1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* File is embedded in backing_file object */ 177 #define FMODE_BACKING ((__force fmode_t)(1 << 24)) 178 179 /* 180 * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be 181 * generated (see below) 182 */ 183 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 25)) 184 185 /* 186 * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be 187 * generated (see below) 188 */ 189 #define FMODE_NONOTIFY_PERM ((__force fmode_t)(1 << 26)) 190 191 /* File is capable of returning -EAGAIN if I/O will block */ 192 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 193 194 /* File represents mount that needs unmounting */ 195 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 196 197 /* File does not contribute to nr_files count */ 198 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 199 200 /* 201 * The two FMODE_NONOTIFY* define which fsnotify events should not be generated 202 * for a file. These are the possible values of (f->f_mode & 203 * FMODE_FSNOTIFY_MASK) and their meaning: 204 * 205 * FMODE_NONOTIFY - suppress all (incl. non-permission) events. 206 * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events. 207 * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only pre-content events. 208 */ 209 #define FMODE_FSNOTIFY_MASK \ 210 (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM) 211 212 #define FMODE_FSNOTIFY_NONE(mode) \ 213 ((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY) 214 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS 215 #define FMODE_FSNOTIFY_PERM(mode) \ 216 ((mode & FMODE_FSNOTIFY_MASK) == 0 || \ 217 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)) 218 #define FMODE_FSNOTIFY_HSM(mode) \ 219 ((mode & FMODE_FSNOTIFY_MASK) == 0) 220 #else 221 #define FMODE_FSNOTIFY_PERM(mode) 0 222 #define FMODE_FSNOTIFY_HSM(mode) 0 223 #endif 224 225 /* 226 * Attribute flags. These should be or-ed together to figure out what 227 * has been changed! 228 */ 229 #define ATTR_MODE (1 << 0) 230 #define ATTR_UID (1 << 1) 231 #define ATTR_GID (1 << 2) 232 #define ATTR_SIZE (1 << 3) 233 #define ATTR_ATIME (1 << 4) 234 #define ATTR_MTIME (1 << 5) 235 #define ATTR_CTIME (1 << 6) 236 #define ATTR_ATIME_SET (1 << 7) 237 #define ATTR_MTIME_SET (1 << 8) 238 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 239 #define ATTR_KILL_SUID (1 << 11) 240 #define ATTR_KILL_SGID (1 << 12) 241 #define ATTR_FILE (1 << 13) 242 #define ATTR_KILL_PRIV (1 << 14) 243 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 244 #define ATTR_TIMES_SET (1 << 16) 245 #define ATTR_TOUCH (1 << 17) 246 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 247 248 /* 249 * Whiteout is represented by a char device. The following constants define the 250 * mode and device number to use. 251 */ 252 #define WHITEOUT_MODE 0 253 #define WHITEOUT_DEV 0 254 255 /* 256 * This is the Inode Attributes structure, used for notify_change(). It 257 * uses the above definitions as flags, to know which values have changed. 258 * Also, in this manner, a Filesystem can look at only the values it cares 259 * about. Basically, these are the attributes that the VFS layer can 260 * request to change from the FS layer. 261 * 262 * Derek Atkins <[email protected]> 94-10-20 263 */ 264 struct iattr { 265 unsigned int ia_valid; 266 umode_t ia_mode; 267 /* 268 * The two anonymous unions wrap structures with the same member. 269 * 270 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 271 * are a dedicated type requiring the filesystem to use the dedicated 272 * helpers. Other filesystem can continue to use ia_{g,u}id until they 273 * have been ported. 274 * 275 * They always contain the same value. In other words FS_ALLOW_IDMAP 276 * pass down the same value on idmapped mounts as they would on regular 277 * mounts. 278 */ 279 union { 280 kuid_t ia_uid; 281 vfsuid_t ia_vfsuid; 282 }; 283 union { 284 kgid_t ia_gid; 285 vfsgid_t ia_vfsgid; 286 }; 287 loff_t ia_size; 288 struct timespec64 ia_atime; 289 struct timespec64 ia_mtime; 290 struct timespec64 ia_ctime; 291 292 /* 293 * Not an attribute, but an auxiliary info for filesystems wanting to 294 * implement an ftruncate() like method. NOTE: filesystem should 295 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 296 */ 297 struct file *ia_file; 298 }; 299 300 /* 301 * Includes for diskquotas. 302 */ 303 #include <linux/quota.h> 304 305 /* 306 * Maximum number of layers of fs stack. Needs to be limited to 307 * prevent kernel stack overflow 308 */ 309 #define FILESYSTEM_MAX_STACK_DEPTH 2 310 311 /** 312 * enum positive_aop_returns - aop return codes with specific semantics 313 * 314 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 315 * completed, that the page is still locked, and 316 * should be considered active. The VM uses this hint 317 * to return the page to the active list -- it won't 318 * be a candidate for writeback again in the near 319 * future. Other callers must be careful to unlock 320 * the page if they get this return. Returned by 321 * writepage(); 322 * 323 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 324 * unlocked it and the page might have been truncated. 325 * The caller should back up to acquiring a new page and 326 * trying again. The aop will be taking reasonable 327 * precautions not to livelock. If the caller held a page 328 * reference, it should drop it before retrying. Returned 329 * by read_folio(). 330 * 331 * address_space_operation functions return these large constants to indicate 332 * special semantics to the caller. These are much larger than the bytes in a 333 * page to allow for functions that return the number of bytes operated on in a 334 * given page. 335 */ 336 337 enum positive_aop_returns { 338 AOP_WRITEPAGE_ACTIVATE = 0x80000, 339 AOP_TRUNCATED_PAGE = 0x80001, 340 }; 341 342 /* 343 * oh the beauties of C type declarations. 344 */ 345 struct page; 346 struct address_space; 347 struct writeback_control; 348 struct readahead_control; 349 350 /* Match RWF_* bits to IOCB bits */ 351 #define IOCB_HIPRI (__force int) RWF_HIPRI 352 #define IOCB_DSYNC (__force int) RWF_DSYNC 353 #define IOCB_SYNC (__force int) RWF_SYNC 354 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 355 #define IOCB_APPEND (__force int) RWF_APPEND 356 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 357 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 358 359 /* non-RWF related bits - start at 16 */ 360 #define IOCB_EVENTFD (1 << 16) 361 #define IOCB_DIRECT (1 << 17) 362 #define IOCB_WRITE (1 << 18) 363 /* iocb->ki_waitq is valid */ 364 #define IOCB_WAITQ (1 << 19) 365 #define IOCB_NOIO (1 << 20) 366 /* can use bio alloc cache */ 367 #define IOCB_ALLOC_CACHE (1 << 21) 368 /* 369 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 370 * iocb completion can be passed back to the owner for execution from a safe 371 * context rather than needing to be punted through a workqueue. If this 372 * flag is set, the bio completion handling may set iocb->dio_complete to a 373 * handler function and iocb->private to context information for that handler. 374 * The issuer should call the handler with that context information from task 375 * context to complete the processing of the iocb. Note that while this 376 * provides a task context for the dio_complete() callback, it should only be 377 * used on the completion side for non-IO generating completions. It's fine to 378 * call blocking functions from this callback, but they should not wait for 379 * unrelated IO (like cache flushing, new IO generation, etc). 380 */ 381 #define IOCB_DIO_CALLER_COMP (1 << 22) 382 /* kiocb is a read or write operation submitted by fs/aio.c. */ 383 #define IOCB_AIO_RW (1 << 23) 384 #define IOCB_HAS_METADATA (1 << 24) 385 386 /* for use in trace events */ 387 #define TRACE_IOCB_STRINGS \ 388 { IOCB_HIPRI, "HIPRI" }, \ 389 { IOCB_DSYNC, "DSYNC" }, \ 390 { IOCB_SYNC, "SYNC" }, \ 391 { IOCB_NOWAIT, "NOWAIT" }, \ 392 { IOCB_APPEND, "APPEND" }, \ 393 { IOCB_ATOMIC, "ATOMIC" }, \ 394 { IOCB_DONTCACHE, "DONTCACHE" }, \ 395 { IOCB_EVENTFD, "EVENTFD"}, \ 396 { IOCB_DIRECT, "DIRECT" }, \ 397 { IOCB_WRITE, "WRITE" }, \ 398 { IOCB_WAITQ, "WAITQ" }, \ 399 { IOCB_NOIO, "NOIO" }, \ 400 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 401 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 402 403 struct kiocb { 404 struct file *ki_filp; 405 loff_t ki_pos; 406 void (*ki_complete)(struct kiocb *iocb, long ret); 407 void *private; 408 int ki_flags; 409 u16 ki_ioprio; /* See linux/ioprio.h */ 410 union { 411 /* 412 * Only used for async buffered reads, where it denotes the 413 * page waitqueue associated with completing the read. Valid 414 * IFF IOCB_WAITQ is set. 415 */ 416 struct wait_page_queue *ki_waitq; 417 /* 418 * Can be used for O_DIRECT IO, where the completion handling 419 * is punted back to the issuer of the IO. May only be set 420 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 421 * must then check for presence of this handler when ki_complete 422 * is invoked. The data passed in to this handler must be 423 * assigned to ->private when dio_complete is assigned. 424 */ 425 ssize_t (*dio_complete)(void *data); 426 }; 427 }; 428 429 static inline bool is_sync_kiocb(struct kiocb *kiocb) 430 { 431 return kiocb->ki_complete == NULL; 432 } 433 434 struct address_space_operations { 435 int (*writepage)(struct page *page, struct writeback_control *wbc); 436 int (*read_folio)(struct file *, struct folio *); 437 438 /* Write back some dirty pages from this mapping. */ 439 int (*writepages)(struct address_space *, struct writeback_control *); 440 441 /* Mark a folio dirty. Return true if this dirtied it */ 442 bool (*dirty_folio)(struct address_space *, struct folio *); 443 444 void (*readahead)(struct readahead_control *); 445 446 int (*write_begin)(struct file *, struct address_space *mapping, 447 loff_t pos, unsigned len, 448 struct folio **foliop, void **fsdata); 449 int (*write_end)(struct file *, struct address_space *mapping, 450 loff_t pos, unsigned len, unsigned copied, 451 struct folio *folio, void *fsdata); 452 453 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 454 sector_t (*bmap)(struct address_space *, sector_t); 455 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 456 bool (*release_folio)(struct folio *, gfp_t); 457 void (*free_folio)(struct folio *folio); 458 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 459 /* 460 * migrate the contents of a folio to the specified target. If 461 * migrate_mode is MIGRATE_ASYNC, it must not block. 462 */ 463 int (*migrate_folio)(struct address_space *, struct folio *dst, 464 struct folio *src, enum migrate_mode); 465 int (*launder_folio)(struct folio *); 466 bool (*is_partially_uptodate) (struct folio *, size_t from, 467 size_t count); 468 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 469 int (*error_remove_folio)(struct address_space *, struct folio *); 470 471 /* swapfile support */ 472 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 473 sector_t *span); 474 void (*swap_deactivate)(struct file *file); 475 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 476 }; 477 478 extern const struct address_space_operations empty_aops; 479 480 /** 481 * struct address_space - Contents of a cacheable, mappable object. 482 * @host: Owner, either the inode or the block_device. 483 * @i_pages: Cached pages. 484 * @invalidate_lock: Guards coherency between page cache contents and 485 * file offset->disk block mappings in the filesystem during invalidates. 486 * It is also used to block modification of page cache contents through 487 * memory mappings. 488 * @gfp_mask: Memory allocation flags to use for allocating pages. 489 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 490 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 491 * @i_mmap: Tree of private and shared mappings. 492 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 493 * @nrpages: Number of page entries, protected by the i_pages lock. 494 * @writeback_index: Writeback starts here. 495 * @a_ops: Methods. 496 * @flags: Error bits and flags (AS_*). 497 * @wb_err: The most recent error which has occurred. 498 * @i_private_lock: For use by the owner of the address_space. 499 * @i_private_list: For use by the owner of the address_space. 500 * @i_private_data: For use by the owner of the address_space. 501 */ 502 struct address_space { 503 struct inode *host; 504 struct xarray i_pages; 505 struct rw_semaphore invalidate_lock; 506 gfp_t gfp_mask; 507 atomic_t i_mmap_writable; 508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 509 /* number of thp, only for non-shmem files */ 510 atomic_t nr_thps; 511 #endif 512 struct rb_root_cached i_mmap; 513 unsigned long nrpages; 514 pgoff_t writeback_index; 515 const struct address_space_operations *a_ops; 516 unsigned long flags; 517 errseq_t wb_err; 518 spinlock_t i_private_lock; 519 struct list_head i_private_list; 520 struct rw_semaphore i_mmap_rwsem; 521 void * i_private_data; 522 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 523 /* 524 * On most architectures that alignment is already the case; but 525 * must be enforced here for CRIS, to let the least significant bit 526 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 527 */ 528 529 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 530 #define PAGECACHE_TAG_DIRTY XA_MARK_0 531 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 532 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 533 534 /* 535 * Returns true if any of the pages in the mapping are marked with the tag. 536 */ 537 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 538 { 539 return xa_marked(&mapping->i_pages, tag); 540 } 541 542 static inline void i_mmap_lock_write(struct address_space *mapping) 543 { 544 down_write(&mapping->i_mmap_rwsem); 545 } 546 547 static inline int i_mmap_trylock_write(struct address_space *mapping) 548 { 549 return down_write_trylock(&mapping->i_mmap_rwsem); 550 } 551 552 static inline void i_mmap_unlock_write(struct address_space *mapping) 553 { 554 up_write(&mapping->i_mmap_rwsem); 555 } 556 557 static inline int i_mmap_trylock_read(struct address_space *mapping) 558 { 559 return down_read_trylock(&mapping->i_mmap_rwsem); 560 } 561 562 static inline void i_mmap_lock_read(struct address_space *mapping) 563 { 564 down_read(&mapping->i_mmap_rwsem); 565 } 566 567 static inline void i_mmap_unlock_read(struct address_space *mapping) 568 { 569 up_read(&mapping->i_mmap_rwsem); 570 } 571 572 static inline void i_mmap_assert_locked(struct address_space *mapping) 573 { 574 lockdep_assert_held(&mapping->i_mmap_rwsem); 575 } 576 577 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 578 { 579 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 580 } 581 582 /* 583 * Might pages of this file be mapped into userspace? 