1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 49 #include <asm/byteorder.h> 50 #include <uapi/linux/fs.h> 51 52 struct backing_dev_info; 53 struct bdi_writeback; 54 struct bio; 55 struct io_comp_batch; 56 struct export_operations; 57 struct fiemap_extent_info; 58 struct hd_geometry; 59 struct iovec; 60 struct kiocb; 61 struct kobject; 62 struct pipe_inode_info; 63 struct poll_table_struct; 64 struct kstatfs; 65 struct vm_area_struct; 66 struct vfsmount; 67 struct cred; 68 struct swap_info_struct; 69 struct seq_file; 70 struct workqueue_struct; 71 struct iov_iter; 72 struct fscrypt_inode_info; 73 struct fscrypt_operations; 74 struct fsverity_info; 75 struct fsverity_operations; 76 struct fs_context; 77 struct fs_parameter_spec; 78 struct fileattr; 79 struct iomap_ops; 80 81 extern void __init inode_init(void); 82 extern void __init inode_init_early(void); 83 extern void __init files_init(void); 84 extern void __init files_maxfiles_init(void); 85 86 extern unsigned long get_max_files(void); 87 extern unsigned int sysctl_nr_open; 88 89 typedef __kernel_rwf_t rwf_t; 90 91 struct buffer_head; 92 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 93 struct buffer_head *bh_result, int create); 94 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 95 ssize_t bytes, void *private); 96 97 #define MAY_EXEC 0x00000001 98 #define MAY_WRITE 0x00000002 99 #define MAY_READ 0x00000004 100 #define MAY_APPEND 0x00000008 101 #define MAY_ACCESS 0x00000010 102 #define MAY_OPEN 0x00000020 103 #define MAY_CHDIR 0x00000040 104 /* called from RCU mode, don't block */ 105 #define MAY_NOT_BLOCK 0x00000080 106 107 /* 108 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 109 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 110 */ 111 112 /* file is open for reading */ 113 #define FMODE_READ ((__force fmode_t)0x1) 114 /* file is open for writing */ 115 #define FMODE_WRITE ((__force fmode_t)0x2) 116 /* file is seekable */ 117 #define FMODE_LSEEK ((__force fmode_t)0x4) 118 /* file can be accessed using pread */ 119 #define FMODE_PREAD ((__force fmode_t)0x8) 120 /* file can be accessed using pwrite */ 121 #define FMODE_PWRITE ((__force fmode_t)0x10) 122 /* File is opened for execution with sys_execve / sys_uselib */ 123 #define FMODE_EXEC ((__force fmode_t)0x20) 124 /* 32bit hashes as llseek() offset (for directories) */ 125 #define FMODE_32BITHASH ((__force fmode_t)0x200) 126 /* 64bit hashes as llseek() offset (for directories) */ 127 #define FMODE_64BITHASH ((__force fmode_t)0x400) 128 129 /* 130 * Don't update ctime and mtime. 131 * 132 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 133 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 134 */ 135 #define FMODE_NOCMTIME ((__force fmode_t)0x800) 136 137 /* Expect random access pattern */ 138 #define FMODE_RANDOM ((__force fmode_t)0x1000) 139 140 /* File is huge (eg. /dev/mem): treat loff_t as unsigned */ 141 #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) 142 143 /* File is opened with O_PATH; almost nothing can be done with it */ 144 #define FMODE_PATH ((__force fmode_t)0x4000) 145 146 /* File needs atomic accesses to f_pos */ 147 #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) 148 /* Write access to underlying fs */ 149 #define FMODE_WRITER ((__force fmode_t)0x10000) 150 /* Has read method(s) */ 151 #define FMODE_CAN_READ ((__force fmode_t)0x20000) 152 /* Has write method(s) */ 153 #define FMODE_CAN_WRITE ((__force fmode_t)0x40000) 154 155 #define FMODE_OPENED ((__force fmode_t)0x80000) 156 #define FMODE_CREATED ((__force fmode_t)0x100000) 157 158 /* File is stream-like */ 159 #define FMODE_STREAM ((__force fmode_t)0x200000) 160 161 /* File supports DIRECT IO */ 162 #define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) 163 164 #define FMODE_NOREUSE ((__force fmode_t)0x800000) 165 166 /* File supports non-exclusive O_DIRECT writes from multiple threads */ 167 #define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000) 168 169 /* File is embedded in backing_file object */ 170 #define FMODE_BACKING ((__force fmode_t)0x2000000) 171 172 /* File was opened by fanotify and shouldn't generate fanotify events */ 173 #define FMODE_NONOTIFY ((__force fmode_t)0x4000000) 174 175 /* File is capable of returning -EAGAIN if I/O will block */ 176 #define FMODE_NOWAIT ((__force fmode_t)0x8000000) 177 178 /* File represents mount that needs unmounting */ 179 #define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) 180 181 /* File does not contribute to nr_files count */ 182 #define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) 183 184 /* File supports async buffered reads */ 185 #define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) 186 187 /* File supports async nowait buffered writes */ 188 #define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) 189 190 /* 191 * Attribute flags. These should be or-ed together to figure out what 192 * has been changed! 193 */ 194 #define ATTR_MODE (1 << 0) 195 #define ATTR_UID (1 << 1) 196 #define ATTR_GID (1 << 2) 197 #define ATTR_SIZE (1 << 3) 198 #define ATTR_ATIME (1 << 4) 199 #define ATTR_MTIME (1 << 5) 200 #define ATTR_CTIME (1 << 6) 201 #define ATTR_ATIME_SET (1 << 7) 202 #define ATTR_MTIME_SET (1 << 8) 203 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 204 #define ATTR_KILL_SUID (1 << 11) 205 #define ATTR_KILL_SGID (1 << 12) 206 #define ATTR_FILE (1 << 13) 207 #define ATTR_KILL_PRIV (1 << 14) 208 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 209 #define ATTR_TIMES_SET (1 << 16) 210 #define ATTR_TOUCH (1 << 17) 211 212 /* 213 * Whiteout is represented by a char device. The following constants define the 214 * mode and device number to use. 215 */ 216 #define WHITEOUT_MODE 0 217 #define WHITEOUT_DEV 0 218 219 /* 220 * This is the Inode Attributes structure, used for notify_change(). It 221 * uses the above definitions as flags, to know which values have changed. 222 * Also, in this manner, a Filesystem can look at only the values it cares 223 * about. Basically, these are the attributes that the VFS layer can 224 * request to change from the FS layer. 225 * 226 * Derek Atkins <[email protected]> 94-10-20 227 */ 228 struct iattr { 229 unsigned int ia_valid; 230 umode_t ia_mode; 231 /* 232 * The two anonymous unions wrap structures with the same member. 233 * 234 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 235 * are a dedicated type requiring the filesystem to use the dedicated 236 * helpers. Other filesystem can continue to use ia_{g,u}id until they 237 * have been ported. 238 * 239 * They always contain the same value. In other words FS_ALLOW_IDMAP 240 * pass down the same value on idmapped mounts as they would on regular 241 * mounts. 242 */ 243 union { 244 kuid_t ia_uid; 245 vfsuid_t ia_vfsuid; 246 }; 247 union { 248 kgid_t ia_gid; 249 vfsgid_t ia_vfsgid; 250 }; 251 loff_t ia_size; 252 struct timespec64 ia_atime; 253 struct timespec64 ia_mtime; 254 struct timespec64 ia_ctime; 255 256 /* 257 * Not an attribute, but an auxiliary info for filesystems wanting to 258 * implement an ftruncate() like method. NOTE: filesystem should 259 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 260 */ 261 struct file *ia_file; 262 }; 263 264 /* 265 * Includes for diskquotas. 266 */ 267 #include <linux/quota.h> 268 269 /* 270 * Maximum number of layers of fs stack. Needs to be limited to 271 * prevent kernel stack overflow 272 */ 273 #define FILESYSTEM_MAX_STACK_DEPTH 2 274 275 /** 276 * enum positive_aop_returns - aop return codes with specific semantics 277 * 278 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 279 * completed, that the page is still locked, and 280 * should be considered active. The VM uses this hint 281 * to return the page to the active list -- it won't 282 * be a candidate for writeback again in the near 283 * future. Other callers must be careful to unlock 284 * the page if they get this return. Returned by 285 * writepage(); 286 * 287 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 288 * unlocked it and the page might have been truncated. 289 * The caller should back up to acquiring a new page and 290 * trying again. The aop will be taking reasonable 291 * precautions not to livelock. If the caller held a page 292 * reference, it should drop it before retrying. Returned 293 * by read_folio(). 294 * 295 * address_space_operation functions return these large constants to indicate 296 * special semantics to the caller. These are much larger than the bytes in a 297 * page to allow for functions that return the number of bytes operated on in a 298 * given page. 299 */ 300 301 enum positive_aop_returns { 302 AOP_WRITEPAGE_ACTIVATE = 0x80000, 303 AOP_TRUNCATED_PAGE = 0x80001, 304 }; 305 306 /* 307 * oh the beauties of C type declarations. 308 */ 309 struct page; 310 struct address_space; 311 struct writeback_control; 312 struct readahead_control; 313 314 /* Match RWF_* bits to IOCB bits */ 315 #define IOCB_HIPRI (__force int) RWF_HIPRI 316 #define IOCB_DSYNC (__force int) RWF_DSYNC 317 #define IOCB_SYNC (__force int) RWF_SYNC 318 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 319 #define IOCB_APPEND (__force int) RWF_APPEND 320 321 /* non-RWF related bits - start at 16 */ 322 #define IOCB_EVENTFD (1 << 16) 323 #define IOCB_DIRECT (1 << 17) 324 #define IOCB_WRITE (1 << 18) 325 /* iocb->ki_waitq is valid */ 326 #define IOCB_WAITQ (1 << 19) 327 #define IOCB_NOIO (1 << 20) 328 /* can use bio alloc cache */ 329 #define IOCB_ALLOC_CACHE (1 << 21) 330 /* 331 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 332 * iocb completion can be passed back to the owner for execution from a safe 333 * context rather than needing to be punted through a workqueue. If this 334 * flag is set, the bio completion handling may set iocb->dio_complete to a 335 * handler function and iocb->private to context information for that handler. 336 * The issuer should call the handler with that context information from task 337 * context to complete the processing of the iocb. Note that while this 338 * provides a task context for the dio_complete() callback, it should only be 339 * used on the completion side for non-IO generating completions. It's fine to 340 * call blocking functions from this callback, but they should not wait for 341 * unrelated IO (like cache flushing, new IO generation, etc). 342 */ 343 #define IOCB_DIO_CALLER_COMP (1 << 22) 344 /* kiocb is a read or write operation submitted by fs/aio.c. */ 345 #define IOCB_AIO_RW (1 << 23) 346 347 /* for use in trace events */ 348 #define TRACE_IOCB_STRINGS \ 349 { IOCB_HIPRI, "HIPRI" }, \ 350 { IOCB_DSYNC, "DSYNC" }, \ 351 { IOCB_SYNC, "SYNC" }, \ 352 { IOCB_NOWAIT, "NOWAIT" }, \ 353 { IOCB_APPEND, "APPEND" }, \ 354 { IOCB_EVENTFD, "EVENTFD"}, \ 355 { IOCB_DIRECT, "DIRECT" }, \ 356 { IOCB_WRITE, "WRITE" }, \ 357 { IOCB_WAITQ, "WAITQ" }, \ 358 { IOCB_NOIO, "NOIO" }, \ 359 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 360 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 361 362 struct kiocb { 363 struct file *ki_filp; 364 loff_t ki_pos; 365 void (*ki_complete)(struct kiocb *iocb, long ret); 366 void *private; 367 int ki_flags; 368 u16 ki_ioprio; /* See linux/ioprio.h */ 369 union { 370 /* 371 * Only used for async buffered reads, where it denotes the 372 * page waitqueue associated with completing the read. Valid 373 * IFF IOCB_WAITQ is set. 374 */ 375 struct wait_page_queue *ki_waitq; 376 /* 377 * Can be used for O_DIRECT IO, where the completion handling 378 * is punted back to the issuer of the IO. May only be set 379 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 380 * must then check for presence of this handler when ki_complete 381 * is invoked. The data passed in to this handler must be 382 * assigned to ->private when dio_complete is assigned. 383 */ 384 ssize_t (*dio_complete)(void *data); 385 }; 386 }; 387 388 static inline bool is_sync_kiocb(struct kiocb *kiocb) 389 { 390 return kiocb->ki_complete == NULL; 391 } 392 393 struct address_space_operations { 394 int (*writepage)(struct page *page, struct writeback_control *wbc); 395 int (*read_folio)(struct file *, struct folio *); 396 397 /* Write back some dirty pages from this mapping. */ 398 int (*writepages)(struct address_space *, struct writeback_control *); 399 400 /* Mark a folio dirty. Return true if this dirtied it */ 401 bool (*dirty_folio)(struct address_space *, struct folio *); 402 403 void (*readahead)(struct readahead_control *); 404 405 int (*write_begin)(struct file *, struct address_space *mapping, 406 loff_t pos, unsigned len, 407 struct page **pagep, void **fsdata); 408 int (*write_end)(struct file *, struct address_space *mapping, 409 loff_t pos, unsigned len, unsigned copied, 410 struct page *page, void *fsdata); 411 412 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 413 sector_t (*bmap)(struct address_space *, sector_t); 414 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 415 bool (*release_folio)(struct folio *, gfp_t); 416 void (*free_folio)(struct folio *folio); 417 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 418 /* 419 * migrate the contents of a folio to the specified target. If 420 * migrate_mode is MIGRATE_ASYNC, it must not block. 421 */ 422 int (*migrate_folio)(struct address_space *, struct folio *dst, 423 struct folio *src, enum migrate_mode); 424 int (*launder_folio)(struct folio *); 425 bool (*is_partially_uptodate) (struct folio *, size_t from, 426 size_t count); 427 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 428 int (*error_remove_folio)(struct address_space *, struct folio *); 429 430 /* swapfile support */ 431 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 432 sector_t *span); 433 void (*swap_deactivate)(struct file *file); 434 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 435 }; 436 437 extern const struct address_space_operations empty_aops; 438 439 /** 440 * struct address_space - Contents of a cacheable, mappable object. 441 * @host: Owner, either the inode or the block_device. 442 * @i_pages: Cached pages. 443 * @invalidate_lock: Guards coherency between page cache contents and 444 * file offset->disk block mappings in the filesystem during invalidates. 445 * It is also used to block modification of page cache contents through 446 * memory mappings. 447 * @gfp_mask: Memory allocation flags to use for allocating pages. 448 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 449 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 450 * @i_mmap: Tree of private and shared mappings. 451 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 452 * @nrpages: Number of page entries, protected by the i_pages lock. 453 * @writeback_index: Writeback starts here. 454 * @a_ops: Methods. 455 * @flags: Error bits and flags (AS_*). 456 * @wb_err: The most recent error which has occurred. 457 * @i_private_lock: For use by the owner of the address_space. 458 * @i_private_list: For use by the owner of the address_space. 459 * @i_private_data: For use by the owner of the address_space. 