1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* FMODE_* bit 24 */ 177 178 /* File is embedded in backing_file object */ 179 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 180 181 /* File was opened by fanotify and shouldn't generate fanotify events */ 182 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 183 184 /* File is capable of returning -EAGAIN if I/O will block */ 185 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 186 187 /* File represents mount that needs unmounting */ 188 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 189 190 /* File does not contribute to nr_files count */ 191 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 192 193 /* 194 * Attribute flags. These should be or-ed together to figure out what 195 * has been changed! 196 */ 197 #define ATTR_MODE (1 << 0) 198 #define ATTR_UID (1 << 1) 199 #define ATTR_GID (1 << 2) 200 #define ATTR_SIZE (1 << 3) 201 #define ATTR_ATIME (1 << 4) 202 #define ATTR_MTIME (1 << 5) 203 #define ATTR_CTIME (1 << 6) 204 #define ATTR_ATIME_SET (1 << 7) 205 #define ATTR_MTIME_SET (1 << 8) 206 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 207 #define ATTR_KILL_SUID (1 << 11) 208 #define ATTR_KILL_SGID (1 << 12) 209 #define ATTR_FILE (1 << 13) 210 #define ATTR_KILL_PRIV (1 << 14) 211 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 212 #define ATTR_TIMES_SET (1 << 16) 213 #define ATTR_TOUCH (1 << 17) 214 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 215 216 /* 217 * Whiteout is represented by a char device. The following constants define the 218 * mode and device number to use. 219 */ 220 #define WHITEOUT_MODE 0 221 #define WHITEOUT_DEV 0 222 223 /* 224 * This is the Inode Attributes structure, used for notify_change(). It 225 * uses the above definitions as flags, to know which values have changed. 226 * Also, in this manner, a Filesystem can look at only the values it cares 227 * about. Basically, these are the attributes that the VFS layer can 228 * request to change from the FS layer. 229 * 230 * Derek Atkins <[email protected]> 94-10-20 231 */ 232 struct iattr { 233 unsigned int ia_valid; 234 umode_t ia_mode; 235 /* 236 * The two anonymous unions wrap structures with the same member. 237 * 238 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 239 * are a dedicated type requiring the filesystem to use the dedicated 240 * helpers. Other filesystem can continue to use ia_{g,u}id until they 241 * have been ported. 242 * 243 * They always contain the same value. In other words FS_ALLOW_IDMAP 244 * pass down the same value on idmapped mounts as they would on regular 245 * mounts. 246 */ 247 union { 248 kuid_t ia_uid; 249 vfsuid_t ia_vfsuid; 250 }; 251 union { 252 kgid_t ia_gid; 253 vfsgid_t ia_vfsgid; 254 }; 255 loff_t ia_size; 256 struct timespec64 ia_atime; 257 struct timespec64 ia_mtime; 258 struct timespec64 ia_ctime; 259 260 /* 261 * Not an attribute, but an auxiliary info for filesystems wanting to 262 * implement an ftruncate() like method. NOTE: filesystem should 263 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 264 */ 265 struct file *ia_file; 266 }; 267 268 /* 269 * Includes for diskquotas. 270 */ 271 #include <linux/quota.h> 272 273 /* 274 * Maximum number of layers of fs stack. Needs to be limited to 275 * prevent kernel stack overflow 276 */ 277 #define FILESYSTEM_MAX_STACK_DEPTH 2 278 279 /** 280 * enum positive_aop_returns - aop return codes with specific semantics 281 * 282 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 283 * completed, that the page is still locked, and 284 * should be considered active. The VM uses this hint 285 * to return the page to the active list -- it won't 286 * be a candidate for writeback again in the near 287 * future. Other callers must be careful to unlock 288 * the page if they get this return. Returned by 289 * writepage(); 290 * 291 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 292 * unlocked it and the page might have been truncated. 293 * The caller should back up to acquiring a new page and 294 * trying again. The aop will be taking reasonable 295 * precautions not to livelock. If the caller held a page 296 * reference, it should drop it before retrying. Returned 297 * by read_folio(). 298 * 299 * address_space_operation functions return these large constants to indicate 300 * special semantics to the caller. These are much larger than the bytes in a 301 * page to allow for functions that return the number of bytes operated on in a 302 * given page. 303 */ 304 305 enum positive_aop_returns { 306 AOP_WRITEPAGE_ACTIVATE = 0x80000, 307 AOP_TRUNCATED_PAGE = 0x80001, 308 }; 309 310 /* 311 * oh the beauties of C type declarations. 312 */ 313 struct page; 314 struct address_space; 315 struct writeback_control; 316 struct readahead_control; 317 318 /* Match RWF_* bits to IOCB bits */ 319 #define IOCB_HIPRI (__force int) RWF_HIPRI 320 #define IOCB_DSYNC (__force int) RWF_DSYNC 321 #define IOCB_SYNC (__force int) RWF_SYNC 322 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 323 #define IOCB_APPEND (__force int) RWF_APPEND 324 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 325 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 326 327 /* non-RWF related bits - start at 16 */ 328 #define IOCB_EVENTFD (1 << 16) 329 #define IOCB_DIRECT (1 << 17) 330 #define IOCB_WRITE (1 << 18) 331 /* iocb->ki_waitq is valid */ 332 #define IOCB_WAITQ (1 << 19) 333 #define IOCB_NOIO (1 << 20) 334 /* can use bio alloc cache */ 335 #define IOCB_ALLOC_CACHE (1 << 21) 336 /* 337 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 338 * iocb completion can be passed back to the owner for execution from a safe 339 * context rather than needing to be punted through a workqueue. If this 340 * flag is set, the bio completion handling may set iocb->dio_complete to a 341 * handler function and iocb->private to context information for that handler. 342 * The issuer should call the handler with that context information from task 343 * context to complete the processing of the iocb. Note that while this 344 * provides a task context for the dio_complete() callback, it should only be 345 * used on the completion side for non-IO generating completions. It's fine to 346 * call blocking functions from this callback, but they should not wait for 347 * unrelated IO (like cache flushing, new IO generation, etc). 348 */ 349 #define IOCB_DIO_CALLER_COMP (1 << 22) 350 /* kiocb is a read or write operation submitted by fs/aio.c. */ 351 #define IOCB_AIO_RW (1 << 23) 352 353 /* for use in trace events */ 354 #define TRACE_IOCB_STRINGS \ 355 { IOCB_HIPRI, "HIPRI" }, \ 356 { IOCB_DSYNC, "DSYNC" }, \ 357 { IOCB_SYNC, "SYNC" }, \ 358 { IOCB_NOWAIT, "NOWAIT" }, \ 359 { IOCB_APPEND, "APPEND" }, \ 360 { IOCB_ATOMIC, "ATOMIC" }, \ 361 { IOCB_DONTCACHE, "DONTCACHE" }, \ 362 { IOCB_EVENTFD, "EVENTFD"}, \ 363 { IOCB_DIRECT, "DIRECT" }, \ 364 { IOCB_WRITE, "WRITE" }, \ 365 { IOCB_WAITQ, "WAITQ" }, \ 366 { IOCB_NOIO, "NOIO" }, \ 367 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 368 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 369 370 struct kiocb { 371 struct file *ki_filp; 372 loff_t ki_pos; 373 void (*ki_complete)(struct kiocb *iocb, long ret); 374 void *private; 375 int ki_flags; 376 u16 ki_ioprio; /* See linux/ioprio.h */ 377 union { 378 /* 379 * Only used for async buffered reads, where it denotes the 380 * page waitqueue associated with completing the read. Valid 381 * IFF IOCB_WAITQ is set. 382 */ 383 struct wait_page_queue *ki_waitq; 384 /* 385 * Can be used for O_DIRECT IO, where the completion handling 386 * is punted back to the issuer of the IO. May only be set 387 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 388 * must then check for presence of this handler when ki_complete 389 * is invoked. The data passed in to this handler must be 390 * assigned to ->private when dio_complete is assigned. 391 */ 392 ssize_t (*dio_complete)(void *data); 393 }; 394 }; 395 396 static inline bool is_sync_kiocb(struct kiocb *kiocb) 397 { 398 return kiocb->ki_complete == NULL; 399 } 400 401 struct address_space_operations { 402 int (*writepage)(struct page *page, struct writeback_control *wbc); 403 int (*read_folio)(struct file *, struct folio *); 404 405 /* Write back some dirty pages from this mapping. */ 406 int (*writepages)(struct address_space *, struct writeback_control *); 407 408 /* Mark a folio dirty. Return true if this dirtied it */ 409 bool (*dirty_folio)(struct address_space *, struct folio *); 410 411 void (*readahead)(struct readahead_control *); 412 413 int (*write_begin)(struct file *, struct address_space *mapping, 414 loff_t pos, unsigned len, 415 struct folio **foliop, void **fsdata); 416 int (*write_end)(struct file *, struct address_space *mapping, 417 loff_t pos, unsigned len, unsigned copied, 418 struct folio *folio, void *fsdata); 419 420 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 421 sector_t (*bmap)(struct address_space *, sector_t); 422 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 423 bool (*release_folio)(struct folio *, gfp_t); 424 void (*free_folio)(struct folio *folio); 425 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 426 /* 427 * migrate the contents of a folio to the specified target. If 428 * migrate_mode is MIGRATE_ASYNC, it must not block. 429 */ 430 int (*migrate_folio)(struct address_space *, struct folio *dst, 431 struct folio *src, enum migrate_mode); 432 int (*launder_folio)(struct folio *); 433 bool (*is_partially_uptodate) (struct folio *, size_t from, 434 size_t count); 435 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 436 int (*error_remove_folio)(struct address_space *, struct folio *); 437 438 /* swapfile support */ 439 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 440 sector_t *span); 441 void (*swap_deactivate)(struct file *file); 442 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 443 }; 444 445 extern const struct address_space_operations empty_aops; 446 447 /** 448 * struct address_space - Contents of a cacheable, mappable object. 449 * @host: Owner, either the inode or the block_device. 450 * @i_pages: Cached pages. 451 * @invalidate_lock: Guards coherency between page cache contents and 452 * file offset->disk block mappings in the filesystem during invalidates. 453 * It is also used to block modification of page cache contents through 454 * memory mappings. 455 * @gfp_mask: Memory allocation flags to use for allocating pages. 456 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 457 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 458 * @i_mmap: Tree of private and shared mappings. 459 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 460 * @nrpages: Number of page entries, protected by the i_pages lock. 461 * @writeback_index: Writeback starts here. 462 * @a_ops: Methods. 463 * @flags: Error bits and flags (AS_*). 464 * @wb_err: The most recent error which has occurred. 465 * @i_private_lock: For use by the owner of the address_space. 466 * @i_private_list: For use by the owner of the address_space. 467 * @i_private_data: For use by the owner of the address_space. 468 */ 469 struct address_space { 470 struct inode *host; 471 struct xarray i_pages; 472 struct rw_semaphore invalidate_lock; 473 gfp_t gfp_mask; 474 atomic_t i_mmap_writable; 475 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 476 /* number of thp, only for non-shmem files */ 477 atomic_t nr_thps; 478 #endif 479 struct rb_root_cached i_mmap; 480 unsigned long nrpages; 481 pgoff_t writeback_index; 482 const struct address_space_operations *a_ops; 483 unsigned long flags; 484 errseq_t wb_err; 485 spinlock_t i_private_lock; 486 struct list_head i_private_list; 487 struct rw_semaphore i_mmap_rwsem; 488 void * i_private_data; 489 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 490 /* 491 * On most architectures that alignment is already the case; but 492 * must be enforced here for CRIS, to let the least significant bit 493 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 494 */ 495 496 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 497 #define PAGECACHE_TAG_DIRTY XA_MARK_0 498 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 499 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 500 501 /* 502 * Returns true if any of the pages in the mapping are marked with the tag. 503 */ 504 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 505 { 506 return xa_marked(&mapping->i_pages, tag); 507 } 508 509 static inline void i_mmap_lock_write(struct address_space *mapping) 510 { 511 down_write(&mapping->i_mmap_rwsem); 512 } 513 514 static inline int i_mmap_trylock_write(struct address_space *mapping) 515 { 516 return down_write_trylock(&mapping->i_mmap_rwsem); 517 } 518 519 static inline void i_mmap_unlock_write(struct address_space *mapping) 520 { 521 up_write(&mapping->i_mmap_rwsem); 522 } 523 524 static inline int i_mmap_trylock_read(struct address_space *mapping) 525 { 526 return down_read_trylock(&mapping->i_mmap_rwsem); 527 } 528 529 static inline void i_mmap_lock_read(struct address_space *mapping) 530 { 531 down_read(&mapping->i_mmap_rwsem); 532 } 533 534 static inline void i_mmap_unlock_read(struct address_space *mapping) 535 { 536 up_read(&mapping->i_mmap_rwsem); 537 } 538 539 static inline void i_mmap_assert_locked(struct address_space *mapping) 540 { 541 lockdep_assert_held(&mapping->i_mmap_rwsem); 542 } 543 544 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 545 { 546 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 547 } 548 549 /* 550 * Might pages of this file be mapped into userspace? 551 */ 552 static inline int mapping_mapped(struct address_space *mapping) 553 { 554 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 555 } 556 557 /* 558 * Might pages of this file have been modified in userspace? 559 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 560 * marks vma as VM_SHARED if it is shared, and the file was opened for 561 * writing i.e. vma may be mprotected writable even if now readonly. 562 * 563 * If i_mmap_writable is negative, no new writable mappings are allowed. You 564 * can only deny writable mappings, if none exists right now. 565 */ 566 static inline int mapping_writably_mapped(struct address_space *mapping) 567 { 568 return atomic_read(&mapping->i_mmap_writable) > 0; 569 } 570 571 static inline int mapping_map_writable(struct address_space *mapping) 572 { 573 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 574 0 : -EPERM; 575 } 576 577 static inline void mapping_unmap_writable(struct address_space *mapping) 578 { 579 atomic_dec(&mapping->i_mmap_writable); 580 } 581 582 static inline int mapping_deny_writable(struct address_space *mapping) 583 { 584 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 585 0 : -EBUSY; 586 } 587 588 static inline void mapping_allow_writable(struct address_space *mapping) 589 { 590 atomic_inc(&mapping->i_mmap_writable); 591 } 592 593 /* 594 * Use sequence counter to get consistent i_size on 32-bit processors. 