584 */ 585 static inline int mapping_mapped(struct address_space *mapping) 586 { 587 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 588 } 589 590 /* 591 * Might pages of this file have been modified in userspace? 592 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 593 * marks vma as VM_SHARED if it is shared, and the file was opened for 594 * writing i.e. vma may be mprotected writable even if now readonly. 595 * 596 * If i_mmap_writable is negative, no new writable mappings are allowed. You 597 * can only deny writable mappings, if none exists right now. 598 */ 599 static inline int mapping_writably_mapped(struct address_space *mapping) 600 { 601 return atomic_read(&mapping->i_mmap_writable) > 0; 602 } 603 604 static inline int mapping_map_writable(struct address_space *mapping) 605 { 606 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 607 0 : -EPERM; 608 } 609 610 static inline void mapping_unmap_writable(struct address_space *mapping) 611 { 612 atomic_dec(&mapping->i_mmap_writable); 613 } 614 615 static inline int mapping_deny_writable(struct address_space *mapping) 616 { 617 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 618 0 : -EBUSY; 619 } 620 621 static inline void mapping_allow_writable(struct address_space *mapping) 622 { 623 atomic_inc(&mapping->i_mmap_writable); 624 } 625 626 /* 627 * Use sequence counter to get consistent i_size on 32-bit processors. 628 */ 629 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 630 #include <linux/seqlock.h> 631 #define __NEED_I_SIZE_ORDERED 632 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 633 #else 634 #define i_size_ordered_init(inode) do { } while (0) 635 #endif 636 637 struct posix_acl; 638 #define ACL_NOT_CACHED ((void *)(-1)) 639 /* 640 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 641 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 642 * mode with the LOOKUP_RCU flag. 643 */ 644 #define ACL_DONT_CACHE ((void *)(-3)) 645 646 static inline struct posix_acl * 647 uncached_acl_sentinel(struct task_struct *task) 648 { 649 return (void *)task + 1; 650 } 651 652 static inline bool 653 is_uncached_acl(struct posix_acl *acl) 654 { 655 return (long)acl & 1; 656 } 657 658 #define IOP_FASTPERM 0x0001 659 #define IOP_LOOKUP 0x0002 660 #define IOP_NOFOLLOW 0x0004 661 #define IOP_XATTR 0x0008 662 #define IOP_DEFAULT_READLINK 0x0010 663 #define IOP_MGTIME 0x0020 664 #define IOP_CACHED_LINK 0x0040 665 666 /* 667 * Keep mostly read-only and often accessed (especially for 668 * the RCU path lookup and 'stat' data) fields at the beginning 669 * of the 'struct inode' 670 */ 671 struct inode { 672 umode_t i_mode; 673 unsigned short i_opflags; 674 kuid_t i_uid; 675 kgid_t i_gid; 676 unsigned int i_flags; 677 678 #ifdef CONFIG_FS_POSIX_ACL 679 struct posix_acl *i_acl; 680 struct posix_acl *i_default_acl; 681 #endif 682 683 const struct inode_operations *i_op; 684 struct super_block *i_sb; 685 struct address_space *i_mapping; 686 687 #ifdef CONFIG_SECURITY 688 void *i_security; 689 #endif 690 691 /* Stat data, not accessed from path walking */ 692 unsigned long i_ino; 693 /* 694 * Filesystems may only read i_nlink directly. They shall use the 695 * following functions for modification: 696 * 697 * (set|clear|inc|drop)_nlink 698 * inode_(inc|dec)_link_count 699 */ 700 union { 701 const unsigned int i_nlink; 702 unsigned int __i_nlink; 703 }; 704 dev_t i_rdev; 705 loff_t i_size; 706 time64_t i_atime_sec; 707 time64_t i_mtime_sec; 708 time64_t i_ctime_sec; 709 u32 i_atime_nsec; 710 u32 i_mtime_nsec; 711 u32 i_ctime_nsec; 712 u32 i_generation; 713 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 714 unsigned short i_bytes; 715 u8 i_blkbits; 716 enum rw_hint i_write_hint; 717 blkcnt_t i_blocks; 718 719 #ifdef __NEED_I_SIZE_ORDERED 720 seqcount_t i_size_seqcount; 721 #endif 722 723 /* Misc */ 724 u32 i_state; 725 /* 32-bit hole */ 726 struct rw_semaphore i_rwsem; 727 728 unsigned long dirtied_when; /* jiffies of first dirtying */ 729 unsigned long dirtied_time_when; 730 731 struct hlist_node i_hash; 732 struct list_head i_io_list; /* backing dev IO list */ 733 #ifdef CONFIG_CGROUP_WRITEBACK 734 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 735 736 /* foreign inode detection, see wbc_detach_inode() */ 737 int i_wb_frn_winner; 738 u16 i_wb_frn_avg_time; 739 u16 i_wb_frn_history; 740 #endif 741 struct list_head i_lru; /* inode LRU list */ 742 struct list_head i_sb_list; 743 struct list_head i_wb_list; /* backing dev writeback list */ 744 union { 745 struct hlist_head i_dentry; 746 struct rcu_head i_rcu; 747 }; 748 atomic64_t i_version; 749 atomic64_t i_sequence; /* see futex */ 750 atomic_t i_count; 751 atomic_t i_dio_count; 752 atomic_t i_writecount; 753 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 754 atomic_t i_readcount; /* struct files open RO */ 755 #endif 756 union { 757 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 758 void (*free_inode)(struct inode *); 759 }; 760 struct file_lock_context *i_flctx; 761 struct address_space i_data; 762 union { 763 struct list_head i_devices; 764 int i_linklen; 765 }; 766 union { 767 struct pipe_inode_info *i_pipe; 768 struct cdev *i_cdev; 769 char *i_link; 770 unsigned i_dir_seq; 771 }; 772 773 774 #ifdef CONFIG_FSNOTIFY 775 __u32 i_fsnotify_mask; /* all events this inode cares about */ 776 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 777 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 778 #endif 779 780 #ifdef CONFIG_FS_ENCRYPTION 781 struct fscrypt_inode_info *i_crypt_info; 782 #endif 783 784 #ifdef CONFIG_FS_VERITY 785 struct fsverity_info *i_verity_info; 786 #endif 787 788 void *i_private; /* fs or device private pointer */ 789 } __randomize_layout; 790 791 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) 792 { 793 inode->i_link = link; 794 inode->i_linklen = linklen; 795 inode->i_opflags |= IOP_CACHED_LINK; 796 } 797 798 /* 799 * Get bit address from inode->i_state to use with wait_var_event() 800 * infrastructre. 801 */ 802 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 803 804 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 805 struct inode *inode, u32 bit); 806 807 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 808 { 809 /* Caller is responsible for correct memory barriers. */ 810 wake_up_var(inode_state_wait_address(inode, bit)); 811 } 812 813 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 814 815 static inline unsigned int i_blocksize(const struct inode *node) 816 { 817 return (1 << node->i_blkbits); 818 } 819 820 static inline int inode_unhashed(struct inode *inode) 821 { 822 return hlist_unhashed(&inode->i_hash); 823 } 824 825 /* 826 * __mark_inode_dirty expects inodes to be hashed. Since we don't 827 * want special inodes in the fileset inode space, we make them 828 * appear hashed, but do not put on any lists. hlist_del() 829 * will work fine and require no locking. 830 */ 831 static inline void inode_fake_hash(struct inode *inode) 832 { 833 hlist_add_fake(&inode->i_hash); 834 } 835 836 /* 837 * inode->i_mutex nesting subclasses for the lock validator: 838 * 839 * 0: the object of the current VFS operation 840 * 1: parent 841 * 2: child/target 842 * 3: xattr 843 * 4: second non-directory 844 * 5: second parent (when locking independent directories in rename) 845 * 846 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 847 * non-directories at once. 848 * 849 * The locking order between these classes is 850 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 851 */ 852 enum inode_i_mutex_lock_class 853 { 854 I_MUTEX_NORMAL, 855 I_MUTEX_PARENT, 856 I_MUTEX_CHILD, 857 I_MUTEX_XATTR, 858 I_MUTEX_NONDIR2, 859 I_MUTEX_PARENT2, 860 }; 861 862 static inline void inode_lock(struct inode *inode) 863 { 864 down_write(&inode->i_rwsem); 865 } 866 867 static inline void inode_unlock(struct inode *inode) 868 { 869 up_write(&inode->i_rwsem); 870 } 871 872 static inline void inode_lock_shared(struct inode *inode) 873 { 874 down_read(&inode->i_rwsem); 875 } 876 877 static inline void inode_unlock_shared(struct inode *inode) 878 { 879 up_read(&inode->i_rwsem); 880 } 881 882 static inline int inode_trylock(struct inode *inode) 883 { 884 return down_write_trylock(&inode->i_rwsem); 885 } 886 887 static inline int inode_trylock_shared(struct inode *inode) 888 { 889 return down_read_trylock(&inode->i_rwsem); 890 } 891 892 static inline int inode_is_locked(struct inode *inode) 893 { 894 return rwsem_is_locked(&inode->i_rwsem); 895 } 896 897 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 898 { 899 down_write_nested(&inode->i_rwsem, subclass); 900 } 901 902 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 903 { 904 down_read_nested(&inode->i_rwsem, subclass); 905 } 906 907 static inline void filemap_invalidate_lock(struct address_space *mapping) 908 { 909 down_write(&mapping->invalidate_lock); 910 } 911 912 static inline void filemap_invalidate_unlock(struct address_space *mapping) 913 { 914 up_write(&mapping->invalidate_lock); 915 } 916 917 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 918 { 919 down_read(&mapping->invalidate_lock); 920 } 921 922 static inline int filemap_invalidate_trylock_shared( 923 struct address_space *mapping) 924 { 925 return down_read_trylock(&mapping->invalidate_lock); 926 } 927 928 static inline void filemap_invalidate_unlock_shared( 929 struct address_space *mapping) 930 { 931 up_read(&mapping->invalidate_lock); 932 } 933 934 void lock_two_nondirectories(struct inode *, struct inode*); 935 void unlock_two_nondirectories(struct inode *, struct inode*); 936 937 void filemap_invalidate_lock_two(struct address_space *mapping1, 938 struct address_space *mapping2); 939 void filemap_invalidate_unlock_two(struct address_space *mapping1, 940 struct address_space *mapping2); 941 942 943 /* 944 * NOTE: in a 32bit arch with a preemptable kernel and 945 * an UP compile the i_size_read/write must be atomic 946 * with respect to the local cpu (unlike with preempt disabled), 947 * but they don't need to be atomic with respect to other cpus like in 948 * true SMP (so they need either to either locally disable irq around 949 * the read or for example on x86 they can be still implemented as a 950 * cmpxchg8b without the need of the lock prefix). For SMP compiles 951 * and 64bit archs it makes no difference if preempt is enabled or not. 952 */ 953 static inline loff_t i_size_read(const struct inode *inode) 954 { 955 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 956 loff_t i_size; 957 unsigned int seq; 958 959 do { 960 seq = read_seqcount_begin(&inode->i_size_seqcount); 961 i_size = inode->i_size; 962 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 963 return i_size; 964 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 965 loff_t i_size; 966 967 preempt_disable(); 968 i_size = inode->i_size; 969 preempt_enable(); 970 return i_size; 971 #else 972 /* Pairs with smp_store_release() in i_size_write() */ 973 return smp_load_acquire(&inode->i_size); 974 #endif 975 } 976 977 /* 978 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 979 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 980 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 981 */ 982 static inline void i_size_write(struct inode *inode, loff_t i_size) 983 { 984 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 985 preempt_disable(); 986 write_seqcount_begin(&inode->i_size_seqcount); 987 inode->i_size = i_size; 988 write_seqcount_end(&inode->i_size_seqcount); 989 preempt_enable(); 990 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 991 preempt_disable(); 992 inode->i_size = i_size; 993 preempt_enable(); 994 #else 995 /* 996 * Pairs with smp_load_acquire() in i_size_read() to ensure 997 * changes related to inode size (such as page contents) are 998 * visible before we see the changed inode size. 999 */ 1000 smp_store_release(&inode->i_size, i_size); 1001 #endif 1002 } 1003 1004 static inline unsigned iminor(const struct inode *inode) 1005 { 1006 return MINOR(inode->i_rdev); 1007 } 1008 1009 static inline unsigned imajor(const struct inode *inode) 1010 { 1011 return MAJOR(inode->i_rdev); 1012 } 1013 1014 struct fown_struct { 1015 struct file *file; /* backpointer for security modules */ 1016 rwlock_t lock; /* protects pid, uid, euid fields */ 1017 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 1018 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 1019 kuid_t uid, euid; /* uid/euid of process setting the owner */ 1020 int signum; /* posix.1b rt signal to be delivered on IO */ 1021 }; 1022 1023 /** 1024 * struct file_ra_state - Track a file's readahead state. 1025 * @start: Where the most recent readahead started. 1026 * @size: Number of pages read in the most recent readahead. 1027 * @async_size: Numer of pages that were/are not needed immediately 1028 * and so were/are genuinely "ahead". Start next readahead when 1029 * the first of these pages is accessed. 1030 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 1031 * @mmap_miss: How many mmap accesses missed in the page cache. 1032 * @prev_pos: The last byte in the most recent read request. 1033 * 1034 * When this structure is passed to ->readahead(), the "most recent" 1035 * readahead means the current readahead. 1036 */ 1037 struct file_ra_state { 1038 pgoff_t start; 1039 unsigned int size; 1040 unsigned int async_size; 1041 unsigned int ra_pages; 1042 unsigned int mmap_miss; 1043 loff_t prev_pos; 1044 }; 1045 1046 /* 1047 * Check if @index falls in the readahead windows. 1048 */ 1049 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1050 { 1051 return (index >= ra->start && 1052 index < ra->start + ra->size); 1053 } 1054 1055 /** 1056 * struct file - Represents a file 1057 * @f_ref: reference count 1058 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1059 * @f_mode: FMODE_* flags often used in hotpaths 1060 * @f_op: file operations 1061 * @f_mapping: Contents of a cacheable, mappable object. 