460 */ 461 struct address_space { 462 struct inode *host; 463 struct xarray i_pages; 464 struct rw_semaphore invalidate_lock; 465 gfp_t gfp_mask; 466 atomic_t i_mmap_writable; 467 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 468 /* number of thp, only for non-shmem files */ 469 atomic_t nr_thps; 470 #endif 471 struct rb_root_cached i_mmap; 472 unsigned long nrpages; 473 pgoff_t writeback_index; 474 const struct address_space_operations *a_ops; 475 unsigned long flags; 476 errseq_t wb_err; 477 spinlock_t i_private_lock; 478 struct list_head i_private_list; 479 struct rw_semaphore i_mmap_rwsem; 480 void * i_private_data; 481 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 482 /* 483 * On most architectures that alignment is already the case; but 484 * must be enforced here for CRIS, to let the least significant bit 485 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 486 */ 487 488 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 489 #define PAGECACHE_TAG_DIRTY XA_MARK_0 490 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 491 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 492 493 /* 494 * Returns true if any of the pages in the mapping are marked with the tag. 495 */ 496 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 497 { 498 return xa_marked(&mapping->i_pages, tag); 499 } 500 501 static inline void i_mmap_lock_write(struct address_space *mapping) 502 { 503 down_write(&mapping->i_mmap_rwsem); 504 } 505 506 static inline int i_mmap_trylock_write(struct address_space *mapping) 507 { 508 return down_write_trylock(&mapping->i_mmap_rwsem); 509 } 510 511 static inline void i_mmap_unlock_write(struct address_space *mapping) 512 { 513 up_write(&mapping->i_mmap_rwsem); 514 } 515 516 static inline int i_mmap_trylock_read(struct address_space *mapping) 517 { 518 return down_read_trylock(&mapping->i_mmap_rwsem); 519 } 520 521 static inline void i_mmap_lock_read(struct address_space *mapping) 522 { 523 down_read(&mapping->i_mmap_rwsem); 524 } 525 526 static inline void i_mmap_unlock_read(struct address_space *mapping) 527 { 528 up_read(&mapping->i_mmap_rwsem); 529 } 530 531 static inline void i_mmap_assert_locked(struct address_space *mapping) 532 { 533 lockdep_assert_held(&mapping->i_mmap_rwsem); 534 } 535 536 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 537 { 538 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 539 } 540 541 /* 542 * Might pages of this file be mapped into userspace? 543 */ 544 static inline int mapping_mapped(struct address_space *mapping) 545 { 546 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 547 } 548 549 /* 550 * Might pages of this file have been modified in userspace? 551 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 552 * marks vma as VM_SHARED if it is shared, and the file was opened for 553 * writing i.e. vma may be mprotected writable even if now readonly. 554 * 555 * If i_mmap_writable is negative, no new writable mappings are allowed. You 556 * can only deny writable mappings, if none exists right now. 557 */ 558 static inline int mapping_writably_mapped(struct address_space *mapping) 559 { 560 return atomic_read(&mapping->i_mmap_writable) > 0; 561 } 562 563 static inline int mapping_map_writable(struct address_space *mapping) 564 { 565 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 566 0 : -EPERM; 567 } 568 569 static inline void mapping_unmap_writable(struct address_space *mapping) 570 { 571 atomic_dec(&mapping->i_mmap_writable); 572 } 573 574 static inline int mapping_deny_writable(struct address_space *mapping) 575 { 576 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 577 0 : -EBUSY; 578 } 579 580 static inline void mapping_allow_writable(struct address_space *mapping) 581 { 582 atomic_inc(&mapping->i_mmap_writable); 583 } 584 585 /* 586 * Use sequence counter to get consistent i_size on 32-bit processors. 587 */ 588 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 589 #include <linux/seqlock.h> 590 #define __NEED_I_SIZE_ORDERED 591 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 592 #else 593 #define i_size_ordered_init(inode) do { } while (0) 594 #endif 595 596 struct posix_acl; 597 #define ACL_NOT_CACHED ((void *)(-1)) 598 /* 599 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 600 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 601 * mode with the LOOKUP_RCU flag. 602 */ 603 #define ACL_DONT_CACHE ((void *)(-3)) 604 605 static inline struct posix_acl * 606 uncached_acl_sentinel(struct task_struct *task) 607 { 608 return (void *)task + 1; 609 } 610 611 static inline bool 612 is_uncached_acl(struct posix_acl *acl) 613 { 614 return (long)acl & 1; 615 } 616 617 #define IOP_FASTPERM 0x0001 618 #define IOP_LOOKUP 0x0002 619 #define IOP_NOFOLLOW 0x0004 620 #define IOP_XATTR 0x0008 621 #define IOP_DEFAULT_READLINK 0x0010 622 623 struct fsnotify_mark_connector; 624 625 /* 626 * Keep mostly read-only and often accessed (especially for 627 * the RCU path lookup and 'stat' data) fields at the beginning 628 * of the 'struct inode' 629 */ 630 struct inode { 631 umode_t i_mode; 632 unsigned short i_opflags; 633 kuid_t i_uid; 634 kgid_t i_gid; 635 unsigned int i_flags; 636 637 #ifdef CONFIG_FS_POSIX_ACL 638 struct posix_acl *i_acl; 639 struct posix_acl *i_default_acl; 640 #endif 641 642 const struct inode_operations *i_op; 643 struct super_block *i_sb; 644 struct address_space *i_mapping; 645 646 #ifdef CONFIG_SECURITY 647 void *i_security; 648 #endif 649 650 /* Stat data, not accessed from path walking */ 651 unsigned long i_ino; 652 /* 653 * Filesystems may only read i_nlink directly. They shall use the 654 * following functions for modification: 655 * 656 * (set|clear|inc|drop)_nlink 657 * inode_(inc|dec)_link_count 658 */ 659 union { 660 const unsigned int i_nlink; 661 unsigned int __i_nlink; 662 }; 663 dev_t i_rdev; 664 loff_t i_size; 665 struct timespec64 __i_atime; 666 struct timespec64 __i_mtime; 667 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */ 668 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 669 unsigned short i_bytes; 670 u8 i_blkbits; 671 enum rw_hint i_write_hint; 672 blkcnt_t i_blocks; 673 674 #ifdef __NEED_I_SIZE_ORDERED 675 seqcount_t i_size_seqcount; 676 #endif 677 678 /* Misc */ 679 unsigned long i_state; 680 struct rw_semaphore i_rwsem; 681 682 unsigned long dirtied_when; /* jiffies of first dirtying */ 683 unsigned long dirtied_time_when; 684 685 struct hlist_node i_hash; 686 struct list_head i_io_list; /* backing dev IO list */ 687 #ifdef CONFIG_CGROUP_WRITEBACK 688 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 689 690 /* foreign inode detection, see wbc_detach_inode() */ 691 int i_wb_frn_winner; 692 u16 i_wb_frn_avg_time; 693 u16 i_wb_frn_history; 694 #endif 695 struct list_head i_lru; /* inode LRU list */ 696 struct list_head i_sb_list; 697 struct list_head i_wb_list; /* backing dev writeback list */ 698 union { 699 struct hlist_head i_dentry; 700 struct rcu_head i_rcu; 701 }; 702 atomic64_t i_version; 703 atomic64_t i_sequence; /* see futex */ 704 atomic_t i_count; 705 atomic_t i_dio_count; 706 atomic_t i_writecount; 707 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 708 atomic_t i_readcount; /* struct files open RO */ 709 #endif 710 union { 711 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 712 void (*free_inode)(struct inode *); 713 }; 714 struct file_lock_context *i_flctx; 715 struct address_space i_data; 716 struct list_head i_devices; 717 union { 718 struct pipe_inode_info *i_pipe; 719 struct cdev *i_cdev; 720 char *i_link; 721 unsigned i_dir_seq; 722 }; 723 724 __u32 i_generation; 725 726 #ifdef CONFIG_FSNOTIFY 727 __u32 i_fsnotify_mask; /* all events this inode cares about */ 728 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 729 #endif 730 731 #ifdef CONFIG_FS_ENCRYPTION 732 struct fscrypt_inode_info *i_crypt_info; 733 #endif 734 735 #ifdef CONFIG_FS_VERITY 736 struct fsverity_info *i_verity_info; 737 #endif 738 739 void *i_private; /* fs or device private pointer */ 740 } __randomize_layout; 741 742 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 743 744 static inline unsigned int i_blocksize(const struct inode *node) 745 { 746 return (1 << node->i_blkbits); 747 } 748 749 static inline int inode_unhashed(struct inode *inode) 750 { 751 return hlist_unhashed(&inode->i_hash); 752 } 753 754 /* 755 * __mark_inode_dirty expects inodes to be hashed. Since we don't 756 * want special inodes in the fileset inode space, we make them 757 * appear hashed, but do not put on any lists. hlist_del() 758 * will work fine and require no locking. 759 */ 760 static inline void inode_fake_hash(struct inode *inode) 761 { 762 hlist_add_fake(&inode->i_hash); 763 } 764 765 /* 766 * inode->i_mutex nesting subclasses for the lock validator: 767 * 768 * 0: the object of the current VFS operation 769 * 1: parent 770 * 2: child/target 771 * 3: xattr 772 * 4: second non-directory 773 * 5: second parent (when locking independent directories in rename) 774 * 775 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 776 * non-directories at once. 777 * 778 * The locking order between these classes is 779 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 780 */ 781 enum inode_i_mutex_lock_class 782 { 783 I_MUTEX_NORMAL, 784 I_MUTEX_PARENT, 785 I_MUTEX_CHILD, 786 I_MUTEX_XATTR, 787 I_MUTEX_NONDIR2, 788 I_MUTEX_PARENT2, 789 }; 790 791 static inline void inode_lock(struct inode *inode) 792 { 793 down_write(&inode->i_rwsem); 794 } 795 796 static inline void inode_unlock(struct inode *inode) 797 { 798 up_write(&inode->i_rwsem); 799 } 800 801 static inline void inode_lock_shared(struct inode *inode) 802 { 803 down_read(&inode->i_rwsem); 804 } 805 806 static inline void inode_unlock_shared(struct inode *inode) 807 { 808 up_read(&inode->i_rwsem); 809 } 810 811 static inline int inode_trylock(struct inode *inode) 812 { 813 return down_write_trylock(&inode->i_rwsem); 814 } 815 816 static inline int inode_trylock_shared(struct inode *inode) 817 { 818 return down_read_trylock(&inode->i_rwsem); 819 } 820 821 static inline int inode_is_locked(struct inode *inode) 822 { 823 return rwsem_is_locked(&inode->i_rwsem); 824 } 825 826 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 827 { 828 down_write_nested(&inode->i_rwsem, subclass); 829 } 830 831 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 832 { 833 down_read_nested(&inode->i_rwsem, subclass); 834 } 835 836 static inline void filemap_invalidate_lock(struct address_space *mapping) 837 { 838 down_write(&mapping->invalidate_lock); 839 } 840 841 static inline void filemap_invalidate_unlock(struct address_space *mapping) 842 { 843 up_write(&mapping->invalidate_lock); 844 } 845 846 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 847 { 848 down_read(&mapping->invalidate_lock); 849 } 850 851 static inline int filemap_invalidate_trylock_shared( 852 struct address_space *mapping) 853 { 854 return down_read_trylock(&mapping->invalidate_lock); 855 } 856 857 static inline void filemap_invalidate_unlock_shared( 858 struct address_space *mapping) 859 { 860 up_read(&mapping->invalidate_lock); 861 } 862 863 void lock_two_nondirectories(struct inode *, struct inode*); 864 void unlock_two_nondirectories(struct inode *, struct inode*); 865 866 void filemap_invalidate_lock_two(struct address_space *mapping1, 867 struct address_space *mapping2); 868 void filemap_invalidate_unlock_two(struct address_space *mapping1, 869 struct address_space *mapping2); 870 871 872 /* 873 * NOTE: in a 32bit arch with a preemptable kernel and 874 * an UP compile the i_size_read/write must be atomic 875 * with respect to the local cpu (unlike with preempt disabled), 876 * but they don't need to be atomic with respect to other cpus like in 877 * true SMP (so they need either to either locally disable irq around 878 * the read or for example on x86 they can be still implemented as a 879 * cmpxchg8b without the need of the lock prefix). For SMP compiles 880 * and 64bit archs it makes no difference if preempt is enabled or not. 881 */ 882 static inline loff_t i_size_read(const struct inode *inode) 883 { 884 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 885 loff_t i_size; 886 unsigned int seq; 887 888 do { 889 seq = read_seqcount_begin(&inode->i_size_seqcount); 890 i_size = inode->i_size; 891 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 892 return i_size; 893 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 894 loff_t i_size; 895 896 preempt_disable(); 897 i_size = inode->i_size; 898 preempt_enable(); 899 return i_size; 900 #else 901 /* Pairs with smp_store_release() in i_size_write() */ 902 return smp_load_acquire(&inode->i_size); 903 #endif 904 } 905 906 /* 907 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 908 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 909 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 910 */ 911 static inline void i_size_write(struct inode *inode, loff_t i_size) 912 { 913 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 914 preempt_disable(); 915 write_seqcount_begin(&inode->i_size_seqcount); 916 inode->i_size = i_size; 917 write_seqcount_end(&inode->i_size_seqcount); 918 preempt_enable(); 919 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 920 preempt_disable(); 921 inode->i_size = i_size; 922 preempt_enable(); 923 #else 924 /* 925 * Pairs with smp_load_acquire() in i_size_read() to ensure 926 * changes related to inode size (such as page contents) are 927 * visible before we see the changed inode size. 928 */ 929 smp_store_release(&inode->i_size, i_size); 930 #endif 931 } 932 933 static inline unsigned iminor(const struct inode *inode) 934 { 935 return MINOR(inode->i_rdev); 936 } 937 938 static inline unsigned imajor(const struct inode *inode) 939 { 940 return MAJOR(inode->i_rdev); 941 } 942 943 struct fown_struct { 944 rwlock_t lock; /* protects pid, uid, euid fields */ 945 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 946 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 947 kuid_t uid, euid; /* uid/euid of process setting the owner */ 948 int signum; /* posix.1b rt signal to be delivered on IO */ 949 }; 950 951 /** 952 * struct file_ra_state - Track a file's readahead state. 953 * @start: Where the most recent readahead started. 954 * @size: Number of pages read in the most recent readahead. 955 * @async_size: Numer of pages that were/are not needed immediately 956 * and so were/are genuinely "ahead". Start next readahead when 957 * the first of these pages is accessed. 958 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 959 * @mmap_miss: How many mmap accesses missed in the page cache. 960 * @prev_pos: The last byte in the most recent read request. 961 * 962 * When this structure is passed to ->readahead(), the "most recent" 963 * readahead means the current readahead. 964 */ 965 struct file_ra_state { 966 pgoff_t start; 967 unsigned int size; 968 unsigned int async_size; 969 unsigned int ra_pages; 970 unsigned int mmap_miss; 971 loff_t prev_pos; 972 }; 973 974 /* 975 * Check if @index falls in the readahead windows. 976 */ 977 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 978 { 979 return (index >= ra->start && 980 index < ra->start + ra->size); 981 } 982 983 /* 984 * f_{lock,count,pos_lock} members can be highly contended and share 985 * the same cacheline. f_{lock,mode} are very frequently used together 986 * and so share the same cacheline as well. The read-mostly 987 * f_{path,inode,op} are kept on a separate cacheline. 988 */ 989 struct file { 990 union { 991 /* fput() uses task work when closing and freeing file (default). */ 992 struct callback_head f_task_work; 993 /* fput() must use workqueue (most kernel threads). */ 994 struct llist_node f_llist; 995 unsigned int f_iocb_flags; 996 }; 997 998 /* 999 * Protects f_ep, f_flags. 1000 * Must not be taken from IRQ context. 