595 */ 596 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 597 #include <linux/seqlock.h> 598 #define __NEED_I_SIZE_ORDERED 599 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 600 #else 601 #define i_size_ordered_init(inode) do { } while (0) 602 #endif 603 604 struct posix_acl; 605 #define ACL_NOT_CACHED ((void *)(-1)) 606 /* 607 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 608 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 609 * mode with the LOOKUP_RCU flag. 610 */ 611 #define ACL_DONT_CACHE ((void *)(-3)) 612 613 static inline struct posix_acl * 614 uncached_acl_sentinel(struct task_struct *task) 615 { 616 return (void *)task + 1; 617 } 618 619 static inline bool 620 is_uncached_acl(struct posix_acl *acl) 621 { 622 return (long)acl & 1; 623 } 624 625 #define IOP_FASTPERM 0x0001 626 #define IOP_LOOKUP 0x0002 627 #define IOP_NOFOLLOW 0x0004 628 #define IOP_XATTR 0x0008 629 #define IOP_DEFAULT_READLINK 0x0010 630 #define IOP_MGTIME 0x0020 631 632 /* 633 * Keep mostly read-only and often accessed (especially for 634 * the RCU path lookup and 'stat' data) fields at the beginning 635 * of the 'struct inode' 636 */ 637 struct inode { 638 umode_t i_mode; 639 unsigned short i_opflags; 640 kuid_t i_uid; 641 kgid_t i_gid; 642 unsigned int i_flags; 643 644 #ifdef CONFIG_FS_POSIX_ACL 645 struct posix_acl *i_acl; 646 struct posix_acl *i_default_acl; 647 #endif 648 649 const struct inode_operations *i_op; 650 struct super_block *i_sb; 651 struct address_space *i_mapping; 652 653 #ifdef CONFIG_SECURITY 654 void *i_security; 655 #endif 656 657 /* Stat data, not accessed from path walking */ 658 unsigned long i_ino; 659 /* 660 * Filesystems may only read i_nlink directly. They shall use the 661 * following functions for modification: 662 * 663 * (set|clear|inc|drop)_nlink 664 * inode_(inc|dec)_link_count 665 */ 666 union { 667 const unsigned int i_nlink; 668 unsigned int __i_nlink; 669 }; 670 dev_t i_rdev; 671 loff_t i_size; 672 time64_t i_atime_sec; 673 time64_t i_mtime_sec; 674 time64_t i_ctime_sec; 675 u32 i_atime_nsec; 676 u32 i_mtime_nsec; 677 u32 i_ctime_nsec; 678 u32 i_generation; 679 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 680 unsigned short i_bytes; 681 u8 i_blkbits; 682 enum rw_hint i_write_hint; 683 blkcnt_t i_blocks; 684 685 #ifdef __NEED_I_SIZE_ORDERED 686 seqcount_t i_size_seqcount; 687 #endif 688 689 /* Misc */ 690 u32 i_state; 691 /* 32-bit hole */ 692 struct rw_semaphore i_rwsem; 693 694 unsigned long dirtied_when; /* jiffies of first dirtying */ 695 unsigned long dirtied_time_when; 696 697 struct hlist_node i_hash; 698 struct list_head i_io_list; /* backing dev IO list */ 699 #ifdef CONFIG_CGROUP_WRITEBACK 700 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 701 702 /* foreign inode detection, see wbc_detach_inode() */ 703 int i_wb_frn_winner; 704 u16 i_wb_frn_avg_time; 705 u16 i_wb_frn_history; 706 #endif 707 struct list_head i_lru; /* inode LRU list */ 708 struct list_head i_sb_list; 709 struct list_head i_wb_list; /* backing dev writeback list */ 710 union { 711 struct hlist_head i_dentry; 712 struct rcu_head i_rcu; 713 }; 714 atomic64_t i_version; 715 atomic64_t i_sequence; /* see futex */ 716 atomic_t i_count; 717 atomic_t i_dio_count; 718 atomic_t i_writecount; 719 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 720 atomic_t i_readcount; /* struct files open RO */ 721 #endif 722 union { 723 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 724 void (*free_inode)(struct inode *); 725 }; 726 struct file_lock_context *i_flctx; 727 struct address_space i_data; 728 struct list_head i_devices; 729 union { 730 struct pipe_inode_info *i_pipe; 731 struct cdev *i_cdev; 732 char *i_link; 733 unsigned i_dir_seq; 734 }; 735 736 737 #ifdef CONFIG_FSNOTIFY 738 __u32 i_fsnotify_mask; /* all events this inode cares about */ 739 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 740 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 741 #endif 742 743 #ifdef CONFIG_FS_ENCRYPTION 744 struct fscrypt_inode_info *i_crypt_info; 745 #endif 746 747 #ifdef CONFIG_FS_VERITY 748 struct fsverity_info *i_verity_info; 749 #endif 750 751 void *i_private; /* fs or device private pointer */ 752 } __randomize_layout; 753 754 /* 755 * Get bit address from inode->i_state to use with wait_var_event() 756 * infrastructre. 757 */ 758 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 759 760 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 761 struct inode *inode, u32 bit); 762 763 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 764 { 765 /* Caller is responsible for correct memory barriers. */ 766 wake_up_var(inode_state_wait_address(inode, bit)); 767 } 768 769 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 770 771 static inline unsigned int i_blocksize(const struct inode *node) 772 { 773 return (1 << node->i_blkbits); 774 } 775 776 static inline int inode_unhashed(struct inode *inode) 777 { 778 return hlist_unhashed(&inode->i_hash); 779 } 780 781 /* 782 * __mark_inode_dirty expects inodes to be hashed. Since we don't 783 * want special inodes in the fileset inode space, we make them 784 * appear hashed, but do not put on any lists. hlist_del() 785 * will work fine and require no locking. 786 */ 787 static inline void inode_fake_hash(struct inode *inode) 788 { 789 hlist_add_fake(&inode->i_hash); 790 } 791 792 /* 793 * inode->i_mutex nesting subclasses for the lock validator: 794 * 795 * 0: the object of the current VFS operation 796 * 1: parent 797 * 2: child/target 798 * 3: xattr 799 * 4: second non-directory 800 * 5: second parent (when locking independent directories in rename) 801 * 802 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 803 * non-directories at once. 804 * 805 * The locking order between these classes is 806 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 807 */ 808 enum inode_i_mutex_lock_class 809 { 810 I_MUTEX_NORMAL, 811 I_MUTEX_PARENT, 812 I_MUTEX_CHILD, 813 I_MUTEX_XATTR, 814 I_MUTEX_NONDIR2, 815 I_MUTEX_PARENT2, 816 }; 817 818 static inline void inode_lock(struct inode *inode) 819 { 820 down_write(&inode->i_rwsem); 821 } 822 823 static inline void inode_unlock(struct inode *inode) 824 { 825 up_write(&inode->i_rwsem); 826 } 827 828 static inline void inode_lock_shared(struct inode *inode) 829 { 830 down_read(&inode->i_rwsem); 831 } 832 833 static inline void inode_unlock_shared(struct inode *inode) 834 { 835 up_read(&inode->i_rwsem); 836 } 837 838 static inline int inode_trylock(struct inode *inode) 839 { 840 return down_write_trylock(&inode->i_rwsem); 841 } 842 843 static inline int inode_trylock_shared(struct inode *inode) 844 { 845 return down_read_trylock(&inode->i_rwsem); 846 } 847 848 static inline int inode_is_locked(struct inode *inode) 849 { 850 return rwsem_is_locked(&inode->i_rwsem); 851 } 852 853 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 854 { 855 down_write_nested(&inode->i_rwsem, subclass); 856 } 857 858 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 859 { 860 down_read_nested(&inode->i_rwsem, subclass); 861 } 862 863 static inline void filemap_invalidate_lock(struct address_space *mapping) 864 { 865 down_write(&mapping->invalidate_lock); 866 } 867 868 static inline void filemap_invalidate_unlock(struct address_space *mapping) 869 { 870 up_write(&mapping->invalidate_lock); 871 } 872 873 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 874 { 875 down_read(&mapping->invalidate_lock); 876 } 877 878 static inline int filemap_invalidate_trylock_shared( 879 struct address_space *mapping) 880 { 881 return down_read_trylock(&mapping->invalidate_lock); 882 } 883 884 static inline void filemap_invalidate_unlock_shared( 885 struct address_space *mapping) 886 { 887 up_read(&mapping->invalidate_lock); 888 } 889 890 void lock_two_nondirectories(struct inode *, struct inode*); 891 void unlock_two_nondirectories(struct inode *, struct inode*); 892 893 void filemap_invalidate_lock_two(struct address_space *mapping1, 894 struct address_space *mapping2); 895 void filemap_invalidate_unlock_two(struct address_space *mapping1, 896 struct address_space *mapping2); 897 898 899 /* 900 * NOTE: in a 32bit arch with a preemptable kernel and 901 * an UP compile the i_size_read/write must be atomic 902 * with respect to the local cpu (unlike with preempt disabled), 903 * but they don't need to be atomic with respect to other cpus like in 904 * true SMP (so they need either to either locally disable irq around 905 * the read or for example on x86 they can be still implemented as a 906 * cmpxchg8b without the need of the lock prefix). For SMP compiles 907 * and 64bit archs it makes no difference if preempt is enabled or not. 908 */ 909 static inline loff_t i_size_read(const struct inode *inode) 910 { 911 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 912 loff_t i_size; 913 unsigned int seq; 914 915 do { 916 seq = read_seqcount_begin(&inode->i_size_seqcount); 917 i_size = inode->i_size; 918 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 919 return i_size; 920 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 921 loff_t i_size; 922 923 preempt_disable(); 924 i_size = inode->i_size; 925 preempt_enable(); 926 return i_size; 927 #else 928 /* Pairs with smp_store_release() in i_size_write() */ 929 return smp_load_acquire(&inode->i_size); 930 #endif 931 } 932 933 /* 934 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 935 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 936 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 937 */ 938 static inline void i_size_write(struct inode *inode, loff_t i_size) 939 { 940 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 941 preempt_disable(); 942 write_seqcount_begin(&inode->i_size_seqcount); 943 inode->i_size = i_size; 944 write_seqcount_end(&inode->i_size_seqcount); 945 preempt_enable(); 946 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 947 preempt_disable(); 948 inode->i_size = i_size; 949 preempt_enable(); 950 #else 951 /* 952 * Pairs with smp_load_acquire() in i_size_read() to ensure 953 * changes related to inode size (such as page contents) are 954 * visible before we see the changed inode size. 955 */ 956 smp_store_release(&inode->i_size, i_size); 957 #endif 958 } 959 960 static inline unsigned iminor(const struct inode *inode) 961 { 962 return MINOR(inode->i_rdev); 963 } 964 965 static inline unsigned imajor(const struct inode *inode) 966 { 967 return MAJOR(inode->i_rdev); 968 } 969 970 struct fown_struct { 971 struct file *file; /* backpointer for security modules */ 972 rwlock_t lock; /* protects pid, uid, euid fields */ 973 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 974 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 975 kuid_t uid, euid; /* uid/euid of process setting the owner */ 976 int signum; /* posix.1b rt signal to be delivered on IO */ 977 }; 978 979 /** 980 * struct file_ra_state - Track a file's readahead state. 981 * @start: Where the most recent readahead started. 982 * @size: Number of pages read in the most recent readahead. 983 * @async_size: Numer of pages that were/are not needed immediately 984 * and so were/are genuinely "ahead". Start next readahead when 985 * the first of these pages is accessed. 986 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 987 * @mmap_miss: How many mmap accesses missed in the page cache. 988 * @prev_pos: The last byte in the most recent read request. 989 * 990 * When this structure is passed to ->readahead(), the "most recent" 991 * readahead means the current readahead. 992 */ 993 struct file_ra_state { 994 pgoff_t start; 995 unsigned int size; 996 unsigned int async_size; 997 unsigned int ra_pages; 998 unsigned int mmap_miss; 999 loff_t prev_pos; 1000 }; 1001 1002 /* 1003 * Check if @index falls in the readahead windows. 1004 */ 1005 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1006 { 1007 return (index >= ra->start && 1008 index < ra->start + ra->size); 1009 } 1010 1011 /** 1012 * struct file - Represents a file 1013 * @f_ref: reference count 1014 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1015 * @f_mode: FMODE_* flags often used in hotpaths 1016 * @f_op: file operations 1017 * @f_mapping: Contents of a cacheable, mappable object. 1018 * @private_data: filesystem or driver specific data 1019 * @f_inode: cached inode 1020 * @f_flags: file flags 1021 * @f_iocb_flags: iocb flags 1022 * @f_cred: stashed credentials of creator/opener 1023 * @f_path: path of the file 1024 * @f_pos_lock: lock protecting file position 1025 * @f_pipe: specific to pipes 1026 * @f_pos: file position 1027 * @f_security: LSM security context of this file 1028 * @f_owner: file owner 1029 * @f_wb_err: writeback error 1030 * @f_sb_err: per sb writeback errors 1031 * @f_ep: link of all epoll hooks for this file 1032 * @f_task_work: task work entry point 1033 * @f_llist: work queue entrypoint 1034 * @f_ra: file's readahead state 1035 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1036 */ 1037 struct file { 1038 file_ref_t f_ref; 1039 spinlock_t f_lock; 1040 fmode_t f_mode; 1041 const struct file_operations *f_op; 1042 struct address_space *f_mapping; 1043 void *private_data; 1044 struct inode *f_inode; 1045 unsigned int f_flags; 1046 unsigned int f_iocb_flags; 1047 const struct cred *f_cred; 1048 /* --- cacheline 1 boundary (64 bytes) --- */ 1049 struct path f_path; 1050 union { 1051 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1052 struct mutex f_pos_lock; 1053 /* pipes */ 1054 u64 f_pipe; 1055 }; 1056 loff_t f_pos; 1057 #ifdef CONFIG_SECURITY 1058 void *f_security; 1059 #endif 1060 /* --- cacheline 2 boundary (128 bytes) --- */ 1061 struct fown_struct *f_owner; 1062 errseq_t f_wb_err; 1063 errseq_t f_sb_err; 1064 #ifdef CONFIG_EPOLL 1065 struct hlist_head *f_ep; 1066 #endif 1067 union { 1068 struct callback_head f_task_work; 1069 struct llist_node f_llist; 1070 struct file_ra_state f_ra; 1071 freeptr_t f_freeptr; 1072 }; 1073 /* --- cacheline 3 boundary (192 bytes) --- */ 1074 } __randomize_layout 1075 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1076 1077 struct file_handle { 1078 __u32 handle_bytes; 1079 int handle_type; 1080 /* file identifier */ 1081 unsigned char f_handle[] __counted_by(handle_bytes); 1082 }; 1083 1084 static inline struct file *get_file(struct file *f) 1085 { 1086 file_ref_inc(&f->f_ref); 1087 return f; 1088 } 1089 1090 struct file *get_file_rcu(struct file __rcu **f); 1091 struct file *get_file_active(struct file **f); 1092 1093 #define file_count(f) file_ref_read(&(f)->f_ref) 1094 1095 #define MAX_NON_LFS ((1UL<<31) - 1) 1096 1097 /* Page cache limit. The filesystems should put that into their s_maxbytes 1098 limits, otherwise bad things can happen in VM. */ 1099 #if BITS_PER_LONG==32 1100 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1101 #elif BITS_PER_LONG==64 1102 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1103 #endif 1104 1105 /* legacy typedef, should eventually be removed */ 1106 typedef void *fl_owner_t; 1107 1108 struct file_lock; 1109 struct file_lease; 1110 1111 /* The following constant reflects the upper bound of the file/locking space */ 1112 #ifndef OFFSET_MAX 1113 #define OFFSET_MAX type_max(loff_t) 1114 #define OFFT_OFFSET_MAX type_max(off_t) 1115 #endif 1116 1117 int file_f_owner_allocate(struct file *file); 1118 static inline struct fown_struct *file_f_owner(const struct file *file) 1119 { 1120 return READ_ONCE(file->f_owner); 1121 } 1122 1123 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1124 1125 static inline struct inode *file_inode(const struct file *f) 1126 { 1127 return f->f_inode; 1128 } 1129 1130 /* 1131 * file_dentry() is a relic from the days that overlayfs was using files with a 1132 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1133 * In those days, file_dentry() was needed to get the underlying fs dentry that 1134 * matches f_inode. 