1062 * @private_data: filesystem or driver specific data 1063 * @f_inode: cached inode 1064 * @f_flags: file flags 1065 * @f_iocb_flags: iocb flags 1066 * @f_cred: stashed credentials of creator/opener 1067 * @f_path: path of the file 1068 * @f_pos_lock: lock protecting file position 1069 * @f_pipe: specific to pipes 1070 * @f_pos: file position 1071 * @f_security: LSM security context of this file 1072 * @f_owner: file owner 1073 * @f_wb_err: writeback error 1074 * @f_sb_err: per sb writeback errors 1075 * @f_ep: link of all epoll hooks for this file 1076 * @f_task_work: task work entry point 1077 * @f_llist: work queue entrypoint 1078 * @f_ra: file's readahead state 1079 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1080 */ 1081 struct file { 1082 file_ref_t f_ref; 1083 spinlock_t f_lock; 1084 fmode_t f_mode; 1085 const struct file_operations *f_op; 1086 struct address_space *f_mapping; 1087 void *private_data; 1088 struct inode *f_inode; 1089 unsigned int f_flags; 1090 unsigned int f_iocb_flags; 1091 const struct cred *f_cred; 1092 /* --- cacheline 1 boundary (64 bytes) --- */ 1093 struct path f_path; 1094 union { 1095 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1096 struct mutex f_pos_lock; 1097 /* pipes */ 1098 u64 f_pipe; 1099 }; 1100 loff_t f_pos; 1101 #ifdef CONFIG_SECURITY 1102 void *f_security; 1103 #endif 1104 /* --- cacheline 2 boundary (128 bytes) --- */ 1105 struct fown_struct *f_owner; 1106 errseq_t f_wb_err; 1107 errseq_t f_sb_err; 1108 #ifdef CONFIG_EPOLL 1109 struct hlist_head *f_ep; 1110 #endif 1111 union { 1112 struct callback_head f_task_work; 1113 struct llist_node f_llist; 1114 struct file_ra_state f_ra; 1115 freeptr_t f_freeptr; 1116 }; 1117 /* --- cacheline 3 boundary (192 bytes) --- */ 1118 } __randomize_layout 1119 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1120 1121 struct file_handle { 1122 __u32 handle_bytes; 1123 int handle_type; 1124 /* file identifier */ 1125 unsigned char f_handle[] __counted_by(handle_bytes); 1126 }; 1127 1128 static inline struct file *get_file(struct file *f) 1129 { 1130 file_ref_inc(&f->f_ref); 1131 return f; 1132 } 1133 1134 struct file *get_file_rcu(struct file __rcu **f); 1135 struct file *get_file_active(struct file **f); 1136 1137 #define file_count(f) file_ref_read(&(f)->f_ref) 1138 1139 #define MAX_NON_LFS ((1UL<<31) - 1) 1140 1141 /* Page cache limit. The filesystems should put that into their s_maxbytes 1142 limits, otherwise bad things can happen in VM. */ 1143 #if BITS_PER_LONG==32 1144 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1145 #elif BITS_PER_LONG==64 1146 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1147 #endif 1148 1149 /* legacy typedef, should eventually be removed */ 1150 typedef void *fl_owner_t; 1151 1152 struct file_lock; 1153 struct file_lease; 1154 1155 /* The following constant reflects the upper bound of the file/locking space */ 1156 #ifndef OFFSET_MAX 1157 #define OFFSET_MAX type_max(loff_t) 1158 #define OFFT_OFFSET_MAX type_max(off_t) 1159 #endif 1160 1161 int file_f_owner_allocate(struct file *file); 1162 static inline struct fown_struct *file_f_owner(const struct file *file) 1163 { 1164 return READ_ONCE(file->f_owner); 1165 } 1166 1167 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1168 1169 static inline struct inode *file_inode(const struct file *f) 1170 { 1171 return f->f_inode; 1172 } 1173 1174 /* 1175 * file_dentry() is a relic from the days that overlayfs was using files with a 1176 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1177 * In those days, file_dentry() was needed to get the underlying fs dentry that 1178 * matches f_inode. 1179 * Files with "fake" path should not exist nowadays, so use an assertion to make 1180 * sure that file_dentry() was not papering over filesystem bugs. 1181 */ 1182 static inline struct dentry *file_dentry(const struct file *file) 1183 { 1184 struct dentry *dentry = file->f_path.dentry; 1185 1186 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1187 return dentry; 1188 } 1189 1190 struct fasync_struct { 1191 rwlock_t fa_lock; 1192 int magic; 1193 int fa_fd; 1194 struct fasync_struct *fa_next; /* singly linked list */ 1195 struct file *fa_file; 1196 struct rcu_head fa_rcu; 1197 }; 1198 1199 #define FASYNC_MAGIC 0x4601 1200 1201 /* SMP safe fasync helpers: */ 1202 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1203 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1204 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1205 extern struct fasync_struct *fasync_alloc(void); 1206 extern void fasync_free(struct fasync_struct *); 1207 1208 /* can be called from interrupts */ 1209 extern void kill_fasync(struct fasync_struct **, int, int); 1210 1211 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1212 extern int f_setown(struct file *filp, int who, int force); 1213 extern void f_delown(struct file *filp); 1214 extern pid_t f_getown(struct file *filp); 1215 extern int send_sigurg(struct file *file); 1216 1217 /* 1218 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1219 * represented in both. 1220 */ 1221 #define SB_RDONLY BIT(0) /* Mount read-only */ 1222 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1223 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1224 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1225 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1226 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1227 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1228 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1229 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1230 #define SB_SILENT BIT(15) 1231 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1232 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1233 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1234 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1235 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1236 1237 /* These sb flags are internal to the kernel */ 1238 #define SB_DEAD BIT(21) 1239 #define SB_DYING BIT(24) 1240 #define SB_SUBMOUNT BIT(26) 1241 #define SB_FORCE BIT(27) 1242 #define SB_NOSEC BIT(28) 1243 #define SB_BORN BIT(29) 1244 #define SB_ACTIVE BIT(30) 1245 #define SB_NOUSER BIT(31) 1246 1247 /* These flags relate to encoding and casefolding */ 1248 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1249 1250 #define sb_has_strict_encoding(sb) \ 1251 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1252 1253 /* 1254 * Umount options 1255 */ 1256 1257 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1258 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1259 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1260 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1261 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1262 1263 /* sb->s_iflags */ 1264 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1265 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1266 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1267 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1268 1269 /* sb->s_iflags to limit user namespace mounts */ 1270 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1271 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1272 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1273 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1274 1275 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1276 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1277 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1278 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1279 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1280 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1281 #define SB_I_ALLOW_HSM 0x00004000 /* Allow HSM events on this superblock */ 1282 1283 /* Possible states of 'frozen' field */ 1284 enum { 1285 SB_UNFROZEN = 0, /* FS is unfrozen */ 1286 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1287 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1288 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1289 * internal threads if needed) */ 1290 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1291 }; 1292 1293 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1294 1295 struct sb_writers { 1296 unsigned short frozen; /* Is sb frozen? */ 1297 int freeze_kcount; /* How many kernel freeze requests? */ 1298 int freeze_ucount; /* How many userspace freeze requests? */ 1299 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1300 }; 1301 1302 struct super_block { 1303 struct list_head s_list; /* Keep this first */ 1304 dev_t s_dev; /* search index; _not_ kdev_t */ 1305 unsigned char s_blocksize_bits; 1306 unsigned long s_blocksize; 1307 loff_t s_maxbytes; /* Max file size */ 1308 struct file_system_type *s_type; 1309 const struct super_operations *s_op; 1310 const struct dquot_operations *dq_op; 1311 const struct quotactl_ops *s_qcop; 1312 const struct export_operations *s_export_op; 1313 unsigned long s_flags; 1314 unsigned long s_iflags; /* internal SB_I_* flags */ 1315 unsigned long s_magic; 1316 struct dentry *s_root; 1317 struct rw_semaphore s_umount; 1318 int s_count; 1319 atomic_t s_active; 1320 #ifdef CONFIG_SECURITY 1321 void *s_security; 1322 #endif 1323 const struct xattr_handler * const *s_xattr; 1324 #ifdef CONFIG_FS_ENCRYPTION 1325 const struct fscrypt_operations *s_cop; 1326 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1327 #endif 1328 #ifdef CONFIG_FS_VERITY 1329 const struct fsverity_operations *s_vop; 1330 #endif 1331 #if IS_ENABLED(CONFIG_UNICODE) 1332 struct unicode_map *s_encoding; 1333 __u16 s_encoding_flags; 1334 #endif 1335 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1336 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1337 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1338 struct file *s_bdev_file; 1339 struct backing_dev_info *s_bdi; 1340 struct mtd_info *s_mtd; 1341 struct hlist_node s_instances; 1342 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1343 struct quota_info s_dquot; /* Diskquota specific options */ 1344 1345 struct sb_writers s_writers; 1346 1347 /* 1348 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1349 * s_fsnotify_info together for cache efficiency. They are frequently 1350 * accessed and rarely modified. 1351 */ 1352 void *s_fs_info; /* Filesystem private info */ 1353 1354 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1355 u32 s_time_gran; 1356 /* Time limits for c/m/atime in seconds */ 1357 time64_t s_time_min; 1358 time64_t s_time_max; 1359 #ifdef CONFIG_FSNOTIFY 1360 u32 s_fsnotify_mask; 1361 struct fsnotify_sb_info *s_fsnotify_info; 1362 #endif 1363 1364 /* 1365 * q: why are s_id and s_sysfs_name not the same? both are human 1366 * readable strings that identify the filesystem 1367 * a: s_id is allowed to change at runtime; it's used in log messages, 1368 * and we want to when a device starts out as single device (s_id is dev 1369 * name) but then a device is hot added and we have to switch to 1370 * identifying it by UUID 1371 * but s_sysfs_name is a handle for programmatic access, and can't 1372 * change at runtime 1373 */ 1374 char s_id[32]; /* Informational name */ 1375 uuid_t s_uuid; /* UUID */ 1376 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1377 1378 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1379 char s_sysfs_name[UUID_STRING_LEN + 1]; 1380 1381 unsigned int s_max_links; 1382 1383 /* 1384 * The next field is for VFS *only*. No filesystems have any business 1385 * even looking at it. You had been warned. 1386 */ 1387 struct mutex s_vfs_rename_mutex; /* Kludge */ 1388 1389 /* 1390 * Filesystem subtype. If non-empty the filesystem type field 1391 * in /proc/mounts will be "type.subtype" 1392 */ 1393 const char *s_subtype; 1394 1395 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1396 1397 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1398 1399 /* Number of inodes with nlink == 0 but still referenced */ 1400 atomic_long_t s_remove_count; 1401 1402 /* Read-only state of the superblock is being changed */ 1403 int s_readonly_remount; 1404 1405 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1406 errseq_t s_wb_err; 1407 1408 /* AIO completions deferred from interrupt context */ 1409 struct workqueue_struct *s_dio_done_wq; 1410 struct hlist_head s_pins; 1411 1412 /* 1413 * Owning user namespace and default context in which to 1414 * interpret filesystem uids, gids, quotas, device nodes, 1415 * xattrs and security labels. 1416 */ 1417 struct user_namespace *s_user_ns; 1418 1419 /* 1420 * The list_lru structure is essentially just a pointer to a table 1421 * of per-node lru lists, each of which has its own spinlock. 1422 * There is no need to put them into separate cachelines. 1423 */ 1424 struct list_lru s_dentry_lru; 1425 struct list_lru s_inode_lru; 1426 struct rcu_head rcu; 1427 struct work_struct destroy_work; 1428 1429 struct mutex s_sync_lock; /* sync serialisation lock */ 1430 1431 /* 1432 * Indicates how deep in a filesystem stack this SB is 1433 */ 1434 int s_stack_depth; 1435 1436 /* s_inode_list_lock protects s_inodes */ 1437 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1438 struct list_head s_inodes; /* all inodes */ 1439 1440 spinlock_t s_inode_wblist_lock; 1441 struct list_head s_inodes_wb; /* writeback inodes */ 1442 } __randomize_layout; 1443 1444 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1445 { 1446 return inode->i_sb->s_user_ns; 1447 } 1448 1449 /* Helper functions so that in most cases filesystems will 1450 * not need to deal directly with kuid_t and kgid_t and can 1451 * instead deal with the raw numeric values that are stored 1452 * in the filesystem. 1453 */ 1454 static inline uid_t i_uid_read(const struct inode *inode) 1455 { 1456 return from_kuid(i_user_ns(inode), inode->i_uid); 1457 } 1458 1459 static inline gid_t i_gid_read(const struct inode *inode) 1460 { 1461 return from_kgid(i_user_ns(inode), inode->i_gid); 1462 } 1463 1464 static inline void i_uid_write(struct inode *inode, uid_t uid) 1465 { 1466 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1467 } 1468 1469 static inline void i_gid_write(struct inode *inode, gid_t gid) 1470 { 1471 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1472 } 1473 1474 /** 1475 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1476 * @idmap: idmap of the mount the inode was found from 1477 * @inode: inode to map 1478 * 1479 * Return: whe inode's i_uid mapped down according to @idmap. 