xref: /linux-6.15/include/linux/fs.h (revision dddc559f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48 #include <linux/file_ref.h>
49 #include <linux/unicode.h>
50 
51 #include <asm/byteorder.h>
52 #include <uapi/linux/fs.h>
53 
54 struct backing_dev_info;
55 struct bdi_writeback;
56 struct bio;
57 struct io_comp_batch;
58 struct export_operations;
59 struct fiemap_extent_info;
60 struct hd_geometry;
61 struct iovec;
62 struct kiocb;
63 struct kobject;
64 struct pipe_inode_info;
65 struct poll_table_struct;
66 struct kstatfs;
67 struct vm_area_struct;
68 struct vfsmount;
69 struct cred;
70 struct swap_info_struct;
71 struct seq_file;
72 struct workqueue_struct;
73 struct iov_iter;
74 struct fscrypt_inode_info;
75 struct fscrypt_operations;
76 struct fsverity_info;
77 struct fsverity_operations;
78 struct fsnotify_mark_connector;
79 struct fsnotify_sb_info;
80 struct fs_context;
81 struct fs_parameter_spec;
82 struct fileattr;
83 struct iomap_ops;
84 
85 extern void __init inode_init(void);
86 extern void __init inode_init_early(void);
87 extern void __init files_init(void);
88 extern void __init files_maxfiles_init(void);
89 
90 extern unsigned long get_max_files(void);
91 extern unsigned int sysctl_nr_open;
92 
93 typedef __kernel_rwf_t rwf_t;
94 
95 struct buffer_head;
96 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
97 			struct buffer_head *bh_result, int create);
98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
99 			ssize_t bytes, void *private);
100 
101 #define MAY_EXEC		0x00000001
102 #define MAY_WRITE		0x00000002
103 #define MAY_READ		0x00000004
104 #define MAY_APPEND		0x00000008
105 #define MAY_ACCESS		0x00000010
106 #define MAY_OPEN		0x00000020
107 #define MAY_CHDIR		0x00000040
108 /* called from RCU mode, don't block */
109 #define MAY_NOT_BLOCK		0x00000080
110 
111 /*
112  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
113  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
114  */
115 
116 /* file is open for reading */
117 #define FMODE_READ		((__force fmode_t)(1 << 0))
118 /* file is open for writing */
119 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
120 /* file is seekable */
121 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
122 /* file can be accessed using pread */
123 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
124 /* file can be accessed using pwrite */
125 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
126 /* File is opened for execution with sys_execve / sys_uselib */
127 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
128 /* File writes are restricted (block device specific) */
129 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
130 /* File supports atomic writes */
131 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
132 
133 /* FMODE_* bit 8 */
134 
135 /* 32bit hashes as llseek() offset (for directories) */
136 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
137 /* 64bit hashes as llseek() offset (for directories) */
138 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
139 
140 /*
141  * Don't update ctime and mtime.
142  *
143  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
144  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
145  */
146 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
147 
148 /* Expect random access pattern */
149 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
150 
151 /* FMODE_* bit 13 */
152 
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH		((__force fmode_t)(1 << 14))
155 
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
164 
165 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
167 
168 /* File is stream-like */
169 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
170 
171 /* File supports DIRECT IO */
172 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
173 
174 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
175 
176 /* FMODE_* bit 24 */
177 
178 /* File is embedded in backing_file object */
179 #define FMODE_BACKING		((__force fmode_t)(1 << 25))
180 
181 /* File was opened by fanotify and shouldn't generate fanotify events */
182 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 26))
183 
184 /* File is capable of returning -EAGAIN if I/O will block */
185 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
186 
187 /* File represents mount that needs unmounting */
188 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
189 
190 /* File does not contribute to nr_files count */
191 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
192 
193 /*
194  * Attribute flags.  These should be or-ed together to figure out what
195  * has been changed!
196  */
197 #define ATTR_MODE	(1 << 0)
198 #define ATTR_UID	(1 << 1)
199 #define ATTR_GID	(1 << 2)
200 #define ATTR_SIZE	(1 << 3)
201 #define ATTR_ATIME	(1 << 4)
202 #define ATTR_MTIME	(1 << 5)
203 #define ATTR_CTIME	(1 << 6)
204 #define ATTR_ATIME_SET	(1 << 7)
205 #define ATTR_MTIME_SET	(1 << 8)
206 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
207 #define ATTR_KILL_SUID	(1 << 11)
208 #define ATTR_KILL_SGID	(1 << 12)
209 #define ATTR_FILE	(1 << 13)
210 #define ATTR_KILL_PRIV	(1 << 14)
211 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
212 #define ATTR_TIMES_SET	(1 << 16)
213 #define ATTR_TOUCH	(1 << 17)
214 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
215 
216 /*
217  * Whiteout is represented by a char device.  The following constants define the
218  * mode and device number to use.
219  */
220 #define WHITEOUT_MODE 0
221 #define WHITEOUT_DEV 0
222 
223 /*
224  * This is the Inode Attributes structure, used for notify_change().  It
225  * uses the above definitions as flags, to know which values have changed.
226  * Also, in this manner, a Filesystem can look at only the values it cares
227  * about.  Basically, these are the attributes that the VFS layer can
228  * request to change from the FS layer.
229  *
230  * Derek Atkins <[email protected]> 94-10-20
231  */
232 struct iattr {
233 	unsigned int	ia_valid;
234 	umode_t		ia_mode;
235 	/*
236 	 * The two anonymous unions wrap structures with the same member.
237 	 *
238 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
239 	 * are a dedicated type requiring the filesystem to use the dedicated
240 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
241 	 * have been ported.
242 	 *
243 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
244 	 * pass down the same value on idmapped mounts as they would on regular
245 	 * mounts.
246 	 */
247 	union {
248 		kuid_t		ia_uid;
249 		vfsuid_t	ia_vfsuid;
250 	};
251 	union {
252 		kgid_t		ia_gid;
253 		vfsgid_t	ia_vfsgid;
254 	};
255 	loff_t		ia_size;
256 	struct timespec64 ia_atime;
257 	struct timespec64 ia_mtime;
258 	struct timespec64 ia_ctime;
259 
260 	/*
261 	 * Not an attribute, but an auxiliary info for filesystems wanting to
262 	 * implement an ftruncate() like method.  NOTE: filesystem should
263 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
264 	 */
265 	struct file	*ia_file;
266 };
267 
268 /*
269  * Includes for diskquotas.
270  */
271 #include <linux/quota.h>
272 
273 /*
274  * Maximum number of layers of fs stack.  Needs to be limited to
275  * prevent kernel stack overflow
276  */
277 #define FILESYSTEM_MAX_STACK_DEPTH 2
278 
279 /**
280  * enum positive_aop_returns - aop return codes with specific semantics
281  *
282  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
283  * 			    completed, that the page is still locked, and
284  * 			    should be considered active.  The VM uses this hint
285  * 			    to return the page to the active list -- it won't
286  * 			    be a candidate for writeback again in the near
287  * 			    future.  Other callers must be careful to unlock
288  * 			    the page if they get this return.  Returned by
289  * 			    writepage();
290  *
291  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
292  *  			unlocked it and the page might have been truncated.
293  *  			The caller should back up to acquiring a new page and
294  *  			trying again.  The aop will be taking reasonable
295  *  			precautions not to livelock.  If the caller held a page
296  *  			reference, it should drop it before retrying.  Returned
297  *  			by read_folio().
298  *
299  * address_space_operation functions return these large constants to indicate
300  * special semantics to the caller.  These are much larger than the bytes in a
301  * page to allow for functions that return the number of bytes operated on in a
302  * given page.
303  */
304 
305 enum positive_aop_returns {
306 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
307 	AOP_TRUNCATED_PAGE	= 0x80001,
308 };
309 
310 /*
311  * oh the beauties of C type declarations.
312  */
313 struct page;
314 struct address_space;
315 struct writeback_control;
316 struct readahead_control;
317 
318 /* Match RWF_* bits to IOCB bits */
319 #define IOCB_HIPRI		(__force int) RWF_HIPRI
320 #define IOCB_DSYNC		(__force int) RWF_DSYNC
321 #define IOCB_SYNC		(__force int) RWF_SYNC
322 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
323 #define IOCB_APPEND		(__force int) RWF_APPEND
324 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
325 #define IOCB_DONTCACHE		(__force int) RWF_DONTCACHE
326 
327 /* non-RWF related bits - start at 16 */
328 #define IOCB_EVENTFD		(1 << 16)
329 #define IOCB_DIRECT		(1 << 17)
330 #define IOCB_WRITE		(1 << 18)
331 /* iocb->ki_waitq is valid */
332 #define IOCB_WAITQ		(1 << 19)
333 #define IOCB_NOIO		(1 << 20)
334 /* can use bio alloc cache */
335 #define IOCB_ALLOC_CACHE	(1 << 21)
336 /*
337  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
338  * iocb completion can be passed back to the owner for execution from a safe
339  * context rather than needing to be punted through a workqueue. If this
340  * flag is set, the bio completion handling may set iocb->dio_complete to a
341  * handler function and iocb->private to context information for that handler.
342  * The issuer should call the handler with that context information from task
343  * context to complete the processing of the iocb. Note that while this
344  * provides a task context for the dio_complete() callback, it should only be
345  * used on the completion side for non-IO generating completions. It's fine to
346  * call blocking functions from this callback, but they should not wait for
347  * unrelated IO (like cache flushing, new IO generation, etc).
348  */
349 #define IOCB_DIO_CALLER_COMP	(1 << 22)
350 /* kiocb is a read or write operation submitted by fs/aio.c. */
351 #define IOCB_AIO_RW		(1 << 23)
352 
353 /* for use in trace events */
354 #define TRACE_IOCB_STRINGS \
355 	{ IOCB_HIPRI,		"HIPRI" }, \
356 	{ IOCB_DSYNC,		"DSYNC" }, \
357 	{ IOCB_SYNC,		"SYNC" }, \
358 	{ IOCB_NOWAIT,		"NOWAIT" }, \
359 	{ IOCB_APPEND,		"APPEND" }, \
360 	{ IOCB_ATOMIC,		"ATOMIC" }, \
361 	{ IOCB_DONTCACHE,	"DONTCACHE" }, \
362 	{ IOCB_EVENTFD,		"EVENTFD"}, \
363 	{ IOCB_DIRECT,		"DIRECT" }, \
364 	{ IOCB_WRITE,		"WRITE" }, \
365 	{ IOCB_WAITQ,		"WAITQ" }, \
366 	{ IOCB_NOIO,		"NOIO" }, \
367 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
368 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
369 
370 struct kiocb {
371 	struct file		*ki_filp;
372 	loff_t			ki_pos;
373 	void (*ki_complete)(struct kiocb *iocb, long ret);
374 	void			*private;
375 	int			ki_flags;
376 	u16			ki_ioprio; /* See linux/ioprio.h */
377 	union {
378 		/*
379 		 * Only used for async buffered reads, where it denotes the
380 		 * page waitqueue associated with completing the read. Valid
381 		 * IFF IOCB_WAITQ is set.
382 		 */
383 		struct wait_page_queue	*ki_waitq;
384 		/*
385 		 * Can be used for O_DIRECT IO, where the completion handling
386 		 * is punted back to the issuer of the IO. May only be set
387 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
388 		 * must then check for presence of this handler when ki_complete
389 		 * is invoked. The data passed in to this handler must be
390 		 * assigned to ->private when dio_complete is assigned.
391 		 */
392 		ssize_t (*dio_complete)(void *data);
393 	};
394 };
395 
396 static inline bool is_sync_kiocb(struct kiocb *kiocb)
397 {
398 	return kiocb->ki_complete == NULL;
399 }
400 
401 struct address_space_operations {
402 	int (*writepage)(struct page *page, struct writeback_control *wbc);
403 	int (*read_folio)(struct file *, struct folio *);
404 
405 	/* Write back some dirty pages from this mapping. */
406 	int (*writepages)(struct address_space *, struct writeback_control *);
407 
408 	/* Mark a folio dirty.  Return true if this dirtied it */
409 	bool (*dirty_folio)(struct address_space *, struct folio *);
410 
411 	void (*readahead)(struct readahead_control *);
412 
413 	int (*write_begin)(struct file *, struct address_space *mapping,
414 				loff_t pos, unsigned len,
415 				struct folio **foliop, void **fsdata);
416 	int (*write_end)(struct file *, struct address_space *mapping,
417 				loff_t pos, unsigned len, unsigned copied,
418 				struct folio *folio, void *fsdata);
419 
420 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
421 	sector_t (*bmap)(struct address_space *, sector_t);
422 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
423 	bool (*release_folio)(struct folio *, gfp_t);
424 	void (*free_folio)(struct folio *folio);
425 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
426 	/*
427 	 * migrate the contents of a folio to the specified target. If
428 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
429 	 */
430 	int (*migrate_folio)(struct address_space *, struct folio *dst,
431 			struct folio *src, enum migrate_mode);
432 	int (*launder_folio)(struct folio *);
433 	bool (*is_partially_uptodate) (struct folio *, size_t from,
434 			size_t count);
435 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
436 	int (*error_remove_folio)(struct address_space *, struct folio *);
437 
438 	/* swapfile support */
439 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
440 				sector_t *span);
441 	void (*swap_deactivate)(struct file *file);
442 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
443 };
444 
445 extern const struct address_space_operations empty_aops;
446 
447 /**
448  * struct address_space - Contents of a cacheable, mappable object.
449  * @host: Owner, either the inode or the block_device.
450  * @i_pages: Cached pages.
451  * @invalidate_lock: Guards coherency between page cache contents and
452  *   file offset->disk block mappings in the filesystem during invalidates.
453  *   It is also used to block modification of page cache contents through
454  *   memory mappings.
455  * @gfp_mask: Memory allocation flags to use for allocating pages.
456  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
457  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
458  * @i_mmap: Tree of private and shared mappings.
459  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
460  * @nrpages: Number of page entries, protected by the i_pages lock.
461  * @writeback_index: Writeback starts here.
462  * @a_ops: Methods.
463  * @flags: Error bits and flags (AS_*).
464  * @wb_err: The most recent error which has occurred.
465  * @i_private_lock: For use by the owner of the address_space.
466  * @i_private_list: For use by the owner of the address_space.
467  * @i_private_data: For use by the owner of the address_space.
468  */
469 struct address_space {
470 	struct inode		*host;
471 	struct xarray		i_pages;
472 	struct rw_semaphore	invalidate_lock;
473 	gfp_t			gfp_mask;
474 	atomic_t		i_mmap_writable;
475 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
476 	/* number of thp, only for non-shmem files */
477 	atomic_t		nr_thps;
478 #endif
479 	struct rb_root_cached	i_mmap;
480 	unsigned long		nrpages;
481 	pgoff_t			writeback_index;
482 	const struct address_space_operations *a_ops;
483 	unsigned long		flags;
484 	errseq_t		wb_err;
485 	spinlock_t		i_private_lock;
486 	struct list_head	i_private_list;
487 	struct rw_semaphore	i_mmap_rwsem;
488 	void *			i_private_data;
489 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
490 	/*
491 	 * On most architectures that alignment is already the case; but
492 	 * must be enforced here for CRIS, to let the least significant bit
493 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
494 	 */
495 
496 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
497 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
498 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
499 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
500 
501 /*
502  * Returns true if any of the pages in the mapping are marked with the tag.