1135 * Files with "fake" path should not exist nowadays, so use an assertion to make 1136 * sure that file_dentry() was not papering over filesystem bugs. 1137 */ 1138 static inline struct dentry *file_dentry(const struct file *file) 1139 { 1140 struct dentry *dentry = file->f_path.dentry; 1141 1142 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1143 return dentry; 1144 } 1145 1146 struct fasync_struct { 1147 rwlock_t fa_lock; 1148 int magic; 1149 int fa_fd; 1150 struct fasync_struct *fa_next; /* singly linked list */ 1151 struct file *fa_file; 1152 struct rcu_head fa_rcu; 1153 }; 1154 1155 #define FASYNC_MAGIC 0x4601 1156 1157 /* SMP safe fasync helpers: */ 1158 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1159 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1160 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1161 extern struct fasync_struct *fasync_alloc(void); 1162 extern void fasync_free(struct fasync_struct *); 1163 1164 /* can be called from interrupts */ 1165 extern void kill_fasync(struct fasync_struct **, int, int); 1166 1167 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1168 extern int f_setown(struct file *filp, int who, int force); 1169 extern void f_delown(struct file *filp); 1170 extern pid_t f_getown(struct file *filp); 1171 extern int send_sigurg(struct file *file); 1172 1173 /* 1174 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1175 * represented in both. 1176 */ 1177 #define SB_RDONLY BIT(0) /* Mount read-only */ 1178 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1179 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1180 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1181 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1182 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1183 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1184 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1185 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1186 #define SB_SILENT BIT(15) 1187 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1188 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1189 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1190 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1191 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1192 1193 /* These sb flags are internal to the kernel */ 1194 #define SB_DEAD BIT(21) 1195 #define SB_DYING BIT(24) 1196 #define SB_SUBMOUNT BIT(26) 1197 #define SB_FORCE BIT(27) 1198 #define SB_NOSEC BIT(28) 1199 #define SB_BORN BIT(29) 1200 #define SB_ACTIVE BIT(30) 1201 #define SB_NOUSER BIT(31) 1202 1203 /* These flags relate to encoding and casefolding */ 1204 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1205 1206 #define sb_has_strict_encoding(sb) \ 1207 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1208 1209 /* 1210 * Umount options 1211 */ 1212 1213 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1214 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1215 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1216 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1217 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1218 1219 /* sb->s_iflags */ 1220 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1221 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1222 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1223 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1224 1225 /* sb->s_iflags to limit user namespace mounts */ 1226 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1227 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1228 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1229 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1230 1231 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1232 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1233 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1234 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1235 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1236 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1237 1238 /* Possible states of 'frozen' field */ 1239 enum { 1240 SB_UNFROZEN = 0, /* FS is unfrozen */ 1241 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1242 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1243 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1244 * internal threads if needed) */ 1245 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1246 }; 1247 1248 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1249 1250 struct sb_writers { 1251 unsigned short frozen; /* Is sb frozen? */ 1252 int freeze_kcount; /* How many kernel freeze requests? */ 1253 int freeze_ucount; /* How many userspace freeze requests? */ 1254 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1255 }; 1256 1257 struct super_block { 1258 struct list_head s_list; /* Keep this first */ 1259 dev_t s_dev; /* search index; _not_ kdev_t */ 1260 unsigned char s_blocksize_bits; 1261 unsigned long s_blocksize; 1262 loff_t s_maxbytes; /* Max file size */ 1263 struct file_system_type *s_type; 1264 const struct super_operations *s_op; 1265 const struct dquot_operations *dq_op; 1266 const struct quotactl_ops *s_qcop; 1267 const struct export_operations *s_export_op; 1268 unsigned long s_flags; 1269 unsigned long s_iflags; /* internal SB_I_* flags */ 1270 unsigned long s_magic; 1271 struct dentry *s_root; 1272 struct rw_semaphore s_umount; 1273 int s_count; 1274 atomic_t s_active; 1275 #ifdef CONFIG_SECURITY 1276 void *s_security; 1277 #endif 1278 const struct xattr_handler * const *s_xattr; 1279 #ifdef CONFIG_FS_ENCRYPTION 1280 const struct fscrypt_operations *s_cop; 1281 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1282 #endif 1283 #ifdef CONFIG_FS_VERITY 1284 const struct fsverity_operations *s_vop; 1285 #endif 1286 #if IS_ENABLED(CONFIG_UNICODE) 1287 struct unicode_map *s_encoding; 1288 __u16 s_encoding_flags; 1289 #endif 1290 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1291 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1292 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1293 struct file *s_bdev_file; 1294 struct backing_dev_info *s_bdi; 1295 struct mtd_info *s_mtd; 1296 struct hlist_node s_instances; 1297 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1298 struct quota_info s_dquot; /* Diskquota specific options */ 1299 1300 struct sb_writers s_writers; 1301 1302 /* 1303 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1304 * s_fsnotify_info together for cache efficiency. They are frequently 1305 * accessed and rarely modified. 1306 */ 1307 void *s_fs_info; /* Filesystem private info */ 1308 1309 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1310 u32 s_time_gran; 1311 /* Time limits for c/m/atime in seconds */ 1312 time64_t s_time_min; 1313 time64_t s_time_max; 1314 #ifdef CONFIG_FSNOTIFY 1315 u32 s_fsnotify_mask; 1316 struct fsnotify_sb_info *s_fsnotify_info; 1317 #endif 1318 1319 /* 1320 * q: why are s_id and s_sysfs_name not the same? both are human 1321 * readable strings that identify the filesystem 1322 * a: s_id is allowed to change at runtime; it's used in log messages, 1323 * and we want to when a device starts out as single device (s_id is dev 1324 * name) but then a device is hot added and we have to switch to 1325 * identifying it by UUID 1326 * but s_sysfs_name is a handle for programmatic access, and can't 1327 * change at runtime 1328 */ 1329 char s_id[32]; /* Informational name */ 1330 uuid_t s_uuid; /* UUID */ 1331 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1332 1333 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1334 char s_sysfs_name[UUID_STRING_LEN + 1]; 1335 1336 unsigned int s_max_links; 1337 1338 /* 1339 * The next field is for VFS *only*. No filesystems have any business 1340 * even looking at it. You had been warned. 1341 */ 1342 struct mutex s_vfs_rename_mutex; /* Kludge */ 1343 1344 /* 1345 * Filesystem subtype. If non-empty the filesystem type field 1346 * in /proc/mounts will be "type.subtype" 1347 */ 1348 const char *s_subtype; 1349 1350 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1351 1352 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1353 1354 /* Number of inodes with nlink == 0 but still referenced */ 1355 atomic_long_t s_remove_count; 1356 1357 /* Read-only state of the superblock is being changed */ 1358 int s_readonly_remount; 1359 1360 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1361 errseq_t s_wb_err; 1362 1363 /* AIO completions deferred from interrupt context */ 1364 struct workqueue_struct *s_dio_done_wq; 1365 struct hlist_head s_pins; 1366 1367 /* 1368 * Owning user namespace and default context in which to 1369 * interpret filesystem uids, gids, quotas, device nodes, 1370 * xattrs and security labels. 1371 */ 1372 struct user_namespace *s_user_ns; 1373 1374 /* 1375 * The list_lru structure is essentially just a pointer to a table 1376 * of per-node lru lists, each of which has its own spinlock. 1377 * There is no need to put them into separate cachelines. 1378 */ 1379 struct list_lru s_dentry_lru; 1380 struct list_lru s_inode_lru; 1381 struct rcu_head rcu; 1382 struct work_struct destroy_work; 1383 1384 struct mutex s_sync_lock; /* sync serialisation lock */ 1385 1386 /* 1387 * Indicates how deep in a filesystem stack this SB is 1388 */ 1389 int s_stack_depth; 1390 1391 /* s_inode_list_lock protects s_inodes */ 1392 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1393 struct list_head s_inodes; /* all inodes */ 1394 1395 spinlock_t s_inode_wblist_lock; 1396 struct list_head s_inodes_wb; /* writeback inodes */ 1397 } __randomize_layout; 1398 1399 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1400 { 1401 return inode->i_sb->s_user_ns; 1402 } 1403 1404 /* Helper functions so that in most cases filesystems will 1405 * not need to deal directly with kuid_t and kgid_t and can 1406 * instead deal with the raw numeric values that are stored 1407 * in the filesystem. 1408 */ 1409 static inline uid_t i_uid_read(const struct inode *inode) 1410 { 1411 return from_kuid(i_user_ns(inode), inode->i_uid); 1412 } 1413 1414 static inline gid_t i_gid_read(const struct inode *inode) 1415 { 1416 return from_kgid(i_user_ns(inode), inode->i_gid); 1417 } 1418 1419 static inline void i_uid_write(struct inode *inode, uid_t uid) 1420 { 1421 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1422 } 1423 1424 static inline void i_gid_write(struct inode *inode, gid_t gid) 1425 { 1426 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1427 } 1428 1429 /** 1430 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1431 * @idmap: idmap of the mount the inode was found from 1432 * @inode: inode to map 1433 * 1434 * Return: whe inode's i_uid mapped down according to @idmap. 1435 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1436 */ 1437 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1438 const struct inode *inode) 1439 { 1440 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1441 } 1442 1443 /** 1444 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1445 * @idmap: idmap of the mount the inode was found from 1446 * @attr: the new attributes of @inode 1447 * @inode: the inode to update 1448 * 1449 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1450 * mounts into account if the filesystem supports it. 1451 * 1452 * Return: true if @inode's i_uid field needs to be updated, false if not. 1453 */ 1454 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1455 const struct iattr *attr, 1456 const struct inode *inode) 1457 { 1458 return ((attr->ia_valid & ATTR_UID) && 1459 !vfsuid_eq(attr->ia_vfsuid, 1460 i_uid_into_vfsuid(idmap, inode))); 1461 } 1462 1463 /** 1464 * i_uid_update - update @inode's i_uid field 1465 * @idmap: idmap of the mount the inode was found from 1466 * @attr: the new attributes of @inode 1467 * @inode: the inode to update 1468 * 1469 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1470 * mount into the filesystem kuid. 1471 */ 1472 static inline void i_uid_update(struct mnt_idmap *idmap, 1473 const struct iattr *attr, 1474 struct inode *inode) 1475 { 1476 if (attr->ia_valid & ATTR_UID) 1477 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1478 attr->ia_vfsuid); 1479 } 1480 1481 /** 1482 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1483 * @idmap: idmap of the mount the inode was found from 1484 * @inode: inode to map 1485 * 1486 * Return: the inode's i_gid mapped down according to @idmap. 1487 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1488 */ 1489 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1490 const struct inode *inode) 1491 { 1492 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1493 } 1494 1495 /** 1496 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1497 * @idmap: idmap of the mount the inode was found from 1498 * @attr: the new attributes of @inode 1499 * @inode: the inode to update 1500 * 1501 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1502 * mounts into account if the filesystem supports it. 1503 * 1504 * Return: true if @inode's i_gid field needs to be updated, false if not. 1505 */ 1506 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1507 const struct iattr *attr, 1508 const struct inode *inode) 1509 { 1510 return ((attr->ia_valid & ATTR_GID) && 1511 !vfsgid_eq(attr->ia_vfsgid, 1512 i_gid_into_vfsgid(idmap, inode))); 1513 } 1514 1515 /** 1516 * i_gid_update - update @inode's i_gid field 1517 * @idmap: idmap of the mount the inode was found from 1518 * @attr: the new attributes of @inode 1519 * @inode: the inode to update 1520 * 1521 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1522 * mount into the filesystem kgid. 1523 */ 1524 static inline void i_gid_update(struct mnt_idmap *idmap, 1525 const struct iattr *attr, 1526 struct inode *inode) 1527 { 1528 if (attr->ia_valid & ATTR_GID) 1529 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1530 attr->ia_vfsgid); 1531 } 1532 1533 /** 1534 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1535 * @inode: inode to initialize 1536 * @idmap: idmap of the mount the inode was found from 1537 * 1538 * Initialize the i_uid field of @inode. If the inode was found/created via 1539 * an idmapped mount map the caller's fsuid according to @idmap. 1540 */ 1541 static inline void inode_fsuid_set(struct inode *inode, 1542 struct mnt_idmap *idmap) 1543 { 1544 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1545 } 1546 1547 /** 1548 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1549 * @inode: inode to initialize 1550 * @idmap: idmap of the mount the inode was found from 1551 * 1552 * Initialize the i_gid field of @inode. If the inode was found/created via 1553 * an idmapped mount map the caller's fsgid according to @idmap. 1554 */ 1555 static inline void inode_fsgid_set(struct inode *inode, 1556 struct mnt_idmap *idmap) 1557 { 1558 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1559 } 1560 1561 /** 1562 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1563 * @sb: the superblock we want a mapping in 1564 * @idmap: idmap of the relevant mount 1565 * 1566 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1567 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1568 * the caller's fsuid and fsgid according to the @idmap first. 1569 * 1570 * Return: true if fsuid and fsgid is mapped, false if not. 1571 */ 1572 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1573 struct mnt_idmap *idmap) 1574 { 1575 struct user_namespace *fs_userns = sb->s_user_ns; 1576 kuid_t kuid; 1577 kgid_t kgid; 1578 1579 kuid = mapped_fsuid(idmap, fs_userns); 1580 if (!uid_valid(kuid)) 1581 return false; 1582 kgid = mapped_fsgid(idmap, fs_userns); 1583 if (!gid_valid(kgid)) 1584 return false; 1585 return kuid_has_mapping(fs_userns, kuid) && 1586 kgid_has_mapping(fs_userns, kgid); 1587 } 1588 1589 struct timespec64 current_time(struct inode *inode); 1590 struct timespec64 inode_set_ctime_current(struct inode *inode); 1591 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1592 struct timespec64 update); 1593 1594 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1595 { 1596 return inode->i_atime_sec; 1597 } 1598 1599 static inline long inode_get_atime_nsec(const struct inode *inode) 1600 { 1601 return inode->i_atime_nsec; 1602 } 1603 1604 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1605 { 1606 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1607 .tv_nsec = inode_get_atime_nsec(inode) }; 1608 1609 return ts; 1610 } 1611 1612 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1613 struct timespec64 ts) 1614 { 1615 inode->i_atime_sec = ts.tv_sec; 1616 inode->i_atime_nsec = ts.tv_nsec; 1617 return ts; 1618 } 1619 1620 static inline struct timespec64 inode_set_atime(struct inode *inode, 1621 time64_t sec, long nsec) 1622 { 1623 struct timespec64 ts = { .tv_sec = sec, 1624 .tv_nsec = nsec }; 1625 1626 return inode_set_atime_to_ts(inode, ts); 1627 } 1628 1629 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1630 { 1631 return inode->i_mtime_sec; 1632 } 1633 1634 static inline long inode_get_mtime_nsec(const struct inode *inode) 1635 { 1636 return inode->i_mtime_nsec; 1637 } 1638 1639 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1640 { 1641 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1642 .tv_nsec = inode_get_mtime_nsec(inode) }; 1643 return ts; 1644 } 1645 1646 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1647 struct timespec64 ts) 1648 { 1649 inode->i_mtime_sec = ts.tv_sec; 1650 inode->i_mtime_nsec = ts.tv_nsec; 1651 return ts; 1652 } 1653 1654 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1655 time64_t sec, long nsec) 1656 { 1657 struct timespec64 ts = { .tv_sec = sec, 1658 .tv_nsec = nsec }; 1659 return inode_set_mtime_to_ts(inode, ts); 1660 } 1661 1662 /* 1663 * Multigrain timestamps 1664 * 1665 * Conditionally use fine-grained ctime and mtime timestamps when there 1666 * are users actively observing them via getattr. The primary use-case 1667 * for this is NFS clients that use the ctime to distinguish between 1668 * different states of the file, and that are often fooled by multiple 1669 * operations that occur in the same coarse-grained timer tick. 1670 */ 1671 #define I_CTIME_QUERIED ((u32)BIT(31)) 1672 1673 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1674 { 1675 return inode->i_ctime_sec; 1676 } 1677 1678 static inline long inode_get_ctime_nsec(const struct inode *inode) 1679 { 1680 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1681 } 1682 1683 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1684 { 1685 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1686 .tv_nsec = inode_get_ctime_nsec(inode) }; 1687 1688 return ts; 1689 } 1690 1691 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1692 1693 /** 1694 * inode_set_ctime - set the ctime in the inode 1695 * @inode: inode in which to set the ctime 1696 * @sec: tv_sec value to set 1697 * @nsec: tv_nsec value to set 1698 * 1699 * Set the ctime in @inode to { @sec, @nsec } 1700 */ 1701 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1702 time64_t sec, long nsec) 1703 { 1704 struct timespec64 ts = { .tv_sec = sec, 1705 .tv_nsec = nsec }; 1706 1707 return inode_set_ctime_to_ts(inode, ts); 1708 } 1709 1710 struct timespec64 simple_inode_init_ts(struct inode *inode); 1711 1712 /* 1713 * Snapshotting support. 