1001 */ 1002 spinlock_t f_lock; 1003 fmode_t f_mode; 1004 atomic_long_t f_count; 1005 struct mutex f_pos_lock; 1006 loff_t f_pos; 1007 unsigned int f_flags; 1008 struct fown_struct f_owner; 1009 const struct cred *f_cred; 1010 struct file_ra_state f_ra; 1011 struct path f_path; 1012 struct inode *f_inode; /* cached value */ 1013 const struct file_operations *f_op; 1014 1015 u64 f_version; 1016 #ifdef CONFIG_SECURITY 1017 void *f_security; 1018 #endif 1019 /* needed for tty driver, and maybe others */ 1020 void *private_data; 1021 1022 #ifdef CONFIG_EPOLL 1023 /* Used by fs/eventpoll.c to link all the hooks to this file */ 1024 struct hlist_head *f_ep; 1025 #endif /* #ifdef CONFIG_EPOLL */ 1026 struct address_space *f_mapping; 1027 errseq_t f_wb_err; 1028 errseq_t f_sb_err; /* for syncfs */ 1029 } __randomize_layout 1030 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1031 1032 struct file_handle { 1033 __u32 handle_bytes; 1034 int handle_type; 1035 /* file identifier */ 1036 unsigned char f_handle[]; 1037 }; 1038 1039 static inline struct file *get_file(struct file *f) 1040 { 1041 atomic_long_inc(&f->f_count); 1042 return f; 1043 } 1044 1045 struct file *get_file_rcu(struct file __rcu **f); 1046 struct file *get_file_active(struct file **f); 1047 1048 #define file_count(x) atomic_long_read(&(x)->f_count) 1049 1050 #define MAX_NON_LFS ((1UL<<31) - 1) 1051 1052 /* Page cache limit. The filesystems should put that into their s_maxbytes 1053 limits, otherwise bad things can happen in VM. */ 1054 #if BITS_PER_LONG==32 1055 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1056 #elif BITS_PER_LONG==64 1057 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1058 #endif 1059 1060 /* legacy typedef, should eventually be removed */ 1061 typedef void *fl_owner_t; 1062 1063 struct file_lock; 1064 struct file_lease; 1065 1066 /* The following constant reflects the upper bound of the file/locking space */ 1067 #ifndef OFFSET_MAX 1068 #define OFFSET_MAX type_max(loff_t) 1069 #define OFFT_OFFSET_MAX type_max(off_t) 1070 #endif 1071 1072 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1073 1074 static inline struct inode *file_inode(const struct file *f) 1075 { 1076 return f->f_inode; 1077 } 1078 1079 /* 1080 * file_dentry() is a relic from the days that overlayfs was using files with a 1081 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1082 * In those days, file_dentry() was needed to get the underlying fs dentry that 1083 * matches f_inode. 1084 * Files with "fake" path should not exist nowadays, so use an assertion to make 1085 * sure that file_dentry() was not papering over filesystem bugs. 1086 */ 1087 static inline struct dentry *file_dentry(const struct file *file) 1088 { 1089 struct dentry *dentry = file->f_path.dentry; 1090 1091 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1092 return dentry; 1093 } 1094 1095 struct fasync_struct { 1096 rwlock_t fa_lock; 1097 int magic; 1098 int fa_fd; 1099 struct fasync_struct *fa_next; /* singly linked list */ 1100 struct file *fa_file; 1101 struct rcu_head fa_rcu; 1102 }; 1103 1104 #define FASYNC_MAGIC 0x4601 1105 1106 /* SMP safe fasync helpers: */ 1107 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1108 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1109 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1110 extern struct fasync_struct *fasync_alloc(void); 1111 extern void fasync_free(struct fasync_struct *); 1112 1113 /* can be called from interrupts */ 1114 extern void kill_fasync(struct fasync_struct **, int, int); 1115 1116 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1117 extern int f_setown(struct file *filp, int who, int force); 1118 extern void f_delown(struct file *filp); 1119 extern pid_t f_getown(struct file *filp); 1120 extern int send_sigurg(struct fown_struct *fown); 1121 1122 /* 1123 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1124 * represented in both. 1125 */ 1126 #define SB_RDONLY BIT(0) /* Mount read-only */ 1127 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1128 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1129 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1130 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1131 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1132 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1133 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1134 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1135 #define SB_SILENT BIT(15) 1136 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1137 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1138 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1139 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1140 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1141 1142 /* These sb flags are internal to the kernel */ 1143 #define SB_DEAD BIT(21) 1144 #define SB_DYING BIT(24) 1145 #define SB_SUBMOUNT BIT(26) 1146 #define SB_FORCE BIT(27) 1147 #define SB_NOSEC BIT(28) 1148 #define SB_BORN BIT(29) 1149 #define SB_ACTIVE BIT(30) 1150 #define SB_NOUSER BIT(31) 1151 1152 /* These flags relate to encoding and casefolding */ 1153 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1154 1155 #define sb_has_strict_encoding(sb) \ 1156 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1157 1158 /* 1159 * Umount options 1160 */ 1161 1162 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1163 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1164 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1165 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1166 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1167 1168 /* sb->s_iflags */ 1169 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1170 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1171 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1172 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1173 1174 /* sb->s_iflags to limit user namespace mounts */ 1175 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1176 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1177 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1178 #define SB_I_EVM_UNSUPPORTED 0x00000080 1179 1180 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1181 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1182 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1183 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1184 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1185 1186 /* Possible states of 'frozen' field */ 1187 enum { 1188 SB_UNFROZEN = 0, /* FS is unfrozen */ 1189 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1190 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1191 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1192 * internal threads if needed) */ 1193 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1194 }; 1195 1196 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1197 1198 struct sb_writers { 1199 unsigned short frozen; /* Is sb frozen? */ 1200 int freeze_kcount; /* How many kernel freeze requests? */ 1201 int freeze_ucount; /* How many userspace freeze requests? */ 1202 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1203 }; 1204 1205 struct super_block { 1206 struct list_head s_list; /* Keep this first */ 1207 dev_t s_dev; /* search index; _not_ kdev_t */ 1208 unsigned char s_blocksize_bits; 1209 unsigned long s_blocksize; 1210 loff_t s_maxbytes; /* Max file size */ 1211 struct file_system_type *s_type; 1212 const struct super_operations *s_op; 1213 const struct dquot_operations *dq_op; 1214 const struct quotactl_ops *s_qcop; 1215 const struct export_operations *s_export_op; 1216 unsigned long s_flags; 1217 unsigned long s_iflags; /* internal SB_I_* flags */ 1218 unsigned long s_magic; 1219 struct dentry *s_root; 1220 struct rw_semaphore s_umount; 1221 int s_count; 1222 atomic_t s_active; 1223 #ifdef CONFIG_SECURITY 1224 void *s_security; 1225 #endif 1226 const struct xattr_handler * const *s_xattr; 1227 #ifdef CONFIG_FS_ENCRYPTION 1228 const struct fscrypt_operations *s_cop; 1229 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1230 #endif 1231 #ifdef CONFIG_FS_VERITY 1232 const struct fsverity_operations *s_vop; 1233 #endif 1234 #if IS_ENABLED(CONFIG_UNICODE) 1235 struct unicode_map *s_encoding; 1236 __u16 s_encoding_flags; 1237 #endif 1238 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1239 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1240 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1241 struct file *s_bdev_file; 1242 struct backing_dev_info *s_bdi; 1243 struct mtd_info *s_mtd; 1244 struct hlist_node s_instances; 1245 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1246 struct quota_info s_dquot; /* Diskquota specific options */ 1247 1248 struct sb_writers s_writers; 1249 1250 /* 1251 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1252 * s_fsnotify_marks together for cache efficiency. They are frequently 1253 * accessed and rarely modified. 1254 */ 1255 void *s_fs_info; /* Filesystem private info */ 1256 1257 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1258 u32 s_time_gran; 1259 /* Time limits for c/m/atime in seconds */ 1260 time64_t s_time_min; 1261 time64_t s_time_max; 1262 #ifdef CONFIG_FSNOTIFY 1263 __u32 s_fsnotify_mask; 1264 struct fsnotify_mark_connector __rcu *s_fsnotify_marks; 1265 #endif 1266 1267 /* 1268 * q: why are s_id and s_sysfs_name not the same? both are human 1269 * readable strings that identify the filesystem 1270 * a: s_id is allowed to change at runtime; it's used in log messages, 1271 * and we want to when a device starts out as single device (s_id is dev 1272 * name) but then a device is hot added and we have to switch to 1273 * identifying it by UUID 1274 * but s_sysfs_name is a handle for programmatic access, and can't 1275 * change at runtime 1276 */ 1277 char s_id[32]; /* Informational name */ 1278 uuid_t s_uuid; /* UUID */ 1279 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1280 1281 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1282 char s_sysfs_name[UUID_STRING_LEN + 1]; 1283 1284 unsigned int s_max_links; 1285 1286 /* 1287 * The next field is for VFS *only*. No filesystems have any business 1288 * even looking at it. You had been warned. 1289 */ 1290 struct mutex s_vfs_rename_mutex; /* Kludge */ 1291 1292 /* 1293 * Filesystem subtype. If non-empty the filesystem type field 1294 * in /proc/mounts will be "type.subtype" 1295 */ 1296 const char *s_subtype; 1297 1298 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1299 1300 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1301 1302 /* Number of inodes with nlink == 0 but still referenced */ 1303 atomic_long_t s_remove_count; 1304 1305 /* 1306 * Number of inode/mount/sb objects that are being watched, note that 1307 * inodes objects are currently double-accounted. 1308 */ 1309 atomic_long_t s_fsnotify_connectors; 1310 1311 /* Read-only state of the superblock is being changed */ 1312 int s_readonly_remount; 1313 1314 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1315 errseq_t s_wb_err; 1316 1317 /* AIO completions deferred from interrupt context */ 1318 struct workqueue_struct *s_dio_done_wq; 1319 struct hlist_head s_pins; 1320 1321 /* 1322 * Owning user namespace and default context in which to 1323 * interpret filesystem uids, gids, quotas, device nodes, 1324 * xattrs and security labels. 1325 */ 1326 struct user_namespace *s_user_ns; 1327 1328 /* 1329 * The list_lru structure is essentially just a pointer to a table 1330 * of per-node lru lists, each of which has its own spinlock. 1331 * There is no need to put them into separate cachelines. 1332 */ 1333 struct list_lru s_dentry_lru; 1334 struct list_lru s_inode_lru; 1335 struct rcu_head rcu; 1336 struct work_struct destroy_work; 1337 1338 struct mutex s_sync_lock; /* sync serialisation lock */ 1339 1340 /* 1341 * Indicates how deep in a filesystem stack this SB is 1342 */ 1343 int s_stack_depth; 1344 1345 /* s_inode_list_lock protects s_inodes */ 1346 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1347 struct list_head s_inodes; /* all inodes */ 1348 1349 spinlock_t s_inode_wblist_lock; 1350 struct list_head s_inodes_wb; /* writeback inodes */ 1351 } __randomize_layout; 1352 1353 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1354 { 1355 return inode->i_sb->s_user_ns; 1356 } 1357 1358 /* Helper functions so that in most cases filesystems will 1359 * not need to deal directly with kuid_t and kgid_t and can 1360 * instead deal with the raw numeric values that are stored 1361 * in the filesystem. 1362 */ 1363 static inline uid_t i_uid_read(const struct inode *inode) 1364 { 1365 return from_kuid(i_user_ns(inode), inode->i_uid); 1366 } 1367 1368 static inline gid_t i_gid_read(const struct inode *inode) 1369 { 1370 return from_kgid(i_user_ns(inode), inode->i_gid); 1371 } 1372 1373 static inline void i_uid_write(struct inode *inode, uid_t uid) 1374 { 1375 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1376 } 1377 1378 static inline void i_gid_write(struct inode *inode, gid_t gid) 1379 { 1380 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1381 } 1382 1383 /** 1384 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1385 * @idmap: idmap of the mount the inode was found from 1386 * @inode: inode to map 1387 * 1388 * Return: whe inode's i_uid mapped down according to @idmap. 1389 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1390 */ 1391 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1392 const struct inode *inode) 1393 { 1394 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1395 } 1396 1397 /** 1398 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1399 * @idmap: idmap of the mount the inode was found from 1400 * @attr: the new attributes of @inode 1401 * @inode: the inode to update 1402 * 1403 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1404 * mounts into account if the filesystem supports it. 1405 * 1406 * Return: true if @inode's i_uid field needs to be updated, false if not. 1407 */ 1408 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1409 const struct iattr *attr, 1410 const struct inode *inode) 1411 { 1412 return ((attr->ia_valid & ATTR_UID) && 1413 !vfsuid_eq(attr->ia_vfsuid, 1414 i_uid_into_vfsuid(idmap, inode))); 1415 } 1416 1417 /** 1418 * i_uid_update - update @inode's i_uid field 1419 * @idmap: idmap of the mount the inode was found from 1420 * @attr: the new attributes of @inode 1421 * @inode: the inode to update 1422 * 1423 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1424 * mount into the filesystem kuid. 1425 */ 1426 static inline void i_uid_update(struct mnt_idmap *idmap, 1427 const struct iattr *attr, 1428 struct inode *inode) 1429 { 1430 if (attr->ia_valid & ATTR_UID) 1431 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1432 attr->ia_vfsuid); 1433 } 1434 1435 /** 1436 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1437 * @idmap: idmap of the mount the inode was found from 1438 * @inode: inode to map 1439 * 1440 * Return: the inode's i_gid mapped down according to @idmap. 1441 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1442 */ 1443 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1444 const struct inode *inode) 1445 { 1446 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1447 } 1448 1449 /** 1450 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1451 * @idmap: idmap of the mount the inode was found from 1452 * @attr: the new attributes of @inode 1453 * @inode: the inode to update 1454 * 1455 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1456 * mounts into account if the filesystem supports it. 1457 * 1458 * Return: true if @inode's i_gid field needs to be updated, false if not. 1459 */ 1460 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1461 const struct iattr *attr, 1462 const struct inode *inode) 1463 { 1464 return ((attr->ia_valid & ATTR_GID) && 1465 !vfsgid_eq(attr->ia_vfsgid, 1466 i_gid_into_vfsgid(idmap, inode))); 1467 } 1468 1469 /** 1470 * i_gid_update - update @inode's i_gid field 1471 * @idmap: idmap of the mount the inode was found from 1472 * @attr: the new attributes of @inode 1473 * @inode: the inode to update 1474 * 1475 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1476 * mount into the filesystem kgid. 1477 */ 1478 static inline void i_gid_update(struct mnt_idmap *idmap, 1479 const struct iattr *attr, 1480 struct inode *inode) 1481 { 1482 if (attr->ia_valid & ATTR_GID) 1483 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1484 attr->ia_vfsgid); 1485 } 1486 1487 /** 1488 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1489 * @inode: inode to initialize 1490 * @idmap: idmap of the mount the inode was found from 1491 * 1492 * Initialize the i_uid field of @inode. If the inode was found/created via 1493 * an idmapped mount map the caller's fsuid according to @idmap. 