503  */
504 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
505 {
506 	return xa_marked(&mapping->i_pages, tag);
507 }
508 
509 static inline void i_mmap_lock_write(struct address_space *mapping)
510 {
511 	down_write(&mapping->i_mmap_rwsem);
512 }
513 
514 static inline int i_mmap_trylock_write(struct address_space *mapping)
515 {
516 	return down_write_trylock(&mapping->i_mmap_rwsem);
517 }
518 
519 static inline void i_mmap_unlock_write(struct address_space *mapping)
520 {
521 	up_write(&mapping->i_mmap_rwsem);
522 }
523 
524 static inline int i_mmap_trylock_read(struct address_space *mapping)
525 {
526 	return down_read_trylock(&mapping->i_mmap_rwsem);
527 }
528 
529 static inline void i_mmap_lock_read(struct address_space *mapping)
530 {
531 	down_read(&mapping->i_mmap_rwsem);
532 }
533 
534 static inline void i_mmap_unlock_read(struct address_space *mapping)
535 {
536 	up_read(&mapping->i_mmap_rwsem);
537 }
538 
539 static inline void i_mmap_assert_locked(struct address_space *mapping)
540 {
541 	lockdep_assert_held(&mapping->i_mmap_rwsem);
542 }
543 
544 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
545 {
546 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
547 }
548 
549 /*
550  * Might pages of this file be mapped into userspace?
551  */
552 static inline int mapping_mapped(struct address_space *mapping)
553 {
554 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
555 }
556 
557 /*
558  * Might pages of this file have been modified in userspace?
559  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
560  * marks vma as VM_SHARED if it is shared, and the file was opened for
561  * writing i.e. vma may be mprotected writable even if now readonly.
562  *
563  * If i_mmap_writable is negative, no new writable mappings are allowed. You
564  * can only deny writable mappings, if none exists right now.
565  */
566 static inline int mapping_writably_mapped(struct address_space *mapping)
567 {
568 	return atomic_read(&mapping->i_mmap_writable) > 0;
569 }
570 
571 static inline int mapping_map_writable(struct address_space *mapping)
572 {
573 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
574 		0 : -EPERM;
575 }
576 
577 static inline void mapping_unmap_writable(struct address_space *mapping)
578 {
579 	atomic_dec(&mapping->i_mmap_writable);
580 }
581 
582 static inline int mapping_deny_writable(struct address_space *mapping)
583 {
584 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
585 		0 : -EBUSY;
586 }
587 
588 static inline void mapping_allow_writable(struct address_space *mapping)
589 {
590 	atomic_inc(&mapping->i_mmap_writable);
591 }
592 
593 /*
594  * Use sequence counter to get consistent i_size on 32-bit processors.
595  */
596 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
597 #include <linux/seqlock.h>
598 #define __NEED_I_SIZE_ORDERED
599 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
600 #else
601 #define i_size_ordered_init(inode) do { } while (0)
602 #endif
603 
604 struct posix_acl;
605 #define ACL_NOT_CACHED ((void *)(-1))
606 /*
607  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
608  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
609  * mode with the LOOKUP_RCU flag.
610  */
611 #define ACL_DONT_CACHE ((void *)(-3))
612 
613 static inline struct posix_acl *
614 uncached_acl_sentinel(struct task_struct *task)
615 {
616 	return (void *)task + 1;
617 }
618 
619 static inline bool
620 is_uncached_acl(struct posix_acl *acl)
621 {
622 	return (long)acl & 1;
623 }
624 
625 #define IOP_FASTPERM	0x0001
626 #define IOP_LOOKUP	0x0002
627 #define IOP_NOFOLLOW	0x0004
628 #define IOP_XATTR	0x0008
629 #define IOP_DEFAULT_READLINK	0x0010
630 #define IOP_MGTIME	0x0020
631 
632 /*
633  * Keep mostly read-only and often accessed (especially for
634  * the RCU path lookup and 'stat' data) fields at the beginning
635  * of the 'struct inode'
636  */
637 struct inode {
638 	umode_t			i_mode;
639 	unsigned short		i_opflags;
640 	kuid_t			i_uid;
641 	kgid_t			i_gid;
642 	unsigned int		i_flags;
643 
644 #ifdef CONFIG_FS_POSIX_ACL
645 	struct posix_acl	*i_acl;
646 	struct posix_acl	*i_default_acl;
647 #endif
648 
649 	const struct inode_operations	*i_op;
650 	struct super_block	*i_sb;
651 	struct address_space	*i_mapping;
652 
653 #ifdef CONFIG_SECURITY
654 	void			*i_security;
655 #endif
656 
657 	/* Stat data, not accessed from path walking */
658 	unsigned long		i_ino;
659 	/*
660 	 * Filesystems may only read i_nlink directly.  They shall use the
661 	 * following functions for modification:
662 	 *
663 	 *    (set|clear|inc|drop)_nlink
664 	 *    inode_(inc|dec)_link_count
665 	 */
666 	union {
667 		const unsigned int i_nlink;
668 		unsigned int __i_nlink;
669 	};
670 	dev_t			i_rdev;
671 	loff_t			i_size;
672 	time64_t		i_atime_sec;
673 	time64_t		i_mtime_sec;
674 	time64_t		i_ctime_sec;
675 	u32			i_atime_nsec;
676 	u32			i_mtime_nsec;
677 	u32			i_ctime_nsec;
678 	u32			i_generation;
679 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
680 	unsigned short          i_bytes;
681 	u8			i_blkbits;
682 	enum rw_hint		i_write_hint;
683 	blkcnt_t		i_blocks;
684 
685 #ifdef __NEED_I_SIZE_ORDERED
686 	seqcount_t		i_size_seqcount;
687 #endif
688 
689 	/* Misc */
690 	u32			i_state;
691 	/* 32-bit hole */
692 	struct rw_semaphore	i_rwsem;
693 
694 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
695 	unsigned long		dirtied_time_when;
696 
697 	struct hlist_node	i_hash;
698 	struct list_head	i_io_list;	/* backing dev IO list */
699 #ifdef CONFIG_CGROUP_WRITEBACK
700 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
701 
702 	/* foreign inode detection, see wbc_detach_inode() */
703 	int			i_wb_frn_winner;
704 	u16			i_wb_frn_avg_time;
705 	u16			i_wb_frn_history;
706 #endif
707 	struct list_head	i_lru;		/* inode LRU list */
708 	struct list_head	i_sb_list;
709 	struct list_head	i_wb_list;	/* backing dev writeback list */
710 	union {
711 		struct hlist_head	i_dentry;
712 		struct rcu_head		i_rcu;
713 	};
714 	atomic64_t		i_version;
715 	atomic64_t		i_sequence; /* see futex */
716 	atomic_t		i_count;
717 	atomic_t		i_dio_count;
718 	atomic_t		i_writecount;
719 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
720 	atomic_t		i_readcount; /* struct files open RO */
721 #endif
722 	union {
723 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
724 		void (*free_inode)(struct inode *);
725 	};
726 	struct file_lock_context	*i_flctx;
727 	struct address_space	i_data;
728 	struct list_head	i_devices;
729 	union {
730 		struct pipe_inode_info	*i_pipe;
731 		struct cdev		*i_cdev;
732 		char			*i_link;
733 		unsigned		i_dir_seq;
734 	};
735 
736 
737 #ifdef CONFIG_FSNOTIFY
738 	__u32			i_fsnotify_mask; /* all events this inode cares about */
739 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
740 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
741 #endif
742 
743 #ifdef CONFIG_FS_ENCRYPTION
744 	struct fscrypt_inode_info	*i_crypt_info;
745 #endif
746 
747 #ifdef CONFIG_FS_VERITY
748 	struct fsverity_info	*i_verity_info;
749 #endif
750 
751 	void			*i_private; /* fs or device private pointer */
752 } __randomize_layout;
753 
754 /*
755  * Get bit address from inode->i_state to use with wait_var_event()
756  * infrastructre.
757  */
758 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
759 
760 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
761 					    struct inode *inode, u32 bit);
762 
763 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
764 {
765 	/* Caller is responsible for correct memory barriers. */
766 	wake_up_var(inode_state_wait_address(inode, bit));
767 }
768 
769 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
770 
771 static inline unsigned int i_blocksize(const struct inode *node)
772 {
773 	return (1 << node->i_blkbits);
774 }
775 
776 static inline int inode_unhashed(struct inode *inode)
777 {
778 	return hlist_unhashed(&inode->i_hash);
779 }
780 
781 /*
782  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
783  * want special inodes in the fileset inode space, we make them
784  * appear hashed, but do not put on any lists.  hlist_del()
785  * will work fine and require no locking.
786  */
787 static inline void inode_fake_hash(struct inode *inode)
788 {
789 	hlist_add_fake(&inode->i_hash);
790 }
791 
792 /*
793  * inode->i_mutex nesting subclasses for the lock validator:
794  *
795  * 0: the object of the current VFS operation
796  * 1: parent
797  * 2: child/target
798  * 3: xattr
799  * 4: second non-directory
800  * 5: second parent (when locking independent directories in rename)
801  *
802  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
803  * non-directories at once.
804  *
805  * The locking order between these classes is
806  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
807  */
808 enum inode_i_mutex_lock_class
809 {
810 	I_MUTEX_NORMAL,
811 	I_MUTEX_PARENT,
812 	I_MUTEX_CHILD,
813 	I_MUTEX_XATTR,
814 	I_MUTEX_NONDIR2,
815 	I_MUTEX_PARENT2,
816 };
817 
818 static inline void inode_lock(struct inode *inode)
819 {
820 	down_write(&inode->i_rwsem);
821 }
822 
823 static inline void inode_unlock(struct inode *inode)
824 {
825 	up_write(&inode->i_rwsem);
826 }
827 
828 static inline void inode_lock_shared(struct inode *inode)
829 {
830 	down_read(&inode->i_rwsem);
831 }
832 
833 static inline void inode_unlock_shared(struct inode *inode)
834 {
835 	up_read(&inode->i_rwsem);
836 }
837 
838 static inline int inode_trylock(struct inode *inode)
839 {
840 	return down_write_trylock(&inode->i_rwsem);
841 }
842 
843 static inline int inode_trylock_shared(struct inode *inode)
844 {
845 	return down_read_trylock(&inode->i_rwsem);
846 }
847 
848 static inline int inode_is_locked(struct inode *inode)
849 {
850 	return rwsem_is_locked(&inode->i_rwsem);
851 }
852 
853 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
854 {
855 	down_write_nested(&inode->i_rwsem, subclass);
856 }
857 
858 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
859 {
860 	down_read_nested(&inode->i_rwsem, subclass);
861 }
862 
863 static inline void filemap_invalidate_lock(struct address_space *mapping)
864 {
865 	down_write(&mapping->invalidate_lock);
866 }
867 
868 static inline void filemap_invalidate_unlock(struct address_space *mapping)
869 {
870 	up_write(&mapping->invalidate_lock);
871 }
872 
873 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
874 {
875 	down_read(&mapping->invalidate_lock);
876 }
877 
878 static inline int filemap_invalidate_trylock_shared(
879 					struct address_space *mapping)
880 {
881 	return down_read_trylock(&mapping->invalidate_lock);
882 }
883 
884 static inline void filemap_invalidate_unlock_shared(
885 					struct address_space *mapping)
886 {
887 	up_read(&mapping->invalidate_lock);
888 }
889 
890 void lock_two_nondirectories(struct inode *, struct inode*);
891 void unlock_two_nondirectories(struct inode *, struct inode*);
892 
893 void filemap_invalidate_lock_two(struct address_space *mapping1,
894 				 struct address_space *mapping2);
895 void filemap_invalidate_unlock_two(struct address_space *mapping1,
896 				   struct address_space *mapping2);
897 
898 
899 /*
900  * NOTE: in a 32bit arch with a preemptable kernel and
901  * an UP compile the i_size_read/write must be atomic
902  * with respect to the local cpu (unlike with preempt disabled),
903  * but they don't need to be atomic with respect to other cpus like in
904  * true SMP (so they need either to either locally disable irq around
905  * the read or for example on x86 they can be still implemented as a
906  * cmpxchg8b without the need of the lock prefix). For SMP compiles
907  * and 64bit archs it makes no difference if preempt is enabled or not.
908  */
909 static inline loff_t i_size_read(const struct inode *inode)
910 {
911 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
912 	loff_t i_size;
913 	unsigned int seq;
914 
915 	do {
916 		seq = read_seqcount_begin(&inode->i_size_seqcount);
917 		i_size = inode->i_size;
918 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
919 	return i_size;
920 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
921 	loff_t i_size;
922 
923 	preempt_disable();
924 	i_size = inode->i_size;
925 	preempt_enable();
926 	return i_size;
927 #else
928 	/* Pairs with smp_store_release() in i_size_write() */
929 	return smp_load_acquire(&inode->i_size);
930 #endif
931 }
932 
933 /*
934  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
935  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
936  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
937  */
938 static inline void i_size_write(struct inode *inode, loff_t i_size)
939 {
940 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
941 	preempt_disable();
942 	write_seqcount_begin(&inode->i_size_seqcount);
943 	inode->i_size = i_size;
944 	write_seqcount_end(&inode->i_size_seqcount);
945 	preempt_enable();
946 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
947 	preempt_disable();
948 	inode->i_size = i_size;
949 	preempt_enable();
950 #else
951 	/*
952 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
953 	 * changes related to inode size (such as page contents) are
954 	 * visible before we see the changed inode size.
955 	 */
956 	smp_store_release(&inode->i_size, i_size);
957 #endif
958 }
959 
960 static inline unsigned iminor(const struct inode *inode)
961 {
962 	return MINOR(inode->i_rdev);
963 }
964 
965 static inline unsigned imajor(const struct inode *inode)
966 {
967 	return MAJOR(inode->i_rdev);
968 }
969 
970 struct fown_struct {
971 	struct file *file;	/* backpointer for security modules */
972 	rwlock_t lock;          /* protects pid, uid, euid fields */
973 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
974 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
975 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
976 	int signum;		/* posix.1b rt signal to be delivered on IO */
977 };
978 
979 /**
980  * struct file_ra_state - Track a file's readahead state.
981  * @start: Where the most recent readahead started.
982  * @size: Number of pages read in the most recent readahead.
983  * @async_size: Numer of pages that were/are not needed immediately
984  *      and so were/are genuinely "ahead".  Start next readahead when
985  *      the first of these pages is accessed.