1714 */ 1715 1716 /* 1717 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1718 * instead. 1719 */ 1720 static inline void __sb_end_write(struct super_block *sb, int level) 1721 { 1722 percpu_up_read(sb->s_writers.rw_sem + level-1); 1723 } 1724 1725 static inline void __sb_start_write(struct super_block *sb, int level) 1726 { 1727 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1728 } 1729 1730 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1731 { 1732 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1733 } 1734 1735 #define __sb_writers_acquired(sb, lev) \ 1736 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1737 #define __sb_writers_release(sb, lev) \ 1738 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1739 1740 /** 1741 * __sb_write_started - check if sb freeze level is held 1742 * @sb: the super we write to 1743 * @level: the freeze level 1744 * 1745 * * > 0 - sb freeze level is held 1746 * * 0 - sb freeze level is not held 1747 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1748 */ 1749 static inline int __sb_write_started(const struct super_block *sb, int level) 1750 { 1751 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1752 } 1753 1754 /** 1755 * sb_write_started - check if SB_FREEZE_WRITE is held 1756 * @sb: the super we write to 1757 * 1758 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1759 */ 1760 static inline bool sb_write_started(const struct super_block *sb) 1761 { 1762 return __sb_write_started(sb, SB_FREEZE_WRITE); 1763 } 1764 1765 /** 1766 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1767 * @sb: the super we write to 1768 * 1769 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1770 */ 1771 static inline bool sb_write_not_started(const struct super_block *sb) 1772 { 1773 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1774 } 1775 1776 /** 1777 * file_write_started - check if SB_FREEZE_WRITE is held 1778 * @file: the file we write to 1779 * 1780 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1781 * May be false positive with !S_ISREG, because file_start_write() has 1782 * no effect on !S_ISREG. 1783 */ 1784 static inline bool file_write_started(const struct file *file) 1785 { 1786 if (!S_ISREG(file_inode(file)->i_mode)) 1787 return true; 1788 return sb_write_started(file_inode(file)->i_sb); 1789 } 1790 1791 /** 1792 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1793 * @file: the file we write to 1794 * 1795 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1796 * May be false positive with !S_ISREG, because file_start_write() has 1797 * no effect on !S_ISREG. 1798 */ 1799 static inline bool file_write_not_started(const struct file *file) 1800 { 1801 if (!S_ISREG(file_inode(file)->i_mode)) 1802 return true; 1803 return sb_write_not_started(file_inode(file)->i_sb); 1804 } 1805 1806 /** 1807 * sb_end_write - drop write access to a superblock 1808 * @sb: the super we wrote to 1809 * 1810 * Decrement number of writers to the filesystem. Wake up possible waiters 1811 * wanting to freeze the filesystem. 1812 */ 1813 static inline void sb_end_write(struct super_block *sb) 1814 { 1815 __sb_end_write(sb, SB_FREEZE_WRITE); 1816 } 1817 1818 /** 1819 * sb_end_pagefault - drop write access to a superblock from a page fault 1820 * @sb: the super we wrote to 1821 * 1822 * Decrement number of processes handling write page fault to the filesystem. 1823 * Wake up possible waiters wanting to freeze the filesystem. 1824 */ 1825 static inline void sb_end_pagefault(struct super_block *sb) 1826 { 1827 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1828 } 1829 1830 /** 1831 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1832 * @sb: the super we wrote to 1833 * 1834 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1835 * waiters wanting to freeze the filesystem. 1836 */ 1837 static inline void sb_end_intwrite(struct super_block *sb) 1838 { 1839 __sb_end_write(sb, SB_FREEZE_FS); 1840 } 1841 1842 /** 1843 * sb_start_write - get write access to a superblock 1844 * @sb: the super we write to 1845 * 1846 * When a process wants to write data or metadata to a file system (i.e. dirty 1847 * a page or an inode), it should embed the operation in a sb_start_write() - 1848 * sb_end_write() pair to get exclusion against file system freezing. This 1849 * function increments number of writers preventing freezing. If the file 1850 * system is already frozen, the function waits until the file system is 1851 * thawed. 1852 * 1853 * Since freeze protection behaves as a lock, users have to preserve 1854 * ordering of freeze protection and other filesystem locks. Generally, 1855 * freeze protection should be the outermost lock. In particular, we have: 1856 * 1857 * sb_start_write 1858 * -> i_mutex (write path, truncate, directory ops, ...) 1859 * -> s_umount (freeze_super, thaw_super) 1860 */ 1861 static inline void sb_start_write(struct super_block *sb) 1862 { 1863 __sb_start_write(sb, SB_FREEZE_WRITE); 1864 } 1865 1866 static inline bool sb_start_write_trylock(struct super_block *sb) 1867 { 1868 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1869 } 1870 1871 /** 1872 * sb_start_pagefault - get write access to a superblock from a page fault 1873 * @sb: the super we write to 1874 * 1875 * When a process starts handling write page fault, it should embed the 1876 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1877 * exclusion against file system freezing. This is needed since the page fault 1878 * is going to dirty a page. This function increments number of running page 1879 * faults preventing freezing. If the file system is already frozen, the 1880 * function waits until the file system is thawed. 1881 * 1882 * Since page fault freeze protection behaves as a lock, users have to preserve 1883 * ordering of freeze protection and other filesystem locks. It is advised to 1884 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1885 * handling code implies lock dependency: 1886 * 1887 * mmap_lock 1888 * -> sb_start_pagefault 1889 */ 1890 static inline void sb_start_pagefault(struct super_block *sb) 1891 { 1892 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1893 } 1894 1895 /** 1896 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1897 * @sb: the super we write to 1898 * 1899 * This is the third level of protection against filesystem freezing. It is 1900 * free for use by a filesystem. The only requirement is that it must rank 1901 * below sb_start_pagefault. 1902 * 1903 * For example filesystem can call sb_start_intwrite() when starting a 1904 * transaction which somewhat eases handling of freezing for internal sources 1905 * of filesystem changes (internal fs threads, discarding preallocation on file 1906 * close, etc.). 1907 */ 1908 static inline void sb_start_intwrite(struct super_block *sb) 1909 { 1910 __sb_start_write(sb, SB_FREEZE_FS); 1911 } 1912 1913 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1914 { 1915 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1916 } 1917 1918 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1919 const struct inode *inode); 1920 1921 /* 1922 * VFS helper functions.. 1923 */ 1924 int vfs_create(struct mnt_idmap *, struct inode *, 1925 struct dentry *, umode_t, bool); 1926 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1927 struct dentry *, umode_t); 1928 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1929 umode_t, dev_t); 1930 int vfs_symlink(struct mnt_idmap *, struct inode *, 1931 struct dentry *, const char *); 1932 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1933 struct dentry *, struct inode **); 1934 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1935 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1936 struct inode **); 1937 1938 /** 1939 * struct renamedata - contains all information required for renaming 1940 * @old_mnt_idmap: idmap of the old mount the inode was found from 1941 * @old_dir: parent of source 1942 * @old_dentry: source 1943 * @new_mnt_idmap: idmap of the new mount the inode was found from 1944 * @new_dir: parent of destination 1945 * @new_dentry: destination 1946 * @delegated_inode: returns an inode needing a delegation break 1947 * @flags: rename flags 1948 */ 1949 struct renamedata { 1950 struct mnt_idmap *old_mnt_idmap; 1951 struct inode *old_dir; 1952 struct dentry *old_dentry; 1953 struct mnt_idmap *new_mnt_idmap; 1954 struct inode *new_dir; 1955 struct dentry *new_dentry; 1956 struct inode **delegated_inode; 1957 unsigned int flags; 1958 } __randomize_layout; 1959 1960 int vfs_rename(struct renamedata *); 1961 1962 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1963 struct inode *dir, struct dentry *dentry) 1964 { 1965 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1966 WHITEOUT_DEV); 1967 } 1968 1969 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1970 const struct path *parentpath, 1971 umode_t mode, int open_flag, 1972 const struct cred *cred); 1973 struct file *kernel_file_open(const struct path *path, int flags, 1974 const struct cred *cred); 1975 1976 int vfs_mkobj(struct dentry *, umode_t, 1977 int (*f)(struct dentry *, umode_t, void *), 1978 void *); 1979 1980 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1981 int vfs_fchmod(struct file *file, umode_t mode); 1982 int vfs_utimes(const struct path *path, struct timespec64 *times); 1983 1984 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1985 1986 #ifdef CONFIG_COMPAT 1987 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1988 unsigned long arg); 1989 #else 1990 #define compat_ptr_ioctl NULL 1991 #endif 1992 1993 /* 1994 * VFS file helper functions. 1995 */ 1996 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1997 const struct inode *dir, umode_t mode); 1998 extern bool may_open_dev(const struct path *path); 1999 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2000 const struct inode *dir, umode_t mode); 2001 bool in_group_or_capable(struct mnt_idmap *idmap, 2002 const struct inode *inode, vfsgid_t vfsgid); 2003 2004 /* 2005 * This is the "filldir" function type, used by readdir() to let 2006 * the kernel specify what kind of dirent layout it wants to have. 2007 * This allows the kernel to read directories into kernel space or 2008 * to have different dirent layouts depending on the binary type. 2009 * Return 'true' to keep going and 'false' if there are no more entries. 2010 */ 2011 struct dir_context; 2012 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2013 unsigned); 2014 2015 struct dir_context { 2016 filldir_t actor; 2017 loff_t pos; 2018 }; 2019 2020 /* 2021 * These flags let !MMU mmap() govern direct device mapping vs immediate 2022 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2023 * 2024 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2025 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2026 * NOMMU_MAP_READ: Can be mapped for reading 2027 * NOMMU_MAP_WRITE: Can be mapped for writing 2028 * NOMMU_MAP_EXEC: Can be mapped for execution 2029 */ 2030 #define NOMMU_MAP_COPY 0x00000001 2031 #define NOMMU_MAP_DIRECT 0x00000008 2032 #define NOMMU_MAP_READ VM_MAYREAD 2033 #define NOMMU_MAP_WRITE VM_MAYWRITE 2034 #define NOMMU_MAP_EXEC VM_MAYEXEC 2035 2036 #define NOMMU_VMFLAGS \ 2037 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2038 2039 /* 2040 * These flags control the behavior of the remap_file_range function pointer. 2041 * If it is called with len == 0 that means "remap to end of source file". 2042 * See Documentation/filesystems/vfs.rst for more details about this call. 2043 * 2044 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2045 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2046 */ 2047 #define REMAP_FILE_DEDUP (1 << 0) 2048 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2049 2050 /* 2051 * These flags signal that the caller is ok with altering various aspects of 2052 * the behavior of the remap operation. The changes must be made by the 2053 * implementation; the vfs remap helper functions can take advantage of them. 2054 * Flags in this category exist to preserve the quirky behavior of the hoisted 2055 * btrfs clone/dedupe ioctls. 2056 */ 2057 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2058 2059 /* 2060 * These flags control the behavior of vfs_copy_file_range(). 2061 * They are not available to the user via syscall. 