1494 */ 1495 static inline void inode_fsuid_set(struct inode *inode, 1496 struct mnt_idmap *idmap) 1497 { 1498 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1499 } 1500 1501 /** 1502 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1503 * @inode: inode to initialize 1504 * @idmap: idmap of the mount the inode was found from 1505 * 1506 * Initialize the i_gid field of @inode. If the inode was found/created via 1507 * an idmapped mount map the caller's fsgid according to @idmap. 1508 */ 1509 static inline void inode_fsgid_set(struct inode *inode, 1510 struct mnt_idmap *idmap) 1511 { 1512 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1513 } 1514 1515 /** 1516 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1517 * @sb: the superblock we want a mapping in 1518 * @idmap: idmap of the relevant mount 1519 * 1520 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1521 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1522 * the caller's fsuid and fsgid according to the @idmap first. 1523 * 1524 * Return: true if fsuid and fsgid is mapped, false if not. 1525 */ 1526 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1527 struct mnt_idmap *idmap) 1528 { 1529 struct user_namespace *fs_userns = sb->s_user_ns; 1530 kuid_t kuid; 1531 kgid_t kgid; 1532 1533 kuid = mapped_fsuid(idmap, fs_userns); 1534 if (!uid_valid(kuid)) 1535 return false; 1536 kgid = mapped_fsgid(idmap, fs_userns); 1537 if (!gid_valid(kgid)) 1538 return false; 1539 return kuid_has_mapping(fs_userns, kuid) && 1540 kgid_has_mapping(fs_userns, kgid); 1541 } 1542 1543 struct timespec64 current_time(struct inode *inode); 1544 struct timespec64 inode_set_ctime_current(struct inode *inode); 1545 1546 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1547 { 1548 return inode->__i_atime.tv_sec; 1549 } 1550 1551 static inline long inode_get_atime_nsec(const struct inode *inode) 1552 { 1553 return inode->__i_atime.tv_nsec; 1554 } 1555 1556 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1557 { 1558 return inode->__i_atime; 1559 } 1560 1561 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1562 struct timespec64 ts) 1563 { 1564 inode->__i_atime = ts; 1565 return ts; 1566 } 1567 1568 static inline struct timespec64 inode_set_atime(struct inode *inode, 1569 time64_t sec, long nsec) 1570 { 1571 struct timespec64 ts = { .tv_sec = sec, 1572 .tv_nsec = nsec }; 1573 return inode_set_atime_to_ts(inode, ts); 1574 } 1575 1576 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1577 { 1578 return inode->__i_mtime.tv_sec; 1579 } 1580 1581 static inline long inode_get_mtime_nsec(const struct inode *inode) 1582 { 1583 return inode->__i_mtime.tv_nsec; 1584 } 1585 1586 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1587 { 1588 return inode->__i_mtime; 1589 } 1590 1591 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1592 struct timespec64 ts) 1593 { 1594 inode->__i_mtime = ts; 1595 return ts; 1596 } 1597 1598 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1599 time64_t sec, long nsec) 1600 { 1601 struct timespec64 ts = { .tv_sec = sec, 1602 .tv_nsec = nsec }; 1603 return inode_set_mtime_to_ts(inode, ts); 1604 } 1605 1606 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1607 { 1608 return inode->__i_ctime.tv_sec; 1609 } 1610 1611 static inline long inode_get_ctime_nsec(const struct inode *inode) 1612 { 1613 return inode->__i_ctime.tv_nsec; 1614 } 1615 1616 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1617 { 1618 return inode->__i_ctime; 1619 } 1620 1621 static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, 1622 struct timespec64 ts) 1623 { 1624 inode->__i_ctime = ts; 1625 return ts; 1626 } 1627 1628 /** 1629 * inode_set_ctime - set the ctime in the inode 1630 * @inode: inode in which to set the ctime 1631 * @sec: tv_sec value to set 1632 * @nsec: tv_nsec value to set 1633 * 1634 * Set the ctime in @inode to { @sec, @nsec } 1635 */ 1636 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1637 time64_t sec, long nsec) 1638 { 1639 struct timespec64 ts = { .tv_sec = sec, 1640 .tv_nsec = nsec }; 1641 1642 return inode_set_ctime_to_ts(inode, ts); 1643 } 1644 1645 struct timespec64 simple_inode_init_ts(struct inode *inode); 1646 1647 /* 1648 * Snapshotting support. 1649 */ 1650 1651 /* 1652 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1653 * instead. 1654 */ 1655 static inline void __sb_end_write(struct super_block *sb, int level) 1656 { 1657 percpu_up_read(sb->s_writers.rw_sem + level-1); 1658 } 1659 1660 static inline void __sb_start_write(struct super_block *sb, int level) 1661 { 1662 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1663 } 1664 1665 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1666 { 1667 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1668 } 1669 1670 #define __sb_writers_acquired(sb, lev) \ 1671 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1672 #define __sb_writers_release(sb, lev) \ 1673 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1674 1675 /** 1676 * __sb_write_started - check if sb freeze level is held 1677 * @sb: the super we write to 1678 * @level: the freeze level 1679 * 1680 * * > 0 - sb freeze level is held 1681 * * 0 - sb freeze level is not held 1682 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1683 */ 1684 static inline int __sb_write_started(const struct super_block *sb, int level) 1685 { 1686 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1687 } 1688 1689 /** 1690 * sb_write_started - check if SB_FREEZE_WRITE is held 1691 * @sb: the super we write to 1692 * 1693 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1694 */ 1695 static inline bool sb_write_started(const struct super_block *sb) 1696 { 1697 return __sb_write_started(sb, SB_FREEZE_WRITE); 1698 } 1699 1700 /** 1701 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1702 * @sb: the super we write to 1703 * 1704 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1705 */ 1706 static inline bool sb_write_not_started(const struct super_block *sb) 1707 { 1708 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1709 } 1710 1711 /** 1712 * file_write_started - check if SB_FREEZE_WRITE is held 1713 * @file: the file we write to 1714 * 1715 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1716 * May be false positive with !S_ISREG, because file_start_write() has 1717 * no effect on !S_ISREG. 1718 */ 1719 static inline bool file_write_started(const struct file *file) 1720 { 1721 if (!S_ISREG(file_inode(file)->i_mode)) 1722 return true; 1723 return sb_write_started(file_inode(file)->i_sb); 1724 } 1725 1726 /** 1727 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1728 * @file: the file we write to 1729 * 1730 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1731 * May be false positive with !S_ISREG, because file_start_write() has 1732 * no effect on !S_ISREG. 1733 */ 1734 static inline bool file_write_not_started(const struct file *file) 1735 { 1736 if (!S_ISREG(file_inode(file)->i_mode)) 1737 return true; 1738 return sb_write_not_started(file_inode(file)->i_sb); 1739 } 1740 1741 /** 1742 * sb_end_write - drop write access to a superblock 1743 * @sb: the super we wrote to 1744 * 1745 * Decrement number of writers to the filesystem. Wake up possible waiters 1746 * wanting to freeze the filesystem. 1747 */ 1748 static inline void sb_end_write(struct super_block *sb) 1749 { 1750 __sb_end_write(sb, SB_FREEZE_WRITE); 1751 } 1752 1753 /** 1754 * sb_end_pagefault - drop write access to a superblock from a page fault 1755 * @sb: the super we wrote to 1756 * 1757 * Decrement number of processes handling write page fault to the filesystem. 1758 * Wake up possible waiters wanting to freeze the filesystem. 1759 */ 1760 static inline void sb_end_pagefault(struct super_block *sb) 1761 { 1762 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1763 } 1764 1765 /** 1766 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1767 * @sb: the super we wrote to 1768 * 1769 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1770 * waiters wanting to freeze the filesystem. 1771 */ 1772 static inline void sb_end_intwrite(struct super_block *sb) 1773 { 1774 __sb_end_write(sb, SB_FREEZE_FS); 1775 } 1776 1777 /** 1778 * sb_start_write - get write access to a superblock 1779 * @sb: the super we write to 1780 * 1781 * When a process wants to write data or metadata to a file system (i.e. dirty 1782 * a page or an inode), it should embed the operation in a sb_start_write() - 1783 * sb_end_write() pair to get exclusion against file system freezing. This 1784 * function increments number of writers preventing freezing. If the file 1785 * system is already frozen, the function waits until the file system is 1786 * thawed. 1787 * 1788 * Since freeze protection behaves as a lock, users have to preserve 1789 * ordering of freeze protection and other filesystem locks. Generally, 1790 * freeze protection should be the outermost lock. In particular, we have: 1791 * 1792 * sb_start_write 1793 * -> i_mutex (write path, truncate, directory ops, ...) 1794 * -> s_umount (freeze_super, thaw_super) 1795 */ 1796 static inline void sb_start_write(struct super_block *sb) 1797 { 1798 __sb_start_write(sb, SB_FREEZE_WRITE); 1799 } 1800 1801 static inline bool sb_start_write_trylock(struct super_block *sb) 1802 { 1803 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1804 } 1805 1806 /** 1807 * sb_start_pagefault - get write access to a superblock from a page fault 1808 * @sb: the super we write to 1809 * 1810 * When a process starts handling write page fault, it should embed the 1811 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1812 * exclusion against file system freezing. This is needed since the page fault 1813 * is going to dirty a page. This function increments number of running page 1814 * faults preventing freezing. If the file system is already frozen, the 1815 * function waits until the file system is thawed. 1816 * 1817 * Since page fault freeze protection behaves as a lock, users have to preserve 1818 * ordering of freeze protection and other filesystem locks. It is advised to 1819 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1820 * handling code implies lock dependency: 1821 * 1822 * mmap_lock 1823 * -> sb_start_pagefault 1824 */ 1825 static inline void sb_start_pagefault(struct super_block *sb) 1826 { 1827 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1828 } 1829 1830 /** 1831 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1832 * @sb: the super we write to 1833 * 1834 * This is the third level of protection against filesystem freezing. It is 1835 * free for use by a filesystem. The only requirement is that it must rank 1836 * below sb_start_pagefault. 1837 * 1838 * For example filesystem can call sb_start_intwrite() when starting a 1839 * transaction which somewhat eases handling of freezing for internal sources 1840 * of filesystem changes (internal fs threads, discarding preallocation on file 1841 * close, etc.). 1842 */ 1843 static inline void sb_start_intwrite(struct super_block *sb) 1844 { 1845 __sb_start_write(sb, SB_FREEZE_FS); 1846 } 1847 1848 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1849 { 1850 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1851 } 1852 1853 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1854 const struct inode *inode); 1855 1856 /* 1857 * VFS helper functions.. 1858 */ 1859 int vfs_create(struct mnt_idmap *, struct inode *, 1860 struct dentry *, umode_t, bool); 1861 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1862 struct dentry *, umode_t); 1863 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1864 umode_t, dev_t); 1865 int vfs_symlink(struct mnt_idmap *, struct inode *, 1866 struct dentry *, const char *); 1867 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1868 struct dentry *, struct inode **); 1869 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1870 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1871 struct inode **); 1872 1873 /** 1874 * struct renamedata - contains all information required for renaming 1875 * @old_mnt_idmap: idmap of the old mount the inode was found from 1876 * @old_dir: parent of source 1877 * @old_dentry: source 1878 * @new_mnt_idmap: idmap of the new mount the inode was found from 1879 * @new_dir: parent of destination 1880 * @new_dentry: destination 1881 * @delegated_inode: returns an inode needing a delegation break 1882 * @flags: rename flags 1883 */ 1884 struct renamedata { 1885 struct mnt_idmap *old_mnt_idmap; 1886 struct inode *old_dir; 1887 struct dentry *old_dentry; 1888 struct mnt_idmap *new_mnt_idmap; 1889 struct inode *new_dir; 1890 struct dentry *new_dentry; 1891 struct inode **delegated_inode; 1892 unsigned int flags; 1893 } __randomize_layout; 1894 1895 int vfs_rename(struct renamedata *); 1896 1897 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1898 struct inode *dir, struct dentry *dentry) 1899 { 1900 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1901 WHITEOUT_DEV); 1902 } 1903 1904 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1905 const struct path *parentpath, 1906 umode_t mode, int open_flag, 1907 const struct cred *cred); 1908 struct file *kernel_file_open(const struct path *path, int flags, 1909 struct inode *inode, const struct cred *cred); 1910 1911 int vfs_mkobj(struct dentry *, umode_t, 1912 int (*f)(struct dentry *, umode_t, void *), 1913 void *); 1914 1915 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1916 int vfs_fchmod(struct file *file, umode_t mode); 1917 int vfs_utimes(const struct path *path, struct timespec64 *times); 1918 1919 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1920 1921 #ifdef CONFIG_COMPAT 1922 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1923 unsigned long arg); 1924 #else 1925 #define compat_ptr_ioctl NULL 1926 #endif 1927 1928 /* 1929 * VFS file helper functions. 1930 */ 1931 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1932 const struct inode *dir, umode_t mode); 1933 extern bool may_open_dev(const struct path *path); 1934 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1935 const struct inode *dir, umode_t mode); 1936 1937 /* 1938 * This is the "filldir" function type, used by readdir() to let 1939 * the kernel specify what kind of dirent layout it wants to have. 1940 * This allows the kernel to read directories into kernel space or 1941 * to have different dirent layouts depending on the binary type. 1942 * Return 'true' to keep going and 'false' if there are no more entries. 1943 */ 1944 struct dir_context; 1945 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1946 unsigned); 1947 1948 struct dir_context { 1949 filldir_t actor; 1950 loff_t pos; 1951 }; 1952 1953 /* 1954 * These flags let !MMU mmap() govern direct device mapping vs immediate 1955 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1956 * 1957 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1958 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1959 * NOMMU_MAP_READ: Can be mapped for reading 1960 * NOMMU_MAP_WRITE: Can be mapped for writing 1961 * NOMMU_MAP_EXEC: Can be mapped for execution 1962 */ 1963 #define NOMMU_MAP_COPY 0x00000001 1964 #define NOMMU_MAP_DIRECT 0x00000008 1965 #define NOMMU_MAP_READ VM_MAYREAD 1966 #define NOMMU_MAP_WRITE VM_MAYWRITE 1967 #define NOMMU_MAP_EXEC VM_MAYEXEC 1968 1969 #define NOMMU_VMFLAGS \ 1970 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1971 1972 /* 1973 * These flags control the behavior of the remap_file_range function pointer. 