986  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
987  * @mmap_miss: How many mmap accesses missed in the page cache.
988  * @prev_pos: The last byte in the most recent read request.
989  *
990  * When this structure is passed to ->readahead(), the "most recent"
991  * readahead means the current readahead.
992  */
993 struct file_ra_state {
994 	pgoff_t start;
995 	unsigned int size;
996 	unsigned int async_size;
997 	unsigned int ra_pages;
998 	unsigned int mmap_miss;
999 	loff_t prev_pos;
1000 };
1001 
1002 /*
1003  * Check if @index falls in the readahead windows.
1004  */
1005 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1006 {
1007 	return (index >= ra->start &&
1008 		index <  ra->start + ra->size);
1009 }
1010 
1011 /**
1012  * struct file - Represents a file
1013  * @f_ref: reference count
1014  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1015  * @f_mode: FMODE_* flags often used in hotpaths
1016  * @f_op: file operations
1017  * @f_mapping: Contents of a cacheable, mappable object.
1018  * @private_data: filesystem or driver specific data
1019  * @f_inode: cached inode
1020  * @f_flags: file flags
1021  * @f_iocb_flags: iocb flags
1022  * @f_cred: stashed credentials of creator/opener
1023  * @f_path: path of the file
1024  * @f_pos_lock: lock protecting file position
1025  * @f_pipe: specific to pipes
1026  * @f_pos: file position
1027  * @f_security: LSM security context of this file
1028  * @f_owner: file owner
1029  * @f_wb_err: writeback error
1030  * @f_sb_err: per sb writeback errors
1031  * @f_ep: link of all epoll hooks for this file
1032  * @f_task_work: task work entry point
1033  * @f_llist: work queue entrypoint
1034  * @f_ra: file's readahead state
1035  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1036  */
1037 struct file {
1038 	file_ref_t			f_ref;
1039 	spinlock_t			f_lock;
1040 	fmode_t				f_mode;
1041 	const struct file_operations	*f_op;
1042 	struct address_space		*f_mapping;
1043 	void				*private_data;
1044 	struct inode			*f_inode;
1045 	unsigned int			f_flags;
1046 	unsigned int			f_iocb_flags;
1047 	const struct cred		*f_cred;
1048 	/* --- cacheline 1 boundary (64 bytes) --- */
1049 	struct path			f_path;
1050 	union {
1051 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1052 		struct mutex		f_pos_lock;
1053 		/* pipes */
1054 		u64			f_pipe;
1055 	};
1056 	loff_t				f_pos;
1057 #ifdef CONFIG_SECURITY
1058 	void				*f_security;
1059 #endif
1060 	/* --- cacheline 2 boundary (128 bytes) --- */
1061 	struct fown_struct		*f_owner;
1062 	errseq_t			f_wb_err;
1063 	errseq_t			f_sb_err;
1064 #ifdef CONFIG_EPOLL
1065 	struct hlist_head		*f_ep;
1066 #endif
1067 	union {
1068 		struct callback_head	f_task_work;
1069 		struct llist_node	f_llist;
1070 		struct file_ra_state	f_ra;
1071 		freeptr_t		f_freeptr;
1072 	};
1073 	/* --- cacheline 3 boundary (192 bytes) --- */
1074 } __randomize_layout
1075   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1076 
1077 struct file_handle {
1078 	__u32 handle_bytes;
1079 	int handle_type;
1080 	/* file identifier */
1081 	unsigned char f_handle[] __counted_by(handle_bytes);
1082 };
1083 
1084 static inline struct file *get_file(struct file *f)
1085 {
1086 	file_ref_inc(&f->f_ref);
1087 	return f;
1088 }
1089 
1090 struct file *get_file_rcu(struct file __rcu **f);
1091 struct file *get_file_active(struct file **f);
1092 
1093 #define file_count(f)	file_ref_read(&(f)->f_ref)
1094 
1095 #define	MAX_NON_LFS	((1UL<<31) - 1)
1096 
1097 /* Page cache limit. The filesystems should put that into their s_maxbytes
1098    limits, otherwise bad things can happen in VM. */
1099 #if BITS_PER_LONG==32
1100 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1101 #elif BITS_PER_LONG==64
1102 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1103 #endif
1104 
1105 /* legacy typedef, should eventually be removed */
1106 typedef void *fl_owner_t;
1107 
1108 struct file_lock;
1109 struct file_lease;
1110 
1111 /* The following constant reflects the upper bound of the file/locking space */
1112 #ifndef OFFSET_MAX
1113 #define OFFSET_MAX	type_max(loff_t)
1114 #define OFFT_OFFSET_MAX	type_max(off_t)
1115 #endif
1116 
1117 int file_f_owner_allocate(struct file *file);
1118 static inline struct fown_struct *file_f_owner(const struct file *file)
1119 {
1120 	return READ_ONCE(file->f_owner);
1121 }
1122 
1123 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1124 
1125 static inline struct inode *file_inode(const struct file *f)
1126 {
1127 	return f->f_inode;
1128 }
1129 
1130 /*
1131  * file_dentry() is a relic from the days that overlayfs was using files with a
1132  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1133  * In those days, file_dentry() was needed to get the underlying fs dentry that
1134  * matches f_inode.
1135  * Files with "fake" path should not exist nowadays, so use an assertion to make
1136  * sure that file_dentry() was not papering over filesystem bugs.
1137  */
1138 static inline struct dentry *file_dentry(const struct file *file)
1139 {
1140 	struct dentry *dentry = file->f_path.dentry;
1141 
1142 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1143 	return dentry;
1144 }
1145 
1146 struct fasync_struct {
1147 	rwlock_t		fa_lock;
1148 	int			magic;
1149 	int			fa_fd;
1150 	struct fasync_struct	*fa_next; /* singly linked list */
1151 	struct file		*fa_file;
1152 	struct rcu_head		fa_rcu;
1153 };
1154 
1155 #define FASYNC_MAGIC 0x4601
1156 
1157 /* SMP safe fasync helpers: */
1158 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1159 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1160 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1161 extern struct fasync_struct *fasync_alloc(void);
1162 extern void fasync_free(struct fasync_struct *);
1163 
1164 /* can be called from interrupts */
1165 extern void kill_fasync(struct fasync_struct **, int, int);
1166 
1167 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1168 extern int f_setown(struct file *filp, int who, int force);
1169 extern void f_delown(struct file *filp);
1170 extern pid_t f_getown(struct file *filp);
1171 extern int send_sigurg(struct file *file);
1172 
1173 /*
1174  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1175  * represented in both.
1176  */
1177 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1178 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1179 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1180 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1181 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1182 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1183 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1184 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1185 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1186 #define SB_SILENT       BIT(15)
1187 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1188 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1189 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1190 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1191 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1192 
1193 /* These sb flags are internal to the kernel */
1194 #define SB_DEAD         BIT(21)
1195 #define SB_DYING        BIT(24)
1196 #define SB_SUBMOUNT     BIT(26)
1197 #define SB_FORCE        BIT(27)
1198 #define SB_NOSEC        BIT(28)
1199 #define SB_BORN         BIT(29)
1200 #define SB_ACTIVE       BIT(30)
1201 #define SB_NOUSER       BIT(31)
1202 
1203 /* These flags relate to encoding and casefolding */
1204 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1205 
1206 #define sb_has_strict_encoding(sb) \
1207 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1208 
1209 /*
1210  *	Umount options
1211  */
1212 
1213 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1214 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1215 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1216 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1217 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1218 
1219 /* sb->s_iflags */
1220 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1221 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1222 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1223 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1224 
1225 /* sb->s_iflags to limit user namespace mounts */
1226 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1227 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1228 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1229 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1230 
1231 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1232 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1233 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1234 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1235 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1236 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1237 
1238 /* Possible states of 'frozen' field */
1239 enum {
1240 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1241 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1242 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1243 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1244 					 * internal threads if needed) */
1245 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1246 };
1247 
1248 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1249 
1250 struct sb_writers {
1251 	unsigned short			frozen;		/* Is sb frozen? */
1252 	int				freeze_kcount;	/* How many kernel freeze requests? */
1253 	int				freeze_ucount;	/* How many userspace freeze requests? */
1254 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1255 };
1256 
1257 struct super_block {
1258 	struct list_head	s_list;		/* Keep this first */
1259 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1260 	unsigned char		s_blocksize_bits;
1261 	unsigned long		s_blocksize;
1262 	loff_t			s_maxbytes;	/* Max file size */
1263 	struct file_system_type	*s_type;
1264 	const struct super_operations	*s_op;
1265 	const struct dquot_operations	*dq_op;
1266 	const struct quotactl_ops	*s_qcop;
1267 	const struct export_operations *s_export_op;
1268 	unsigned long		s_flags;
1269 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1270 	unsigned long		s_magic;
1271 	struct dentry		*s_root;
1272 	struct rw_semaphore	s_umount;
1273 	int			s_count;
1274 	atomic_t		s_active;
1275 #ifdef CONFIG_SECURITY
1276 	void                    *s_security;
1277 #endif
1278 	const struct xattr_handler * const *s_xattr;
1279 #ifdef CONFIG_FS_ENCRYPTION
1280 	const struct fscrypt_operations	*s_cop;
1281 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1282 #endif
1283 #ifdef CONFIG_FS_VERITY
1284 	const struct fsverity_operations *s_vop;
1285 #endif
1286 #if IS_ENABLED(CONFIG_UNICODE)
1287 	struct unicode_map *s_encoding;
1288 	__u16 s_encoding_flags;
1289 #endif
1290 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1291 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1292 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1293 	struct file		*s_bdev_file;
1294 	struct backing_dev_info *s_bdi;
1295 	struct mtd_info		*s_mtd;
1296 	struct hlist_node	s_instances;
1297 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1298 	struct quota_info	s_dquot;	/* Diskquota specific options */
1299 
1300 	struct sb_writers	s_writers;
1301 
1302 	/*
1303 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1304 	 * s_fsnotify_info together for cache efficiency. They are frequently
1305 	 * accessed and rarely modified.
1306 	 */
1307 	void			*s_fs_info;	/* Filesystem private info */
1308 
1309 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1310 	u32			s_time_gran;
1311 	/* Time limits for c/m/atime in seconds */
1312 	time64_t		   s_time_min;
1313 	time64_t		   s_time_max;
1314 #ifdef CONFIG_FSNOTIFY
1315 	u32			s_fsnotify_mask;
1316 	struct fsnotify_sb_info	*s_fsnotify_info;
1317 #endif
1318 
1319 	/*
1320 	 * q: why are s_id and s_sysfs_name not the same? both are human
1321 	 * readable strings that identify the filesystem
1322 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1323 	 * and we want to when a device starts out as single device (s_id is dev
1324 	 * name) but then a device is hot added and we have to switch to
1325 	 * identifying it by UUID
1326 	 * but s_sysfs_name is a handle for programmatic access, and can't
1327 	 * change at runtime
1328 	 */
1329 	char			s_id[32];	/* Informational name */
1330 	uuid_t			s_uuid;		/* UUID */
1331 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1332 
1333 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1334 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1335 
1336 	unsigned int		s_max_links;
1337 
1338 	/*
1339 	 * The next field is for VFS *only*. No filesystems have any business
1340 	 * even looking at it. You had been warned.
1341 	 */
1342 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1343 
1344 	/*
1345 	 * Filesystem subtype.  If non-empty the filesystem type field
1346 	 * in /proc/mounts will be "type.subtype"
1347 	 */
1348 	const char *s_subtype;
1349 
1350 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1351 
1352 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1353 
1354 	/* Number of inodes with nlink == 0 but still referenced */
1355 	atomic_long_t s_remove_count;
1356 
1357 	/* Read-only state of the superblock is being changed */
1358 	int s_readonly_remount;
1359 
1360 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1361 	errseq_t s_wb_err;
1362 
1363 	/* AIO completions deferred from interrupt context */
1364 	struct workqueue_struct *s_dio_done_wq;
1365 	struct hlist_head s_pins;
1366 
1367 	/*
1368 	 * Owning user namespace and default context in which to
1369 	 * interpret filesystem uids, gids, quotas, device nodes,
1370 	 * xattrs and security labels.
1371 	 */
1372 	struct user_namespace *s_user_ns;
1373 
1374 	/*
1375 	 * The list_lru structure is essentially just a pointer to a table
1376 	 * of per-node lru lists, each of which has its own spinlock.
1377 	 * There is no need to put them into separate cachelines.
1378 	 */
1379 	struct list_lru		s_dentry_lru;
1380 	struct list_lru		s_inode_lru;
1381 	struct rcu_head		rcu;
1382 	struct work_struct	destroy_work;
1383 
1384 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1385 
1386 	/*
1387 	 * Indicates how deep in a filesystem stack this SB is
1388 	 */
1389 	int s_stack_depth;
1390 
1391 	/* s_inode_list_lock protects s_inodes */
1392 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1393 	struct list_head	s_inodes;	/* all inodes */
1394 
1395 	spinlock_t		s_inode_wblist_lock;
1396 	struct list_head	s_inodes_wb;	/* writeback inodes */
1397 } __randomize_layout;
1398 
1399 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1400 {
1401 	return inode->i_sb->s_user_ns;
1402 }
1403 
1404 /* Helper functions so that in most cases filesystems will
1405  * not need to deal directly with kuid_t and kgid_t and can
1406  * instead deal with the raw numeric values that are stored
1407  * in the filesystem.
1408  */
1409 static inline uid_t i_uid_read(const struct inode *inode)
1410 {
1411 	return from_kuid(i_user_ns(inode), inode->i_uid);
1412 }
1413 
1414 static inline gid_t i_gid_read(const struct inode *inode)
1415 {
1416 	return from_kgid(i_user_ns(inode), inode->i_gid);
1417 }
1418 
1419 static inline void i_uid_write(struct inode *inode, uid_t uid)
1420 {
1421 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1422 }
1423 
1424 static inline void i_gid_write(struct inode *inode, gid_t gid)
1425 {
1426 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1427 }
1428 
1429 /**
1430  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1431  * @idmap: idmap of the mount the inode was found from
1432  * @inode: inode to map
1433  *
1434  * Return: whe inode's i_uid mapped down according to @idmap.
1435  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1436  */
1437 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1438 					 const struct inode *inode)
1439 {
1440 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1441 }
1442 
1443 /**
1444  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1445  * @idmap: idmap of the mount the inode was found from
1446  * @attr: the new attributes of @inode
1447  * @inode: the inode to update
1448  *
1449  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1450  * mounts into account if the filesystem supports it.
1451  *
1452  * Return: true if @inode's i_uid field needs to be updated, false if not.