1480 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1481 */ 1482 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1483 const struct inode *inode) 1484 { 1485 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1486 } 1487 1488 /** 1489 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1490 * @idmap: idmap of the mount the inode was found from 1491 * @attr: the new attributes of @inode 1492 * @inode: the inode to update 1493 * 1494 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1495 * mounts into account if the filesystem supports it. 1496 * 1497 * Return: true if @inode's i_uid field needs to be updated, false if not. 1498 */ 1499 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1500 const struct iattr *attr, 1501 const struct inode *inode) 1502 { 1503 return ((attr->ia_valid & ATTR_UID) && 1504 !vfsuid_eq(attr->ia_vfsuid, 1505 i_uid_into_vfsuid(idmap, inode))); 1506 } 1507 1508 /** 1509 * i_uid_update - update @inode's i_uid field 1510 * @idmap: idmap of the mount the inode was found from 1511 * @attr: the new attributes of @inode 1512 * @inode: the inode to update 1513 * 1514 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1515 * mount into the filesystem kuid. 1516 */ 1517 static inline void i_uid_update(struct mnt_idmap *idmap, 1518 const struct iattr *attr, 1519 struct inode *inode) 1520 { 1521 if (attr->ia_valid & ATTR_UID) 1522 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1523 attr->ia_vfsuid); 1524 } 1525 1526 /** 1527 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1528 * @idmap: idmap of the mount the inode was found from 1529 * @inode: inode to map 1530 * 1531 * Return: the inode's i_gid mapped down according to @idmap. 1532 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1533 */ 1534 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1535 const struct inode *inode) 1536 { 1537 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1538 } 1539 1540 /** 1541 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1542 * @idmap: idmap of the mount the inode was found from 1543 * @attr: the new attributes of @inode 1544 * @inode: the inode to update 1545 * 1546 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1547 * mounts into account if the filesystem supports it. 1548 * 1549 * Return: true if @inode's i_gid field needs to be updated, false if not. 1550 */ 1551 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1552 const struct iattr *attr, 1553 const struct inode *inode) 1554 { 1555 return ((attr->ia_valid & ATTR_GID) && 1556 !vfsgid_eq(attr->ia_vfsgid, 1557 i_gid_into_vfsgid(idmap, inode))); 1558 } 1559 1560 /** 1561 * i_gid_update - update @inode's i_gid field 1562 * @idmap: idmap of the mount the inode was found from 1563 * @attr: the new attributes of @inode 1564 * @inode: the inode to update 1565 * 1566 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1567 * mount into the filesystem kgid. 1568 */ 1569 static inline void i_gid_update(struct mnt_idmap *idmap, 1570 const struct iattr *attr, 1571 struct inode *inode) 1572 { 1573 if (attr->ia_valid & ATTR_GID) 1574 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1575 attr->ia_vfsgid); 1576 } 1577 1578 /** 1579 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1580 * @inode: inode to initialize 1581 * @idmap: idmap of the mount the inode was found from 1582 * 1583 * Initialize the i_uid field of @inode. If the inode was found/created via 1584 * an idmapped mount map the caller's fsuid according to @idmap. 1585 */ 1586 static inline void inode_fsuid_set(struct inode *inode, 1587 struct mnt_idmap *idmap) 1588 { 1589 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1590 } 1591 1592 /** 1593 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1594 * @inode: inode to initialize 1595 * @idmap: idmap of the mount the inode was found from 1596 * 1597 * Initialize the i_gid field of @inode. If the inode was found/created via 1598 * an idmapped mount map the caller's fsgid according to @idmap. 1599 */ 1600 static inline void inode_fsgid_set(struct inode *inode, 1601 struct mnt_idmap *idmap) 1602 { 1603 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1604 } 1605 1606 /** 1607 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1608 * @sb: the superblock we want a mapping in 1609 * @idmap: idmap of the relevant mount 1610 * 1611 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1612 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1613 * the caller's fsuid and fsgid according to the @idmap first. 1614 * 1615 * Return: true if fsuid and fsgid is mapped, false if not. 1616 */ 1617 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1618 struct mnt_idmap *idmap) 1619 { 1620 struct user_namespace *fs_userns = sb->s_user_ns; 1621 kuid_t kuid; 1622 kgid_t kgid; 1623 1624 kuid = mapped_fsuid(idmap, fs_userns); 1625 if (!uid_valid(kuid)) 1626 return false; 1627 kgid = mapped_fsgid(idmap, fs_userns); 1628 if (!gid_valid(kgid)) 1629 return false; 1630 return kuid_has_mapping(fs_userns, kuid) && 1631 kgid_has_mapping(fs_userns, kgid); 1632 } 1633 1634 struct timespec64 current_time(struct inode *inode); 1635 struct timespec64 inode_set_ctime_current(struct inode *inode); 1636 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1637 struct timespec64 update); 1638 1639 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1640 { 1641 return inode->i_atime_sec; 1642 } 1643 1644 static inline long inode_get_atime_nsec(const struct inode *inode) 1645 { 1646 return inode->i_atime_nsec; 1647 } 1648 1649 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1650 { 1651 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1652 .tv_nsec = inode_get_atime_nsec(inode) }; 1653 1654 return ts; 1655 } 1656 1657 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1658 struct timespec64 ts) 1659 { 1660 inode->i_atime_sec = ts.tv_sec; 1661 inode->i_atime_nsec = ts.tv_nsec; 1662 return ts; 1663 } 1664 1665 static inline struct timespec64 inode_set_atime(struct inode *inode, 1666 time64_t sec, long nsec) 1667 { 1668 struct timespec64 ts = { .tv_sec = sec, 1669 .tv_nsec = nsec }; 1670 1671 return inode_set_atime_to_ts(inode, ts); 1672 } 1673 1674 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1675 { 1676 return inode->i_mtime_sec; 1677 } 1678 1679 static inline long inode_get_mtime_nsec(const struct inode *inode) 1680 { 1681 return inode->i_mtime_nsec; 1682 } 1683 1684 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1685 { 1686 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1687 .tv_nsec = inode_get_mtime_nsec(inode) }; 1688 return ts; 1689 } 1690 1691 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1692 struct timespec64 ts) 1693 { 1694 inode->i_mtime_sec = ts.tv_sec; 1695 inode->i_mtime_nsec = ts.tv_nsec; 1696 return ts; 1697 } 1698 1699 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1700 time64_t sec, long nsec) 1701 { 1702 struct timespec64 ts = { .tv_sec = sec, 1703 .tv_nsec = nsec }; 1704 return inode_set_mtime_to_ts(inode, ts); 1705 } 1706 1707 /* 1708 * Multigrain timestamps 1709 * 1710 * Conditionally use fine-grained ctime and mtime timestamps when there 1711 * are users actively observing them via getattr. The primary use-case 1712 * for this is NFS clients that use the ctime to distinguish between 1713 * different states of the file, and that are often fooled by multiple 1714 * operations that occur in the same coarse-grained timer tick. 1715 */ 1716 #define I_CTIME_QUERIED ((u32)BIT(31)) 1717 1718 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1719 { 1720 return inode->i_ctime_sec; 1721 } 1722 1723 static inline long inode_get_ctime_nsec(const struct inode *inode) 1724 { 1725 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1726 } 1727 1728 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1729 { 1730 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1731 .tv_nsec = inode_get_ctime_nsec(inode) }; 1732 1733 return ts; 1734 } 1735 1736 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1737 1738 /** 1739 * inode_set_ctime - set the ctime in the inode 1740 * @inode: inode in which to set the ctime 1741 * @sec: tv_sec value to set 1742 * @nsec: tv_nsec value to set 1743 * 1744 * Set the ctime in @inode to { @sec, @nsec } 1745 */ 1746 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1747 time64_t sec, long nsec) 1748 { 1749 struct timespec64 ts = { .tv_sec = sec, 1750 .tv_nsec = nsec }; 1751 1752 return inode_set_ctime_to_ts(inode, ts); 1753 } 1754 1755 struct timespec64 simple_inode_init_ts(struct inode *inode); 1756 1757 /* 1758 * Snapshotting support. 1759 */ 1760 1761 /* 1762 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1763 * instead. 1764 */ 1765 static inline void __sb_end_write(struct super_block *sb, int level) 1766 { 1767 percpu_up_read(sb->s_writers.rw_sem + level-1); 1768 } 1769 1770 static inline void __sb_start_write(struct super_block *sb, int level) 1771 { 1772 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1773 } 1774 1775 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1776 { 1777 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1778 } 1779 1780 #define __sb_writers_acquired(sb, lev) \ 1781 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1782 #define __sb_writers_release(sb, lev) \ 1783 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1784 1785 /** 1786 * __sb_write_started - check if sb freeze level is held 1787 * @sb: the super we write to 1788 * @level: the freeze level 1789 * 1790 * * > 0 - sb freeze level is held 1791 * * 0 - sb freeze level is not held 1792 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1793 */ 1794 static inline int __sb_write_started(const struct super_block *sb, int level) 1795 { 1796 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1797 } 1798 1799 /** 1800 * sb_write_started - check if SB_FREEZE_WRITE is held 1801 * @sb: the super we write to 1802 * 1803 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1804 */ 1805 static inline bool sb_write_started(const struct super_block *sb) 1806 { 1807 return __sb_write_started(sb, SB_FREEZE_WRITE); 1808 } 1809 1810 /** 1811 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1812 * @sb: the super we write to 1813 * 1814 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1815 */ 1816 static inline bool sb_write_not_started(const struct super_block *sb) 1817 { 1818 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1819 } 1820 1821 /** 1822 * file_write_started - check if SB_FREEZE_WRITE is held 1823 * @file: the file we write to 1824 * 1825 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1826 * May be false positive with !S_ISREG, because file_start_write() has 1827 * no effect on !S_ISREG. 1828 */ 1829 static inline bool file_write_started(const struct file *file) 1830 { 1831 if (!S_ISREG(file_inode(file)->i_mode)) 1832 return true; 1833 return sb_write_started(file_inode(file)->i_sb); 1834 } 1835 1836 /** 1837 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1838 * @file: the file we write to 1839 * 1840 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1841 * May be false positive with !S_ISREG, because file_start_write() has 1842 * no effect on !S_ISREG. 1843 */ 1844 static inline bool file_write_not_started(const struct file *file) 1845 { 1846 if (!S_ISREG(file_inode(file)->i_mode)) 1847 return true; 1848 return sb_write_not_started(file_inode(file)->i_sb); 1849 } 1850 1851 /** 1852 * sb_end_write - drop write access to a superblock 1853 * @sb: the super we wrote to 1854 * 1855 * Decrement number of writers to the filesystem. Wake up possible waiters 1856 * wanting to freeze the filesystem. 1857 */ 1858 static inline void sb_end_write(struct super_block *sb) 1859 { 1860 __sb_end_write(sb, SB_FREEZE_WRITE); 1861 } 1862 1863 /** 1864 * sb_end_pagefault - drop write access to a superblock from a page fault 1865 * @sb: the super we wrote to 1866 * 1867 * Decrement number of processes handling write page fault to the filesystem. 1868 * Wake up possible waiters wanting to freeze the filesystem. 1869 */ 1870 static inline void sb_end_pagefault(struct super_block *sb) 1871 { 1872 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1873 } 1874 1875 /** 1876 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1877 * @sb: the super we wrote to 1878 * 1879 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1880 * waiters wanting to freeze the filesystem. 1881 */ 1882 static inline void sb_end_intwrite(struct super_block *sb) 1883 { 1884 __sb_end_write(sb, SB_FREEZE_FS); 1885 } 1886 1887 /** 1888 * sb_start_write - get write access to a superblock 1889 * @sb: the super we write to 1890 * 1891 * When a process wants to write data or metadata to a file system (i.e. dirty 1892 * a page or an inode), it should embed the operation in a sb_start_write() - 1893 * sb_end_write() pair to get exclusion against file system freezing. This 1894 * function increments number of writers preventing freezing. If the file 1895 * system is already frozen, the function waits until the file system is 1896 * thawed. 1897 * 1898 * Since freeze protection behaves as a lock, users have to preserve 1899 * ordering of freeze protection and other filesystem locks. Generally, 1900 * freeze protection should be the outermost lock. In particular, we have: 1901 * 1902 * sb_start_write 1903 * -> i_mutex (write path, truncate, directory ops, ...) 1904 * -> s_umount (freeze_super, thaw_super) 1905 */ 1906 static inline void sb_start_write(struct super_block *sb) 1907 { 1908 __sb_start_write(sb, SB_FREEZE_WRITE); 1909 } 1910 1911 static inline bool sb_start_write_trylock(struct super_block *sb) 1912 { 1913 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1914 } 1915 1916 /** 1917 * sb_start_pagefault - get write access to a superblock from a page fault 1918 * @sb: the super we write to 1919 * 1920 * When a process starts handling write page fault, it should embed the 1921 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1922 * exclusion against file system freezing. This is needed since the page fault 1923 * is going to dirty a page. This function increments number of running page 1924 * faults preventing freezing. If the file system is already frozen, the 1925 * function waits until the file system is thawed. 1926 * 1927 * Since page fault freeze protection behaves as a lock, users have to preserve 1928 * ordering of freeze protection and other filesystem locks. It is advised to 1929 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1930 * handling code implies lock dependency: 1931 * 1932 * mmap_lock 1933 * -> sb_start_pagefault 1934 */ 1935 static inline void sb_start_pagefault(struct super_block *sb) 1936 { 1937 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1938 } 1939 1940 /** 1941 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1942 * @sb: the super we write to 1943 * 1944 * This is the third level of protection against filesystem freezing. It is 1945 * free for use by a filesystem. The only requirement is that it must rank 1946 * below sb_start_pagefault. 