1974 * If it is called with len == 0 that means "remap to end of source file". 1975 * See Documentation/filesystems/vfs.rst for more details about this call. 1976 * 1977 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1978 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1979 */ 1980 #define REMAP_FILE_DEDUP (1 << 0) 1981 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 1982 1983 /* 1984 * These flags signal that the caller is ok with altering various aspects of 1985 * the behavior of the remap operation. The changes must be made by the 1986 * implementation; the vfs remap helper functions can take advantage of them. 1987 * Flags in this category exist to preserve the quirky behavior of the hoisted 1988 * btrfs clone/dedupe ioctls. 1989 */ 1990 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 1991 1992 /* 1993 * These flags control the behavior of vfs_copy_file_range(). 1994 * They are not available to the user via syscall. 1995 * 1996 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 1997 */ 1998 #define COPY_FILE_SPLICE (1 << 0) 1999 2000 struct iov_iter; 2001 struct io_uring_cmd; 2002 struct offset_ctx; 2003 2004 struct file_operations { 2005 struct module *owner; 2006 loff_t (*llseek) (struct file *, loff_t, int); 2007 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2008 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2009 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2010 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2011 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2012 unsigned int flags); 2013 int (*iterate_shared) (struct file *, struct dir_context *); 2014 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2015 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2016 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2017 int (*mmap) (struct file *, struct vm_area_struct *); 2018 unsigned long mmap_supported_flags; 2019 int (*open) (struct inode *, struct file *); 2020 int (*flush) (struct file *, fl_owner_t id); 2021 int (*release) (struct inode *, struct file *); 2022 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2023 int (*fasync) (int, struct file *, int); 2024 int (*lock) (struct file *, int, struct file_lock *); 2025 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2026 int (*check_flags)(int); 2027 int (*flock) (struct file *, int, struct file_lock *); 2028 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2029 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2030 void (*splice_eof)(struct file *file); 2031 int (*setlease)(struct file *, int, struct file_lease **, void **); 2032 long (*fallocate)(struct file *file, int mode, loff_t offset, 2033 loff_t len); 2034 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2035 #ifndef CONFIG_MMU 2036 unsigned (*mmap_capabilities)(struct file *); 2037 #endif 2038 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2039 loff_t, size_t, unsigned int); 2040 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2041 struct file *file_out, loff_t pos_out, 2042 loff_t len, unsigned int remap_flags); 2043 int (*fadvise)(struct file *, loff_t, loff_t, int); 2044 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2045 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2046 unsigned int poll_flags); 2047 } __randomize_layout; 2048 2049 /* Wrap a directory iterator that needs exclusive inode access */ 2050 int wrap_directory_iterator(struct file *, struct dir_context *, 2051 int (*) (struct file *, struct dir_context *)); 2052 #define WRAP_DIR_ITER(x) \ 2053 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2054 { return wrap_directory_iterator(file, ctx, x); } 2055 2056 struct inode_operations { 2057 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2058 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2059 int (*permission) (struct mnt_idmap *, struct inode *, int); 2060 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2061 2062 int (*readlink) (struct dentry *, char __user *,int); 2063 2064 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2065 umode_t, bool); 2066 int (*link) (struct dentry *,struct inode *,struct dentry *); 2067 int (*unlink) (struct inode *,struct dentry *); 2068 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2069 const char *); 2070 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2071 umode_t); 2072 int (*rmdir) (struct inode *,struct dentry *); 2073 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2074 umode_t,dev_t); 2075 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2076 struct inode *, struct dentry *, unsigned int); 2077 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2078 int (*getattr) (struct mnt_idmap *, const struct path *, 2079 struct kstat *, u32, unsigned int); 2080 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2081 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2082 u64 len); 2083 int (*update_time)(struct inode *, int); 2084 int (*atomic_open)(struct inode *, struct dentry *, 2085 struct file *, unsigned open_flag, 2086 umode_t create_mode); 2087 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2088 struct file *, umode_t); 2089 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2090 int); 2091 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2092 struct posix_acl *, int); 2093 int (*fileattr_set)(struct mnt_idmap *idmap, 2094 struct dentry *dentry, struct fileattr *fa); 2095 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2096 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2097 } ____cacheline_aligned; 2098 2099 static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, 2100 struct iov_iter *iter) 2101 { 2102 return file->f_op->read_iter(kio, iter); 2103 } 2104 2105 static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, 2106 struct iov_iter *iter) 2107 { 2108 return file->f_op->write_iter(kio, iter); 2109 } 2110 2111 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2112 { 2113 return file->f_op->mmap(file, vma); 2114 } 2115 2116 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2117 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2118 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2119 loff_t, size_t, unsigned int); 2120 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2121 struct file *file_out, loff_t pos_out, 2122 loff_t *len, unsigned int remap_flags, 2123 const struct iomap_ops *dax_read_ops); 2124 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2125 struct file *file_out, loff_t pos_out, 2126 loff_t *count, unsigned int remap_flags); 2127 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2128 struct file *file_out, loff_t pos_out, 2129 loff_t len, unsigned int remap_flags); 2130 extern int vfs_dedupe_file_range(struct file *file, 2131 struct file_dedupe_range *same); 2132 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2133 struct file *dst_file, loff_t dst_pos, 2134 loff_t len, unsigned int remap_flags); 2135 2136 /** 2137 * enum freeze_holder - holder of the freeze 2138 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2139 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2140 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2141 * 2142 * Indicate who the owner of the freeze or thaw request is and whether 2143 * the freeze needs to be exclusive or can nest. 2144 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2145 * same holder aren't allowed. It is however allowed to hold a single 2146 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2147 * the same time. This is relied upon by some filesystems during online 2148 * repair or similar. 2149 */ 2150 enum freeze_holder { 2151 FREEZE_HOLDER_KERNEL = (1U << 0), 2152 FREEZE_HOLDER_USERSPACE = (1U << 1), 2153 FREEZE_MAY_NEST = (1U << 2), 2154 }; 2155 2156 struct super_operations { 2157 struct inode *(*alloc_inode)(struct super_block *sb); 2158 void (*destroy_inode)(struct inode *); 2159 void (*free_inode)(struct inode *); 2160 2161 void (*dirty_inode) (struct inode *, int flags); 2162 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2163 int (*drop_inode) (struct inode *); 2164 void (*evict_inode) (struct inode *); 2165 void (*put_super) (struct super_block *); 2166 int (*sync_fs)(struct super_block *sb, int wait); 2167 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2168 int (*freeze_fs) (struct super_block *); 2169 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2170 int (*unfreeze_fs) (struct super_block *); 2171 int (*statfs) (struct dentry *, struct kstatfs *); 2172 int (*remount_fs) (struct super_block *, int *, char *); 2173 void (*umount_begin) (struct super_block *); 2174 2175 int (*show_options)(struct seq_file *, struct dentry *); 2176 int (*show_devname)(struct seq_file *, struct dentry *); 2177 int (*show_path)(struct seq_file *, struct dentry *); 2178 int (*show_stats)(struct seq_file *, struct dentry *); 2179 #ifdef CONFIG_QUOTA 2180 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2181 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2182 struct dquot __rcu **(*get_dquots)(struct inode *); 2183 #endif 2184 long (*nr_cached_objects)(struct super_block *, 2185 struct shrink_control *); 2186 long (*free_cached_objects)(struct super_block *, 2187 struct shrink_control *); 2188 void (*shutdown)(struct super_block *sb); 2189 }; 2190 2191 /* 2192 * Inode flags - they have no relation to superblock flags now 2193 */ 2194 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2195 #define S_NOATIME (1 << 1) /* Do not update access times */ 2196 #define S_APPEND (1 << 2) /* Append-only file */ 2197 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2198 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2199 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2200 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2201 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2202 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2203 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2204 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2205 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2206 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2207 #ifdef CONFIG_FS_DAX 2208 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2209 #else 2210 #define S_DAX 0 /* Make all the DAX code disappear */ 2211 #endif 2212 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2213 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2214 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2215 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2216 2217 /* 2218 * Note that nosuid etc flags are inode-specific: setting some file-system 2219 * flags just means all the inodes inherit those flags by default. It might be 2220 * possible to override it selectively if you really wanted to with some 2221 * ioctl() that is not currently implemented. 2222 * 2223 * Exception: SB_RDONLY is always applied to the entire file system. 2224 * 2225 * Unfortunately, it is possible to change a filesystems flags with it mounted 2226 * with files in use. This means that all of the inodes will not have their 2227 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2228 * flags, so these have to be checked separately. -- [email protected] 2229 */ 2230 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2231 2232 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2233 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2234 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2235 ((inode)->i_flags & S_SYNC)) 2236 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2237 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2238 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2239 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2240 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2241 2242 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2243 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2244 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2245 2246 #ifdef CONFIG_FS_POSIX_ACL 2247 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2248 #else 2249 #define IS_POSIXACL(inode) 0 2250 #endif 2251 2252 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2253 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2254 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2255 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2256 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2257 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2258 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2259 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2260 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2261 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2262 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2263 2264 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2265 (inode)->i_rdev == WHITEOUT_DEV) 2266 2267 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2268 struct inode *inode) 2269 { 2270 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2271 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2272 } 2273 2274 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2275 { 2276 *kiocb = (struct kiocb) { 2277 .ki_filp = filp, 2278 .ki_flags = filp->f_iocb_flags, 2279 .ki_ioprio = get_current_ioprio(), 2280 }; 2281 } 2282 2283 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2284 struct file *filp) 2285 { 2286 *kiocb = (struct kiocb) { 2287 .ki_filp = filp, 2288 .ki_flags = kiocb_src->ki_flags, 2289 .ki_ioprio = kiocb_src->ki_ioprio, 2290 .ki_pos = kiocb_src->ki_pos, 2291 }; 2292 } 2293 2294 /* 2295 * Inode state bits. Protected by inode->i_lock 2296 * 2297 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2298 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2299 * 2300 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2301 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2302 * various stages of removing an inode. 2303 * 2304 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2305 * 2306 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2307 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2308 * Timestamp updates are the usual cause. 2309 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2310 * these changes separately from I_DIRTY_SYNC so that we 2311 * don't have to write inode on fdatasync() when only 2312 * e.g. the timestamps have changed. 2313 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2314 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2315 * lazytime mount option is enabled. We keep track of this 2316 * separately from I_DIRTY_SYNC in order to implement 2317 * lazytime. This gets cleared if I_DIRTY_INODE 2318 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2319 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2320 * in place because writeback might already be in progress 2321 * and we don't want to lose the time update 2322 * I_NEW Serves as both a mutex and completion notification. 2323 * New inodes set I_NEW. If two processes both create 2324 * the same inode, one of them will release its inode and 2325 * wait for I_NEW to be released before returning. 2326 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2327 * also cause waiting on I_NEW, without I_NEW actually 2328 * being set. find_inode() uses this to prevent returning 2329 * nearly-dead inodes. 