1453  */
1454 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1455 				      const struct iattr *attr,
1456 				      const struct inode *inode)
1457 {
1458 	return ((attr->ia_valid & ATTR_UID) &&
1459 		!vfsuid_eq(attr->ia_vfsuid,
1460 			   i_uid_into_vfsuid(idmap, inode)));
1461 }
1462 
1463 /**
1464  * i_uid_update - update @inode's i_uid field
1465  * @idmap: idmap of the mount the inode was found from
1466  * @attr: the new attributes of @inode
1467  * @inode: the inode to update
1468  *
1469  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1470  * mount into the filesystem kuid.
1471  */
1472 static inline void i_uid_update(struct mnt_idmap *idmap,
1473 				const struct iattr *attr,
1474 				struct inode *inode)
1475 {
1476 	if (attr->ia_valid & ATTR_UID)
1477 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1478 					   attr->ia_vfsuid);
1479 }
1480 
1481 /**
1482  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1483  * @idmap: idmap of the mount the inode was found from
1484  * @inode: inode to map
1485  *
1486  * Return: the inode's i_gid mapped down according to @idmap.
1487  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1488  */
1489 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1490 					 const struct inode *inode)
1491 {
1492 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1493 }
1494 
1495 /**
1496  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1497  * @idmap: idmap of the mount the inode was found from
1498  * @attr: the new attributes of @inode
1499  * @inode: the inode to update
1500  *
1501  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1502  * mounts into account if the filesystem supports it.
1503  *
1504  * Return: true if @inode's i_gid field needs to be updated, false if not.
1505  */
1506 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1507 				      const struct iattr *attr,
1508 				      const struct inode *inode)
1509 {
1510 	return ((attr->ia_valid & ATTR_GID) &&
1511 		!vfsgid_eq(attr->ia_vfsgid,
1512 			   i_gid_into_vfsgid(idmap, inode)));
1513 }
1514 
1515 /**
1516  * i_gid_update - update @inode's i_gid field
1517  * @idmap: idmap of the mount the inode was found from
1518  * @attr: the new attributes of @inode
1519  * @inode: the inode to update
1520  *
1521  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1522  * mount into the filesystem kgid.
1523  */
1524 static inline void i_gid_update(struct mnt_idmap *idmap,
1525 				const struct iattr *attr,
1526 				struct inode *inode)
1527 {
1528 	if (attr->ia_valid & ATTR_GID)
1529 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1530 					   attr->ia_vfsgid);
1531 }
1532 
1533 /**
1534  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1535  * @inode: inode to initialize
1536  * @idmap: idmap of the mount the inode was found from
1537  *
1538  * Initialize the i_uid field of @inode. If the inode was found/created via
1539  * an idmapped mount map the caller's fsuid according to @idmap.
1540  */
1541 static inline void inode_fsuid_set(struct inode *inode,
1542 				   struct mnt_idmap *idmap)
1543 {
1544 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1545 }
1546 
1547 /**
1548  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1549  * @inode: inode to initialize
1550  * @idmap: idmap of the mount the inode was found from
1551  *
1552  * Initialize the i_gid field of @inode. If the inode was found/created via
1553  * an idmapped mount map the caller's fsgid according to @idmap.
1554  */
1555 static inline void inode_fsgid_set(struct inode *inode,
1556 				   struct mnt_idmap *idmap)
1557 {
1558 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1559 }
1560 
1561 /**
1562  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1563  * @sb: the superblock we want a mapping in
1564  * @idmap: idmap of the relevant mount
1565  *
1566  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1567  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1568  * the caller's fsuid and fsgid according to the @idmap first.
1569  *
1570  * Return: true if fsuid and fsgid is mapped, false if not.
1571  */
1572 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1573 					struct mnt_idmap *idmap)
1574 {
1575 	struct user_namespace *fs_userns = sb->s_user_ns;
1576 	kuid_t kuid;
1577 	kgid_t kgid;
1578 
1579 	kuid = mapped_fsuid(idmap, fs_userns);
1580 	if (!uid_valid(kuid))
1581 		return false;
1582 	kgid = mapped_fsgid(idmap, fs_userns);
1583 	if (!gid_valid(kgid))
1584 		return false;
1585 	return kuid_has_mapping(fs_userns, kuid) &&
1586 	       kgid_has_mapping(fs_userns, kgid);
1587 }
1588 
1589 struct timespec64 current_time(struct inode *inode);
1590 struct timespec64 inode_set_ctime_current(struct inode *inode);
1591 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1592 					struct timespec64 update);
1593 
1594 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1595 {
1596 	return inode->i_atime_sec;
1597 }
1598 
1599 static inline long inode_get_atime_nsec(const struct inode *inode)
1600 {
1601 	return inode->i_atime_nsec;
1602 }
1603 
1604 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1605 {
1606 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1607 				 .tv_nsec = inode_get_atime_nsec(inode) };
1608 
1609 	return ts;
1610 }
1611 
1612 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1613 						      struct timespec64 ts)
1614 {
1615 	inode->i_atime_sec = ts.tv_sec;
1616 	inode->i_atime_nsec = ts.tv_nsec;
1617 	return ts;
1618 }
1619 
1620 static inline struct timespec64 inode_set_atime(struct inode *inode,
1621 						time64_t sec, long nsec)
1622 {
1623 	struct timespec64 ts = { .tv_sec  = sec,
1624 				 .tv_nsec = nsec };
1625 
1626 	return inode_set_atime_to_ts(inode, ts);
1627 }
1628 
1629 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1630 {
1631 	return inode->i_mtime_sec;
1632 }
1633 
1634 static inline long inode_get_mtime_nsec(const struct inode *inode)
1635 {
1636 	return inode->i_mtime_nsec;
1637 }
1638 
1639 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1640 {
1641 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1642 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1643 	return ts;
1644 }
1645 
1646 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1647 						      struct timespec64 ts)
1648 {
1649 	inode->i_mtime_sec = ts.tv_sec;
1650 	inode->i_mtime_nsec = ts.tv_nsec;
1651 	return ts;
1652 }
1653 
1654 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1655 						time64_t sec, long nsec)
1656 {
1657 	struct timespec64 ts = { .tv_sec  = sec,
1658 				 .tv_nsec = nsec };
1659 	return inode_set_mtime_to_ts(inode, ts);
1660 }
1661 
1662 /*
1663  * Multigrain timestamps
1664  *
1665  * Conditionally use fine-grained ctime and mtime timestamps when there
1666  * are users actively observing them via getattr. The primary use-case
1667  * for this is NFS clients that use the ctime to distinguish between
1668  * different states of the file, and that are often fooled by multiple
1669  * operations that occur in the same coarse-grained timer tick.
1670  */
1671 #define I_CTIME_QUERIED		((u32)BIT(31))
1672 
1673 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1674 {
1675 	return inode->i_ctime_sec;
1676 }
1677 
1678 static inline long inode_get_ctime_nsec(const struct inode *inode)
1679 {
1680 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1681 }
1682 
1683 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1684 {
1685 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1686 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1687 
1688 	return ts;
1689 }
1690 
1691 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1692 
1693 /**
1694  * inode_set_ctime - set the ctime in the inode
1695  * @inode: inode in which to set the ctime
1696  * @sec: tv_sec value to set
1697  * @nsec: tv_nsec value to set
1698  *
1699  * Set the ctime in @inode to { @sec, @nsec }
1700  */
1701 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1702 						time64_t sec, long nsec)
1703 {
1704 	struct timespec64 ts = { .tv_sec  = sec,
1705 				 .tv_nsec = nsec };
1706 
1707 	return inode_set_ctime_to_ts(inode, ts);
1708 }
1709 
1710 struct timespec64 simple_inode_init_ts(struct inode *inode);
1711 
1712 /*
1713  * Snapshotting support.
1714  */
1715 
1716 /*
1717  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1718  * instead.
1719  */
1720 static inline void __sb_end_write(struct super_block *sb, int level)
1721 {
1722 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1723 }
1724 
1725 static inline void __sb_start_write(struct super_block *sb, int level)
1726 {
1727 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1728 }
1729 
1730 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1731 {
1732 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1733 }
1734 
1735 #define __sb_writers_acquired(sb, lev)	\
1736 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1737 #define __sb_writers_release(sb, lev)	\
1738 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1739 
1740 /**
1741  * __sb_write_started - check if sb freeze level is held
1742  * @sb: the super we write to
1743  * @level: the freeze level
1744  *
1745  * * > 0 - sb freeze level is held
1746  * *   0 - sb freeze level is not held
1747  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1748  */
1749 static inline int __sb_write_started(const struct super_block *sb, int level)
1750 {
1751 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1752 }
1753 
1754 /**
1755  * sb_write_started - check if SB_FREEZE_WRITE is held
1756  * @sb: the super we write to
1757  *
1758  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1759  */
1760 static inline bool sb_write_started(const struct super_block *sb)
1761 {
1762 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1763 }
1764 
1765 /**
1766  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1767  * @sb: the super we write to
1768  *
1769  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1770  */
1771 static inline bool sb_write_not_started(const struct super_block *sb)
1772 {
1773 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1774 }
1775 
1776 /**
1777  * file_write_started - check if SB_FREEZE_WRITE is held
1778  * @file: the file we write to
1779  *
1780  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1781  * May be false positive with !S_ISREG, because file_start_write() has
1782  * no effect on !S_ISREG.
1783  */
1784 static inline bool file_write_started(const struct file *file)
1785 {
1786 	if (!S_ISREG(file_inode(file)->i_mode))
1787 		return true;
1788 	return sb_write_started(file_inode(file)->i_sb);
1789 }
1790 
1791 /**
1792  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1793  * @file: the file we write to
1794  *
1795  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1796  * May be false positive with !S_ISREG, because file_start_write() has
1797  * no effect on !S_ISREG.
1798  */
1799 static inline bool file_write_not_started(const struct file *file)
1800 {
1801 	if (!S_ISREG(file_inode(file)->i_mode))
1802 		return true;
1803 	return sb_write_not_started(file_inode(file)->i_sb);
1804 }
1805 
1806 /**
1807  * sb_end_write - drop write access to a superblock
1808  * @sb: the super we wrote to
1809  *
1810  * Decrement number of writers to the filesystem. Wake up possible waiters
1811  * wanting to freeze the filesystem.
1812  */
1813 static inline void sb_end_write(struct super_block *sb)
1814 {
1815 	__sb_end_write(sb, SB_FREEZE_WRITE);
1816 }
1817 
1818 /**
1819  * sb_end_pagefault - drop write access to a superblock from a page fault
1820  * @sb: the super we wrote to
1821  *
1822  * Decrement number of processes handling write page fault to the filesystem.
1823  * Wake up possible waiters wanting to freeze the filesystem.
1824  */
1825 static inline void sb_end_pagefault(struct super_block *sb)
1826 {
1827 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1828 }
1829 
1830 /**
1831  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1832  * @sb: the super we wrote to
1833  *
1834  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1835  * waiters wanting to freeze the filesystem.
1836  */
1837 static inline void sb_end_intwrite(struct super_block *sb)
1838 {
1839 	__sb_end_write(sb, SB_FREEZE_FS);
1840 }
1841 
1842 /**
1843  * sb_start_write - get write access to a superblock
1844  * @sb: the super we write to
1845  *
1846  * When a process wants to write data or metadata to a file system (i.e. dirty
1847  * a page or an inode), it should embed the operation in a sb_start_write() -
1848  * sb_end_write() pair to get exclusion against file system freezing. This
1849  * function increments number of writers preventing freezing. If the file
1850  * system is already frozen, the function waits until the file system is
1851  * thawed.
1852  *
1853  * Since freeze protection behaves as a lock, users have to preserve
1854  * ordering of freeze protection and other filesystem locks. Generally,
1855  * freeze protection should be the outermost lock. In particular, we have:
1856  *
1857  * sb_start_write
1858  *   -> i_mutex			(write path, truncate, directory ops, ...)
1859  *   -> s_umount		(freeze_super, thaw_super)
1860  */
1861 static inline void sb_start_write(struct super_block *sb)
1862 {
1863 	__sb_start_write(sb, SB_FREEZE_WRITE);
1864 }
1865 
1866 static inline bool sb_start_write_trylock(struct super_block *sb)
1867 {
1868 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1869 }
1870 
1871 /**
1872  * sb_start_pagefault - get write access to a superblock from a page fault
1873  * @sb: the super we write to
1874  *
1875  * When a process starts handling write page fault, it should embed the
1876  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1877  * exclusion against file system freezing. This is needed since the page fault
1878  * is going to dirty a page. This function increments number of running page
1879  * faults preventing freezing. If the file system is already frozen, the
1880  * function waits until the file system is thawed.
1881  *
1882  * Since page fault freeze protection behaves as a lock, users have to preserve
1883  * ordering of freeze protection and other filesystem locks. It is advised to
1884  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1885  * handling code implies lock dependency:
1886  *
1887  * mmap_lock
1888  *   -> sb_start_pagefault
1889  */
1890 static inline void sb_start_pagefault(struct super_block *sb)
1891 {
1892 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1893 }
1894 
1895 /**
1896  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1897  * @sb: the super we write to
1898  *
1899  * This is the third level of protection against filesystem freezing. It is
1900  * free for use by a filesystem. The only requirement is that it must rank
1901  * below sb_start_pagefault.
1902  *
1903  * For example filesystem can call sb_start_intwrite() when starting a
1904  * transaction which somewhat eases handling of freezing for internal sources
1905  * of filesystem changes (internal fs threads, discarding preallocation on file
1906  * close, etc.).
1907  */
1908 static inline void sb_start_intwrite(struct super_block *sb)
1909 {
1910 	__sb_start_write(sb, SB_FREEZE_FS);
1911 }
1912 
1913 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1914 {
1915 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1916 }
1917 
1918 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1919 			    const struct inode *inode);
1920 
1921 /*
1922  * VFS helper functions..
1923  */
1924 int vfs_create(struct mnt_idmap *, struct inode *,
1925 	       struct dentry *, umode_t, bool);
1926 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1927 	      struct dentry *, umode_t);
1928 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1929               umode_t, dev_t);
1930 int vfs_symlink(struct mnt_idmap *, struct inode *,
1931 		struct dentry *, const char *);
1932 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1933 	     struct dentry *, struct inode **);
1934 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1935 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1936 	       struct inode **);
1937 
1938 /**
1939  * struct renamedata - contains all information required for renaming
1940  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1941  * @old_dir:           parent of source
1942  * @old_dentry:                source
1943  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1944  * @new_dir:           parent of destination
1945  * @new_dentry:                destination
1946  * @delegated_inode:   returns an inode needing a delegation break
1947  * @flags:             rename flags
1948  */
1949 struct renamedata {
1950 	struct mnt_idmap *old_mnt_idmap;
1951 	struct inode *old_dir;
1952 	struct dentry *old_dentry;
1953 	struct mnt_idmap *new_mnt_idmap;
1954 	struct inode *new_dir;
1955 	struct dentry *new_dentry;
1956 	struct inode **delegated_inode;
1957 	unsigned int flags;
1958 } __randomize_layout;
1959 
1960 int vfs_rename(struct renamedata *);
1961 
1962 static inline int vfs_whiteout(struct mnt_idmap *idmap,
1963 			       struct inode *dir, struct dentry *dentry)
1964 {
1965 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1966 			 WHITEOUT_DEV);
1967 }
1968 
1969 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1970 				 const struct path *parentpath,
1971 				 umode_t mode, int open_flag,
1972 				 const struct cred *cred);
1973 struct file *kernel_file_open(const struct path *path, int flags,
1974 			      const struct cred *cred);
1975 
1976 int vfs_mkobj(struct dentry *, umode_t,
1977 		int (*f)(struct dentry *, umode_t, void *),
1978 		void *);
1979 
1980 int vfs_fchown(struct file *file, uid_t user, gid_t group);
1981 int vfs_fchmod(struct file *file, umode_t mode);
1982 int vfs_utimes(const struct path *path, struct timespec64 *times);
1983 
1984 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1985 
1986 #ifdef CONFIG_COMPAT
1987 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
1988 					unsigned long arg);
1989 #else
1990 #define compat_ptr_ioctl NULL
1991 #endif
1992 
1993 /*
1994  * VFS file helper functions.
