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 876 * -EXDEV if the link would result in an inconsistent encryption policy, or 877 * another -errno code. 878 */ 879 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 880 struct inode *dir, 881 struct dentry *dentry) 882 { 883 if (IS_ENCRYPTED(dir)) 884 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 885 return 0; 886 } 887 888 /** 889 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 890 * directories 891 * @old_dir: source directory 892 * @old_dentry: dentry for source file 893 * @new_dir: target directory 894 * @new_dentry: dentry for target location (may be negative unless exchanging) 895 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 896 * 897 * Prepare for ->rename() where the source and/or target directories may be 898 * encrypted. A new link can only be added to an encrypted directory if the 899 * directory's encryption key is available --- since otherwise we'd have no way 900 * to encrypt the filename. A rename to an existing name, on the other hand, 901 * *is* cryptographically possible without the key. However, we take the more 902 * conservative approach and just forbid all no-key renames. 903 * 904 * We also verify that the rename will not violate the constraint that all files 905 * in an encrypted directory tree use the same encryption policy. 906 * 907 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 908 * rename would cause inconsistent encryption policies, or another -errno code. 909 */ 910 static inline int fscrypt_prepare_rename(struct inode *old_dir, 911 struct dentry *old_dentry, 912 struct inode *new_dir, 913 struct dentry *new_dentry, 914 unsigned int flags) 915 { 916 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 917 return __fscrypt_prepare_rename(old_dir, old_dentry, 918 new_dir, new_dentry, flags); 919 return 0; 920 } 921 922 /** 923 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 924 * directory 925 * @dir: directory being searched 926 * @dentry: filename being looked up 927 * @fname: (output) the name to use to search the on-disk directory 928 * 929 * Prepare for ->lookup() in a directory which may be encrypted by determining 930 * the name that will actually be used to search the directory on-disk. If the 931 * directory's encryption policy is supported by this kernel and its encryption 932 * key is available, then the lookup is assumed to be by plaintext name; 933 * otherwise, it is assumed to be by no-key name. 934 * 935 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 936 * name. In this case the filesystem must assign the dentry a dentry_operations 937 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 938 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 939 * directory's encryption key is later added. 940 * 941 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 942 * filename isn't a valid no-key name, so a negative dentry should be created; 943 * or another -errno code. 944 */ 945 static inline int fscrypt_prepare_lookup(struct inode *dir, 946 struct dentry *dentry, 947 struct fscrypt_name *fname) 948 { 949 if (IS_ENCRYPTED(dir)) 950 return __fscrypt_prepare_lookup(dir, dentry, fname); 951 952 memset(fname, 0, sizeof(*fname)); 953 fname->usr_fname = &dentry->d_name; 954 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 955 fname->disk_name.len = dentry->d_name.len; 956 return 0; 957 } 958 959 /** 960 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 961 * @dir: the directory inode 962 * 963 * If the directory is encrypted and it doesn't already have its encryption key 964 * set up, try to set it up so that the filenames will be listed in plaintext 965 * form rather than in no-key form. 966 * 967 * Return: 0 on success; -errno on error. Note that the encryption key being 968 * unavailable is not considered an error. It is also not an error if 969 * the encryption policy is unsupported by this kernel; that is treated 970 * like the key being unavailable, so that files can still be deleted. 971 */ 972 static inline int fscrypt_prepare_readdir(struct inode *dir) 973 { 974 if (IS_ENCRYPTED(dir)) 975 return __fscrypt_prepare_readdir(dir); 976 return 0; 977 } 978 979 /** 980 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 981 * attributes 982 * @dentry: dentry through which the inode is being changed 983 * @attr: attributes to change 984 * 985 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 986 * most attribute changes are allowed even without the encryption key. However, 987 * without the encryption key we do have to forbid truncates. This is needed 988 * because the size being truncated to may not be a multiple of the filesystem 989 * block size, and in that case we'd have to decrypt the final block, zero the 990 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 991 * filesystem block boundary, but it's simpler to just forbid all truncates --- 992 * and we already forbid all other contents modifications without the key.) 993 * 994 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 995 * if a problem occurred while setting up the encryption key. 996 */ 997 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 998 struct iattr *attr) 999 { 1000 if (IS_ENCRYPTED(d_inode(dentry))) 1001 return __fscrypt_prepare_setattr(dentry, attr); 1002 return 0; 1003 } 1004 1005 /** 1006 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1007 * @inode: symlink inode 1008 * @target: plaintext symlink target 1009 * @len: length of @target excluding null terminator 1010 * @disk_link: (in/out) the on-disk symlink target being prepared 1011 * 1012 * If the symlink target needs to be encrypted, then this function encrypts it 1013 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1014 * previously to compute @disk_link->len. If the filesystem did not allocate a 1015 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1016 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1017 * 1018 * Return: 0 on success, -errno on failure 1019 */ 1020 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1021 const char *target, 1022 unsigned int len, 1023 struct fscrypt_str *disk_link) 1024 { 1025 if (IS_ENCRYPTED(inode)) 1026 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1027 return 0; 1028 } 1029 1030 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1031 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1032 { 1033 struct page *page = *pagep; 1034 1035 if (fscrypt_is_bounce_page(page)) { 1036 *pagep = fscrypt_pagecache_page(page); 1037 fscrypt_free_bounce_page(page); 1038 } 1039 } 1040 1041 #endif /* _LINUX_FSCRYPT_H */ 1042