2330 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2331 * is zero. I_FREEING must be set when I_WILL_FREE is 2332 * cleared. 2333 * I_FREEING Set when inode is about to be freed but still has dirty 2334 * pages or buffers attached or the inode itself is still 2335 * dirty. 2336 * I_CLEAR Added by clear_inode(). In this state the inode is 2337 * clean and can be destroyed. Inode keeps I_FREEING. 2338 * 2339 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2340 * prohibited for many purposes. iget() must wait for 2341 * the inode to be completely released, then create it 2342 * anew. Other functions will just ignore such inodes, 2343 * if appropriate. I_NEW is used for waiting. 2344 * 2345 * I_SYNC Writeback of inode is running. The bit is set during 2346 * data writeback, and cleared with a wakeup on the bit 2347 * address once it is done. The bit is also used to pin 2348 * the inode in memory for flusher thread. 2349 * 2350 * I_REFERENCED Marks the inode as recently references on the LRU list. 2351 * 2352 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). 2353 * 2354 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2355 * synchronize competing switching instances and to tell 2356 * wb stat updates to grab the i_pages lock. See 2357 * inode_switch_wbs_work_fn() for details. 2358 * 2359 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2360 * and work dirs among overlayfs mounts. 2361 * 2362 * I_CREATING New object's inode in the middle of setting up. 2363 * 2364 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2365 * 2366 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2367 * Used to detect that mark_inode_dirty() should not move 2368 * inode between dirty lists. 2369 * 2370 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2371 * 2372 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2373 */ 2374 #define I_DIRTY_SYNC (1 << 0) 2375 #define I_DIRTY_DATASYNC (1 << 1) 2376 #define I_DIRTY_PAGES (1 << 2) 2377 #define __I_NEW 3 2378 #define I_NEW (1 << __I_NEW) 2379 #define I_WILL_FREE (1 << 4) 2380 #define I_FREEING (1 << 5) 2381 #define I_CLEAR (1 << 6) 2382 #define __I_SYNC 7 2383 #define I_SYNC (1 << __I_SYNC) 2384 #define I_REFERENCED (1 << 8) 2385 #define __I_DIO_WAKEUP 9 2386 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) 2387 #define I_LINKABLE (1 << 10) 2388 #define I_DIRTY_TIME (1 << 11) 2389 #define I_WB_SWITCH (1 << 13) 2390 #define I_OVL_INUSE (1 << 14) 2391 #define I_CREATING (1 << 15) 2392 #define I_DONTCACHE (1 << 16) 2393 #define I_SYNC_QUEUED (1 << 17) 2394 #define I_PINNING_NETFS_WB (1 << 18) 2395 2396 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2397 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2398 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2399 2400 extern void __mark_inode_dirty(struct inode *, int); 2401 static inline void mark_inode_dirty(struct inode *inode) 2402 { 2403 __mark_inode_dirty(inode, I_DIRTY); 2404 } 2405 2406 static inline void mark_inode_dirty_sync(struct inode *inode) 2407 { 2408 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2409 } 2410 2411 /* 2412 * Returns true if the given inode itself only has dirty timestamps (its pages 2413 * may still be dirty) and isn't currently being allocated or freed. 2414 * Filesystems should call this if when writing an inode when lazytime is 2415 * enabled, they want to opportunistically write the timestamps of other inodes 2416 * located very nearby on-disk, e.g. in the same inode block. This returns true 2417 * if the given inode is in need of such an opportunistic update. Requires 2418 * i_lock, or at least later re-checking under i_lock. 2419 */ 2420 static inline bool inode_is_dirtytime_only(struct inode *inode) 2421 { 2422 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2423 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2424 } 2425 2426 extern void inc_nlink(struct inode *inode); 2427 extern void drop_nlink(struct inode *inode); 2428 extern void clear_nlink(struct inode *inode); 2429 extern void set_nlink(struct inode *inode, unsigned int nlink); 2430 2431 static inline void inode_inc_link_count(struct inode *inode) 2432 { 2433 inc_nlink(inode); 2434 mark_inode_dirty(inode); 2435 } 2436 2437 static inline void inode_dec_link_count(struct inode *inode) 2438 { 2439 drop_nlink(inode); 2440 mark_inode_dirty(inode); 2441 } 2442 2443 enum file_time_flags { 2444 S_ATIME = 1, 2445 S_MTIME = 2, 2446 S_CTIME = 4, 2447 S_VERSION = 8, 2448 }; 2449 2450 extern bool atime_needs_update(const struct path *, struct inode *); 2451 extern void touch_atime(const struct path *); 2452 int inode_update_time(struct inode *inode, int flags); 2453 2454 static inline void file_accessed(struct file *file) 2455 { 2456 if (!(file->f_flags & O_NOATIME)) 2457 touch_atime(&file->f_path); 2458 } 2459 2460 extern int file_modified(struct file *file); 2461 int kiocb_modified(struct kiocb *iocb); 2462 2463 int sync_inode_metadata(struct inode *inode, int wait); 2464 2465 struct file_system_type { 2466 const char *name; 2467 int fs_flags; 2468 #define FS_REQUIRES_DEV 1 2469 #define FS_BINARY_MOUNTDATA 2 2470 #define FS_HAS_SUBTYPE 4 2471 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2472 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2473 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2474 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2475 int (*init_fs_context)(struct fs_context *); 2476 const struct fs_parameter_spec *parameters; 2477 struct dentry *(*mount) (struct file_system_type *, int, 2478 const char *, void *); 2479 void (*kill_sb) (struct super_block *); 2480 struct module *owner; 2481 struct file_system_type * next; 2482 struct hlist_head fs_supers; 2483 2484 struct lock_class_key s_lock_key; 2485 struct lock_class_key s_umount_key; 2486 struct lock_class_key s_vfs_rename_key; 2487 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2488 2489 struct lock_class_key i_lock_key; 2490 struct lock_class_key i_mutex_key; 2491 struct lock_class_key invalidate_lock_key; 2492 struct lock_class_key i_mutex_dir_key; 2493 }; 2494 2495 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2496 2497 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2498 int flags, const char *dev_name, void *data, 2499 int (*fill_super)(struct super_block *, void *, int)); 2500 extern struct dentry *mount_single(struct file_system_type *fs_type, 2501 int flags, void *data, 2502 int (*fill_super)(struct super_block *, void *, int)); 2503 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2504 int flags, void *data, 2505 int (*fill_super)(struct super_block *, void *, int)); 2506 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2507 void retire_super(struct super_block *sb); 2508 void generic_shutdown_super(struct super_block *sb); 2509 void kill_block_super(struct super_block *sb); 2510 void kill_anon_super(struct super_block *sb); 2511 void kill_litter_super(struct super_block *sb); 2512 void deactivate_super(struct super_block *sb); 2513 void deactivate_locked_super(struct super_block *sb); 2514 int set_anon_super(struct super_block *s, void *data); 2515 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2516 int get_anon_bdev(dev_t *); 2517 void free_anon_bdev(dev_t); 2518 struct super_block *sget_fc(struct fs_context *fc, 2519 int (*test)(struct super_block *, struct fs_context *), 2520 int (*set)(struct super_block *, struct fs_context *)); 2521 struct super_block *sget(struct file_system_type *type, 2522 int (*test)(struct super_block *,void *), 2523 int (*set)(struct super_block *,void *), 2524 int flags, void *data); 2525 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2526 2527 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2528 #define fops_get(fops) \ 2529 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) 2530 #define fops_put(fops) \ 2531 do { if (fops) module_put((fops)->owner); } while(0) 2532 /* 2533 * This one is to be used *ONLY* from ->open() instances. 2534 * fops must be non-NULL, pinned down *and* module dependencies 2535 * should be sufficient to pin the caller down as well. 2536 */ 2537 #define replace_fops(f, fops) \ 2538 do { \ 2539 struct file *__file = (f); \ 2540 fops_put(__file->f_op); \ 2541 BUG_ON(!(__file->f_op = (fops))); \ 2542 } while(0) 2543 2544 extern int register_filesystem(struct file_system_type *); 2545 extern int unregister_filesystem(struct file_system_type *); 2546 extern int vfs_statfs(const struct path *, struct kstatfs *); 2547 extern int user_statfs(const char __user *, struct kstatfs *); 2548 extern int fd_statfs(int, struct kstatfs *); 2549 int freeze_super(struct super_block *super, enum freeze_holder who); 2550 int thaw_super(struct super_block *super, enum freeze_holder who); 2551 extern __printf(2, 3) 2552 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2553 extern int super_setup_bdi(struct super_block *sb); 2554 2555 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2556 { 2557 if (WARN_ON(len > sizeof(sb->s_uuid))) 2558 len = sizeof(sb->s_uuid); 2559 sb->s_uuid_len = len; 2560 memcpy(&sb->s_uuid, uuid, len); 2561 } 2562 2563 /* set sb sysfs name based on sb->s_bdev */ 2564 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2565 { 2566 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2567 } 2568 2569 /* set sb sysfs name based on sb->s_uuid */ 2570 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2571 { 2572 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2573 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2574 } 2575 2576 /* set sb sysfs name based on sb->s_id */ 2577 static inline void super_set_sysfs_name_id(struct super_block *sb) 2578 { 2579 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2580 } 2581 2582 /* try to use something standard before you use this */ 2583 __printf(2, 3) 2584 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2585 { 2586 va_list args; 2587 2588 va_start(args, fmt); 2589 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2590 va_end(args); 2591 } 2592 2593 extern int current_umask(void); 2594 2595 extern void ihold(struct inode * inode); 2596 extern void iput(struct inode *); 2597 int inode_update_timestamps(struct inode *inode, int flags); 2598 int generic_update_time(struct inode *, int); 2599 2600 /* /sys/fs */ 2601 extern struct kobject *fs_kobj; 2602 2603 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2604 2605 /* fs/open.c */ 2606 struct audit_names; 2607 struct filename { 2608 const char *name; /* pointer to actual string */ 2609 const __user char *uptr; /* original userland pointer */ 2610 atomic_t refcnt; 2611 struct audit_names *aname; 2612 const char iname[]; 2613 }; 2614 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2615 2616 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2617 { 2618 return mnt_idmap(file->f_path.mnt); 2619 } 2620 2621 /** 2622 * is_idmapped_mnt - check whether a mount is mapped 2623 * @mnt: the mount to check 2624 * 2625 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2626 * 2627 * Return: true if mount is mapped, false if not. 2628 */ 2629 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2630 { 2631 return mnt_idmap(mnt) != &nop_mnt_idmap; 2632 } 2633 2634 extern long vfs_truncate(const struct path *, loff_t); 2635 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2636 unsigned int time_attrs, struct file *filp); 2637 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2638 loff_t len); 2639 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2640 umode_t mode); 2641 extern struct file *file_open_name(struct filename *, int, umode_t); 2642 extern struct file *filp_open(const char *, int, umode_t); 2643 extern struct file *file_open_root(const struct path *, 2644 const char *, int, umode_t); 2645 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2646 const char *name, int flags, umode_t mode) 2647 { 2648 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2649 name, flags, mode); 2650 } 2651 struct file *dentry_open(const struct path *path, int flags, 2652 const struct cred *creds); 2653 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2654 const struct cred *cred); 2655 struct path *backing_file_user_path(struct file *f); 2656 2657 /* 2658 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2659 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2660 * filesystem. When the mapped file path and inode number are displayed to 2661 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2662 * path and inode number to display to the user, which is the path of the fd 2663 * that user has requested to map and the inode number that would be returned 2664 * by fstat() on that same fd. 2665 */ 2666 /* Get the path to display in /proc/<pid>/maps */ 2667 static inline const struct path *file_user_path(struct file *f) 2668 { 2669 if (unlikely(f->f_mode & FMODE_BACKING)) 2670 return backing_file_user_path(f); 2671 return &f->f_path; 2672 } 2673 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2674 static inline const struct inode *file_user_inode(struct file *f) 2675 { 2676 if (unlikely(f->f_mode & FMODE_BACKING)) 2677 return d_inode(backing_file_user_path(f)->dentry); 2678 return file_inode(f); 2679 } 2680 2681 static inline struct file *file_clone_open(struct file *file) 2682 { 2683 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2684 } 2685 extern int filp_close(struct file *, fl_owner_t id); 2686 2687 extern struct filename *getname_flags(const char __user *, int, int *); 2688 extern struct filename *getname_uflags(const char __user *, int); 2689 extern struct filename *getname(const char __user *); 2690 extern struct filename *getname_kernel(const char *); 2691 extern void putname(struct filename *name); 2692 2693 extern int finish_open(struct file *file, struct dentry *dentry, 2694 int (*open)(struct inode *, struct file *)); 2695 extern int finish_no_open(struct file *file, struct dentry *dentry); 2696 2697 /* Helper for the simple case when original dentry is used */ 2698 static inline int finish_open_simple(struct file *file, int error) 2699 { 2700 if (error) 2701 return error; 2702 2703 return finish_open(file, file->f_path.dentry, NULL); 2704 } 2705 2706 /* fs/dcache.c */ 2707 extern void __init vfs_caches_init_early(void); 2708 extern void __init vfs_caches_init(void); 2709 2710 extern struct kmem_cache *names_cachep; 2711 2712 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2713 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2714 2715 extern struct super_block *blockdev_superblock; 2716 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2717 { 2718 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2719 } 2720 2721 void emergency_thaw_all(void); 2722 extern int sync_filesystem(struct super_block *); 2723 extern const struct file_operations def_blk_fops; 2724 extern const struct file_operations def_chr_fops; 2725 2726 /* fs/char_dev.c */ 2727 #define CHRDEV_MAJOR_MAX 512 2728 /* Marks the bottom of the first segment of free char majors */ 2729 #define CHRDEV_MAJOR_DYN_END 234 2730 /* Marks the top and bottom of the second segment of free char majors */ 2731 #define CHRDEV_MAJOR_DYN_EXT_START 511 2732 #define CHRDEV_MAJOR_DYN_EXT_END 384 2733 2734 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2735 extern int register_chrdev_region(dev_t, unsigned, const char *); 2736 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2737 unsigned int count, const char *name, 2738 const struct file_operations *fops); 2739 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2740 unsigned int count, const char *name); 2741 extern void unregister_chrdev_region(dev_t, unsigned); 2742 extern void chrdev_show(struct seq_file *,off_t); 2743 2744 static inline int register_chrdev(unsigned int major, const char *name, 2745 const struct file_operations *fops) 2746 { 2747 return __register_chrdev(major, 0, 256, name, fops); 2748 } 2749 2750 static inline void unregister_chrdev(unsigned int major, const char *name) 2751 { 2752 __unregister_chrdev(major, 0, 256, name); 2753 } 2754 2755 extern void init_special_inode(struct inode *, umode_t, dev_t); 2756 2757 /* Invalid inode operations -- fs/bad_inode.c */ 2758 extern void make_bad_inode(struct inode *); 2759 extern bool is_bad_inode(struct inode *); 2760 2761 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2762 loff_t lend); 2763 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2764 extern int __must_check file_write_and_wait_range(struct file *file, 2765 loff_t start, loff_t end); 2766 2767 static inline int file_write_and_wait(struct file *file) 2768 { 2769 return file_write_and_wait_range(file, 0, LLONG_MAX); 2770 } 2771 2772 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2773 int datasync); 2774 extern int vfs_fsync(struct file *file, int datasync); 2775 2776 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2777 unsigned int flags); 2778 2779 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2780 { 2781 return (iocb->ki_flags & IOCB_DSYNC) || 2782 IS_SYNC(iocb->ki_filp->f_mapping->host); 2783 } 2784 2785 /* 2786 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2787 * to already be updated for the write, and will return either the amount 2788 * of bytes passed in, or an error if syncing the file failed. 