1995  */
1996 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
1997 		      const struct inode *dir, umode_t mode);
1998 extern bool may_open_dev(const struct path *path);
1999 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2000 			const struct inode *dir, umode_t mode);
2001 bool in_group_or_capable(struct mnt_idmap *idmap,
2002 			 const struct inode *inode, vfsgid_t vfsgid);
2003 
2004 /*
2005  * This is the "filldir" function type, used by readdir() to let
2006  * the kernel specify what kind of dirent layout it wants to have.
2007  * This allows the kernel to read directories into kernel space or
2008  * to have different dirent layouts depending on the binary type.
2009  * Return 'true' to keep going and 'false' if there are no more entries.
2010  */
2011 struct dir_context;
2012 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2013 			 unsigned);
2014 
2015 struct dir_context {
2016 	filldir_t actor;
2017 	loff_t pos;
2018 };
2019 
2020 /*
2021  * These flags let !MMU mmap() govern direct device mapping vs immediate
2022  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2023  *
2024  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2025  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2026  * NOMMU_MAP_READ:	Can be mapped for reading
2027  * NOMMU_MAP_WRITE:	Can be mapped for writing
2028  * NOMMU_MAP_EXEC:	Can be mapped for execution
2029  */
2030 #define NOMMU_MAP_COPY		0x00000001
2031 #define NOMMU_MAP_DIRECT	0x00000008
2032 #define NOMMU_MAP_READ		VM_MAYREAD
2033 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2034 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2035 
2036 #define NOMMU_VMFLAGS \
2037 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2038 
2039 /*
2040  * These flags control the behavior of the remap_file_range function pointer.
2041  * If it is called with len == 0 that means "remap to end of source file".
2042  * See Documentation/filesystems/vfs.rst for more details about this call.
2043  *
2044  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2045  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2046  */
2047 #define REMAP_FILE_DEDUP		(1 << 0)
2048 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2049 
2050 /*
2051  * These flags signal that the caller is ok with altering various aspects of
2052  * the behavior of the remap operation.  The changes must be made by the
2053  * implementation; the vfs remap helper functions can take advantage of them.
2054  * Flags in this category exist to preserve the quirky behavior of the hoisted
2055  * btrfs clone/dedupe ioctls.
2056  */
2057 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2058 
2059 /*
2060  * These flags control the behavior of vfs_copy_file_range().
2061  * They are not available to the user via syscall.
2062  *
2063  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2064  */
2065 #define COPY_FILE_SPLICE		(1 << 0)
2066 
2067 struct iov_iter;
2068 struct io_uring_cmd;
2069 struct offset_ctx;
2070 
2071 typedef unsigned int __bitwise fop_flags_t;
2072 
2073 struct file_operations {
2074 	struct module *owner;
2075 	fop_flags_t fop_flags;
2076 	loff_t (*llseek) (struct file *, loff_t, int);
2077 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2078 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2079 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2080 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2081 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2082 			unsigned int flags);
2083 	int (*iterate_shared) (struct file *, struct dir_context *);
2084 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2085 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2086 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2087 	int (*mmap) (struct file *, struct vm_area_struct *);
2088 	int (*open) (struct inode *, struct file *);
2089 	int (*flush) (struct file *, fl_owner_t id);
2090 	int (*release) (struct inode *, struct file *);
2091 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2092 	int (*fasync) (int, struct file *, int);
2093 	int (*lock) (struct file *, int, struct file_lock *);
2094 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2095 	int (*check_flags)(int);
2096 	int (*flock) (struct file *, int, struct file_lock *);
2097 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2098 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2099 	void (*splice_eof)(struct file *file);
2100 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2101 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2102 			  loff_t len);
2103 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2104 #ifndef CONFIG_MMU
2105 	unsigned (*mmap_capabilities)(struct file *);
2106 #endif
2107 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2108 			loff_t, size_t, unsigned int);
2109 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2110 				   struct file *file_out, loff_t pos_out,
2111 				   loff_t len, unsigned int remap_flags);
2112 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2113 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2114 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2115 				unsigned int poll_flags);
2116 } __randomize_layout;
2117 
2118 /* Supports async buffered reads */
2119 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2120 /* Supports async buffered writes */
2121 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2122 /* Supports synchronous page faults for mappings */
2123 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2124 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2125 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2126 /* Contains huge pages */
2127 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2128 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2129 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2130 /* Supports asynchronous lock callbacks */
2131 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2132 /* File system supports uncached read/write buffered IO */
2133 #define FOP_DONTCACHE		((__force fop_flags_t)(1 << 7))
2134 
2135 /* Wrap a directory iterator that needs exclusive inode access */
2136 int wrap_directory_iterator(struct file *, struct dir_context *,
2137 			    int (*) (struct file *, struct dir_context *));
2138 #define WRAP_DIR_ITER(x) \
2139 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2140 	{ return wrap_directory_iterator(file, ctx, x); }
2141 
2142 struct inode_operations {
2143 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2144 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2145 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2146 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2147 
2148 	int (*readlink) (struct dentry *, char __user *,int);
2149 
2150 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2151 		       umode_t, bool);
2152 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2153 	int (*unlink) (struct inode *,struct dentry *);
2154 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2155 			const char *);
2156 	int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2157 		      umode_t);
2158 	int (*rmdir) (struct inode *,struct dentry *);
2159 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2160 		      umode_t,dev_t);
2161 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2162 			struct inode *, struct dentry *, unsigned int);
2163 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2164 	int (*getattr) (struct mnt_idmap *, const struct path *,
2165 			struct kstat *, u32, unsigned int);
2166 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2167 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2168 		      u64 len);
2169 	int (*update_time)(struct inode *, int);
2170 	int (*atomic_open)(struct inode *, struct dentry *,
2171 			   struct file *, unsigned open_flag,
2172 			   umode_t create_mode);
2173 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2174 			struct file *, umode_t);
2175 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2176 				     int);
2177 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2178 		       struct posix_acl *, int);
2179 	int (*fileattr_set)(struct mnt_idmap *idmap,
2180 			    struct dentry *dentry, struct fileattr *fa);
2181 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2182 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2183 } ____cacheline_aligned;
2184 
2185 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2186 {
2187 	return file->f_op->mmap(file, vma);
2188 }
2189 
2190 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2191 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2192 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2193 				   loff_t, size_t, unsigned int);
2194 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2195 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2196 				    struct file *file_out, loff_t pos_out,
2197 				    loff_t *len, unsigned int remap_flags,
2198 				    const struct iomap_ops *dax_read_ops);
2199 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2200 				  struct file *file_out, loff_t pos_out,
2201 				  loff_t *count, unsigned int remap_flags);
2202 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2203 				   struct file *file_out, loff_t pos_out,
2204 				   loff_t len, unsigned int remap_flags);
2205 extern int vfs_dedupe_file_range(struct file *file,
2206 				 struct file_dedupe_range *same);
2207 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2208 					struct file *dst_file, loff_t dst_pos,
2209 					loff_t len, unsigned int remap_flags);
2210 
2211 /**
2212  * enum freeze_holder - holder of the freeze
2213  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2214  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2215  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2216  *
2217  * Indicate who the owner of the freeze or thaw request is and whether
2218  * the freeze needs to be exclusive or can nest.
2219  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2220  * same holder aren't allowed. It is however allowed to hold a single
2221  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2222  * the same time. This is relied upon by some filesystems during online
2223  * repair or similar.
2224  */
2225 enum freeze_holder {
2226 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2227 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2228 	FREEZE_MAY_NEST		= (1U << 2),
2229 };
2230 
2231 struct super_operations {
2232    	struct inode *(*alloc_inode)(struct super_block *sb);
2233 	void (*destroy_inode)(struct inode *);
2234 	void (*free_inode)(struct inode *);
2235 
2236    	void (*dirty_inode) (struct inode *, int flags);
2237 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2238 	int (*drop_inode) (struct inode *);
2239 	void (*evict_inode) (struct inode *);
2240 	void (*put_super) (struct super_block *);
2241 	int (*sync_fs)(struct super_block *sb, int wait);
2242 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2243 	int (*freeze_fs) (struct super_block *);
2244 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2245 	int (*unfreeze_fs) (struct super_block *);
2246 	int (*statfs) (struct dentry *, struct kstatfs *);
2247 	int (*remount_fs) (struct super_block *, int *, char *);
2248 	void (*umount_begin) (struct super_block *);
2249 
2250 	int (*show_options)(struct seq_file *, struct dentry *);
2251 	int (*show_devname)(struct seq_file *, struct dentry *);
2252 	int (*show_path)(struct seq_file *, struct dentry *);
2253 	int (*show_stats)(struct seq_file *, struct dentry *);
2254 #ifdef CONFIG_QUOTA
2255 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2256 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2257 	struct dquot __rcu **(*get_dquots)(struct inode *);
2258 #endif
2259 	long (*nr_cached_objects)(struct super_block *,
2260 				  struct shrink_control *);
2261 	long (*free_cached_objects)(struct super_block *,
2262 				    struct shrink_control *);
2263 	void (*shutdown)(struct super_block *sb);
2264 };
2265 
2266 /*
2267  * Inode flags - they have no relation to superblock flags now
2268  */
2269 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2270 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2271 #define S_APPEND	(1 << 2)  /* Append-only file */
2272 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2273 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2274 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2275 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2276 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2277 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2278 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2279 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2280 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2281 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2282 #ifdef CONFIG_FS_DAX
2283 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2284 #else
2285 #define S_DAX		0	  /* Make all the DAX code disappear */
2286 #endif
2287 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2288 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2289 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2290 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2291 
2292 /*
2293  * Note that nosuid etc flags are inode-specific: setting some file-system
2294  * flags just means all the inodes inherit those flags by default. It might be
2295  * possible to override it selectively if you really wanted to with some
2296  * ioctl() that is not currently implemented.
2297  *
2298  * Exception: SB_RDONLY is always applied to the entire file system.
2299  *
2300  * Unfortunately, it is possible to change a filesystems flags with it mounted
2301  * with files in use.  This means that all of the inodes will not have their
2302  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2303  * flags, so these have to be checked separately. -- [email protected]
2304  */
2305 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2306 
2307 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2308 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2309 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2310 					((inode)->i_flags & S_SYNC))
2311 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2312 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2313 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2314 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2315 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2316 
2317 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2318 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2319 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2320 
2321 #ifdef CONFIG_FS_POSIX_ACL
2322 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2323 #else
2324 #define IS_POSIXACL(inode)	0
2325 #endif
2326 
2327 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2328 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2329 
2330 #ifdef CONFIG_SWAP
2331 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2332 #else
2333 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2334 #endif
2335 
2336 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2337 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2338 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2339 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2340 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2341 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2342 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2343 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2344 
2345 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2346 				 (inode)->i_rdev == WHITEOUT_DEV)
2347 
2348 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2349 				   struct inode *inode)
2350 {
2351 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2352 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2353 }
2354 
2355 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2356 {
2357 	*kiocb = (struct kiocb) {
2358 		.ki_filp = filp,
2359 		.ki_flags = filp->f_iocb_flags,
2360 		.ki_ioprio = get_current_ioprio(),
2361 	};
2362 }
2363 
2364 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2365 			       struct file *filp)
2366 {
2367 	*kiocb = (struct kiocb) {
2368 		.ki_filp = filp,
2369 		.ki_flags = kiocb_src->ki_flags,
2370 		.ki_ioprio = kiocb_src->ki_ioprio,
2371 		.ki_pos = kiocb_src->ki_pos,
2372 	};
2373 }
2374 
2375 /*
2376  * Inode state bits.  Protected by inode->i_lock
2377  *
2378  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2379  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2380  *
2381  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2382  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2383  * various stages of removing an inode.
2384  *
2385  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2386  *
2387  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2388  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2389  *			Timestamp updates are the usual cause.
2390  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2391  *			these changes separately from I_DIRTY_SYNC so that we
2392  *			don't have to write inode on fdatasync() when only
2393  *			e.g. the timestamps have changed.
2394  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2395  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2396  *			lazytime mount option is enabled.  We keep track of this
2397  *			separately from I_DIRTY_SYNC in order to implement
2398  *			lazytime.  This gets cleared if I_DIRTY_INODE
2399  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2400  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2401  *			in place because writeback might already be in progress
2402  *			and we don't want to lose the time update
2403  * I_NEW		Serves as both a mutex and completion notification.
2404  *			New inodes set I_NEW.  If two processes both create
2405  *			the same inode, one of them will release its inode and
2406  *			wait for I_NEW to be released before returning.
2407  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2408  *			also cause waiting on I_NEW, without I_NEW actually
2409  *			being set.  find_inode() uses this to prevent returning
2410  *			nearly-dead inodes.
2411  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2412  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2413  *			cleared.
2414  * I_FREEING		Set when inode is about to be freed but still has dirty
2415  *			pages or buffers attached or the inode itself is still
2416  *			dirty.
2417  * I_CLEAR		Added by clear_inode().  In this state the inode is
2418  *			clean and can be destroyed.  Inode keeps I_FREEING.
2419  *
2420  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2421  *			prohibited for many purposes.  iget() must wait for
2422  *			the inode to be completely released, then create it
2423  *			anew.  Other functions will just ignore such inodes,
2424  *			if appropriate.  I_NEW is used for waiting.
2425  *
2426  * I_SYNC		Writeback of inode is running. The bit is set during
2427  *			data writeback, and cleared with a wakeup on the bit
2428  *			address once it is done. The bit is also used to pin
2429  *			the inode in memory for flusher thread.
2430  *
2431  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2432  *
2433  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2434  *			synchronize competing switching instances and to tell
2435  *			wb stat updates to grab the i_pages lock.  See
2436  *			inode_switch_wbs_work_fn() for details.
2437  *
2438  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2439  *			and work dirs among overlayfs mounts.
2440  *
2441  * I_CREATING		New object's inode in the middle of setting up.