1947 * 1948 * For example filesystem can call sb_start_intwrite() when starting a 1949 * transaction which somewhat eases handling of freezing for internal sources 1950 * of filesystem changes (internal fs threads, discarding preallocation on file 1951 * close, etc.). 1952 */ 1953 static inline void sb_start_intwrite(struct super_block *sb) 1954 { 1955 __sb_start_write(sb, SB_FREEZE_FS); 1956 } 1957 1958 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1959 { 1960 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1961 } 1962 1963 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1964 const struct inode *inode); 1965 1966 /* 1967 * VFS helper functions.. 1968 */ 1969 int vfs_create(struct mnt_idmap *, struct inode *, 1970 struct dentry *, umode_t, bool); 1971 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1972 struct dentry *, umode_t); 1973 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1974 umode_t, dev_t); 1975 int vfs_symlink(struct mnt_idmap *, struct inode *, 1976 struct dentry *, const char *); 1977 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1978 struct dentry *, struct inode **); 1979 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1980 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1981 struct inode **); 1982 1983 /** 1984 * struct renamedata - contains all information required for renaming 1985 * @old_mnt_idmap: idmap of the old mount the inode was found from 1986 * @old_dir: parent of source 1987 * @old_dentry: source 1988 * @new_mnt_idmap: idmap of the new mount the inode was found from 1989 * @new_dir: parent of destination 1990 * @new_dentry: destination 1991 * @delegated_inode: returns an inode needing a delegation break 1992 * @flags: rename flags 1993 */ 1994 struct renamedata { 1995 struct mnt_idmap *old_mnt_idmap; 1996 struct inode *old_dir; 1997 struct dentry *old_dentry; 1998 struct mnt_idmap *new_mnt_idmap; 1999 struct inode *new_dir; 2000 struct dentry *new_dentry; 2001 struct inode **delegated_inode; 2002 unsigned int flags; 2003 } __randomize_layout; 2004 2005 int vfs_rename(struct renamedata *); 2006 2007 static inline int vfs_whiteout(struct mnt_idmap *idmap, 2008 struct inode *dir, struct dentry *dentry) 2009 { 2010 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 2011 WHITEOUT_DEV); 2012 } 2013 2014 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 2015 const struct path *parentpath, 2016 umode_t mode, int open_flag, 2017 const struct cred *cred); 2018 struct file *kernel_file_open(const struct path *path, int flags, 2019 const struct cred *cred); 2020 2021 int vfs_mkobj(struct dentry *, umode_t, 2022 int (*f)(struct dentry *, umode_t, void *), 2023 void *); 2024 2025 int vfs_fchown(struct file *file, uid_t user, gid_t group); 2026 int vfs_fchmod(struct file *file, umode_t mode); 2027 int vfs_utimes(const struct path *path, struct timespec64 *times); 2028 2029 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2030 2031 #ifdef CONFIG_COMPAT 2032 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 2033 unsigned long arg); 2034 #else 2035 #define compat_ptr_ioctl NULL 2036 #endif 2037 2038 /* 2039 * VFS file helper functions. 2040 */ 2041 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2042 const struct inode *dir, umode_t mode); 2043 extern bool may_open_dev(const struct path *path); 2044 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2045 const struct inode *dir, umode_t mode); 2046 bool in_group_or_capable(struct mnt_idmap *idmap, 2047 const struct inode *inode, vfsgid_t vfsgid); 2048 2049 /* 2050 * This is the "filldir" function type, used by readdir() to let 2051 * the kernel specify what kind of dirent layout it wants to have. 2052 * This allows the kernel to read directories into kernel space or 2053 * to have different dirent layouts depending on the binary type. 2054 * Return 'true' to keep going and 'false' if there are no more entries. 2055 */ 2056 struct dir_context; 2057 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2058 unsigned); 2059 2060 struct dir_context { 2061 filldir_t actor; 2062 loff_t pos; 2063 }; 2064 2065 /* 2066 * These flags let !MMU mmap() govern direct device mapping vs immediate 2067 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2068 * 2069 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2070 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2071 * NOMMU_MAP_READ: Can be mapped for reading 2072 * NOMMU_MAP_WRITE: Can be mapped for writing 2073 * NOMMU_MAP_EXEC: Can be mapped for execution 2074 */ 2075 #define NOMMU_MAP_COPY 0x00000001 2076 #define NOMMU_MAP_DIRECT 0x00000008 2077 #define NOMMU_MAP_READ VM_MAYREAD 2078 #define NOMMU_MAP_WRITE VM_MAYWRITE 2079 #define NOMMU_MAP_EXEC VM_MAYEXEC 2080 2081 #define NOMMU_VMFLAGS \ 2082 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2083 2084 /* 2085 * These flags control the behavior of the remap_file_range function pointer. 2086 * If it is called with len == 0 that means "remap to end of source file". 2087 * See Documentation/filesystems/vfs.rst for more details about this call. 2088 * 2089 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2090 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2091 */ 2092 #define REMAP_FILE_DEDUP (1 << 0) 2093 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2094 2095 /* 2096 * These flags signal that the caller is ok with altering various aspects of 2097 * the behavior of the remap operation. The changes must be made by the 2098 * implementation; the vfs remap helper functions can take advantage of them. 2099 * Flags in this category exist to preserve the quirky behavior of the hoisted 2100 * btrfs clone/dedupe ioctls. 2101 */ 2102 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2103 2104 /* 2105 * These flags control the behavior of vfs_copy_file_range(). 2106 * They are not available to the user via syscall. 2107 * 2108 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2109 */ 2110 #define COPY_FILE_SPLICE (1 << 0) 2111 2112 struct iov_iter; 2113 struct io_uring_cmd; 2114 struct offset_ctx; 2115 2116 typedef unsigned int __bitwise fop_flags_t; 2117 2118 struct file_operations { 2119 struct module *owner; 2120 fop_flags_t fop_flags; 2121 loff_t (*llseek) (struct file *, loff_t, int); 2122 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2123 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2124 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2125 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2126 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2127 unsigned int flags); 2128 int (*iterate_shared) (struct file *, struct dir_context *); 2129 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2130 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2131 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2132 int (*mmap) (struct file *, struct vm_area_struct *); 2133 int (*open) (struct inode *, struct file *); 2134 int (*flush) (struct file *, fl_owner_t id); 2135 int (*release) (struct inode *, struct file *); 2136 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2137 int (*fasync) (int, struct file *, int); 2138 int (*lock) (struct file *, int, struct file_lock *); 2139 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2140 int (*check_flags)(int); 2141 int (*flock) (struct file *, int, struct file_lock *); 2142 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2143 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2144 void (*splice_eof)(struct file *file); 2145 int (*setlease)(struct file *, int, struct file_lease **, void **); 2146 long (*fallocate)(struct file *file, int mode, loff_t offset, 2147 loff_t len); 2148 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2149 #ifndef CONFIG_MMU 2150 unsigned (*mmap_capabilities)(struct file *); 2151 #endif 2152 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2153 loff_t, size_t, unsigned int); 2154 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2155 struct file *file_out, loff_t pos_out, 2156 loff_t len, unsigned int remap_flags); 2157 int (*fadvise)(struct file *, loff_t, loff_t, int); 2158 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2159 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2160 unsigned int poll_flags); 2161 } __randomize_layout; 2162 2163 /* Supports async buffered reads */ 2164 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2165 /* Supports async buffered writes */ 2166 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2167 /* Supports synchronous page faults for mappings */ 2168 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2169 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2170 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2171 /* Contains huge pages */ 2172 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2173 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2174 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2175 /* Supports asynchronous lock callbacks */ 2176 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2177 /* File system supports uncached read/write buffered IO */ 2178 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 2179 2180 /* Wrap a directory iterator that needs exclusive inode access */ 2181 int wrap_directory_iterator(struct file *, struct dir_context *, 2182 int (*) (struct file *, struct dir_context *)); 2183 #define WRAP_DIR_ITER(x) \ 2184 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2185 { return wrap_directory_iterator(file, ctx, x); } 2186 2187 struct inode_operations { 2188 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2189 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2190 int (*permission) (struct mnt_idmap *, struct inode *, int); 2191 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2192 2193 int (*readlink) (struct dentry *, char __user *,int); 2194 2195 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2196 umode_t, bool); 2197 int (*link) (struct dentry *,struct inode *,struct dentry *); 2198 int (*unlink) (struct inode *,struct dentry *); 2199 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2200 const char *); 2201 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2202 umode_t); 2203 int (*rmdir) (struct inode *,struct dentry *); 2204 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2205 umode_t,dev_t); 2206 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2207 struct inode *, struct dentry *, unsigned int); 2208 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2209 int (*getattr) (struct mnt_idmap *, const struct path *, 2210 struct kstat *, u32, unsigned int); 2211 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2212 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2213 u64 len); 2214 int (*update_time)(struct inode *, int); 2215 int (*atomic_open)(struct inode *, struct dentry *, 2216 struct file *, unsigned open_flag, 2217 umode_t create_mode); 2218 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2219 struct file *, umode_t); 2220 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2221 int); 2222 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2223 struct posix_acl *, int); 2224 int (*fileattr_set)(struct mnt_idmap *idmap, 2225 struct dentry *dentry, struct fileattr *fa); 2226 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2227 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2228 } ____cacheline_aligned; 2229 2230 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2231 { 2232 return file->f_op->mmap(file, vma); 2233 } 2234 2235 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2236 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2237 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2238 loff_t, size_t, unsigned int); 2239 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2240 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2241 struct file *file_out, loff_t pos_out, 2242 loff_t *len, unsigned int remap_flags, 2243 const struct iomap_ops *dax_read_ops); 2244 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2245 struct file *file_out, loff_t pos_out, 2246 loff_t *count, unsigned int remap_flags); 2247 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2248 struct file *file_out, loff_t pos_out, 2249 loff_t len, unsigned int remap_flags); 2250 extern int vfs_dedupe_file_range(struct file *file, 2251 struct file_dedupe_range *same); 2252 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2253 struct file *dst_file, loff_t dst_pos, 2254 loff_t len, unsigned int remap_flags); 2255 2256 /** 2257 * enum freeze_holder - holder of the freeze 2258 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2259 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2260 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2261 * 2262 * Indicate who the owner of the freeze or thaw request is and whether 2263 * the freeze needs to be exclusive or can nest. 2264 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2265 * same holder aren't allowed. It is however allowed to hold a single 2266 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2267 * the same time. This is relied upon by some filesystems during online 2268 * repair or similar. 