2789 */ 2790 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2791 { 2792 if (iocb_is_dsync(iocb)) { 2793 int ret = vfs_fsync_range(iocb->ki_filp, 2794 iocb->ki_pos - count, iocb->ki_pos - 1, 2795 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2796 if (ret) 2797 return ret; 2798 } 2799 2800 return count; 2801 } 2802 2803 extern void emergency_sync(void); 2804 extern void emergency_remount(void); 2805 2806 #ifdef CONFIG_BLOCK 2807 extern int bmap(struct inode *inode, sector_t *block); 2808 #else 2809 static inline int bmap(struct inode *inode, sector_t *block) 2810 { 2811 return -EINVAL; 2812 } 2813 #endif 2814 2815 int notify_change(struct mnt_idmap *, struct dentry *, 2816 struct iattr *, struct inode **); 2817 int inode_permission(struct mnt_idmap *, struct inode *, int); 2818 int generic_permission(struct mnt_idmap *, struct inode *, int); 2819 static inline int file_permission(struct file *file, int mask) 2820 { 2821 return inode_permission(file_mnt_idmap(file), 2822 file_inode(file), mask); 2823 } 2824 static inline int path_permission(const struct path *path, int mask) 2825 { 2826 return inode_permission(mnt_idmap(path->mnt), 2827 d_inode(path->dentry), mask); 2828 } 2829 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2830 struct inode *inode); 2831 2832 static inline bool execute_ok(struct inode *inode) 2833 { 2834 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2835 } 2836 2837 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2838 { 2839 return (inode->i_mode ^ mode) & S_IFMT; 2840 } 2841 2842 /** 2843 * file_start_write - get write access to a superblock for regular file io 2844 * @file: the file we want to write to 2845 * 2846 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2847 * Should be matched with a call to file_end_write(). 2848 */ 2849 static inline void file_start_write(struct file *file) 2850 { 2851 if (!S_ISREG(file_inode(file)->i_mode)) 2852 return; 2853 sb_start_write(file_inode(file)->i_sb); 2854 } 2855 2856 static inline bool file_start_write_trylock(struct file *file) 2857 { 2858 if (!S_ISREG(file_inode(file)->i_mode)) 2859 return true; 2860 return sb_start_write_trylock(file_inode(file)->i_sb); 2861 } 2862 2863 /** 2864 * file_end_write - drop write access to a superblock of a regular file 2865 * @file: the file we wrote to 2866 * 2867 * Should be matched with a call to file_start_write(). 2868 */ 2869 static inline void file_end_write(struct file *file) 2870 { 2871 if (!S_ISREG(file_inode(file)->i_mode)) 2872 return; 2873 sb_end_write(file_inode(file)->i_sb); 2874 } 2875 2876 /** 2877 * kiocb_start_write - get write access to a superblock for async file io 2878 * @iocb: the io context we want to submit the write with 2879 * 2880 * This is a variant of sb_start_write() for async io submission. 2881 * Should be matched with a call to kiocb_end_write(). 2882 */ 2883 static inline void kiocb_start_write(struct kiocb *iocb) 2884 { 2885 struct inode *inode = file_inode(iocb->ki_filp); 2886 2887 sb_start_write(inode->i_sb); 2888 /* 2889 * Fool lockdep by telling it the lock got released so that it 2890 * doesn't complain about the held lock when we return to userspace. 2891 */ 2892 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2893 } 2894 2895 /** 2896 * kiocb_end_write - drop write access to a superblock after async file io 2897 * @iocb: the io context we sumbitted the write with 2898 * 2899 * Should be matched with a call to kiocb_start_write(). 2900 */ 2901 static inline void kiocb_end_write(struct kiocb *iocb) 2902 { 2903 struct inode *inode = file_inode(iocb->ki_filp); 2904 2905 /* 2906 * Tell lockdep we inherited freeze protection from submission thread. 2907 */ 2908 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2909 sb_end_write(inode->i_sb); 2910 } 2911 2912 /* 2913 * This is used for regular files where some users -- especially the 2914 * currently executed binary in a process, previously handled via 2915 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2916 * read-write shared) accesses. 2917 * 2918 * get_write_access() gets write permission for a file. 2919 * put_write_access() releases this write permission. 2920 * deny_write_access() denies write access to a file. 2921 * allow_write_access() re-enables write access to a file. 2922 * 2923 * The i_writecount field of an inode can have the following values: 2924 * 0: no write access, no denied write access 2925 * < 0: (-i_writecount) users that denied write access to the file. 2926 * > 0: (i_writecount) users that have write access to the file. 2927 * 2928 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2929 * except for the cases where we don't hold i_writecount yet. Then we need to 2930 * use {get,deny}_write_access() - these functions check the sign and refuse 2931 * to do the change if sign is wrong. 2932 */ 2933 static inline int get_write_access(struct inode *inode) 2934 { 2935 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2936 } 2937 static inline int deny_write_access(struct file *file) 2938 { 2939 struct inode *inode = file_inode(file); 2940 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2941 } 2942 static inline void put_write_access(struct inode * inode) 2943 { 2944 atomic_dec(&inode->i_writecount); 2945 } 2946 static inline void allow_write_access(struct file *file) 2947 { 2948 if (file) 2949 atomic_inc(&file_inode(file)->i_writecount); 2950 } 2951 static inline bool inode_is_open_for_write(const struct inode *inode) 2952 { 2953 return atomic_read(&inode->i_writecount) > 0; 2954 } 2955 2956 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2957 static inline void i_readcount_dec(struct inode *inode) 2958 { 2959 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2960 } 2961 static inline void i_readcount_inc(struct inode *inode) 2962 { 2963 atomic_inc(&inode->i_readcount); 2964 } 2965 #else 2966 static inline void i_readcount_dec(struct inode *inode) 2967 { 2968 return; 2969 } 2970 static inline void i_readcount_inc(struct inode *inode) 2971 { 2972 return; 2973 } 2974 #endif 2975 extern int do_pipe_flags(int *, int); 2976 2977 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 2978 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 2979 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 2980 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 2981 extern struct file * open_exec(const char *); 2982 2983 /* fs/dcache.c -- generic fs support functions */ 2984 extern bool is_subdir(struct dentry *, struct dentry *); 2985 extern bool path_is_under(const struct path *, const struct path *); 2986 2987 extern char *file_path(struct file *, char *, int); 2988 2989 /** 2990 * is_dot_dotdot - returns true only if @name is "." or ".." 2991 * @name: file name to check 2992 * @len: length of file name, in bytes 2993 */ 2994 static inline bool is_dot_dotdot(const char *name, size_t len) 2995 { 2996 return len && unlikely(name[0] == '.') && 2997 (len == 1 || (len == 2 && name[1] == '.')); 2998 } 2999 3000 #include <linux/err.h> 3001 3002 /* needed for stackable file system support */ 3003 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3004 3005 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3006 3007 extern int inode_init_always(struct super_block *, struct inode *); 3008 extern void inode_init_once(struct inode *); 3009 extern void address_space_init_once(struct address_space *mapping); 3010 extern struct inode * igrab(struct inode *); 3011 extern ino_t iunique(struct super_block *, ino_t); 3012 extern int inode_needs_sync(struct inode *inode); 3013 extern int generic_delete_inode(struct inode *inode); 3014 static inline int generic_drop_inode(struct inode *inode) 3015 { 3016 return !inode->i_nlink || inode_unhashed(inode); 3017 } 3018 extern void d_mark_dontcache(struct inode *inode); 3019 3020 extern struct inode *ilookup5_nowait(struct super_block *sb, 3021 unsigned long hashval, int (*test)(struct inode *, void *), 3022 void *data); 3023 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3024 int (*test)(struct inode *, void *), void *data); 3025 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3026 3027 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3028 int (*test)(struct inode *, void *), 3029 int (*set)(struct inode *, void *), 3030 void *data); 3031 extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); 3032 extern struct inode * iget_locked(struct super_block *, unsigned long); 3033 extern struct inode *find_inode_nowait(struct super_block *, 3034 unsigned long, 3035 int (*match)(struct inode *, 3036 unsigned long, void *), 3037 void *data); 3038 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3039 int (*)(struct inode *, void *), void *); 3040 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3041 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3042 extern int insert_inode_locked(struct inode *); 3043 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3044 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3045 #else 3046 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3047 #endif 3048 extern void unlock_new_inode(struct inode *); 3049 extern void discard_new_inode(struct inode *); 3050 extern unsigned int get_next_ino(void); 3051 extern void evict_inodes(struct super_block *sb); 3052 void dump_mapping(const struct address_space *); 3053 3054 /* 3055 * Userspace may rely on the inode number being non-zero. For example, glibc 3056 * simply ignores files with zero i_ino in unlink() and other places. 3057 * 3058 * As an additional complication, if userspace was compiled with 3059 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3060 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3061 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3062 * better safe than sorry. 3063 */ 3064 static inline bool is_zero_ino(ino_t ino) 3065 { 3066 return (u32)ino == 0; 3067 } 3068 3069 extern void __iget(struct inode * inode); 3070 extern void iget_failed(struct inode *); 3071 extern void clear_inode(struct inode *); 3072 extern void __destroy_inode(struct inode *); 3073 extern struct inode *new_inode_pseudo(struct super_block *sb); 3074 extern struct inode *new_inode(struct super_block *sb); 3075 extern void free_inode_nonrcu(struct inode *inode); 3076 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3077 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3078 extern int file_remove_privs(struct file *); 3079 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3080 const struct inode *inode); 3081 3082 /* 3083 * This must be used for allocating filesystems specific inodes to set 3084 * up the inode reclaim context correctly. 3085 */ 3086 static inline void * 3087 alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) 3088 { 3089 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); 3090 } 3091 3092 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3093 static inline void insert_inode_hash(struct inode *inode) 3094 { 3095 __insert_inode_hash(inode, inode->i_ino); 3096 } 3097 3098 extern void __remove_inode_hash(struct inode *); 3099 static inline void remove_inode_hash(struct inode *inode) 3100 { 3101 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3102 __remove_inode_hash(inode); 3103 } 3104 3105 extern void inode_sb_list_add(struct inode *inode); 3106 extern void inode_add_lru(struct inode *inode); 3107 3108 extern int sb_set_blocksize(struct super_block *, int); 3109 extern int sb_min_blocksize(struct super_block *, int); 3110 3111 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3112 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3113 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3114 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3115 extern int generic_write_check_limits(struct file *file, loff_t pos, 3116 loff_t *count); 3117 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3118 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3119 ssize_t already_read); 3120 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3121 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3122 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3123 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3124 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3125 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3126 ssize_t direct_written, ssize_t buffered_written); 3127 3128 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3129 rwf_t flags); 3130 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3131 rwf_t flags); 3132 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3133 struct iov_iter *iter); 3134 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3135 struct iov_iter *iter); 3136 3137 /* fs/splice.c */ 3138 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3139 struct pipe_inode_info *pipe, 3140 size_t len, unsigned int flags); 3141 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3142 struct pipe_inode_info *pipe, 3143 size_t len, unsigned int flags); 3144 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3145 struct file *, loff_t *, size_t, unsigned int); 3146 3147 3148 extern void 3149 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3150 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3151 #define no_llseek NULL 3152 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3153 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3154 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3155 int whence, loff_t maxsize, loff_t eof); 3156 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3157 int whence, loff_t size); 3158 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3159 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3160 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3161 extern int generic_file_open(struct inode * inode, struct file * filp); 3162 extern int nonseekable_open(struct inode * inode, struct file * filp); 3163 extern int stream_open(struct inode * inode, struct file * filp); 3164 3165 #ifdef CONFIG_BLOCK 3166 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3167 loff_t file_offset); 3168 3169 enum { 3170 /* need locking between buffered and direct access */ 3171 DIO_LOCKING = 0x01, 3172 3173 /* filesystem does not support filling holes */ 3174 DIO_SKIP_HOLES = 0x02, 3175 }; 3176 3177 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3178 struct block_device *bdev, struct iov_iter *iter, 3179 get_block_t get_block, 3180 dio_iodone_t end_io, 3181 int flags); 3182 3183 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3184 struct inode *inode, 3185 struct iov_iter *iter, 3186 get_block_t get_block) 3187 { 3188 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3189 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3190 } 3191 #endif 3192 3193 void inode_dio_wait(struct inode *inode); 3194 3195 /** 3196 * inode_dio_begin - signal start of a direct I/O requests 3197 * @inode: inode the direct I/O happens on 3198 * 3199 * This is called once we've finished processing a direct I/O request, 3200 * and is used to wake up callers waiting for direct I/O to be quiesced. 