2062 * 2063 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2064 */ 2065 #define COPY_FILE_SPLICE (1 << 0) 2066 2067 struct iov_iter; 2068 struct io_uring_cmd; 2069 struct offset_ctx; 2070 2071 typedef unsigned int __bitwise fop_flags_t; 2072 2073 struct file_operations { 2074 struct module *owner; 2075 fop_flags_t fop_flags; 2076 loff_t (*llseek) (struct file *, loff_t, int); 2077 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2078 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2079 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2080 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2081 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2082 unsigned int flags); 2083 int (*iterate_shared) (struct file *, struct dir_context *); 2084 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2085 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2086 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2087 int (*mmap) (struct file *, struct vm_area_struct *); 2088 int (*open) (struct inode *, struct file *); 2089 int (*flush) (struct file *, fl_owner_t id); 2090 int (*release) (struct inode *, struct file *); 2091 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2092 int (*fasync) (int, struct file *, int); 2093 int (*lock) (struct file *, int, struct file_lock *); 2094 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2095 int (*check_flags)(int); 2096 int (*flock) (struct file *, int, struct file_lock *); 2097 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2098 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2099 void (*splice_eof)(struct file *file); 2100 int (*setlease)(struct file *, int, struct file_lease **, void **); 2101 long (*fallocate)(struct file *file, int mode, loff_t offset, 2102 loff_t len); 2103 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2104 #ifndef CONFIG_MMU 2105 unsigned (*mmap_capabilities)(struct file *); 2106 #endif 2107 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2108 loff_t, size_t, unsigned int); 2109 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2110 struct file *file_out, loff_t pos_out, 2111 loff_t len, unsigned int remap_flags); 2112 int (*fadvise)(struct file *, loff_t, loff_t, int); 2113 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2114 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2115 unsigned int poll_flags); 2116 } __randomize_layout; 2117 2118 /* Supports async buffered reads */ 2119 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2120 /* Supports async buffered writes */ 2121 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2122 /* Supports synchronous page faults for mappings */ 2123 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2124 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2125 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2126 /* Contains huge pages */ 2127 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2128 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2129 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2130 /* Supports asynchronous lock callbacks */ 2131 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2132 /* File system supports uncached read/write buffered IO */ 2133 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 2134 2135 /* Wrap a directory iterator that needs exclusive inode access */ 2136 int wrap_directory_iterator(struct file *, struct dir_context *, 2137 int (*) (struct file *, struct dir_context *)); 2138 #define WRAP_DIR_ITER(x) \ 2139 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2140 { return wrap_directory_iterator(file, ctx, x); } 2141 2142 struct inode_operations { 2143 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2144 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2145 int (*permission) (struct mnt_idmap *, struct inode *, int); 2146 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2147 2148 int (*readlink) (struct dentry *, char __user *,int); 2149 2150 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2151 umode_t, bool); 2152 int (*link) (struct dentry *,struct inode *,struct dentry *); 2153 int (*unlink) (struct inode *,struct dentry *); 2154 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2155 const char *); 2156 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2157 umode_t); 2158 int (*rmdir) (struct inode *,struct dentry *); 2159 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2160 umode_t,dev_t); 2161 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2162 struct inode *, struct dentry *, unsigned int); 2163 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2164 int (*getattr) (struct mnt_idmap *, const struct path *, 2165 struct kstat *, u32, unsigned int); 2166 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2167 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2168 u64 len); 2169 int (*update_time)(struct inode *, int); 2170 int (*atomic_open)(struct inode *, struct dentry *, 2171 struct file *, unsigned open_flag, 2172 umode_t create_mode); 2173 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2174 struct file *, umode_t); 2175 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2176 int); 2177 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2178 struct posix_acl *, int); 2179 int (*fileattr_set)(struct mnt_idmap *idmap, 2180 struct dentry *dentry, struct fileattr *fa); 2181 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2182 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2183 } ____cacheline_aligned; 2184 2185 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2186 { 2187 return file->f_op->mmap(file, vma); 2188 } 2189 2190 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2191 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2192 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2193 loff_t, size_t, unsigned int); 2194 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2195 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2196 struct file *file_out, loff_t pos_out, 2197 loff_t *len, unsigned int remap_flags, 2198 const struct iomap_ops *dax_read_ops); 2199 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2200 struct file *file_out, loff_t pos_out, 2201 loff_t *count, unsigned int remap_flags); 2202 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2203 struct file *file_out, loff_t pos_out, 2204 loff_t len, unsigned int remap_flags); 2205 extern int vfs_dedupe_file_range(struct file *file, 2206 struct file_dedupe_range *same); 2207 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2208 struct file *dst_file, loff_t dst_pos, 2209 loff_t len, unsigned int remap_flags); 2210 2211 /** 2212 * enum freeze_holder - holder of the freeze 2213 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2214 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2215 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2216 * 2217 * Indicate who the owner of the freeze or thaw request is and whether 2218 * the freeze needs to be exclusive or can nest. 2219 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2220 * same holder aren't allowed. It is however allowed to hold a single 2221 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2222 * the same time. This is relied upon by some filesystems during online 2223 * repair or similar. 2224 */ 2225 enum freeze_holder { 2226 FREEZE_HOLDER_KERNEL = (1U << 0), 2227 FREEZE_HOLDER_USERSPACE = (1U << 1), 2228 FREEZE_MAY_NEST = (1U << 2), 2229 }; 2230 2231 struct super_operations { 2232 struct inode *(*alloc_inode)(struct super_block *sb); 2233 void (*destroy_inode)(struct inode *); 2234 void (*free_inode)(struct inode *); 2235 2236 void (*dirty_inode) (struct inode *, int flags); 2237 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2238 int (*drop_inode) (struct inode *); 2239 void (*evict_inode) (struct inode *); 2240 void (*put_super) (struct super_block *); 2241 int (*sync_fs)(struct super_block *sb, int wait); 2242 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2243 int (*freeze_fs) (struct super_block *); 2244 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2245 int (*unfreeze_fs) (struct super_block *); 2246 int (*statfs) (struct dentry *, struct kstatfs *); 2247 int (*remount_fs) (struct super_block *, int *, char *); 2248 void (*umount_begin) (struct super_block *); 2249 2250 int (*show_options)(struct seq_file *, struct dentry *); 2251 int (*show_devname)(struct seq_file *, struct dentry *); 2252 int (*show_path)(struct seq_file *, struct dentry *); 2253 int (*show_stats)(struct seq_file *, struct dentry *); 2254 #ifdef CONFIG_QUOTA 2255 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2256 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2257 struct dquot __rcu **(*get_dquots)(struct inode *); 2258 #endif 2259 long (*nr_cached_objects)(struct super_block *, 2260 struct shrink_control *); 2261 long (*free_cached_objects)(struct super_block *, 2262 struct shrink_control *); 2263 void (*shutdown)(struct super_block *sb); 2264 }; 2265 2266 /* 2267 * Inode flags - they have no relation to superblock flags now 2268 */ 2269 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2270 #define S_NOATIME (1 << 1) /* Do not update access times */ 2271 #define S_APPEND (1 << 2) /* Append-only file */ 2272 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2273 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2274 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2275 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2276 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2277 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2278 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2279 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2280 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2281 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2282 #ifdef CONFIG_FS_DAX 2283 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2284 #else 2285 #define S_DAX 0 /* Make all the DAX code disappear */ 2286 #endif 2287 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2288 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2289 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2290 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2291 2292 /* 2293 * Note that nosuid etc flags are inode-specific: setting some file-system 2294 * flags just means all the inodes inherit those flags by default. It might be 2295 * possible to override it selectively if you really wanted to with some 2296 * ioctl() that is not currently implemented. 2297 * 2298 * Exception: SB_RDONLY is always applied to the entire file system. 2299 * 2300 * Unfortunately, it is possible to change a filesystems flags with it mounted 2301 * with files in use. This means that all of the inodes will not have their 2302 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2303 * flags, so these have to be checked separately. -- [email protected] 2304 */ 2305 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2306 2307 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2308 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2309 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2310 ((inode)->i_flags & S_SYNC)) 2311 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2312 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2313 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2314 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2315 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2316 2317 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2318 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2319 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2320 2321 #ifdef CONFIG_FS_POSIX_ACL 2322 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2323 #else 2324 #define IS_POSIXACL(inode) 0 2325 #endif 2326 2327 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2328 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2329 2330 #ifdef CONFIG_SWAP 2331 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2332 #else 2333 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2334 #endif 2335 2336 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2337 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2338 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2339 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2340 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2341 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2342 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2343 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2344 2345 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2346 (inode)->i_rdev == WHITEOUT_DEV) 2347 2348 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2349 struct inode *inode) 2350 { 2351 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2352 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2353 } 2354 2355 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2356 { 2357 *kiocb = (struct kiocb) { 2358 .ki_filp = filp, 2359 .ki_flags = filp->f_iocb_flags, 2360 .ki_ioprio = get_current_ioprio(), 2361 }; 2362 } 2363 2364 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2365 struct file *filp) 2366 { 2367 *kiocb = (struct kiocb) { 2368 .ki_filp = filp, 2369 .ki_flags = kiocb_src->ki_flags, 2370 .ki_ioprio = kiocb_src->ki_ioprio, 2371 .ki_pos = kiocb_src->ki_pos, 2372 }; 2373 } 2374 2375 /* 2376 * Inode state bits. Protected by inode->i_lock 2377 * 2378 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2379 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2380 * 2381 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2382 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2383 * various stages of removing an inode. 2384 * 2385 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2386 * 2387 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2388 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2389 * Timestamp updates are the usual cause. 2390 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2391 * these changes separately from I_DIRTY_SYNC so that we 2392 * don't have to write inode on fdatasync() when only 2393 * e.g. the timestamps have changed. 2394 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2395 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2396 * lazytime mount option is enabled. We keep track of this 2397 * separately from I_DIRTY_SYNC in order to implement 2398 * lazytime. This gets cleared if I_DIRTY_INODE 2399 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2400 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2401 * in place because writeback might already be in progress 2402 * and we don't want to lose the time update 2403 * I_NEW Serves as both a mutex and completion notification. 2404 * New inodes set I_NEW. If two processes both create 2405 * the same inode, one of them will release its inode and 2406 * wait for I_NEW to be released before returning. 2407 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2408 * also cause waiting on I_NEW, without I_NEW actually 2409 * being set. find_inode() uses this to prevent returning 2410 * nearly-dead inodes. 2411 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2412 * is zero. I_FREEING must be set when I_WILL_FREE is 2413 * cleared. 2414 * I_FREEING Set when inode is about to be freed but still has dirty 2415 * pages or buffers attached or the inode itself is still 2416 * dirty. 2417 * I_CLEAR Added by clear_inode(). In this state the inode is 2418 * clean and can be destroyed. Inode keeps I_FREEING. 2419 * 2420 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2421 * prohibited for many purposes. iget() must wait for 2422 * the inode to be completely released, then create it 2423 * anew. Other functions will just ignore such inodes, 2424 * if appropriate. I_NEW is used for waiting. 2425 * 2426 * I_SYNC Writeback of inode is running. The bit is set during 2427 * data writeback, and cleared with a wakeup on the bit 2428 * address once it is done. The bit is also used to pin 2429 * the inode in memory for flusher thread. 2430 * 2431 * I_REFERENCED Marks the inode as recently references on the LRU list. 2432 * 2433 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2434 * synchronize competing switching instances and to tell 2435 * wb stat updates to grab the i_pages lock. See 2436 * inode_switch_wbs_work_fn() for details. 2437 * 2438 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2439 * and work dirs among overlayfs mounts. 2440 * 2441 * I_CREATING New object's inode in the middle of setting up. 2442 * 2443 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2444 * 2445 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2446 * Used to detect that mark_inode_dirty() should not move 2447 * inode between dirty lists. 2448 * 2449 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2450 * 2451 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2452 * i_count. 2453 * 2454 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2455 * 2456 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2457 * upon. There's one free address left. 2458 */ 2459 #define __I_NEW 0 2460 #define I_NEW (1 << __I_NEW) 2461 #define __I_SYNC 1 2462 #define I_SYNC (1 << __I_SYNC) 2463 #define __I_LRU_ISOLATING 2 2464 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2465 2466 #define I_DIRTY_SYNC (1 << 3) 2467 #define I_DIRTY_DATASYNC (1 << 4) 2468 #define I_DIRTY_PAGES (1 << 5) 2469 #define I_WILL_FREE (1 << 6) 2470 #define I_FREEING (1 << 7) 2471 #define I_CLEAR (1 << 8) 2472 #define I_REFERENCED (1 << 9) 2473 #define I_LINKABLE (1 << 10) 2474 #define I_DIRTY_TIME (1 << 11) 2475 #define I_WB_SWITCH (1 << 12) 2476 #define I_OVL_INUSE (1 << 13) 2477 #define I_CREATING (1 << 14) 2478 #define I_DONTCACHE (1 << 15) 2479 #define I_SYNC_QUEUED (1 << 16) 2480 #define I_PINNING_NETFS_WB (1 << 17) 2481 2482 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2483 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2484 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2485 2486 extern void __mark_inode_dirty(struct inode *, int); 2487 static inline void mark_inode_dirty(struct inode *inode) 2488 { 2489 __mark_inode_dirty(inode, I_DIRTY); 2490 } 2491 2492 static inline void mark_inode_dirty_sync(struct inode *inode) 2493 { 2494 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2495 } 2496 2497 /* 2498 * Returns true if the given inode itself only has dirty timestamps (its pages 2499 * may still be dirty) and isn't currently being allocated or freed. 