2442  *
2443  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2444  *
2445  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2446  *			Used to detect that mark_inode_dirty() should not move
2447  * 			inode between dirty lists.
2448  *
2449  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2450  *
2451  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2452  *			i_count.
2453  *
2454  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2455  *
2456  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2457  * upon. There's one free address left.
2458  */
2459 #define __I_NEW			0
2460 #define I_NEW			(1 << __I_NEW)
2461 #define __I_SYNC		1
2462 #define I_SYNC			(1 << __I_SYNC)
2463 #define __I_LRU_ISOLATING	2
2464 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2465 
2466 #define I_DIRTY_SYNC		(1 << 3)
2467 #define I_DIRTY_DATASYNC	(1 << 4)
2468 #define I_DIRTY_PAGES		(1 << 5)
2469 #define I_WILL_FREE		(1 << 6)
2470 #define I_FREEING		(1 << 7)
2471 #define I_CLEAR			(1 << 8)
2472 #define I_REFERENCED		(1 << 9)
2473 #define I_LINKABLE		(1 << 10)
2474 #define I_DIRTY_TIME		(1 << 11)
2475 #define I_WB_SWITCH		(1 << 12)
2476 #define I_OVL_INUSE		(1 << 13)
2477 #define I_CREATING		(1 << 14)
2478 #define I_DONTCACHE		(1 << 15)
2479 #define I_SYNC_QUEUED		(1 << 16)
2480 #define I_PINNING_NETFS_WB	(1 << 17)
2481 
2482 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2483 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2484 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2485 
2486 extern void __mark_inode_dirty(struct inode *, int);
2487 static inline void mark_inode_dirty(struct inode *inode)
2488 {
2489 	__mark_inode_dirty(inode, I_DIRTY);
2490 }
2491 
2492 static inline void mark_inode_dirty_sync(struct inode *inode)
2493 {
2494 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2495 }
2496 
2497 /*
2498  * Returns true if the given inode itself only has dirty timestamps (its pages
2499  * may still be dirty) and isn't currently being allocated or freed.
2500  * Filesystems should call this if when writing an inode when lazytime is
2501  * enabled, they want to opportunistically write the timestamps of other inodes
2502  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2503  * if the given inode is in need of such an opportunistic update.  Requires
2504  * i_lock, or at least later re-checking under i_lock.
2505  */
2506 static inline bool inode_is_dirtytime_only(struct inode *inode)
2507 {
2508 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2509 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2510 }
2511 
2512 extern void inc_nlink(struct inode *inode);
2513 extern void drop_nlink(struct inode *inode);
2514 extern void clear_nlink(struct inode *inode);
2515 extern void set_nlink(struct inode *inode, unsigned int nlink);
2516 
2517 static inline void inode_inc_link_count(struct inode *inode)
2518 {
2519 	inc_nlink(inode);
2520 	mark_inode_dirty(inode);
2521 }
2522 
2523 static inline void inode_dec_link_count(struct inode *inode)
2524 {
2525 	drop_nlink(inode);
2526 	mark_inode_dirty(inode);
2527 }
2528 
2529 enum file_time_flags {
2530 	S_ATIME = 1,
2531 	S_MTIME = 2,
2532 	S_CTIME = 4,
2533 	S_VERSION = 8,
2534 };
2535 
2536 extern bool atime_needs_update(const struct path *, struct inode *);
2537 extern void touch_atime(const struct path *);
2538 int inode_update_time(struct inode *inode, int flags);
2539 
2540 static inline void file_accessed(struct file *file)
2541 {
2542 	if (!(file->f_flags & O_NOATIME))
2543 		touch_atime(&file->f_path);
2544 }
2545 
2546 extern int file_modified(struct file *file);
2547 int kiocb_modified(struct kiocb *iocb);
2548 
2549 int sync_inode_metadata(struct inode *inode, int wait);
2550 
2551 struct file_system_type {
2552 	const char *name;
2553 	int fs_flags;
2554 #define FS_REQUIRES_DEV		1
2555 #define FS_BINARY_MOUNTDATA	2
2556 #define FS_HAS_SUBTYPE		4
2557 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2558 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2559 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2560 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2561 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2562 	int (*init_fs_context)(struct fs_context *);
2563 	const struct fs_parameter_spec *parameters;
2564 	struct dentry *(*mount) (struct file_system_type *, int,
2565 		       const char *, void *);
2566 	void (*kill_sb) (struct super_block *);
2567 	struct module *owner;
2568 	struct file_system_type * next;
2569 	struct hlist_head fs_supers;
2570 
2571 	struct lock_class_key s_lock_key;
2572 	struct lock_class_key s_umount_key;
2573 	struct lock_class_key s_vfs_rename_key;
2574 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2575 
2576 	struct lock_class_key i_lock_key;
2577 	struct lock_class_key i_mutex_key;
2578 	struct lock_class_key invalidate_lock_key;
2579 	struct lock_class_key i_mutex_dir_key;
2580 };
2581 
2582 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2583 
2584 /**
2585  * is_mgtime: is this inode using multigrain timestamps
2586  * @inode: inode to test for multigrain timestamps
2587  *
2588  * Return true if the inode uses multigrain timestamps, false otherwise.
2589  */
2590 static inline bool is_mgtime(const struct inode *inode)
2591 {
2592 	return inode->i_opflags & IOP_MGTIME;
2593 }
2594 
2595 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2596 	int flags, const char *dev_name, void *data,
2597 	int (*fill_super)(struct super_block *, void *, int));
2598 extern struct dentry *mount_single(struct file_system_type *fs_type,
2599 	int flags, void *data,
2600 	int (*fill_super)(struct super_block *, void *, int));
2601 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2602 	int flags, void *data,
2603 	int (*fill_super)(struct super_block *, void *, int));
2604 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2605 void retire_super(struct super_block *sb);
2606 void generic_shutdown_super(struct super_block *sb);
2607 void kill_block_super(struct super_block *sb);
2608 void kill_anon_super(struct super_block *sb);
2609 void kill_litter_super(struct super_block *sb);
2610 void deactivate_super(struct super_block *sb);
2611 void deactivate_locked_super(struct super_block *sb);
2612 int set_anon_super(struct super_block *s, void *data);
2613 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2614 int get_anon_bdev(dev_t *);
2615 void free_anon_bdev(dev_t);
2616 struct super_block *sget_fc(struct fs_context *fc,
2617 			    int (*test)(struct super_block *, struct fs_context *),
2618 			    int (*set)(struct super_block *, struct fs_context *));
2619 struct super_block *sget(struct file_system_type *type,
2620 			int (*test)(struct super_block *,void *),
2621 			int (*set)(struct super_block *,void *),
2622 			int flags, void *data);
2623 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2624 
2625 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2626 #define fops_get(fops) ({						\
2627 	const struct file_operations *_fops = (fops);			\
2628 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2629 })
2630 
2631 #define fops_put(fops) ({						\
2632 	const struct file_operations *_fops = (fops);			\
2633 	if (_fops)							\
2634 		module_put((_fops)->owner);				\
2635 })
2636 
2637 /*
2638  * This one is to be used *ONLY* from ->open() instances.
2639  * fops must be non-NULL, pinned down *and* module dependencies
2640  * should be sufficient to pin the caller down as well.
2641  */
2642 #define replace_fops(f, fops) \
2643 	do {	\
2644 		struct file *__file = (f); \
2645 		fops_put(__file->f_op); \
2646 		BUG_ON(!(__file->f_op = (fops))); \
2647 	} while(0)
2648 
2649 extern int register_filesystem(struct file_system_type *);
2650 extern int unregister_filesystem(struct file_system_type *);
2651 extern int vfs_statfs(const struct path *, struct kstatfs *);
2652 extern int user_statfs(const char __user *, struct kstatfs *);
2653 extern int fd_statfs(int, struct kstatfs *);
2654 int freeze_super(struct super_block *super, enum freeze_holder who);
2655 int thaw_super(struct super_block *super, enum freeze_holder who);
2656 extern __printf(2, 3)
2657 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2658 extern int super_setup_bdi(struct super_block *sb);
2659 
2660 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2661 {
2662 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2663 		len = sizeof(sb->s_uuid);
2664 	sb->s_uuid_len = len;
2665 	memcpy(&sb->s_uuid, uuid, len);
2666 }
2667 
2668 /* set sb sysfs name based on sb->s_bdev */
2669 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2670 {
2671 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2672 }
2673 
2674 /* set sb sysfs name based on sb->s_uuid */
2675 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2676 {
2677 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2678 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2679 }
2680 
2681 /* set sb sysfs name based on sb->s_id */
2682 static inline void super_set_sysfs_name_id(struct super_block *sb)
2683 {
2684 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2685 }
2686 
2687 /* try to use something standard before you use this */
2688 __printf(2, 3)
2689 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2690 {
2691 	va_list args;
2692 
2693 	va_start(args, fmt);
2694 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2695 	va_end(args);
2696 }
2697 
2698 extern int current_umask(void);
2699 
2700 extern void ihold(struct inode * inode);
2701 extern void iput(struct inode *);
2702 int inode_update_timestamps(struct inode *inode, int flags);
2703 int generic_update_time(struct inode *, int);
2704 
2705 /* /sys/fs */
2706 extern struct kobject *fs_kobj;
2707 
2708 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2709 
2710 /* fs/open.c */
2711 struct audit_names;
2712 struct filename {
2713 	const char		*name;	/* pointer to actual string */
2714 	const __user char	*uptr;	/* original userland pointer */
2715 	atomic_t		refcnt;
2716 	struct audit_names	*aname;
2717 	const char		iname[];
2718 };
2719 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2720 
2721 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2722 {
2723 	return mnt_idmap(file->f_path.mnt);
2724 }
2725 
2726 /**
2727  * is_idmapped_mnt - check whether a mount is mapped
2728  * @mnt: the mount to check
2729  *
2730  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2731  *
2732  * Return: true if mount is mapped, false if not.
2733  */
2734 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2735 {
2736 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2737 }
2738 
2739 extern long vfs_truncate(const struct path *, loff_t);
2740 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2741 		unsigned int time_attrs, struct file *filp);
2742 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2743 			loff_t len);
2744 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2745 			umode_t mode);
2746 extern struct file *file_open_name(struct filename *, int, umode_t);
2747 extern struct file *filp_open(const char *, int, umode_t);
2748 extern struct file *file_open_root(const struct path *,
2749 				   const char *, int, umode_t);
2750 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2751 				   const char *name, int flags, umode_t mode)
2752 {
2753 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2754 			      name, flags, mode);
2755 }
2756 struct file *dentry_open(const struct path *path, int flags,
2757 			 const struct cred *creds);
2758 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2759 			   const struct cred *cred);
2760 struct path *backing_file_user_path(struct file *f);
2761 
2762 /*
2763  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2764  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2765  * filesystem.  When the mapped file path and inode number are displayed to
2766  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2767  * path and inode number to display to the user, which is the path of the fd
2768  * that user has requested to map and the inode number that would be returned
2769  * by fstat() on that same fd.
2770  */
2771 /* Get the path to display in /proc/<pid>/maps */
2772 static inline const struct path *file_user_path(struct file *f)
2773 {
2774 	if (unlikely(f->f_mode & FMODE_BACKING))
2775 		return backing_file_user_path(f);
2776 	return &f->f_path;
2777 }
2778 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2779 static inline const struct inode *file_user_inode(struct file *f)
2780 {
2781 	if (unlikely(f->f_mode & FMODE_BACKING))
2782 		return d_inode(backing_file_user_path(f)->dentry);
2783 	return file_inode(f);
2784 }
2785 
2786 static inline struct file *file_clone_open(struct file *file)
2787 {
2788 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2789 }
2790 extern int filp_close(struct file *, fl_owner_t id);
2791 
2792 extern struct filename *getname_flags(const char __user *, int);
2793 extern struct filename *getname_uflags(const char __user *, int);
2794 extern struct filename *getname(const char __user *);
2795 extern struct filename *getname_kernel(const char *);
2796 extern struct filename *__getname_maybe_null(const char __user *);
2797 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2798 {
2799 	if (!(flags & AT_EMPTY_PATH))
2800 		return getname(name);
2801 
2802 	if (!name)
2803 		return NULL;
2804 	return __getname_maybe_null(name);
2805 }
2806 extern void putname(struct filename *name);
2807 
2808 extern int finish_open(struct file *file, struct dentry *dentry,
2809 			int (*open)(struct inode *, struct file *));
2810 extern int finish_no_open(struct file *file, struct dentry *dentry);
2811 
2812 /* Helper for the simple case when original dentry is used */
2813 static inline int finish_open_simple(struct file *file, int error)
2814 {
2815 	if (error)
2816 		return error;
2817 
2818 	return finish_open(file, file->f_path.dentry, NULL);
2819 }
2820 
2821 /* fs/dcache.c */
2822 extern void __init vfs_caches_init_early(void);
2823 extern void __init vfs_caches_init(void);
2824 
2825 extern struct kmem_cache *names_cachep;
2826 
2827 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2828 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2829 
2830 extern struct super_block *blockdev_superblock;
2831 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2832 {
2833 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2834 }
2835 
2836 void emergency_thaw_all(void);
2837 extern int sync_filesystem(struct super_block *);
2838 extern const struct file_operations def_blk_fops;
2839 extern const struct file_operations def_chr_fops;
2840 
2841 /* fs/char_dev.c */
2842 #define CHRDEV_MAJOR_MAX 512
2843 /* Marks the bottom of the first segment of free char majors */
2844 #define CHRDEV_MAJOR_DYN_END 234
2845 /* Marks the top and bottom of the second segment of free char majors */
2846 #define CHRDEV_MAJOR_DYN_EXT_START 511
2847 #define CHRDEV_MAJOR_DYN_EXT_END 384
2848 
2849 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2850 extern int register_chrdev_region(dev_t, unsigned, const char *);
2851 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2852 			     unsigned int count, const char *name,
2853 			     const struct file_operations *fops);
2854 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2855 				unsigned int count, const char *name);
2856 extern void unregister_chrdev_region(dev_t, unsigned);
2857 extern void chrdev_show(struct seq_file *,off_t);
2858 
2859 static inline int register_chrdev(unsigned int major, const char *name,
2860 				  const struct file_operations *fops)
2861 {
2862 	return __register_chrdev(major, 0, 256, name, fops);
2863 }
2864 
2865 static inline void unregister_chrdev(unsigned int major, const char *name)
2866 {
2867 	__unregister_chrdev(major, 0, 256, name);
2868 }
2869 
2870 extern void init_special_inode(struct inode *, umode_t, dev_t);
2871 
2872 /* Invalid inode operations -- fs/bad_inode.c */
2873 extern void make_bad_inode(struct inode *);
2874 extern bool is_bad_inode(struct inode *);
2875 
2876 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2877 						loff_t lend);
2878 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2879 extern int __must_check file_write_and_wait_range(struct file *file,
2880 						loff_t start, loff_t end);
2881 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
2882 		loff_t end);
2883 
2884 static inline int file_write_and_wait(struct file *file)
2885 {
2886 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2887 }
2888 
2889 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2890 			   int datasync);
2891 extern int vfs_fsync(struct file *file, int datasync);
2892 
2893 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2894 				unsigned int flags);
2895 
2896 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2897 {
2898 	return (iocb->ki_flags & IOCB_DSYNC) ||
2899 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2900 }
2901 
2902 /*
2903  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2904  * to already be updated for the write, and will return either the amount
2905  * of bytes passed in, or an error if syncing the file failed.