2269 */ 2270 enum freeze_holder { 2271 FREEZE_HOLDER_KERNEL = (1U << 0), 2272 FREEZE_HOLDER_USERSPACE = (1U << 1), 2273 FREEZE_MAY_NEST = (1U << 2), 2274 }; 2275 2276 struct super_operations { 2277 struct inode *(*alloc_inode)(struct super_block *sb); 2278 void (*destroy_inode)(struct inode *); 2279 void (*free_inode)(struct inode *); 2280 2281 void (*dirty_inode) (struct inode *, int flags); 2282 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2283 int (*drop_inode) (struct inode *); 2284 void (*evict_inode) (struct inode *); 2285 void (*put_super) (struct super_block *); 2286 int (*sync_fs)(struct super_block *sb, int wait); 2287 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2288 int (*freeze_fs) (struct super_block *); 2289 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2290 int (*unfreeze_fs) (struct super_block *); 2291 int (*statfs) (struct dentry *, struct kstatfs *); 2292 int (*remount_fs) (struct super_block *, int *, char *); 2293 void (*umount_begin) (struct super_block *); 2294 2295 int (*show_options)(struct seq_file *, struct dentry *); 2296 int (*show_devname)(struct seq_file *, struct dentry *); 2297 int (*show_path)(struct seq_file *, struct dentry *); 2298 int (*show_stats)(struct seq_file *, struct dentry *); 2299 #ifdef CONFIG_QUOTA 2300 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2301 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2302 struct dquot __rcu **(*get_dquots)(struct inode *); 2303 #endif 2304 long (*nr_cached_objects)(struct super_block *, 2305 struct shrink_control *); 2306 long (*free_cached_objects)(struct super_block *, 2307 struct shrink_control *); 2308 void (*shutdown)(struct super_block *sb); 2309 }; 2310 2311 /* 2312 * Inode flags - they have no relation to superblock flags now 2313 */ 2314 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2315 #define S_NOATIME (1 << 1) /* Do not update access times */ 2316 #define S_APPEND (1 << 2) /* Append-only file */ 2317 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2318 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2319 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2320 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2321 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2322 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2323 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2324 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2325 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2326 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2327 #ifdef CONFIG_FS_DAX 2328 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2329 #else 2330 #define S_DAX 0 /* Make all the DAX code disappear */ 2331 #endif 2332 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2333 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2334 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2335 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2336 2337 /* 2338 * Note that nosuid etc flags are inode-specific: setting some file-system 2339 * flags just means all the inodes inherit those flags by default. It might be 2340 * possible to override it selectively if you really wanted to with some 2341 * ioctl() that is not currently implemented. 2342 * 2343 * Exception: SB_RDONLY is always applied to the entire file system. 2344 * 2345 * Unfortunately, it is possible to change a filesystems flags with it mounted 2346 * with files in use. This means that all of the inodes will not have their 2347 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2348 * flags, so these have to be checked separately. -- [email protected] 2349 */ 2350 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2351 2352 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2353 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2354 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2355 ((inode)->i_flags & S_SYNC)) 2356 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2357 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2358 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2359 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2360 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2361 2362 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2363 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2364 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2365 2366 #ifdef CONFIG_FS_POSIX_ACL 2367 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2368 #else 2369 #define IS_POSIXACL(inode) 0 2370 #endif 2371 2372 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2373 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2374 2375 #ifdef CONFIG_SWAP 2376 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2377 #else 2378 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2379 #endif 2380 2381 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2382 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2383 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2384 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2385 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2386 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2387 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2388 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2389 2390 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2391 (inode)->i_rdev == WHITEOUT_DEV) 2392 2393 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2394 struct inode *inode) 2395 { 2396 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2397 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2398 } 2399 2400 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2401 { 2402 *kiocb = (struct kiocb) { 2403 .ki_filp = filp, 2404 .ki_flags = filp->f_iocb_flags, 2405 .ki_ioprio = get_current_ioprio(), 2406 }; 2407 } 2408 2409 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2410 struct file *filp) 2411 { 2412 *kiocb = (struct kiocb) { 2413 .ki_filp = filp, 2414 .ki_flags = kiocb_src->ki_flags, 2415 .ki_ioprio = kiocb_src->ki_ioprio, 2416 .ki_pos = kiocb_src->ki_pos, 2417 }; 2418 } 2419 2420 /* 2421 * Inode state bits. Protected by inode->i_lock 2422 * 2423 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2424 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2425 * 2426 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2427 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2428 * various stages of removing an inode. 2429 * 2430 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2431 * 2432 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2433 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2434 * Timestamp updates are the usual cause. 2435 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2436 * these changes separately from I_DIRTY_SYNC so that we 2437 * don't have to write inode on fdatasync() when only 2438 * e.g. the timestamps have changed. 2439 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2440 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2441 * lazytime mount option is enabled. We keep track of this 2442 * separately from I_DIRTY_SYNC in order to implement 2443 * lazytime. This gets cleared if I_DIRTY_INODE 2444 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2445 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2446 * in place because writeback might already be in progress 2447 * and we don't want to lose the time update 2448 * I_NEW Serves as both a mutex and completion notification. 2449 * New inodes set I_NEW. If two processes both create 2450 * the same inode, one of them will release its inode and 2451 * wait for I_NEW to be released before returning. 2452 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2453 * also cause waiting on I_NEW, without I_NEW actually 2454 * being set. find_inode() uses this to prevent returning 2455 * nearly-dead inodes. 2456 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2457 * is zero. I_FREEING must be set when I_WILL_FREE is 2458 * cleared. 2459 * I_FREEING Set when inode is about to be freed but still has dirty 2460 * pages or buffers attached or the inode itself is still 2461 * dirty. 2462 * I_CLEAR Added by clear_inode(). In this state the inode is 2463 * clean and can be destroyed. Inode keeps I_FREEING. 2464 * 2465 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2466 * prohibited for many purposes. iget() must wait for 2467 * the inode to be completely released, then create it 2468 * anew. Other functions will just ignore such inodes, 2469 * if appropriate. I_NEW is used for waiting. 2470 * 2471 * I_SYNC Writeback of inode is running. The bit is set during 2472 * data writeback, and cleared with a wakeup on the bit 2473 * address once it is done. The bit is also used to pin 2474 * the inode in memory for flusher thread. 2475 * 2476 * I_REFERENCED Marks the inode as recently references on the LRU list. 2477 * 2478 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2479 * synchronize competing switching instances and to tell 2480 * wb stat updates to grab the i_pages lock. See 2481 * inode_switch_wbs_work_fn() for details. 2482 * 2483 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2484 * and work dirs among overlayfs mounts. 2485 * 2486 * I_CREATING New object's inode in the middle of setting up. 2487 * 2488 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2489 * 2490 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2491 * Used to detect that mark_inode_dirty() should not move 2492 * inode between dirty lists. 2493 * 2494 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2495 * 2496 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2497 * i_count. 2498 * 2499 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2500 * 2501 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2502 * upon. There's one free address left. 2503 */ 2504 #define __I_NEW 0 2505 #define I_NEW (1 << __I_NEW) 2506 #define __I_SYNC 1 2507 #define I_SYNC (1 << __I_SYNC) 2508 #define __I_LRU_ISOLATING 2 2509 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2510 2511 #define I_DIRTY_SYNC (1 << 3) 2512 #define I_DIRTY_DATASYNC (1 << 4) 2513 #define I_DIRTY_PAGES (1 << 5) 2514 #define I_WILL_FREE (1 << 6) 2515 #define I_FREEING (1 << 7) 2516 #define I_CLEAR (1 << 8) 2517 #define I_REFERENCED (1 << 9) 2518 #define I_LINKABLE (1 << 10) 2519 #define I_DIRTY_TIME (1 << 11) 2520 #define I_WB_SWITCH (1 << 12) 2521 #define I_OVL_INUSE (1 << 13) 2522 #define I_CREATING (1 << 14) 2523 #define I_DONTCACHE (1 << 15) 2524 #define I_SYNC_QUEUED (1 << 16) 2525 #define I_PINNING_NETFS_WB (1 << 17) 2526 2527 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2528 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2529 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2530 2531 extern void __mark_inode_dirty(struct inode *, int); 2532 static inline void mark_inode_dirty(struct inode *inode) 2533 { 2534 __mark_inode_dirty(inode, I_DIRTY); 2535 } 2536 2537 static inline void mark_inode_dirty_sync(struct inode *inode) 2538 { 2539 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2540 } 2541 2542 /* 2543 * Returns true if the given inode itself only has dirty timestamps (its pages 2544 * may still be dirty) and isn't currently being allocated or freed. 2545 * Filesystems should call this if when writing an inode when lazytime is 2546 * enabled, they want to opportunistically write the timestamps of other inodes 2547 * located very nearby on-disk, e.g. in the same inode block. This returns true 2548 * if the given inode is in need of such an opportunistic update. Requires 2549 * i_lock, or at least later re-checking under i_lock. 2550 */ 2551 static inline bool inode_is_dirtytime_only(struct inode *inode) 2552 { 2553 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2554 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2555 } 2556 2557 extern void inc_nlink(struct inode *inode); 2558 extern void drop_nlink(struct inode *inode); 2559 extern void clear_nlink(struct inode *inode); 2560 extern void set_nlink(struct inode *inode, unsigned int nlink); 2561 2562 static inline void inode_inc_link_count(struct inode *inode) 2563 { 2564 inc_nlink(inode); 2565 mark_inode_dirty(inode); 2566 } 2567 2568 static inline void inode_dec_link_count(struct inode *inode) 2569 { 2570 drop_nlink(inode); 2571 mark_inode_dirty(inode); 2572 } 2573 2574 enum file_time_flags { 2575 S_ATIME = 1, 2576 S_MTIME = 2, 2577 S_CTIME = 4, 2578 S_VERSION = 8, 2579 }; 2580 2581 extern bool atime_needs_update(const struct path *, struct inode *); 2582 extern void touch_atime(const struct path *); 2583 int inode_update_time(struct inode *inode, int flags); 2584 2585 static inline void file_accessed(struct file *file) 2586 { 2587 if (!(file->f_flags & O_NOATIME)) 2588 touch_atime(&file->f_path); 2589 } 2590 2591 extern int file_modified(struct file *file); 2592 int kiocb_modified(struct kiocb *iocb); 2593 2594 int sync_inode_metadata(struct inode *inode, int wait); 2595 2596 struct file_system_type { 2597 const char *name; 2598 int fs_flags; 2599 #define FS_REQUIRES_DEV 1 2600 #define FS_BINARY_MOUNTDATA 2 2601 #define FS_HAS_SUBTYPE 4 2602 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2603 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2604 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2605 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2606 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2607 int (*init_fs_context)(struct fs_context *); 2608 const struct fs_parameter_spec *parameters; 2609 struct dentry *(*mount) (struct file_system_type *, int, 2610 const char *, void *); 2611 void (*kill_sb) (struct super_block *); 2612 struct module *owner; 2613 struct file_system_type * next; 2614 struct hlist_head fs_supers; 2615 2616 struct lock_class_key s_lock_key; 2617 struct lock_class_key s_umount_key; 2618 struct lock_class_key s_vfs_rename_key; 2619 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2620 2621 struct lock_class_key i_lock_key; 2622 struct lock_class_key i_mutex_key; 2623 struct lock_class_key invalidate_lock_key; 2624 struct lock_class_key i_mutex_dir_key; 2625 }; 2626 2627 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2628 2629 /** 2630 * is_mgtime: is this inode using multigrain timestamps 2631 * @inode: inode to test for multigrain timestamps 2632 * 2633 * Return true if the inode uses multigrain timestamps, false otherwise. 2634 */ 2635 static inline bool is_mgtime(const struct inode *inode) 2636 { 2637 return inode->i_opflags & IOP_MGTIME; 2638 } 2639 2640 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2641 int flags, const char *dev_name, void *data, 2642 int (*fill_super)(struct super_block *, void *, int)); 2643 extern struct dentry *mount_single(struct file_system_type *fs_type, 2644 int flags, void *data, 2645 int (*fill_super)(struct super_block *, void *, int)); 2646 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2647 int flags, void *data, 2648 int (*fill_super)(struct super_block *, void *, int)); 2649 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2650 void retire_super(struct super_block *sb); 2651 void generic_shutdown_super(struct super_block *sb); 2652 void kill_block_super(struct super_block *sb); 2653 void kill_anon_super(struct super_block *sb); 2654 void kill_litter_super(struct super_block *sb); 2655 void deactivate_super(struct super_block *sb); 2656 void deactivate_locked_super(struct super_block *sb); 2657 int set_anon_super(struct super_block *s, void *data); 2658 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2659 int get_anon_bdev(dev_t *); 2660 void free_anon_bdev(dev_t); 2661 struct super_block *sget_fc(struct fs_context *fc, 2662 int (*test)(struct super_block *, struct fs_context *), 2663 int (*set)(struct super_block *, struct fs_context *)); 2664 struct super_block *sget(struct file_system_type *type, 2665 int (*test)(struct super_block *,void *), 2666 int (*set)(struct super_block *,void *), 2667 int flags, void *data); 2668 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2669 2670 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2671 #define fops_get(fops) ({ \ 2672 const struct file_operations *_fops = (fops); \ 2673 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2674 }) 2675 2676 #define fops_put(fops) ({ \ 2677 const struct file_operations *_fops = (fops); \ 2678 if (_fops) \ 2679 module_put((_fops)->owner); \ 2680 }) 2681 2682 /* 2683 * This one is to be used *ONLY* from ->open() instances. 