2500 * Filesystems should call this if when writing an inode when lazytime is 2501 * enabled, they want to opportunistically write the timestamps of other inodes 2502 * located very nearby on-disk, e.g. in the same inode block. This returns true 2503 * if the given inode is in need of such an opportunistic update. Requires 2504 * i_lock, or at least later re-checking under i_lock. 2505 */ 2506 static inline bool inode_is_dirtytime_only(struct inode *inode) 2507 { 2508 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2509 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2510 } 2511 2512 extern void inc_nlink(struct inode *inode); 2513 extern void drop_nlink(struct inode *inode); 2514 extern void clear_nlink(struct inode *inode); 2515 extern void set_nlink(struct inode *inode, unsigned int nlink); 2516 2517 static inline void inode_inc_link_count(struct inode *inode) 2518 { 2519 inc_nlink(inode); 2520 mark_inode_dirty(inode); 2521 } 2522 2523 static inline void inode_dec_link_count(struct inode *inode) 2524 { 2525 drop_nlink(inode); 2526 mark_inode_dirty(inode); 2527 } 2528 2529 enum file_time_flags { 2530 S_ATIME = 1, 2531 S_MTIME = 2, 2532 S_CTIME = 4, 2533 S_VERSION = 8, 2534 }; 2535 2536 extern bool atime_needs_update(const struct path *, struct inode *); 2537 extern void touch_atime(const struct path *); 2538 int inode_update_time(struct inode *inode, int flags); 2539 2540 static inline void file_accessed(struct file *file) 2541 { 2542 if (!(file->f_flags & O_NOATIME)) 2543 touch_atime(&file->f_path); 2544 } 2545 2546 extern int file_modified(struct file *file); 2547 int kiocb_modified(struct kiocb *iocb); 2548 2549 int sync_inode_metadata(struct inode *inode, int wait); 2550 2551 struct file_system_type { 2552 const char *name; 2553 int fs_flags; 2554 #define FS_REQUIRES_DEV 1 2555 #define FS_BINARY_MOUNTDATA 2 2556 #define FS_HAS_SUBTYPE 4 2557 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2558 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2559 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2560 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2561 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2562 int (*init_fs_context)(struct fs_context *); 2563 const struct fs_parameter_spec *parameters; 2564 struct dentry *(*mount) (struct file_system_type *, int, 2565 const char *, void *); 2566 void (*kill_sb) (struct super_block *); 2567 struct module *owner; 2568 struct file_system_type * next; 2569 struct hlist_head fs_supers; 2570 2571 struct lock_class_key s_lock_key; 2572 struct lock_class_key s_umount_key; 2573 struct lock_class_key s_vfs_rename_key; 2574 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2575 2576 struct lock_class_key i_lock_key; 2577 struct lock_class_key i_mutex_key; 2578 struct lock_class_key invalidate_lock_key; 2579 struct lock_class_key i_mutex_dir_key; 2580 }; 2581 2582 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2583 2584 /** 2585 * is_mgtime: is this inode using multigrain timestamps 2586 * @inode: inode to test for multigrain timestamps 2587 * 2588 * Return true if the inode uses multigrain timestamps, false otherwise. 2589 */ 2590 static inline bool is_mgtime(const struct inode *inode) 2591 { 2592 return inode->i_opflags & IOP_MGTIME; 2593 } 2594 2595 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2596 int flags, const char *dev_name, void *data, 2597 int (*fill_super)(struct super_block *, void *, int)); 2598 extern struct dentry *mount_single(struct file_system_type *fs_type, 2599 int flags, void *data, 2600 int (*fill_super)(struct super_block *, void *, int)); 2601 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2602 int flags, void *data, 2603 int (*fill_super)(struct super_block *, void *, int)); 2604 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2605 void retire_super(struct super_block *sb); 2606 void generic_shutdown_super(struct super_block *sb); 2607 void kill_block_super(struct super_block *sb); 2608 void kill_anon_super(struct super_block *sb); 2609 void kill_litter_super(struct super_block *sb); 2610 void deactivate_super(struct super_block *sb); 2611 void deactivate_locked_super(struct super_block *sb); 2612 int set_anon_super(struct super_block *s, void *data); 2613 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2614 int get_anon_bdev(dev_t *); 2615 void free_anon_bdev(dev_t); 2616 struct super_block *sget_fc(struct fs_context *fc, 2617 int (*test)(struct super_block *, struct fs_context *), 2618 int (*set)(struct super_block *, struct fs_context *)); 2619 struct super_block *sget(struct file_system_type *type, 2620 int (*test)(struct super_block *,void *), 2621 int (*set)(struct super_block *,void *), 2622 int flags, void *data); 2623 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2624 2625 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2626 #define fops_get(fops) ({ \ 2627 const struct file_operations *_fops = (fops); \ 2628 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2629 }) 2630 2631 #define fops_put(fops) ({ \ 2632 const struct file_operations *_fops = (fops); \ 2633 if (_fops) \ 2634 module_put((_fops)->owner); \ 2635 }) 2636 2637 /* 2638 * This one is to be used *ONLY* from ->open() instances. 2639 * fops must be non-NULL, pinned down *and* module dependencies 2640 * should be sufficient to pin the caller down as well. 2641 */ 2642 #define replace_fops(f, fops) \ 2643 do { \ 2644 struct file *__file = (f); \ 2645 fops_put(__file->f_op); \ 2646 BUG_ON(!(__file->f_op = (fops))); \ 2647 } while(0) 2648 2649 extern int register_filesystem(struct file_system_type *); 2650 extern int unregister_filesystem(struct file_system_type *); 2651 extern int vfs_statfs(const struct path *, struct kstatfs *); 2652 extern int user_statfs(const char __user *, struct kstatfs *); 2653 extern int fd_statfs(int, struct kstatfs *); 2654 int freeze_super(struct super_block *super, enum freeze_holder who); 2655 int thaw_super(struct super_block *super, enum freeze_holder who); 2656 extern __printf(2, 3) 2657 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2658 extern int super_setup_bdi(struct super_block *sb); 2659 2660 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2661 { 2662 if (WARN_ON(len > sizeof(sb->s_uuid))) 2663 len = sizeof(sb->s_uuid); 2664 sb->s_uuid_len = len; 2665 memcpy(&sb->s_uuid, uuid, len); 2666 } 2667 2668 /* set sb sysfs name based on sb->s_bdev */ 2669 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2670 { 2671 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2672 } 2673 2674 /* set sb sysfs name based on sb->s_uuid */ 2675 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2676 { 2677 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2678 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2679 } 2680 2681 /* set sb sysfs name based on sb->s_id */ 2682 static inline void super_set_sysfs_name_id(struct super_block *sb) 2683 { 2684 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2685 } 2686 2687 /* try to use something standard before you use this */ 2688 __printf(2, 3) 2689 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2690 { 2691 va_list args; 2692 2693 va_start(args, fmt); 2694 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2695 va_end(args); 2696 } 2697 2698 extern int current_umask(void); 2699 2700 extern void ihold(struct inode * inode); 2701 extern void iput(struct inode *); 2702 int inode_update_timestamps(struct inode *inode, int flags); 2703 int generic_update_time(struct inode *, int); 2704 2705 /* /sys/fs */ 2706 extern struct kobject *fs_kobj; 2707 2708 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2709 2710 /* fs/open.c */ 2711 struct audit_names; 2712 struct filename { 2713 const char *name; /* pointer to actual string */ 2714 const __user char *uptr; /* original userland pointer */ 2715 atomic_t refcnt; 2716 struct audit_names *aname; 2717 const char iname[]; 2718 }; 2719 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2720 2721 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2722 { 2723 return mnt_idmap(file->f_path.mnt); 2724 } 2725 2726 /** 2727 * is_idmapped_mnt - check whether a mount is mapped 2728 * @mnt: the mount to check 2729 * 2730 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2731 * 2732 * Return: true if mount is mapped, false if not. 2733 */ 2734 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2735 { 2736 return mnt_idmap(mnt) != &nop_mnt_idmap; 2737 } 2738 2739 extern long vfs_truncate(const struct path *, loff_t); 2740 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2741 unsigned int time_attrs, struct file *filp); 2742 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2743 loff_t len); 2744 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2745 umode_t mode); 2746 extern struct file *file_open_name(struct filename *, int, umode_t); 2747 extern struct file *filp_open(const char *, int, umode_t); 2748 extern struct file *file_open_root(const struct path *, 2749 const char *, int, umode_t); 2750 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2751 const char *name, int flags, umode_t mode) 2752 { 2753 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2754 name, flags, mode); 2755 } 2756 struct file *dentry_open(const struct path *path, int flags, 2757 const struct cred *creds); 2758 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2759 const struct cred *cred); 2760 struct path *backing_file_user_path(struct file *f); 2761 2762 /* 2763 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2764 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2765 * filesystem. When the mapped file path and inode number are displayed to 2766 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2767 * path and inode number to display to the user, which is the path of the fd 2768 * that user has requested to map and the inode number that would be returned 2769 * by fstat() on that same fd. 2770 */ 2771 /* Get the path to display in /proc/<pid>/maps */ 2772 static inline const struct path *file_user_path(struct file *f) 2773 { 2774 if (unlikely(f->f_mode & FMODE_BACKING)) 2775 return backing_file_user_path(f); 2776 return &f->f_path; 2777 } 2778 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2779 static inline const struct inode *file_user_inode(struct file *f) 2780 { 2781 if (unlikely(f->f_mode & FMODE_BACKING)) 2782 return d_inode(backing_file_user_path(f)->dentry); 2783 return file_inode(f); 2784 } 2785 2786 static inline struct file *file_clone_open(struct file *file) 2787 { 2788 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2789 } 2790 extern int filp_close(struct file *, fl_owner_t id); 2791 2792 extern struct filename *getname_flags(const char __user *, int); 2793 extern struct filename *getname_uflags(const char __user *, int); 2794 extern struct filename *getname(const char __user *); 2795 extern struct filename *getname_kernel(const char *); 2796 extern struct filename *__getname_maybe_null(const char __user *); 2797 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2798 { 2799 if (!(flags & AT_EMPTY_PATH)) 2800 return getname(name); 2801 2802 if (!name) 2803 return NULL; 2804 return __getname_maybe_null(name); 2805 } 2806 extern void putname(struct filename *name); 2807 2808 extern int finish_open(struct file *file, struct dentry *dentry, 2809 int (*open)(struct inode *, struct file *)); 2810 extern int finish_no_open(struct file *file, struct dentry *dentry); 2811 2812 /* Helper for the simple case when original dentry is used */ 2813 static inline int finish_open_simple(struct file *file, int error) 2814 { 2815 if (error) 2816 return error; 2817 2818 return finish_open(file, file->f_path.dentry, NULL); 2819 } 2820 2821 /* fs/dcache.c */ 2822 extern void __init vfs_caches_init_early(void); 2823 extern void __init vfs_caches_init(void); 2824 2825 extern struct kmem_cache *names_cachep; 2826 2827 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2828 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2829 2830 extern struct super_block *blockdev_superblock; 2831 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2832 { 2833 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2834 } 2835 2836 void emergency_thaw_all(void); 2837 extern int sync_filesystem(struct super_block *); 2838 extern const struct file_operations def_blk_fops; 2839 extern const struct file_operations def_chr_fops; 2840 2841 /* fs/char_dev.c */ 2842 #define CHRDEV_MAJOR_MAX 512 2843 /* Marks the bottom of the first segment of free char majors */ 2844 #define CHRDEV_MAJOR_DYN_END 234 2845 /* Marks the top and bottom of the second segment of free char majors */ 2846 #define CHRDEV_MAJOR_DYN_EXT_START 511 2847 #define CHRDEV_MAJOR_DYN_EXT_END 384 2848 2849 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2850 extern int register_chrdev_region(dev_t, unsigned, const char *); 2851 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2852 unsigned int count, const char *name, 2853 const struct file_operations *fops); 2854 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2855 unsigned int count, const char *name); 2856 extern void unregister_chrdev_region(dev_t, unsigned); 2857 extern void chrdev_show(struct seq_file *,off_t); 2858 2859 static inline int register_chrdev(unsigned int major, const char *name, 2860 const struct file_operations *fops) 2861 { 2862 return __register_chrdev(major, 0, 256, name, fops); 2863 } 2864 2865 static inline void unregister_chrdev(unsigned int major, const char *name) 2866 { 2867 __unregister_chrdev(major, 0, 256, name); 2868 } 2869 2870 extern void init_special_inode(struct inode *, umode_t, dev_t); 2871 2872 /* Invalid inode operations -- fs/bad_inode.c */ 2873 extern void make_bad_inode(struct inode *); 2874 extern bool is_bad_inode(struct inode *); 2875 2876 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2877 loff_t lend); 2878 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2879 extern int __must_check file_write_and_wait_range(struct file *file, 2880 loff_t start, loff_t end); 2881 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 2882 loff_t end); 2883 2884 static inline int file_write_and_wait(struct file *file) 2885 { 2886 return file_write_and_wait_range(file, 0, LLONG_MAX); 2887 } 2888 2889 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2890 int datasync); 2891 extern int vfs_fsync(struct file *file, int datasync); 2892 2893 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2894 unsigned int flags); 2895 2896 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2897 { 2898 return (iocb->ki_flags & IOCB_DSYNC) || 2899 IS_SYNC(iocb->ki_filp->f_mapping->host); 2900 } 2901 2902 /* 2903 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2904 * to already be updated for the write, and will return either the amount 2905 * of bytes passed in, or an error if syncing the file failed. 