2906  */
2907 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2908 {
2909 	if (iocb_is_dsync(iocb)) {
2910 		int ret = vfs_fsync_range(iocb->ki_filp,
2911 				iocb->ki_pos - count, iocb->ki_pos - 1,
2912 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2913 		if (ret)
2914 			return ret;
2915 	}
2916 
2917 	return count;
2918 }
2919 
2920 extern void emergency_sync(void);
2921 extern void emergency_remount(void);
2922 
2923 #ifdef CONFIG_BLOCK
2924 extern int bmap(struct inode *inode, sector_t *block);
2925 #else
2926 static inline int bmap(struct inode *inode,  sector_t *block)
2927 {
2928 	return -EINVAL;
2929 }
2930 #endif
2931 
2932 int notify_change(struct mnt_idmap *, struct dentry *,
2933 		  struct iattr *, struct inode **);
2934 int inode_permission(struct mnt_idmap *, struct inode *, int);
2935 int generic_permission(struct mnt_idmap *, struct inode *, int);
2936 static inline int file_permission(struct file *file, int mask)
2937 {
2938 	return inode_permission(file_mnt_idmap(file),
2939 				file_inode(file), mask);
2940 }
2941 static inline int path_permission(const struct path *path, int mask)
2942 {
2943 	return inode_permission(mnt_idmap(path->mnt),
2944 				d_inode(path->dentry), mask);
2945 }
2946 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2947 		   struct inode *inode);
2948 
2949 static inline bool execute_ok(struct inode *inode)
2950 {
2951 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2952 }
2953 
2954 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2955 {
2956 	return (inode->i_mode ^ mode) & S_IFMT;
2957 }
2958 
2959 /**
2960  * file_start_write - get write access to a superblock for regular file io
2961  * @file: the file we want to write to
2962  *
2963  * This is a variant of sb_start_write() which is a noop on non-regualr file.
2964  * Should be matched with a call to file_end_write().
2965  */
2966 static inline void file_start_write(struct file *file)
2967 {
2968 	if (!S_ISREG(file_inode(file)->i_mode))
2969 		return;
2970 	sb_start_write(file_inode(file)->i_sb);
2971 }
2972 
2973 static inline bool file_start_write_trylock(struct file *file)
2974 {
2975 	if (!S_ISREG(file_inode(file)->i_mode))
2976 		return true;
2977 	return sb_start_write_trylock(file_inode(file)->i_sb);
2978 }
2979 
2980 /**
2981  * file_end_write - drop write access to a superblock of a regular file
2982  * @file: the file we wrote to
2983  *
2984  * Should be matched with a call to file_start_write().
2985  */
2986 static inline void file_end_write(struct file *file)
2987 {
2988 	if (!S_ISREG(file_inode(file)->i_mode))
2989 		return;
2990 	sb_end_write(file_inode(file)->i_sb);
2991 }
2992 
2993 /**
2994  * kiocb_start_write - get write access to a superblock for async file io
2995  * @iocb: the io context we want to submit the write with
2996  *
2997  * This is a variant of sb_start_write() for async io submission.
2998  * Should be matched with a call to kiocb_end_write().
2999  */
3000 static inline void kiocb_start_write(struct kiocb *iocb)
3001 {
3002 	struct inode *inode = file_inode(iocb->ki_filp);
3003 
3004 	sb_start_write(inode->i_sb);
3005 	/*
3006 	 * Fool lockdep by telling it the lock got released so that it
3007 	 * doesn't complain about the held lock when we return to userspace.
3008 	 */
3009 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3010 }
3011 
3012 /**
3013  * kiocb_end_write - drop write access to a superblock after async file io
3014  * @iocb: the io context we sumbitted the write with
3015  *
3016  * Should be matched with a call to kiocb_start_write().
3017  */
3018 static inline void kiocb_end_write(struct kiocb *iocb)
3019 {
3020 	struct inode *inode = file_inode(iocb->ki_filp);
3021 
3022 	/*
3023 	 * Tell lockdep we inherited freeze protection from submission thread.
3024 	 */
3025 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3026 	sb_end_write(inode->i_sb);
3027 }
3028 
3029 /*
3030  * This is used for regular files where some users -- especially the
3031  * currently executed binary in a process, previously handled via
3032  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3033  * read-write shared) accesses.
3034  *
3035  * get_write_access() gets write permission for a file.
3036  * put_write_access() releases this write permission.
3037  * deny_write_access() denies write access to a file.
3038  * allow_write_access() re-enables write access to a file.
3039  *
3040  * The i_writecount field of an inode can have the following values:
3041  * 0: no write access, no denied write access
3042  * < 0: (-i_writecount) users that denied write access to the file.
3043  * > 0: (i_writecount) users that have write access to the file.
3044  *
3045  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3046  * except for the cases where we don't hold i_writecount yet. Then we need to
3047  * use {get,deny}_write_access() - these functions check the sign and refuse
3048  * to do the change if sign is wrong.
3049  */
3050 static inline int get_write_access(struct inode *inode)
3051 {
3052 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3053 }
3054 static inline int deny_write_access(struct file *file)
3055 {
3056 	struct inode *inode = file_inode(file);
3057 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3058 }
3059 static inline void put_write_access(struct inode * inode)
3060 {
3061 	atomic_dec(&inode->i_writecount);
3062 }
3063 static inline void allow_write_access(struct file *file)
3064 {
3065 	if (file)
3066 		atomic_inc(&file_inode(file)->i_writecount);
3067 }
3068 static inline bool inode_is_open_for_write(const struct inode *inode)
3069 {
3070 	return atomic_read(&inode->i_writecount) > 0;
3071 }
3072 
3073 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3074 static inline void i_readcount_dec(struct inode *inode)
3075 {
3076 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3077 }
3078 static inline void i_readcount_inc(struct inode *inode)
3079 {
3080 	atomic_inc(&inode->i_readcount);
3081 }
3082 #else
3083 static inline void i_readcount_dec(struct inode *inode)
3084 {
3085 	return;
3086 }
3087 static inline void i_readcount_inc(struct inode *inode)
3088 {
3089 	return;
3090 }
3091 #endif
3092 extern int do_pipe_flags(int *, int);
3093 
3094 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3095 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3096 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3097 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3098 extern struct file * open_exec(const char *);
3099 
3100 /* fs/dcache.c -- generic fs support functions */
3101 extern bool is_subdir(struct dentry *, struct dentry *);
3102 extern bool path_is_under(const struct path *, const struct path *);
3103 
3104 extern char *file_path(struct file *, char *, int);
3105 
3106 /**
3107  * is_dot_dotdot - returns true only if @name is "." or ".."
3108  * @name: file name to check
3109  * @len: length of file name, in bytes
3110  */
3111 static inline bool is_dot_dotdot(const char *name, size_t len)
3112 {
3113 	return len && unlikely(name[0] == '.') &&
3114 		(len == 1 || (len == 2 && name[1] == '.'));
3115 }
3116 
3117 #include <linux/err.h>
3118 
3119 /* needed for stackable file system support */
3120 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3121 
3122 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3123 
3124 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3125 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3126 {
3127 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3128 }
3129 
3130 extern void inode_init_once(struct inode *);
3131 extern void address_space_init_once(struct address_space *mapping);
3132 extern struct inode * igrab(struct inode *);
3133 extern ino_t iunique(struct super_block *, ino_t);
3134 extern int inode_needs_sync(struct inode *inode);
3135 extern int generic_delete_inode(struct inode *inode);
3136 static inline int generic_drop_inode(struct inode *inode)
3137 {
3138 	return !inode->i_nlink || inode_unhashed(inode);
3139 }
3140 extern void d_mark_dontcache(struct inode *inode);
3141 
3142 extern struct inode *ilookup5_nowait(struct super_block *sb,
3143 		unsigned long hashval, int (*test)(struct inode *, void *),
3144 		void *data);
3145 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3146 		int (*test)(struct inode *, void *), void *data);
3147 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3148 
3149 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3150 		int (*test)(struct inode *, void *),
3151 		int (*set)(struct inode *, void *),
3152 		void *data);
3153 struct inode *iget5_locked(struct super_block *, unsigned long,
3154 			   int (*test)(struct inode *, void *),
3155 			   int (*set)(struct inode *, void *), void *);
3156 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3157 			       int (*test)(struct inode *, void *),
3158 			       int (*set)(struct inode *, void *), void *);
3159 extern struct inode * iget_locked(struct super_block *, unsigned long);
3160 extern struct inode *find_inode_nowait(struct super_block *,
3161 				       unsigned long,
3162 				       int (*match)(struct inode *,
3163 						    unsigned long, void *),
3164 				       void *data);
3165 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3166 				    int (*)(struct inode *, void *), void *);
3167 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3168 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3169 extern int insert_inode_locked(struct inode *);
3170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3171 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3172 #else
3173 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3174 #endif
3175 extern void unlock_new_inode(struct inode *);
3176 extern void discard_new_inode(struct inode *);
3177 extern unsigned int get_next_ino(void);
3178 extern void evict_inodes(struct super_block *sb);
3179 void dump_mapping(const struct address_space *);
3180 
3181 /*
3182  * Userspace may rely on the inode number being non-zero. For example, glibc
3183  * simply ignores files with zero i_ino in unlink() and other places.
3184  *
3185  * As an additional complication, if userspace was compiled with
3186  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3187  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3188  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3189  * better safe than sorry.
3190  */
3191 static inline bool is_zero_ino(ino_t ino)
3192 {
3193 	return (u32)ino == 0;
3194 }
3195 
3196 /*
3197  * inode->i_lock must be held
3198  */
3199 static inline void __iget(struct inode *inode)
3200 {
3201 	atomic_inc(&inode->i_count);
3202 }
3203 
3204 extern void iget_failed(struct inode *);
3205 extern void clear_inode(struct inode *);
3206 extern void __destroy_inode(struct inode *);
3207 extern struct inode *new_inode_pseudo(struct super_block *sb);
3208 extern struct inode *new_inode(struct super_block *sb);
3209 extern void free_inode_nonrcu(struct inode *inode);
3210 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3211 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3212 extern int file_remove_privs(struct file *);
3213 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3214 			     const struct inode *inode);
3215 
3216 /*
3217  * This must be used for allocating filesystems specific inodes to set
3218  * up the inode reclaim context correctly.
3219  */
3220 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3221 
3222 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3223 static inline void insert_inode_hash(struct inode *inode)
3224 {
3225 	__insert_inode_hash(inode, inode->i_ino);
3226 }
3227 
3228 extern void __remove_inode_hash(struct inode *);
3229 static inline void remove_inode_hash(struct inode *inode)
3230 {
3231 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3232 		__remove_inode_hash(inode);
3233 }
3234 
3235 extern void inode_sb_list_add(struct inode *inode);
3236 extern void inode_add_lru(struct inode *inode);
3237 
3238 extern int sb_set_blocksize(struct super_block *, int);
3239 extern int sb_min_blocksize(struct super_block *, int);
3240 
3241 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3242 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3243 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3244 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3245 extern int generic_write_check_limits(struct file *file, loff_t pos,
3246 		loff_t *count);
3247 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3248 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3249 		ssize_t already_read);
3250 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3251 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3252 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3253 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3254 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3255 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3256 		ssize_t direct_written, ssize_t buffered_written);
3257 
3258 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3259 		rwf_t flags);
3260 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3261 		rwf_t flags);
3262 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3263 			   struct iov_iter *iter);
3264 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3265 			    struct iov_iter *iter);
3266 
3267 /* fs/splice.c */
3268 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3269 			    struct pipe_inode_info *pipe,
3270 			    size_t len, unsigned int flags);
3271 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3272 			 struct pipe_inode_info *pipe,
3273 			 size_t len, unsigned int flags);
3274 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3275 		struct file *, loff_t *, size_t, unsigned int);
3276 
3277 
3278 extern void
3279 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3280 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3281 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3282 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3283 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3284 		int whence, loff_t maxsize, loff_t eof);
3285 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3286 			     u64 *cookie);
3287 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3288 		int whence, loff_t size);
3289 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3290 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3291 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3292 extern int generic_file_open(struct inode * inode, struct file * filp);
3293 extern int nonseekable_open(struct inode * inode, struct file * filp);
3294 extern int stream_open(struct inode * inode, struct file * filp);
3295 
3296 #ifdef CONFIG_BLOCK
3297 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3298 			    loff_t file_offset);
3299 
3300 enum {
3301 	/* need locking between buffered and direct access */
3302 	DIO_LOCKING	= 0x01,
3303 
3304 	/* filesystem does not support filling holes */
3305 	DIO_SKIP_HOLES	= 0x02,
3306 };
3307 
3308 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3309 			     struct block_device *bdev, struct iov_iter *iter,
3310 			     get_block_t get_block,
3311 			     dio_iodone_t end_io,
3312 			     int flags);
3313 
3314 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3315 					 struct inode *inode,
3316 					 struct iov_iter *iter,
3317 					 get_block_t get_block)
3318 {
3319 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3320 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3321 }
3322 #endif
3323 
3324 bool inode_dio_finished(const struct inode *inode);
3325 void inode_dio_wait(struct inode *inode);
3326 void inode_dio_wait_interruptible(struct inode *inode);
3327 
3328 /**
3329  * inode_dio_begin - signal start of a direct I/O requests
3330  * @inode: inode the direct I/O happens on
3331  *
3332  * This is called once we've finished processing a direct I/O request,
3333  * and is used to wake up callers waiting for direct I/O to be quiesced.
3334  */
3335 static inline void inode_dio_begin(struct inode *inode)
3336 {
3337 	atomic_inc(&inode->i_dio_count);
3338 }
3339 
3340 /**
3341  * inode_dio_end - signal finish of a direct I/O requests
3342  * @inode: inode the direct I/O happens on
3343  *
3344  * This is called once we've finished processing a direct I/O request,
3345  * and is used to wake up callers waiting for direct I/O to be quiesced.