2684 * fops must be non-NULL, pinned down *and* module dependencies 2685 * should be sufficient to pin the caller down as well. 2686 */ 2687 #define replace_fops(f, fops) \ 2688 do { \ 2689 struct file *__file = (f); \ 2690 fops_put(__file->f_op); \ 2691 BUG_ON(!(__file->f_op = (fops))); \ 2692 } while(0) 2693 2694 extern int register_filesystem(struct file_system_type *); 2695 extern int unregister_filesystem(struct file_system_type *); 2696 extern int vfs_statfs(const struct path *, struct kstatfs *); 2697 extern int user_statfs(const char __user *, struct kstatfs *); 2698 extern int fd_statfs(int, struct kstatfs *); 2699 int freeze_super(struct super_block *super, enum freeze_holder who); 2700 int thaw_super(struct super_block *super, enum freeze_holder who); 2701 extern __printf(2, 3) 2702 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2703 extern int super_setup_bdi(struct super_block *sb); 2704 2705 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2706 { 2707 if (WARN_ON(len > sizeof(sb->s_uuid))) 2708 len = sizeof(sb->s_uuid); 2709 sb->s_uuid_len = len; 2710 memcpy(&sb->s_uuid, uuid, len); 2711 } 2712 2713 /* set sb sysfs name based on sb->s_bdev */ 2714 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2715 { 2716 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2717 } 2718 2719 /* set sb sysfs name based on sb->s_uuid */ 2720 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2721 { 2722 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2723 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2724 } 2725 2726 /* set sb sysfs name based on sb->s_id */ 2727 static inline void super_set_sysfs_name_id(struct super_block *sb) 2728 { 2729 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2730 } 2731 2732 /* try to use something standard before you use this */ 2733 __printf(2, 3) 2734 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2735 { 2736 va_list args; 2737 2738 va_start(args, fmt); 2739 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2740 va_end(args); 2741 } 2742 2743 extern int current_umask(void); 2744 2745 extern void ihold(struct inode * inode); 2746 extern void iput(struct inode *); 2747 int inode_update_timestamps(struct inode *inode, int flags); 2748 int generic_update_time(struct inode *, int); 2749 2750 /* /sys/fs */ 2751 extern struct kobject *fs_kobj; 2752 2753 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2754 2755 /* fs/open.c */ 2756 struct audit_names; 2757 struct filename { 2758 const char *name; /* pointer to actual string */ 2759 const __user char *uptr; /* original userland pointer */ 2760 atomic_t refcnt; 2761 struct audit_names *aname; 2762 const char iname[]; 2763 }; 2764 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2765 2766 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2767 { 2768 return mnt_idmap(file->f_path.mnt); 2769 } 2770 2771 /** 2772 * is_idmapped_mnt - check whether a mount is mapped 2773 * @mnt: the mount to check 2774 * 2775 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2776 * 2777 * Return: true if mount is mapped, false if not. 2778 */ 2779 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2780 { 2781 return mnt_idmap(mnt) != &nop_mnt_idmap; 2782 } 2783 2784 extern long vfs_truncate(const struct path *, loff_t); 2785 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2786 unsigned int time_attrs, struct file *filp); 2787 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2788 loff_t len); 2789 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2790 umode_t mode); 2791 extern struct file *file_open_name(struct filename *, int, umode_t); 2792 extern struct file *filp_open(const char *, int, umode_t); 2793 extern struct file *file_open_root(const struct path *, 2794 const char *, int, umode_t); 2795 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2796 const char *name, int flags, umode_t mode) 2797 { 2798 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2799 name, flags, mode); 2800 } 2801 struct file *dentry_open(const struct path *path, int flags, 2802 const struct cred *creds); 2803 struct file *dentry_open_nonotify(const struct path *path, int flags, 2804 const struct cred *cred); 2805 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2806 const struct cred *cred); 2807 struct path *backing_file_user_path(struct file *f); 2808 2809 /* 2810 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2811 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2812 * filesystem. When the mapped file path and inode number are displayed to 2813 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2814 * path and inode number to display to the user, which is the path of the fd 2815 * that user has requested to map and the inode number that would be returned 2816 * by fstat() on that same fd. 2817 */ 2818 /* Get the path to display in /proc/<pid>/maps */ 2819 static inline const struct path *file_user_path(struct file *f) 2820 { 2821 if (unlikely(f->f_mode & FMODE_BACKING)) 2822 return backing_file_user_path(f); 2823 return &f->f_path; 2824 } 2825 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2826 static inline const struct inode *file_user_inode(struct file *f) 2827 { 2828 if (unlikely(f->f_mode & FMODE_BACKING)) 2829 return d_inode(backing_file_user_path(f)->dentry); 2830 return file_inode(f); 2831 } 2832 2833 static inline struct file *file_clone_open(struct file *file) 2834 { 2835 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2836 } 2837 extern int filp_close(struct file *, fl_owner_t id); 2838 2839 extern struct filename *getname_flags(const char __user *, int); 2840 extern struct filename *getname_uflags(const char __user *, int); 2841 extern struct filename *getname(const char __user *); 2842 extern struct filename *getname_kernel(const char *); 2843 extern struct filename *__getname_maybe_null(const char __user *); 2844 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2845 { 2846 if (!(flags & AT_EMPTY_PATH)) 2847 return getname(name); 2848 2849 if (!name) 2850 return NULL; 2851 return __getname_maybe_null(name); 2852 } 2853 extern void putname(struct filename *name); 2854 2855 extern int finish_open(struct file *file, struct dentry *dentry, 2856 int (*open)(struct inode *, struct file *)); 2857 extern int finish_no_open(struct file *file, struct dentry *dentry); 2858 2859 /* Helper for the simple case when original dentry is used */ 2860 static inline int finish_open_simple(struct file *file, int error) 2861 { 2862 if (error) 2863 return error; 2864 2865 return finish_open(file, file->f_path.dentry, NULL); 2866 } 2867 2868 /* fs/dcache.c */ 2869 extern void __init vfs_caches_init_early(void); 2870 extern void __init vfs_caches_init(void); 2871 2872 extern struct kmem_cache *names_cachep; 2873 2874 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2875 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2876 2877 extern struct super_block *blockdev_superblock; 2878 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2879 { 2880 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2881 } 2882 2883 void emergency_thaw_all(void); 2884 extern int sync_filesystem(struct super_block *); 2885 extern const struct file_operations def_blk_fops; 2886 extern const struct file_operations def_chr_fops; 2887 2888 /* fs/char_dev.c */ 2889 #define CHRDEV_MAJOR_MAX 512 2890 /* Marks the bottom of the first segment of free char majors */ 2891 #define CHRDEV_MAJOR_DYN_END 234 2892 /* Marks the top and bottom of the second segment of free char majors */ 2893 #define CHRDEV_MAJOR_DYN_EXT_START 511 2894 #define CHRDEV_MAJOR_DYN_EXT_END 384 2895 2896 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2897 extern int register_chrdev_region(dev_t, unsigned, const char *); 2898 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2899 unsigned int count, const char *name, 2900 const struct file_operations *fops); 2901 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2902 unsigned int count, const char *name); 2903 extern void unregister_chrdev_region(dev_t, unsigned); 2904 extern void chrdev_show(struct seq_file *,off_t); 2905 2906 static inline int register_chrdev(unsigned int major, const char *name, 2907 const struct file_operations *fops) 2908 { 2909 return __register_chrdev(major, 0, 256, name, fops); 2910 } 2911 2912 static inline void unregister_chrdev(unsigned int major, const char *name) 2913 { 2914 __unregister_chrdev(major, 0, 256, name); 2915 } 2916 2917 extern void init_special_inode(struct inode *, umode_t, dev_t); 2918 2919 /* Invalid inode operations -- fs/bad_inode.c */ 2920 extern void make_bad_inode(struct inode *); 2921 extern bool is_bad_inode(struct inode *); 2922 2923 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2924 loff_t lend); 2925 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2926 extern int __must_check file_write_and_wait_range(struct file *file, 2927 loff_t start, loff_t end); 2928 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 2929 loff_t end); 2930 2931 static inline int file_write_and_wait(struct file *file) 2932 { 2933 return file_write_and_wait_range(file, 0, LLONG_MAX); 2934 } 2935 2936 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2937 int datasync); 2938 extern int vfs_fsync(struct file *file, int datasync); 2939 2940 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2941 unsigned int flags); 2942 2943 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2944 { 2945 return (iocb->ki_flags & IOCB_DSYNC) || 2946 IS_SYNC(iocb->ki_filp->f_mapping->host); 2947 } 2948 2949 /* 2950 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2951 * to already be updated for the write, and will return either the amount 2952 * of bytes passed in, or an error if syncing the file failed. 2953 */ 2954 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2955 { 2956 if (iocb_is_dsync(iocb)) { 2957 int ret = vfs_fsync_range(iocb->ki_filp, 2958 iocb->ki_pos - count, iocb->ki_pos - 1, 2959 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2960 if (ret) 2961 return ret; 2962 } else if (iocb->ki_flags & IOCB_DONTCACHE) { 2963 struct address_space *mapping = iocb->ki_filp->f_mapping; 2964 2965 filemap_fdatawrite_range_kick(mapping, iocb->ki_pos, 2966 iocb->ki_pos + count); 2967 } 2968 2969 return count; 2970 } 2971 2972 extern void emergency_sync(void); 2973 extern void emergency_remount(void); 2974 2975 #ifdef CONFIG_BLOCK 2976 extern int bmap(struct inode *inode, sector_t *block); 2977 #else 2978 static inline int bmap(struct inode *inode, sector_t *block) 2979 { 2980 return -EINVAL; 2981 } 2982 #endif 2983 2984 int notify_change(struct mnt_idmap *, struct dentry *, 2985 struct iattr *, struct inode **); 2986 int inode_permission(struct mnt_idmap *, struct inode *, int); 2987 int generic_permission(struct mnt_idmap *, struct inode *, int); 2988 static inline int file_permission(struct file *file, int mask) 2989 { 2990 return inode_permission(file_mnt_idmap(file), 2991 file_inode(file), mask); 2992 } 2993 static inline int path_permission(const struct path *path, int mask) 2994 { 2995 return inode_permission(mnt_idmap(path->mnt), 2996 d_inode(path->dentry), mask); 2997 } 2998 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2999 struct inode *inode); 3000 3001 static inline bool execute_ok(struct inode *inode) 3002 { 3003 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 3004 } 3005 3006 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 3007 { 3008 return (inode->i_mode ^ mode) & S_IFMT; 3009 } 3010 3011 /** 3012 * file_start_write - get write access to a superblock for regular file io 3013 * @file: the file we want to write to 3014 * 3015 * This is a variant of sb_start_write() which is a noop on non-regualr file. 3016 * Should be matched with a call to file_end_write(). 3017 */ 3018 static inline void file_start_write(struct file *file) 3019 { 3020 if (!S_ISREG(file_inode(file)->i_mode)) 3021 return; 3022 sb_start_write(file_inode(file)->i_sb); 3023 } 3024 3025 static inline bool file_start_write_trylock(struct file *file) 3026 { 3027 if (!S_ISREG(file_inode(file)->i_mode)) 3028 return true; 3029 return sb_start_write_trylock(file_inode(file)->i_sb); 3030 } 3031 3032 /** 3033 * file_end_write - drop write access to a superblock of a regular file 3034 * @file: the file we wrote to 3035 * 3036 * Should be matched with a call to file_start_write(). 3037 */ 3038 static inline void file_end_write(struct file *file) 3039 { 3040 if (!S_ISREG(file_inode(file)->i_mode)) 3041 return; 3042 sb_end_write(file_inode(file)->i_sb); 3043 } 3044 3045 /** 3046 * kiocb_start_write - get write access to a superblock for async file io 3047 * @iocb: the io context we want to submit the write with 3048 * 3049 * This is a variant of sb_start_write() for async io submission. 3050 * Should be matched with a call to kiocb_end_write(). 3051 */ 3052 static inline void kiocb_start_write(struct kiocb *iocb) 3053 { 3054 struct inode *inode = file_inode(iocb->ki_filp); 3055 3056 sb_start_write(inode->i_sb); 3057 /* 3058 * Fool lockdep by telling it the lock got released so that it 3059 * doesn't complain about the held lock when we return to userspace. 3060 */ 3061 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3062 } 3063 3064 /** 3065 * kiocb_end_write - drop write access to a superblock after async file io 3066 * @iocb: the io context we sumbitted the write with 3067 * 3068 * Should be matched with a call to kiocb_start_write(). 3069 */ 3070 static inline void kiocb_end_write(struct kiocb *iocb) 3071 { 3072 struct inode *inode = file_inode(iocb->ki_filp); 3073 3074 /* 3075 * Tell lockdep we inherited freeze protection from submission thread. 