2906 */ 2907 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2908 { 2909 if (iocb_is_dsync(iocb)) { 2910 int ret = vfs_fsync_range(iocb->ki_filp, 2911 iocb->ki_pos - count, iocb->ki_pos - 1, 2912 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2913 if (ret) 2914 return ret; 2915 } 2916 2917 return count; 2918 } 2919 2920 extern void emergency_sync(void); 2921 extern void emergency_remount(void); 2922 2923 #ifdef CONFIG_BLOCK 2924 extern int bmap(struct inode *inode, sector_t *block); 2925 #else 2926 static inline int bmap(struct inode *inode, sector_t *block) 2927 { 2928 return -EINVAL; 2929 } 2930 #endif 2931 2932 int notify_change(struct mnt_idmap *, struct dentry *, 2933 struct iattr *, struct inode **); 2934 int inode_permission(struct mnt_idmap *, struct inode *, int); 2935 int generic_permission(struct mnt_idmap *, struct inode *, int); 2936 static inline int file_permission(struct file *file, int mask) 2937 { 2938 return inode_permission(file_mnt_idmap(file), 2939 file_inode(file), mask); 2940 } 2941 static inline int path_permission(const struct path *path, int mask) 2942 { 2943 return inode_permission(mnt_idmap(path->mnt), 2944 d_inode(path->dentry), mask); 2945 } 2946 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2947 struct inode *inode); 2948 2949 static inline bool execute_ok(struct inode *inode) 2950 { 2951 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2952 } 2953 2954 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2955 { 2956 return (inode->i_mode ^ mode) & S_IFMT; 2957 } 2958 2959 /** 2960 * file_start_write - get write access to a superblock for regular file io 2961 * @file: the file we want to write to 2962 * 2963 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2964 * Should be matched with a call to file_end_write(). 2965 */ 2966 static inline void file_start_write(struct file *file) 2967 { 2968 if (!S_ISREG(file_inode(file)->i_mode)) 2969 return; 2970 sb_start_write(file_inode(file)->i_sb); 2971 } 2972 2973 static inline bool file_start_write_trylock(struct file *file) 2974 { 2975 if (!S_ISREG(file_inode(file)->i_mode)) 2976 return true; 2977 return sb_start_write_trylock(file_inode(file)->i_sb); 2978 } 2979 2980 /** 2981 * file_end_write - drop write access to a superblock of a regular file 2982 * @file: the file we wrote to 2983 * 2984 * Should be matched with a call to file_start_write(). 2985 */ 2986 static inline void file_end_write(struct file *file) 2987 { 2988 if (!S_ISREG(file_inode(file)->i_mode)) 2989 return; 2990 sb_end_write(file_inode(file)->i_sb); 2991 } 2992 2993 /** 2994 * kiocb_start_write - get write access to a superblock for async file io 2995 * @iocb: the io context we want to submit the write with 2996 * 2997 * This is a variant of sb_start_write() for async io submission. 2998 * Should be matched with a call to kiocb_end_write(). 2999 */ 3000 static inline void kiocb_start_write(struct kiocb *iocb) 3001 { 3002 struct inode *inode = file_inode(iocb->ki_filp); 3003 3004 sb_start_write(inode->i_sb); 3005 /* 3006 * Fool lockdep by telling it the lock got released so that it 3007 * doesn't complain about the held lock when we return to userspace. 3008 */ 3009 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3010 } 3011 3012 /** 3013 * kiocb_end_write - drop write access to a superblock after async file io 3014 * @iocb: the io context we sumbitted the write with 3015 * 3016 * Should be matched with a call to kiocb_start_write(). 3017 */ 3018 static inline void kiocb_end_write(struct kiocb *iocb) 3019 { 3020 struct inode *inode = file_inode(iocb->ki_filp); 3021 3022 /* 3023 * Tell lockdep we inherited freeze protection from submission thread. 3024 */ 3025 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3026 sb_end_write(inode->i_sb); 3027 } 3028 3029 /* 3030 * This is used for regular files where some users -- especially the 3031 * currently executed binary in a process, previously handled via 3032 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3033 * read-write shared) accesses. 3034 * 3035 * get_write_access() gets write permission for a file. 3036 * put_write_access() releases this write permission. 3037 * deny_write_access() denies write access to a file. 3038 * allow_write_access() re-enables write access to a file. 3039 * 3040 * The i_writecount field of an inode can have the following values: 3041 * 0: no write access, no denied write access 3042 * < 0: (-i_writecount) users that denied write access to the file. 3043 * > 0: (i_writecount) users that have write access to the file. 3044 * 3045 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3046 * except for the cases where we don't hold i_writecount yet. Then we need to 3047 * use {get,deny}_write_access() - these functions check the sign and refuse 3048 * to do the change if sign is wrong. 3049 */ 3050 static inline int get_write_access(struct inode *inode) 3051 { 3052 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3053 } 3054 static inline int deny_write_access(struct file *file) 3055 { 3056 struct inode *inode = file_inode(file); 3057 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3058 } 3059 static inline void put_write_access(struct inode * inode) 3060 { 3061 atomic_dec(&inode->i_writecount); 3062 } 3063 static inline void allow_write_access(struct file *file) 3064 { 3065 if (file) 3066 atomic_inc(&file_inode(file)->i_writecount); 3067 } 3068 static inline bool inode_is_open_for_write(const struct inode *inode) 3069 { 3070 return atomic_read(&inode->i_writecount) > 0; 3071 } 3072 3073 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3074 static inline void i_readcount_dec(struct inode *inode) 3075 { 3076 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3077 } 3078 static inline void i_readcount_inc(struct inode *inode) 3079 { 3080 atomic_inc(&inode->i_readcount); 3081 } 3082 #else 3083 static inline void i_readcount_dec(struct inode *inode) 3084 { 3085 return; 3086 } 3087 static inline void i_readcount_inc(struct inode *inode) 3088 { 3089 return; 3090 } 3091 #endif 3092 extern int do_pipe_flags(int *, int); 3093 3094 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3095 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3096 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3097 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3098 extern struct file * open_exec(const char *); 3099 3100 /* fs/dcache.c -- generic fs support functions */ 3101 extern bool is_subdir(struct dentry *, struct dentry *); 3102 extern bool path_is_under(const struct path *, const struct path *); 3103 3104 extern char *file_path(struct file *, char *, int); 3105 3106 /** 3107 * is_dot_dotdot - returns true only if @name is "." or ".." 3108 * @name: file name to check 3109 * @len: length of file name, in bytes 3110 */ 3111 static inline bool is_dot_dotdot(const char *name, size_t len) 3112 { 3113 return len && unlikely(name[0] == '.') && 3114 (len == 1 || (len == 2 && name[1] == '.')); 3115 } 3116 3117 #include <linux/err.h> 3118 3119 /* needed for stackable file system support */ 3120 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3121 3122 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3123 3124 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3125 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3126 { 3127 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3128 } 3129 3130 extern void inode_init_once(struct inode *); 3131 extern void address_space_init_once(struct address_space *mapping); 3132 extern struct inode * igrab(struct inode *); 3133 extern ino_t iunique(struct super_block *, ino_t); 3134 extern int inode_needs_sync(struct inode *inode); 3135 extern int generic_delete_inode(struct inode *inode); 3136 static inline int generic_drop_inode(struct inode *inode) 3137 { 3138 return !inode->i_nlink || inode_unhashed(inode); 3139 } 3140 extern void d_mark_dontcache(struct inode *inode); 3141 3142 extern struct inode *ilookup5_nowait(struct super_block *sb, 3143 unsigned long hashval, int (*test)(struct inode *, void *), 3144 void *data); 3145 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3146 int (*test)(struct inode *, void *), void *data); 3147 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3148 3149 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3150 int (*test)(struct inode *, void *), 3151 int (*set)(struct inode *, void *), 3152 void *data); 3153 struct inode *iget5_locked(struct super_block *, unsigned long, 3154 int (*test)(struct inode *, void *), 3155 int (*set)(struct inode *, void *), void *); 3156 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3157 int (*test)(struct inode *, void *), 3158 int (*set)(struct inode *, void *), void *); 3159 extern struct inode * iget_locked(struct super_block *, unsigned long); 3160 extern struct inode *find_inode_nowait(struct super_block *, 3161 unsigned long, 3162 int (*match)(struct inode *, 3163 unsigned long, void *), 3164 void *data); 3165 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3166 int (*)(struct inode *, void *), void *); 3167 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3168 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3169 extern int insert_inode_locked(struct inode *); 3170 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3171 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3172 #else 3173 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3174 #endif 3175 extern void unlock_new_inode(struct inode *); 3176 extern void discard_new_inode(struct inode *); 3177 extern unsigned int get_next_ino(void); 3178 extern void evict_inodes(struct super_block *sb); 3179 void dump_mapping(const struct address_space *); 3180 3181 /* 3182 * Userspace may rely on the inode number being non-zero. For example, glibc 3183 * simply ignores files with zero i_ino in unlink() and other places. 3184 * 3185 * As an additional complication, if userspace was compiled with 3186 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3187 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3188 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3189 * better safe than sorry. 3190 */ 3191 static inline bool is_zero_ino(ino_t ino) 3192 { 3193 return (u32)ino == 0; 3194 } 3195 3196 /* 3197 * inode->i_lock must be held 3198 */ 3199 static inline void __iget(struct inode *inode) 3200 { 3201 atomic_inc(&inode->i_count); 3202 } 3203 3204 extern void iget_failed(struct inode *); 3205 extern void clear_inode(struct inode *); 3206 extern void __destroy_inode(struct inode *); 3207 extern struct inode *new_inode_pseudo(struct super_block *sb); 3208 extern struct inode *new_inode(struct super_block *sb); 3209 extern void free_inode_nonrcu(struct inode *inode); 3210 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3211 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3212 extern int file_remove_privs(struct file *); 3213 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3214 const struct inode *inode); 3215 3216 /* 3217 * This must be used for allocating filesystems specific inodes to set 3218 * up the inode reclaim context correctly. 3219 */ 3220 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3221 3222 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3223 static inline void insert_inode_hash(struct inode *inode) 3224 { 3225 __insert_inode_hash(inode, inode->i_ino); 3226 } 3227 3228 extern void __remove_inode_hash(struct inode *); 3229 static inline void remove_inode_hash(struct inode *inode) 3230 { 3231 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3232 __remove_inode_hash(inode); 3233 } 3234 3235 extern void inode_sb_list_add(struct inode *inode); 3236 extern void inode_add_lru(struct inode *inode); 3237 3238 extern int sb_set_blocksize(struct super_block *, int); 3239 extern int sb_min_blocksize(struct super_block *, int); 3240 3241 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3242 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3243 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3244 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3245 extern int generic_write_check_limits(struct file *file, loff_t pos, 3246 loff_t *count); 3247 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3248 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3249 ssize_t already_read); 3250 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3251 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3252 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3253 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3254 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3255 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3256 ssize_t direct_written, ssize_t buffered_written); 3257 3258 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3259 rwf_t flags); 3260 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3261 rwf_t flags); 3262 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3263 struct iov_iter *iter); 3264 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3265 struct iov_iter *iter); 3266 3267 /* fs/splice.c */ 3268 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3269 struct pipe_inode_info *pipe, 3270 size_t len, unsigned int flags); 3271 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3272 struct pipe_inode_info *pipe, 3273 size_t len, unsigned int flags); 3274 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3275 struct file *, loff_t *, size_t, unsigned int); 3276 3277 3278 extern void 3279 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3280 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3281 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3282 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3283 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3284 int whence, loff_t maxsize, loff_t eof); 3285 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3286 u64 *cookie); 3287 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3288 int whence, loff_t size); 3289 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3290 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3291 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3292 extern int generic_file_open(struct inode * inode, struct file * filp); 3293 extern int nonseekable_open(struct inode * inode, struct file * filp); 3294 extern int stream_open(struct inode * inode, struct file * filp); 3295 3296 #ifdef CONFIG_BLOCK 3297 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3298 loff_t file_offset); 3299 3300 enum { 3301 /* need locking between buffered and direct access */ 3302 DIO_LOCKING = 0x01, 3303 3304 /* filesystem does not support filling holes */ 3305 DIO_SKIP_HOLES = 0x02, 3306 }; 3307 3308 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3309 struct block_device *bdev, struct iov_iter *iter, 3310 get_block_t get_block, 3311 dio_iodone_t end_io, 3312 int flags); 3313 3314 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3315 struct inode *inode, 3316 struct iov_iter *iter, 3317 get_block_t get_block) 3318 { 3319 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3320 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3321 } 3322 #endif 3323 3324 bool inode_dio_finished(const struct inode *inode); 3325 void inode_dio_wait(struct inode *inode); 3326 void inode_dio_wait_interruptible(struct inode *inode); 3327 3328 /** 3329 * inode_dio_begin - signal start of a direct I/O requests 3330 * @inode: inode the direct I/O happens on 3331 * 3332 * This is called once we've finished processing a direct I/O request, 3333 * and is used to wake up callers waiting for direct I/O to be quiesced. 3334 */ 3335 static inline void inode_dio_begin(struct inode *inode) 3336 { 3337 atomic_inc(&inode->i_dio_count); 3338 } 3339 3340 /** 3341 * inode_dio_end - signal finish of a direct I/O requests 3342 * @inode: inode the direct I/O happens on 3343 * 3344 * This is called once we've finished processing a direct I/O request, 3345 * and is used to wake up callers waiting for direct I/O to be quiesced. 