3346  */
3347 static inline void inode_dio_end(struct inode *inode)
3348 {
3349 	if (atomic_dec_and_test(&inode->i_dio_count))
3350 		wake_up_var(&inode->i_dio_count);
3351 }
3352 
3353 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3354 			    unsigned int mask);
3355 
3356 extern const struct file_operations generic_ro_fops;
3357 
3358 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3359 
3360 extern int readlink_copy(char __user *, int, const char *);
3361 extern int page_readlink(struct dentry *, char __user *, int);
3362 extern const char *page_get_link(struct dentry *, struct inode *,
3363 				 struct delayed_call *);
3364 extern void page_put_link(void *);
3365 extern int page_symlink(struct inode *inode, const char *symname, int len);
3366 extern const struct inode_operations page_symlink_inode_operations;
3367 extern void kfree_link(void *);
3368 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3369 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3370 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3371 void generic_fill_statx_atomic_writes(struct kstat *stat,
3372 				      unsigned int unit_min,
3373 				      unsigned int unit_max);
3374 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3375 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3376 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3377 void inode_add_bytes(struct inode *inode, loff_t bytes);
3378 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3379 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3380 static inline loff_t __inode_get_bytes(struct inode *inode)
3381 {
3382 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3383 }
3384 loff_t inode_get_bytes(struct inode *inode);
3385 void inode_set_bytes(struct inode *inode, loff_t bytes);
3386 const char *simple_get_link(struct dentry *, struct inode *,
3387 			    struct delayed_call *);
3388 extern const struct inode_operations simple_symlink_inode_operations;
3389 
3390 extern int iterate_dir(struct file *, struct dir_context *);
3391 
3392 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3393 		int flags);
3394 int vfs_fstat(int fd, struct kstat *stat);
3395 
3396 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3397 {
3398 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3399 }
3400 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3401 {
3402 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3403 }
3404 
3405 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3406 extern int vfs_readlink(struct dentry *, char __user *, int);
3407 
3408 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3409 extern void put_filesystem(struct file_system_type *fs);
3410 extern struct file_system_type *get_fs_type(const char *name);
3411 extern void drop_super(struct super_block *sb);
3412 extern void drop_super_exclusive(struct super_block *sb);
3413 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3414 extern void iterate_supers_type(struct file_system_type *,
3415 			        void (*)(struct super_block *, void *), void *);
3416 
3417 extern int dcache_dir_open(struct inode *, struct file *);
3418 extern int dcache_dir_close(struct inode *, struct file *);
3419 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3420 extern int dcache_readdir(struct file *, struct dir_context *);
3421 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3422 			  struct iattr *);
3423 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3424 			  struct kstat *, u32, unsigned int);
3425 extern int simple_statfs(struct dentry *, struct kstatfs *);
3426 extern int simple_open(struct inode *inode, struct file *file);
3427 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3428 extern int simple_unlink(struct inode *, struct dentry *);
3429 extern int simple_rmdir(struct inode *, struct dentry *);
3430 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3431 			     struct inode *new_dir, struct dentry *new_dentry);
3432 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3433 				  struct inode *new_dir, struct dentry *new_dentry);
3434 extern int simple_rename(struct mnt_idmap *, struct inode *,
3435 			 struct dentry *, struct inode *, struct dentry *,
3436 			 unsigned int);
3437 extern void simple_recursive_removal(struct dentry *,
3438                               void (*callback)(struct dentry *));
3439 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3440 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3441 extern int simple_empty(struct dentry *);
3442 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3443 			loff_t pos, unsigned len,
3444 			struct folio **foliop, void **fsdata);
3445 extern const struct address_space_operations ram_aops;
3446 extern int always_delete_dentry(const struct dentry *);
3447 extern struct inode *alloc_anon_inode(struct super_block *);
3448 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3449 extern const struct dentry_operations simple_dentry_operations;
3450 
3451 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3452 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3453 extern const struct file_operations simple_dir_operations;
3454 extern const struct inode_operations simple_dir_inode_operations;
3455 extern void make_empty_dir_inode(struct inode *inode);
3456 extern bool is_empty_dir_inode(struct inode *inode);
3457 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3458 struct dentry *d_alloc_name(struct dentry *, const char *);
3459 extern int simple_fill_super(struct super_block *, unsigned long,
3460 			     const struct tree_descr *);
3461 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3462 extern void simple_release_fs(struct vfsmount **mount, int *count);
3463 
3464 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3465 			loff_t *ppos, const void *from, size_t available);
3466 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3467 		const void __user *from, size_t count);
3468 
3469 struct offset_ctx {
3470 	struct maple_tree	mt;
3471 	unsigned long		next_offset;
3472 };
3473 
3474 void simple_offset_init(struct offset_ctx *octx);
3475 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3476 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3477 int simple_offset_empty(struct dentry *dentry);
3478 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3479 			 struct inode *new_dir, struct dentry *new_dentry);
3480 int simple_offset_rename_exchange(struct inode *old_dir,
3481 				  struct dentry *old_dentry,
3482 				  struct inode *new_dir,
3483 				  struct dentry *new_dentry);
3484 void simple_offset_destroy(struct offset_ctx *octx);
3485 
3486 extern const struct file_operations simple_offset_dir_operations;
3487 
3488 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3489 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3490 
3491 extern int generic_check_addressable(unsigned, u64);
3492 
3493 extern void generic_set_sb_d_ops(struct super_block *sb);
3494 extern int generic_ci_match(const struct inode *parent,
3495 			    const struct qstr *name,
3496 			    const struct qstr *folded_name,
3497 			    const u8 *de_name, u32 de_name_len);
3498 
3499 #if IS_ENABLED(CONFIG_UNICODE)
3500 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3501 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3502 			 const char *str, const struct qstr *name);
3503 
3504 /**
3505  * generic_ci_validate_strict_name - Check if a given name is suitable
3506  * for a directory
3507  *
3508  * This functions checks if the proposed filename is valid for the
3509  * parent directory. That means that only valid UTF-8 filenames will be
3510  * accepted for casefold directories from filesystems created with the
3511  * strict encoding flag.  That also means that any name will be
3512  * accepted for directories that doesn't have casefold enabled, or
3513  * aren't being strict with the encoding.
3514  *
3515  * @dir: inode of the directory where the new file will be created
3516  * @name: name of the new file
3517  *
3518  * Return:
3519  * * True: if the filename is suitable for this directory. It can be
3520  *   true if a given name is not suitable for a strict encoding
3521  *   directory, but the directory being used isn't strict
3522  * * False if the filename isn't suitable for this directory. This only
3523  *   happens when a directory is casefolded and the filesystem is strict
3524  *   about its encoding.
3525  */
3526 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3527 {
3528 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3529 		return true;
3530 
3531 	/*
3532 	 * A casefold dir must have a encoding set, unless the filesystem
3533 	 * is corrupted
3534 	 */
3535 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3536 		return true;
3537 
3538 	return !utf8_validate(dir->i_sb->s_encoding, name);
3539 }
3540 #else
3541 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3542 {
3543 	return true;
3544 }
3545 #endif
3546 
3547 static inline bool sb_has_encoding(const struct super_block *sb)
3548 {
3549 #if IS_ENABLED(CONFIG_UNICODE)
3550 	return !!sb->s_encoding;
3551 #else
3552 	return false;
3553 #endif
3554 }
3555 
3556 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3557 		unsigned int ia_valid);
3558 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3559 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3560 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3561 		  const struct iattr *attr);
3562 
3563 extern int file_update_time(struct file *file);
3564 
3565 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3566 {
3567 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3568 }
3569 
3570 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3571 {
3572 	struct inode *inode;
3573 
3574 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3575 		return false;
3576 	if (!vma_is_dax(vma))
3577 		return false;
3578 	inode = file_inode(vma->vm_file);
3579 	if (S_ISCHR(inode->i_mode))
3580 		return false; /* device-dax */
3581 	return true;
3582 }
3583 
3584 static inline int iocb_flags(struct file *file)
3585 {
3586 	int res = 0;
3587 	if (file->f_flags & O_APPEND)
3588 		res |= IOCB_APPEND;
3589 	if (file->f_flags & O_DIRECT)
3590 		res |= IOCB_DIRECT;
3591 	if (file->f_flags & O_DSYNC)
3592 		res |= IOCB_DSYNC;
3593 	if (file->f_flags & __O_SYNC)
3594 		res |= IOCB_SYNC;
3595 	return res;
3596 }
3597 
3598 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3599 				     int rw_type)
3600 {
3601 	int kiocb_flags = 0;
3602 
3603 	/* make sure there's no overlap between RWF and private IOCB flags */
3604 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3605 
3606 	if (!flags)
3607 		return 0;
3608 	if (unlikely(flags & ~RWF_SUPPORTED))
3609 		return -EOPNOTSUPP;
3610 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3611 		return -EINVAL;
3612 
3613 	if (flags & RWF_NOWAIT) {
3614 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3615 			return -EOPNOTSUPP;
3616 	}
3617 	if (flags & RWF_ATOMIC) {
3618 		if (rw_type != WRITE)
3619 			return -EOPNOTSUPP;
3620 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3621 			return -EOPNOTSUPP;
3622 	}
3623 	if (flags & RWF_DONTCACHE) {
3624 		/* file system must support it */
3625 		if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3626 			return -EOPNOTSUPP;
3627 		/* DAX mappings not supported */
3628 		if (IS_DAX(ki->ki_filp->f_mapping->host))
3629 			return -EOPNOTSUPP;
3630 	}
3631 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3632 	if (flags & RWF_SYNC)
3633 		kiocb_flags |= IOCB_DSYNC;
3634 
3635 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3636 		if (IS_APPEND(file_inode(ki->ki_filp)))
3637 			return -EPERM;
3638 		ki->ki_flags &= ~IOCB_APPEND;
3639 	}
3640 
3641 	ki->ki_flags |= kiocb_flags;
3642 	return 0;
3643 }
3644 
3645 /* Transaction based IO helpers */
3646 
3647 /*
3648  * An argresp is stored in an allocated page and holds the
3649  * size of the argument or response, along with its content
3650  */
3651 struct simple_transaction_argresp {
3652 	ssize_t size;
3653 	char data[];
3654 };
3655 
3656 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3657 
3658 char *simple_transaction_get(struct file *file, const char __user *buf,
3659 				size_t size);
3660 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3661 				size_t size, loff_t *pos);
3662 int simple_transaction_release(struct inode *inode, struct file *file);
3663 
3664 void simple_transaction_set(struct file *file, size_t n);
3665 
3666 /*
3667  * simple attribute files
3668  *
3669  * These attributes behave similar to those in sysfs:
3670  *
3671  * Writing to an attribute immediately sets a value, an open file can be
3672  * written to multiple times.
3673  *
3674  * Reading from an attribute creates a buffer from the value that might get
3675  * read with multiple read calls. When the attribute has been read
3676  * completely, no further read calls are possible until the file is opened
3677  * again.
3678  *
3679  * All attributes contain a text representation of a numeric value
3680  * that are accessed with the get() and set() functions.
3681  */
3682 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3683 static int __fops ## _open(struct inode *inode, struct file *file)	\
3684 {									\
3685 	__simple_attr_check_format(__fmt, 0ull);			\
3686 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3687 }									\
3688 static const struct file_operations __fops = {				\
3689 	.owner	 = THIS_MODULE,						\
3690 	.open	 = __fops ## _open,					\
3691 	.release = simple_attr_release,					\
3692 	.read	 = simple_attr_read,					\
3693 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3694 	.llseek	 = generic_file_llseek,					\
3695 }
3696 
3697 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3698 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3699 
3700 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3701 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3702 
3703 static inline __printf(1, 2)
3704 void __simple_attr_check_format(const char *fmt, ...)
3705 {
3706 	/* don't do anything, just let the compiler check the arguments; */
3707 }
3708 
3709 int simple_attr_open(struct inode *inode, struct file *file,
3710 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3711 		     const char *fmt);
3712 int simple_attr_release(struct inode *inode, struct file *file);
3713 ssize_t simple_attr_read(struct file *file, char __user *buf,
3714 			 size_t len, loff_t *ppos);
3715 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3716 			  size_t len, loff_t *ppos);
3717 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3718 				 size_t len, loff_t *ppos);
3719 
3720 struct ctl_table;
3721 int __init list_bdev_fs_names(char *buf, size_t size);
3722 
3723 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3724 #define __FMODE_NONOTIFY	((__force int) FMODE_NONOTIFY)
3725 
3726 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3727 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3728 					    (flag & __FMODE_NONOTIFY)))
3729 
3730 static inline bool is_sxid(umode_t mode)
3731 {
3732 	return mode & (S_ISUID | S_ISGID);
3733 }
3734 
3735 static inline int check_sticky(struct mnt_idmap *idmap,
3736 			       struct inode *dir, struct inode *inode)
3737 {
3738 	if (!(dir->i_mode & S_ISVTX))
3739 		return 0;
3740 
3741 	return __check_sticky(idmap, dir, inode);
3742 }
3743 
3744 static inline void inode_has_no_xattr(struct inode *inode)
3745 {
3746 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3747 		inode->i_flags |= S_NOSEC;
3748 }
3749 
3750 static inline bool is_root_inode(struct inode *inode)
3751 {
3752 	return inode == inode->i_sb->s_root->d_inode;
3753 }
3754 
3755 static inline bool dir_emit(struct dir_context *ctx,
3756 			    const char *name, int namelen,
3757 			    u64 ino, unsigned type)
3758 {
3759 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3760 }
3761 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3762 {
3763 	return ctx->actor(ctx, ".", 1, ctx->pos,
3764 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3765 }
3766 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3767 {
3768 	return ctx->actor(ctx, "..", 2, ctx->pos,
3769 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3770 }
3771 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3772 {
3773 	if (ctx->pos == 0) {
3774 		if (!dir_emit_dot(file, ctx))
3775 			return false;
3776 		ctx->pos = 1;
3777 	}
3778 	if (ctx->pos == 1) {
3779 		if (!dir_emit_dotdot(file, ctx))
3780 			return false;
3781 		ctx->pos = 2;
3782 	}
3783 	return true;
3784 }
3785 static inline bool dir_relax(struct inode *inode)
3786 {
3787 	inode_unlock(inode);
3788 	inode_lock(inode);
3789 	return !IS_DEADDIR(inode);
3790 }
3791 
3792 static inline bool dir_relax_shared(struct inode *inode)
3793 {
3794 	inode_unlock_shared(inode);
3795 	inode_lock_shared(inode);
3796 	return !IS_DEADDIR(inode);
3797 }
3798 
3799 extern bool path_noexec(const struct path *path);
3800 extern void inode_nohighmem(struct inode *inode);
3801 
3802 /* mm/fadvise.c */
3803 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3804 		       int advice);
3805 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3806 			   int advice);
3807 
3808 static inline bool vfs_empty_path(int dfd, const char __user *path)
3809 {
3810 	char c;
3811 
3812 	if (dfd < 0)
3813 		return false;
3814 
3815 	/* We now allow NULL to be used for empty path. */
3816 	if (!path)
3817 		return true;
3818 
3819 	if (unlikely(get_user(c, path)))
3820 		return false;
3821 
3822 	return !c;
3823 }
3824 
3825 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3826 
3827 #endif /* _LINUX_FS_H */
3828