3201 */ 3202 static inline void inode_dio_begin(struct inode *inode) 3203 { 3204 atomic_inc(&inode->i_dio_count); 3205 } 3206 3207 /** 3208 * inode_dio_end - signal finish of a direct I/O requests 3209 * @inode: inode the direct I/O happens on 3210 * 3211 * This is called once we've finished processing a direct I/O request, 3212 * and is used to wake up callers waiting for direct I/O to be quiesced. 3213 */ 3214 static inline void inode_dio_end(struct inode *inode) 3215 { 3216 if (atomic_dec_and_test(&inode->i_dio_count)) 3217 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 3218 } 3219 3220 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3221 unsigned int mask); 3222 3223 extern const struct file_operations generic_ro_fops; 3224 3225 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3226 3227 extern int readlink_copy(char __user *, int, const char *); 3228 extern int page_readlink(struct dentry *, char __user *, int); 3229 extern const char *page_get_link(struct dentry *, struct inode *, 3230 struct delayed_call *); 3231 extern void page_put_link(void *); 3232 extern int page_symlink(struct inode *inode, const char *symname, int len); 3233 extern const struct inode_operations page_symlink_inode_operations; 3234 extern void kfree_link(void *); 3235 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3236 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3237 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3238 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3239 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3240 void inode_add_bytes(struct inode *inode, loff_t bytes); 3241 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3242 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3243 static inline loff_t __inode_get_bytes(struct inode *inode) 3244 { 3245 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3246 } 3247 loff_t inode_get_bytes(struct inode *inode); 3248 void inode_set_bytes(struct inode *inode, loff_t bytes); 3249 const char *simple_get_link(struct dentry *, struct inode *, 3250 struct delayed_call *); 3251 extern const struct inode_operations simple_symlink_inode_operations; 3252 3253 extern int iterate_dir(struct file *, struct dir_context *); 3254 3255 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3256 int flags); 3257 int vfs_fstat(int fd, struct kstat *stat); 3258 3259 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3260 { 3261 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3262 } 3263 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3264 { 3265 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3266 } 3267 3268 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3269 extern int vfs_readlink(struct dentry *, char __user *, int); 3270 3271 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3272 extern void put_filesystem(struct file_system_type *fs); 3273 extern struct file_system_type *get_fs_type(const char *name); 3274 extern void drop_super(struct super_block *sb); 3275 extern void drop_super_exclusive(struct super_block *sb); 3276 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3277 extern void iterate_supers_type(struct file_system_type *, 3278 void (*)(struct super_block *, void *), void *); 3279 3280 extern int dcache_dir_open(struct inode *, struct file *); 3281 extern int dcache_dir_close(struct inode *, struct file *); 3282 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3283 extern int dcache_readdir(struct file *, struct dir_context *); 3284 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3285 struct iattr *); 3286 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3287 struct kstat *, u32, unsigned int); 3288 extern int simple_statfs(struct dentry *, struct kstatfs *); 3289 extern int simple_open(struct inode *inode, struct file *file); 3290 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3291 extern int simple_unlink(struct inode *, struct dentry *); 3292 extern int simple_rmdir(struct inode *, struct dentry *); 3293 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3294 struct inode *new_dir, struct dentry *new_dentry); 3295 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3296 struct inode *new_dir, struct dentry *new_dentry); 3297 extern int simple_rename(struct mnt_idmap *, struct inode *, 3298 struct dentry *, struct inode *, struct dentry *, 3299 unsigned int); 3300 extern void simple_recursive_removal(struct dentry *, 3301 void (*callback)(struct dentry *)); 3302 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3303 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3304 extern int simple_empty(struct dentry *); 3305 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3306 loff_t pos, unsigned len, 3307 struct page **pagep, void **fsdata); 3308 extern const struct address_space_operations ram_aops; 3309 extern int always_delete_dentry(const struct dentry *); 3310 extern struct inode *alloc_anon_inode(struct super_block *); 3311 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3312 extern const struct dentry_operations simple_dentry_operations; 3313 3314 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3315 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3316 extern const struct file_operations simple_dir_operations; 3317 extern const struct inode_operations simple_dir_inode_operations; 3318 extern void make_empty_dir_inode(struct inode *inode); 3319 extern bool is_empty_dir_inode(struct inode *inode); 3320 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3321 struct dentry *d_alloc_name(struct dentry *, const char *); 3322 extern int simple_fill_super(struct super_block *, unsigned long, 3323 const struct tree_descr *); 3324 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3325 extern void simple_release_fs(struct vfsmount **mount, int *count); 3326 3327 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3328 loff_t *ppos, const void *from, size_t available); 3329 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3330 const void __user *from, size_t count); 3331 3332 struct offset_ctx { 3333 struct maple_tree mt; 3334 unsigned long next_offset; 3335 }; 3336 3337 void simple_offset_init(struct offset_ctx *octx); 3338 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3339 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3340 int simple_offset_empty(struct dentry *dentry); 3341 int simple_offset_rename_exchange(struct inode *old_dir, 3342 struct dentry *old_dentry, 3343 struct inode *new_dir, 3344 struct dentry *new_dentry); 3345 void simple_offset_destroy(struct offset_ctx *octx); 3346 3347 extern const struct file_operations simple_offset_dir_operations; 3348 3349 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3350 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3351 3352 extern int generic_check_addressable(unsigned, u64); 3353 3354 extern void generic_set_sb_d_ops(struct super_block *sb); 3355 3356 static inline bool sb_has_encoding(const struct super_block *sb) 3357 { 3358 #if IS_ENABLED(CONFIG_UNICODE) 3359 return !!sb->s_encoding; 3360 #else 3361 return false; 3362 #endif 3363 } 3364 3365 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3366 unsigned int ia_valid); 3367 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3368 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3369 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3370 const struct iattr *attr); 3371 3372 extern int file_update_time(struct file *file); 3373 3374 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3375 { 3376 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3377 } 3378 3379 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3380 { 3381 struct inode *inode; 3382 3383 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3384 return false; 3385 if (!vma_is_dax(vma)) 3386 return false; 3387 inode = file_inode(vma->vm_file); 3388 if (S_ISCHR(inode->i_mode)) 3389 return false; /* device-dax */ 3390 return true; 3391 } 3392 3393 static inline int iocb_flags(struct file *file) 3394 { 3395 int res = 0; 3396 if (file->f_flags & O_APPEND) 3397 res |= IOCB_APPEND; 3398 if (file->f_flags & O_DIRECT) 3399 res |= IOCB_DIRECT; 3400 if (file->f_flags & O_DSYNC) 3401 res |= IOCB_DSYNC; 3402 if (file->f_flags & __O_SYNC) 3403 res |= IOCB_SYNC; 3404 return res; 3405 } 3406 3407 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) 3408 { 3409 int kiocb_flags = 0; 3410 3411 /* make sure there's no overlap between RWF and private IOCB flags */ 3412 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3413 3414 if (!flags) 3415 return 0; 3416 if (unlikely(flags & ~RWF_SUPPORTED)) 3417 return -EOPNOTSUPP; 3418 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3419 return -EINVAL; 3420 3421 if (flags & RWF_NOWAIT) { 3422 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3423 return -EOPNOTSUPP; 3424 kiocb_flags |= IOCB_NOIO; 3425 } 3426 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3427 if (flags & RWF_SYNC) 3428 kiocb_flags |= IOCB_DSYNC; 3429 3430 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3431 if (IS_APPEND(file_inode(ki->ki_filp))) 3432 return -EPERM; 3433 ki->ki_flags &= ~IOCB_APPEND; 3434 } 3435 3436 ki->ki_flags |= kiocb_flags; 3437 return 0; 3438 } 3439 3440 static inline ino_t parent_ino(struct dentry *dentry) 3441 { 3442 ino_t res; 3443 3444 /* 3445 * Don't strictly need d_lock here? If the parent ino could change 3446 * then surely we'd have a deeper race in the caller? 3447 */ 3448 spin_lock(&dentry->d_lock); 3449 res = dentry->d_parent->d_inode->i_ino; 3450 spin_unlock(&dentry->d_lock); 3451 return res; 3452 } 3453 3454 /* Transaction based IO helpers */ 3455 3456 /* 3457 * An argresp is stored in an allocated page and holds the 3458 * size of the argument or response, along with its content 3459 */ 3460 struct simple_transaction_argresp { 3461 ssize_t size; 3462 char data[]; 3463 }; 3464 3465 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3466 3467 char *simple_transaction_get(struct file *file, const char __user *buf, 3468 size_t size); 3469 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3470 size_t size, loff_t *pos); 3471 int simple_transaction_release(struct inode *inode, struct file *file); 3472 3473 void simple_transaction_set(struct file *file, size_t n); 3474 3475 /* 3476 * simple attribute files 3477 * 3478 * These attributes behave similar to those in sysfs: 3479 * 3480 * Writing to an attribute immediately sets a value, an open file can be 3481 * written to multiple times. 3482 * 3483 * Reading from an attribute creates a buffer from the value that might get 3484 * read with multiple read calls. When the attribute has been read 3485 * completely, no further read calls are possible until the file is opened 3486 * again. 3487 * 3488 * All attributes contain a text representation of a numeric value 3489 * that are accessed with the get() and set() functions. 3490 */ 3491 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3492 static int __fops ## _open(struct inode *inode, struct file *file) \ 3493 { \ 3494 __simple_attr_check_format(__fmt, 0ull); \ 3495 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3496 } \ 3497 static const struct file_operations __fops = { \ 3498 .owner = THIS_MODULE, \ 3499 .open = __fops ## _open, \ 3500 .release = simple_attr_release, \ 3501 .read = simple_attr_read, \ 3502 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3503 .llseek = generic_file_llseek, \ 3504 } 3505 3506 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3507 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3508 3509 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3510 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3511 3512 static inline __printf(1, 2) 3513 void __simple_attr_check_format(const char *fmt, ...) 3514 { 3515 /* don't do anything, just let the compiler check the arguments; */ 3516 } 3517 3518 int simple_attr_open(struct inode *inode, struct file *file, 3519 int (*get)(void *, u64 *), int (*set)(void *, u64), 3520 const char *fmt); 3521 int simple_attr_release(struct inode *inode, struct file *file); 3522 ssize_t simple_attr_read(struct file *file, char __user *buf, 3523 size_t len, loff_t *ppos); 3524 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3525 size_t len, loff_t *ppos); 3526 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3527 size_t len, loff_t *ppos); 3528 3529 struct ctl_table; 3530 int __init list_bdev_fs_names(char *buf, size_t size); 3531 3532 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3533 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3534 3535 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3536 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3537 (flag & __FMODE_NONOTIFY))) 3538 3539 static inline bool is_sxid(umode_t mode) 3540 { 3541 return mode & (S_ISUID | S_ISGID); 3542 } 3543 3544 static inline int check_sticky(struct mnt_idmap *idmap, 3545 struct inode *dir, struct inode *inode) 3546 { 3547 if (!(dir->i_mode & S_ISVTX)) 3548 return 0; 3549 3550 return __check_sticky(idmap, dir, inode); 3551 } 3552 3553 static inline void inode_has_no_xattr(struct inode *inode) 3554 { 3555 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3556 inode->i_flags |= S_NOSEC; 3557 } 3558 3559 static inline bool is_root_inode(struct inode *inode) 3560 { 3561 return inode == inode->i_sb->s_root->d_inode; 3562 } 3563 3564 static inline bool dir_emit(struct dir_context *ctx, 3565 const char *name, int namelen, 3566 u64 ino, unsigned type) 3567 { 3568 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3569 } 3570 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3571 { 3572 return ctx->actor(ctx, ".", 1, ctx->pos, 3573 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3574 } 3575 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3576 { 3577 return ctx->actor(ctx, "..", 2, ctx->pos, 3578 parent_ino(file->f_path.dentry), DT_DIR); 3579 } 3580 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3581 { 3582 if (ctx->pos == 0) { 3583 if (!dir_emit_dot(file, ctx)) 3584 return false; 3585 ctx->pos = 1; 3586 } 3587 if (ctx->pos == 1) { 3588 if (!dir_emit_dotdot(file, ctx)) 3589 return false; 3590 ctx->pos = 2; 3591 } 3592 return true; 3593 } 3594 static inline bool dir_relax(struct inode *inode) 3595 { 3596 inode_unlock(inode); 3597 inode_lock(inode); 3598 return !IS_DEADDIR(inode); 3599 } 3600 3601 static inline bool dir_relax_shared(struct inode *inode) 3602 { 3603 inode_unlock_shared(inode); 3604 inode_lock_shared(inode); 3605 return !IS_DEADDIR(inode); 3606 } 3607 3608 extern bool path_noexec(const struct path *path); 3609 extern void inode_nohighmem(struct inode *inode); 3610 3611 /* mm/fadvise.c */ 3612 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3613 int advice); 3614 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3615 int advice); 3616 3617 #endif /* _LINUX_FS_H */ 3618