3346 */ 3347 static inline void inode_dio_end(struct inode *inode) 3348 { 3349 if (atomic_dec_and_test(&inode->i_dio_count)) 3350 wake_up_var(&inode->i_dio_count); 3351 } 3352 3353 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3354 unsigned int mask); 3355 3356 extern const struct file_operations generic_ro_fops; 3357 3358 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3359 3360 extern int readlink_copy(char __user *, int, const char *); 3361 extern int page_readlink(struct dentry *, char __user *, int); 3362 extern const char *page_get_link(struct dentry *, struct inode *, 3363 struct delayed_call *); 3364 extern void page_put_link(void *); 3365 extern int page_symlink(struct inode *inode, const char *symname, int len); 3366 extern const struct inode_operations page_symlink_inode_operations; 3367 extern void kfree_link(void *); 3368 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3369 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3370 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3371 void generic_fill_statx_atomic_writes(struct kstat *stat, 3372 unsigned int unit_min, 3373 unsigned int unit_max); 3374 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3375 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3376 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3377 void inode_add_bytes(struct inode *inode, loff_t bytes); 3378 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3379 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3380 static inline loff_t __inode_get_bytes(struct inode *inode) 3381 { 3382 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3383 } 3384 loff_t inode_get_bytes(struct inode *inode); 3385 void inode_set_bytes(struct inode *inode, loff_t bytes); 3386 const char *simple_get_link(struct dentry *, struct inode *, 3387 struct delayed_call *); 3388 extern const struct inode_operations simple_symlink_inode_operations; 3389 3390 extern int iterate_dir(struct file *, struct dir_context *); 3391 3392 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3393 int flags); 3394 int vfs_fstat(int fd, struct kstat *stat); 3395 3396 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3397 { 3398 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3399 } 3400 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3401 { 3402 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3403 } 3404 3405 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3406 extern int vfs_readlink(struct dentry *, char __user *, int); 3407 3408 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3409 extern void put_filesystem(struct file_system_type *fs); 3410 extern struct file_system_type *get_fs_type(const char *name); 3411 extern void drop_super(struct super_block *sb); 3412 extern void drop_super_exclusive(struct super_block *sb); 3413 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3414 extern void iterate_supers_type(struct file_system_type *, 3415 void (*)(struct super_block *, void *), void *); 3416 3417 extern int dcache_dir_open(struct inode *, struct file *); 3418 extern int dcache_dir_close(struct inode *, struct file *); 3419 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3420 extern int dcache_readdir(struct file *, struct dir_context *); 3421 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3422 struct iattr *); 3423 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3424 struct kstat *, u32, unsigned int); 3425 extern int simple_statfs(struct dentry *, struct kstatfs *); 3426 extern int simple_open(struct inode *inode, struct file *file); 3427 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3428 extern int simple_unlink(struct inode *, struct dentry *); 3429 extern int simple_rmdir(struct inode *, struct dentry *); 3430 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3431 struct inode *new_dir, struct dentry *new_dentry); 3432 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3433 struct inode *new_dir, struct dentry *new_dentry); 3434 extern int simple_rename(struct mnt_idmap *, struct inode *, 3435 struct dentry *, struct inode *, struct dentry *, 3436 unsigned int); 3437 extern void simple_recursive_removal(struct dentry *, 3438 void (*callback)(struct dentry *)); 3439 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3440 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3441 extern int simple_empty(struct dentry *); 3442 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3443 loff_t pos, unsigned len, 3444 struct folio **foliop, void **fsdata); 3445 extern const struct address_space_operations ram_aops; 3446 extern int always_delete_dentry(const struct dentry *); 3447 extern struct inode *alloc_anon_inode(struct super_block *); 3448 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3449 extern const struct dentry_operations simple_dentry_operations; 3450 3451 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3452 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3453 extern const struct file_operations simple_dir_operations; 3454 extern const struct inode_operations simple_dir_inode_operations; 3455 extern void make_empty_dir_inode(struct inode *inode); 3456 extern bool is_empty_dir_inode(struct inode *inode); 3457 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3458 struct dentry *d_alloc_name(struct dentry *, const char *); 3459 extern int simple_fill_super(struct super_block *, unsigned long, 3460 const struct tree_descr *); 3461 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3462 extern void simple_release_fs(struct vfsmount **mount, int *count); 3463 3464 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3465 loff_t *ppos, const void *from, size_t available); 3466 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3467 const void __user *from, size_t count); 3468 3469 struct offset_ctx { 3470 struct maple_tree mt; 3471 unsigned long next_offset; 3472 }; 3473 3474 void simple_offset_init(struct offset_ctx *octx); 3475 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3476 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3477 int simple_offset_empty(struct dentry *dentry); 3478 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3479 struct inode *new_dir, struct dentry *new_dentry); 3480 int simple_offset_rename_exchange(struct inode *old_dir, 3481 struct dentry *old_dentry, 3482 struct inode *new_dir, 3483 struct dentry *new_dentry); 3484 void simple_offset_destroy(struct offset_ctx *octx); 3485 3486 extern const struct file_operations simple_offset_dir_operations; 3487 3488 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3489 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3490 3491 extern int generic_check_addressable(unsigned, u64); 3492 3493 extern void generic_set_sb_d_ops(struct super_block *sb); 3494 extern int generic_ci_match(const struct inode *parent, 3495 const struct qstr *name, 3496 const struct qstr *folded_name, 3497 const u8 *de_name, u32 de_name_len); 3498 3499 #if IS_ENABLED(CONFIG_UNICODE) 3500 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3501 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3502 const char *str, const struct qstr *name); 3503 3504 /** 3505 * generic_ci_validate_strict_name - Check if a given name is suitable 3506 * for a directory 3507 * 3508 * This functions checks if the proposed filename is valid for the 3509 * parent directory. That means that only valid UTF-8 filenames will be 3510 * accepted for casefold directories from filesystems created with the 3511 * strict encoding flag. That also means that any name will be 3512 * accepted for directories that doesn't have casefold enabled, or 3513 * aren't being strict with the encoding. 3514 * 3515 * @dir: inode of the directory where the new file will be created 3516 * @name: name of the new file 3517 * 3518 * Return: 3519 * * True: if the filename is suitable for this directory. It can be 3520 * true if a given name is not suitable for a strict encoding 3521 * directory, but the directory being used isn't strict 3522 * * False if the filename isn't suitable for this directory. This only 3523 * happens when a directory is casefolded and the filesystem is strict 3524 * about its encoding. 3525 */ 3526 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3527 { 3528 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3529 return true; 3530 3531 /* 3532 * A casefold dir must have a encoding set, unless the filesystem 3533 * is corrupted 3534 */ 3535 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3536 return true; 3537 3538 return !utf8_validate(dir->i_sb->s_encoding, name); 3539 } 3540 #else 3541 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3542 { 3543 return true; 3544 } 3545 #endif 3546 3547 static inline bool sb_has_encoding(const struct super_block *sb) 3548 { 3549 #if IS_ENABLED(CONFIG_UNICODE) 3550 return !!sb->s_encoding; 3551 #else 3552 return false; 3553 #endif 3554 } 3555 3556 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3557 unsigned int ia_valid); 3558 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3559 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3560 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3561 const struct iattr *attr); 3562 3563 extern int file_update_time(struct file *file); 3564 3565 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3566 { 3567 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3568 } 3569 3570 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3571 { 3572 struct inode *inode; 3573 3574 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3575 return false; 3576 if (!vma_is_dax(vma)) 3577 return false; 3578 inode = file_inode(vma->vm_file); 3579 if (S_ISCHR(inode->i_mode)) 3580 return false; /* device-dax */ 3581 return true; 3582 } 3583 3584 static inline int iocb_flags(struct file *file) 3585 { 3586 int res = 0; 3587 if (file->f_flags & O_APPEND) 3588 res |= IOCB_APPEND; 3589 if (file->f_flags & O_DIRECT) 3590 res |= IOCB_DIRECT; 3591 if (file->f_flags & O_DSYNC) 3592 res |= IOCB_DSYNC; 3593 if (file->f_flags & __O_SYNC) 3594 res |= IOCB_SYNC; 3595 return res; 3596 } 3597 3598 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3599 int rw_type) 3600 { 3601 int kiocb_flags = 0; 3602 3603 /* make sure there's no overlap between RWF and private IOCB flags */ 3604 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3605 3606 if (!flags) 3607 return 0; 3608 if (unlikely(flags & ~RWF_SUPPORTED)) 3609 return -EOPNOTSUPP; 3610 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3611 return -EINVAL; 3612 3613 if (flags & RWF_NOWAIT) { 3614 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3615 return -EOPNOTSUPP; 3616 } 3617 if (flags & RWF_ATOMIC) { 3618 if (rw_type != WRITE) 3619 return -EOPNOTSUPP; 3620 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3621 return -EOPNOTSUPP; 3622 } 3623 if (flags & RWF_DONTCACHE) { 3624 /* file system must support it */ 3625 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3626 return -EOPNOTSUPP; 3627 /* DAX mappings not supported */ 3628 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3629 return -EOPNOTSUPP; 3630 } 3631 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3632 if (flags & RWF_SYNC) 3633 kiocb_flags |= IOCB_DSYNC; 3634 3635 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3636 if (IS_APPEND(file_inode(ki->ki_filp))) 3637 return -EPERM; 3638 ki->ki_flags &= ~IOCB_APPEND; 3639 } 3640 3641 ki->ki_flags |= kiocb_flags; 3642 return 0; 3643 } 3644 3645 /* Transaction based IO helpers */ 3646 3647 /* 3648 * An argresp is stored in an allocated page and holds the 3649 * size of the argument or response, along with its content 3650 */ 3651 struct simple_transaction_argresp { 3652 ssize_t size; 3653 char data[]; 3654 }; 3655 3656 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3657 3658 char *simple_transaction_get(struct file *file, const char __user *buf, 3659 size_t size); 3660 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3661 size_t size, loff_t *pos); 3662 int simple_transaction_release(struct inode *inode, struct file *file); 3663 3664 void simple_transaction_set(struct file *file, size_t n); 3665 3666 /* 3667 * simple attribute files 3668 * 3669 * These attributes behave similar to those in sysfs: 3670 * 3671 * Writing to an attribute immediately sets a value, an open file can be 3672 * written to multiple times. 3673 * 3674 * Reading from an attribute creates a buffer from the value that might get 3675 * read with multiple read calls. When the attribute has been read 3676 * completely, no further read calls are possible until the file is opened 3677 * again. 3678 * 3679 * All attributes contain a text representation of a numeric value 3680 * that are accessed with the get() and set() functions. 3681 */ 3682 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3683 static int __fops ## _open(struct inode *inode, struct file *file) \ 3684 { \ 3685 __simple_attr_check_format(__fmt, 0ull); \ 3686 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3687 } \ 3688 static const struct file_operations __fops = { \ 3689 .owner = THIS_MODULE, \ 3690 .open = __fops ## _open, \ 3691 .release = simple_attr_release, \ 3692 .read = simple_attr_read, \ 3693 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3694 .llseek = generic_file_llseek, \ 3695 } 3696 3697 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3698 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3699 3700 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3701 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3702 3703 static inline __printf(1, 2) 3704 void __simple_attr_check_format(const char *fmt, ...) 3705 { 3706 /* don't do anything, just let the compiler check the arguments; */ 3707 } 3708 3709 int simple_attr_open(struct inode *inode, struct file *file, 3710 int (*get)(void *, u64 *), int (*set)(void *, u64), 3711 const char *fmt); 3712 int simple_attr_release(struct inode *inode, struct file *file); 3713 ssize_t simple_attr_read(struct file *file, char __user *buf, 3714 size_t len, loff_t *ppos); 3715 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3716 size_t len, loff_t *ppos); 3717 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3718 size_t len, loff_t *ppos); 3719 3720 struct ctl_table; 3721 int __init list_bdev_fs_names(char *buf, size_t size); 3722 3723 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3724 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3725 3726 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3727 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3728 (flag & __FMODE_NONOTIFY))) 3729 3730 static inline bool is_sxid(umode_t mode) 3731 { 3732 return mode & (S_ISUID | S_ISGID); 3733 } 3734 3735 static inline int check_sticky(struct mnt_idmap *idmap, 3736 struct inode *dir, struct inode *inode) 3737 { 3738 if (!(dir->i_mode & S_ISVTX)) 3739 return 0; 3740 3741 return __check_sticky(idmap, dir, inode); 3742 } 3743 3744 static inline void inode_has_no_xattr(struct inode *inode) 3745 { 3746 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3747 inode->i_flags |= S_NOSEC; 3748 } 3749 3750 static inline bool is_root_inode(struct inode *inode) 3751 { 3752 return inode == inode->i_sb->s_root->d_inode; 3753 } 3754 3755 static inline bool dir_emit(struct dir_context *ctx, 3756 const char *name, int namelen, 3757 u64 ino, unsigned type) 3758 { 3759 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3760 } 3761 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3762 { 3763 return ctx->actor(ctx, ".", 1, ctx->pos, 3764 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3765 } 3766 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3767 { 3768 return ctx->actor(ctx, "..", 2, ctx->pos, 3769 d_parent_ino(file->f_path.dentry), DT_DIR); 3770 } 3771 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3772 { 3773 if (ctx->pos == 0) { 3774 if (!dir_emit_dot(file, ctx)) 3775 return false; 3776 ctx->pos = 1; 3777 } 3778 if (ctx->pos == 1) { 3779 if (!dir_emit_dotdot(file, ctx)) 3780 return false; 3781 ctx->pos = 2; 3782 } 3783 return true; 3784 } 3785 static inline bool dir_relax(struct inode *inode) 3786 { 3787 inode_unlock(inode); 3788 inode_lock(inode); 3789 return !IS_DEADDIR(inode); 3790 } 3791 3792 static inline bool dir_relax_shared(struct inode *inode) 3793 { 3794 inode_unlock_shared(inode); 3795 inode_lock_shared(inode); 3796 return !IS_DEADDIR(inode); 3797 } 3798 3799 extern bool path_noexec(const struct path *path); 3800 extern void inode_nohighmem(struct inode *inode); 3801 3802 /* mm/fadvise.c */ 3803 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3804 int advice); 3805 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3806 int advice); 3807 3808 static inline bool vfs_empty_path(int dfd, const char __user *path) 3809 { 3810 char c; 3811 3812 if (dfd < 0) 3813 return false; 3814 3815 /* We now allow NULL to be used for empty path. */ 3816 if (!path) 3817 return true; 3818 3819 if (unlikely(get_user(c, path))) 3820 return false; 3821 3822 return !c; 3823 } 3824 3825 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3826 3827 #endif /* _LINUX_FS_H */ 3828