3076 */ 3077 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3078 sb_end_write(inode->i_sb); 3079 } 3080 3081 /* 3082 * This is used for regular files where some users -- especially the 3083 * currently executed binary in a process, previously handled via 3084 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3085 * read-write shared) accesses. 3086 * 3087 * get_write_access() gets write permission for a file. 3088 * put_write_access() releases this write permission. 3089 * deny_write_access() denies write access to a file. 3090 * allow_write_access() re-enables write access to a file. 3091 * 3092 * The i_writecount field of an inode can have the following values: 3093 * 0: no write access, no denied write access 3094 * < 0: (-i_writecount) users that denied write access to the file. 3095 * > 0: (i_writecount) users that have write access to the file. 3096 * 3097 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3098 * except for the cases where we don't hold i_writecount yet. Then we need to 3099 * use {get,deny}_write_access() - these functions check the sign and refuse 3100 * to do the change if sign is wrong. 3101 */ 3102 static inline int get_write_access(struct inode *inode) 3103 { 3104 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3105 } 3106 static inline int deny_write_access(struct file *file) 3107 { 3108 struct inode *inode = file_inode(file); 3109 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3110 } 3111 static inline void put_write_access(struct inode * inode) 3112 { 3113 atomic_dec(&inode->i_writecount); 3114 } 3115 static inline void allow_write_access(struct file *file) 3116 { 3117 if (file) 3118 atomic_inc(&file_inode(file)->i_writecount); 3119 } 3120 3121 /* 3122 * Do not prevent write to executable file when watched by pre-content events. 3123 * 3124 * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at 3125 * the time of file open and remains constant for entire lifetime of the file, 3126 * so if pre-content watches are added post execution or removed before the end 3127 * of the execution, it will not cause i_writecount reference leak. 3128 */ 3129 static inline int exe_file_deny_write_access(struct file *exe_file) 3130 { 3131 if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 3132 return 0; 3133 return deny_write_access(exe_file); 3134 } 3135 static inline void exe_file_allow_write_access(struct file *exe_file) 3136 { 3137 if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 3138 return; 3139 allow_write_access(exe_file); 3140 } 3141 3142 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode) 3143 { 3144 file->f_mode &= ~FMODE_FSNOTIFY_MASK; 3145 file->f_mode |= mode; 3146 } 3147 3148 static inline bool inode_is_open_for_write(const struct inode *inode) 3149 { 3150 return atomic_read(&inode->i_writecount) > 0; 3151 } 3152 3153 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3154 static inline void i_readcount_dec(struct inode *inode) 3155 { 3156 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3157 } 3158 static inline void i_readcount_inc(struct inode *inode) 3159 { 3160 atomic_inc(&inode->i_readcount); 3161 } 3162 #else 3163 static inline void i_readcount_dec(struct inode *inode) 3164 { 3165 return; 3166 } 3167 static inline void i_readcount_inc(struct inode *inode) 3168 { 3169 return; 3170 } 3171 #endif 3172 extern int do_pipe_flags(int *, int); 3173 3174 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3175 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3176 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3177 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3178 extern struct file * open_exec(const char *); 3179 3180 /* fs/dcache.c -- generic fs support functions */ 3181 extern bool is_subdir(struct dentry *, struct dentry *); 3182 extern bool path_is_under(const struct path *, const struct path *); 3183 3184 extern char *file_path(struct file *, char *, int); 3185 3186 /** 3187 * is_dot_dotdot - returns true only if @name is "." or ".." 3188 * @name: file name to check 3189 * @len: length of file name, in bytes 3190 */ 3191 static inline bool is_dot_dotdot(const char *name, size_t len) 3192 { 3193 return len && unlikely(name[0] == '.') && 3194 (len == 1 || (len == 2 && name[1] == '.')); 3195 } 3196 3197 #include <linux/err.h> 3198 3199 /* needed for stackable file system support */ 3200 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3201 3202 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3203 3204 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3205 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3206 { 3207 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3208 } 3209 3210 extern void inode_init_once(struct inode *); 3211 extern void address_space_init_once(struct address_space *mapping); 3212 extern struct inode * igrab(struct inode *); 3213 extern ino_t iunique(struct super_block *, ino_t); 3214 extern int inode_needs_sync(struct inode *inode); 3215 extern int generic_delete_inode(struct inode *inode); 3216 static inline int generic_drop_inode(struct inode *inode) 3217 { 3218 return !inode->i_nlink || inode_unhashed(inode); 3219 } 3220 extern void d_mark_dontcache(struct inode *inode); 3221 3222 extern struct inode *ilookup5_nowait(struct super_block *sb, 3223 unsigned long hashval, int (*test)(struct inode *, void *), 3224 void *data); 3225 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3226 int (*test)(struct inode *, void *), void *data); 3227 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3228 3229 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3230 int (*test)(struct inode *, void *), 3231 int (*set)(struct inode *, void *), 3232 void *data); 3233 struct inode *iget5_locked(struct super_block *, unsigned long, 3234 int (*test)(struct inode *, void *), 3235 int (*set)(struct inode *, void *), void *); 3236 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3237 int (*test)(struct inode *, void *), 3238 int (*set)(struct inode *, void *), void *); 3239 extern struct inode * iget_locked(struct super_block *, unsigned long); 3240 extern struct inode *find_inode_nowait(struct super_block *, 3241 unsigned long, 3242 int (*match)(struct inode *, 3243 unsigned long, void *), 3244 void *data); 3245 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3246 int (*)(struct inode *, void *), void *); 3247 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3248 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3249 extern int insert_inode_locked(struct inode *); 3250 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3251 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3252 #else 3253 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3254 #endif 3255 extern void unlock_new_inode(struct inode *); 3256 extern void discard_new_inode(struct inode *); 3257 extern unsigned int get_next_ino(void); 3258 extern void evict_inodes(struct super_block *sb); 3259 void dump_mapping(const struct address_space *); 3260 3261 /* 3262 * Userspace may rely on the inode number being non-zero. For example, glibc 3263 * simply ignores files with zero i_ino in unlink() and other places. 3264 * 3265 * As an additional complication, if userspace was compiled with 3266 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3267 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3268 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3269 * better safe than sorry. 3270 */ 3271 static inline bool is_zero_ino(ino_t ino) 3272 { 3273 return (u32)ino == 0; 3274 } 3275 3276 /* 3277 * inode->i_lock must be held 3278 */ 3279 static inline void __iget(struct inode *inode) 3280 { 3281 atomic_inc(&inode->i_count); 3282 } 3283 3284 extern void iget_failed(struct inode *); 3285 extern void clear_inode(struct inode *); 3286 extern void __destroy_inode(struct inode *); 3287 extern struct inode *new_inode_pseudo(struct super_block *sb); 3288 extern struct inode *new_inode(struct super_block *sb); 3289 extern void free_inode_nonrcu(struct inode *inode); 3290 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3291 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3292 extern int file_remove_privs(struct file *); 3293 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3294 const struct inode *inode); 3295 3296 /* 3297 * This must be used for allocating filesystems specific inodes to set 3298 * up the inode reclaim context correctly. 3299 */ 3300 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3301 3302 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3303 static inline void insert_inode_hash(struct inode *inode) 3304 { 3305 __insert_inode_hash(inode, inode->i_ino); 3306 } 3307 3308 extern void __remove_inode_hash(struct inode *); 3309 static inline void remove_inode_hash(struct inode *inode) 3310 { 3311 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3312 __remove_inode_hash(inode); 3313 } 3314 3315 extern void inode_sb_list_add(struct inode *inode); 3316 extern void inode_add_lru(struct inode *inode); 3317 3318 extern int sb_set_blocksize(struct super_block *, int); 3319 extern int sb_min_blocksize(struct super_block *, int); 3320 3321 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3322 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3323 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3324 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3325 extern int generic_write_check_limits(struct file *file, loff_t pos, 3326 loff_t *count); 3327 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3328 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3329 ssize_t already_read); 3330 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3331 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3332 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3333 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3334 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3335 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3336 ssize_t direct_written, ssize_t buffered_written); 3337 3338 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3339 rwf_t flags); 3340 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3341 rwf_t flags); 3342 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3343 struct iov_iter *iter); 3344 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3345 struct iov_iter *iter); 3346 3347 /* fs/splice.c */ 3348 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3349 struct pipe_inode_info *pipe, 3350 size_t len, unsigned int flags); 3351 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3352 struct pipe_inode_info *pipe, 3353 size_t len, unsigned int flags); 3354 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3355 struct file *, loff_t *, size_t, unsigned int); 3356 3357 3358 extern void 3359 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3360 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3361 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3362 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3363 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3364 int whence, loff_t maxsize, loff_t eof); 3365 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3366 u64 *cookie); 3367 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3368 int whence, loff_t size); 3369 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3370 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3371 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3372 extern int generic_file_open(struct inode * inode, struct file * filp); 3373 extern int nonseekable_open(struct inode * inode, struct file * filp); 3374 extern int stream_open(struct inode * inode, struct file * filp); 3375 3376 #ifdef CONFIG_BLOCK 3377 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3378 loff_t file_offset); 3379 3380 enum { 3381 /* need locking between buffered and direct access */ 3382 DIO_LOCKING = 0x01, 3383 3384 /* filesystem does not support filling holes */ 3385 DIO_SKIP_HOLES = 0x02, 3386 }; 3387 3388 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3389 struct block_device *bdev, struct iov_iter *iter, 3390 get_block_t get_block, 3391 dio_iodone_t end_io, 3392 int flags); 3393 3394 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3395 struct inode *inode, 3396 struct iov_iter *iter, 3397 get_block_t get_block) 3398 { 3399 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3400 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3401 } 3402 #endif 3403 3404 bool inode_dio_finished(const struct inode *inode); 3405 void inode_dio_wait(struct inode *inode); 3406 void inode_dio_wait_interruptible(struct inode *inode); 3407 3408 /** 3409 * inode_dio_begin - signal start of a direct I/O requests 3410 * @inode: inode the direct I/O happens on 3411 * 3412 * This is called once we've finished processing a direct I/O request, 3413 * and is used to wake up callers waiting for direct I/O to be quiesced. 3414 */ 3415 static inline void inode_dio_begin(struct inode *inode) 3416 { 3417 atomic_inc(&inode->i_dio_count); 3418 } 3419 3420 /** 3421 * inode_dio_end - signal finish of a direct I/O requests 3422 * @inode: inode the direct I/O happens on 3423 * 3424 * This is called once we've finished processing a direct I/O request, 3425 * and is used to wake up callers waiting for direct I/O to be quiesced. 3426 */ 3427 static inline void inode_dio_end(struct inode *inode) 3428 { 3429 if (atomic_dec_and_test(&inode->i_dio_count)) 3430 wake_up_var(&inode->i_dio_count); 3431 } 3432 3433 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3434 unsigned int mask); 3435 3436 extern const struct file_operations generic_ro_fops; 3437 3438 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3439 3440 extern int readlink_copy(char __user *, int, const char *, int); 3441 extern int page_readlink(struct dentry *, char __user *, int); 3442 extern const char *page_get_link(struct dentry *, struct inode *, 3443 struct delayed_call *); 3444 extern void page_put_link(void *); 3445 extern int page_symlink(struct inode *inode, const char *symname, int len); 3446 extern const struct inode_operations page_symlink_inode_operations; 3447 extern void kfree_link(void *); 3448 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3449 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3450 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3451 void generic_fill_statx_atomic_writes(struct kstat *stat, 3452 unsigned int unit_min, 3453 unsigned int unit_max); 3454 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3455 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3456 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3457 void inode_add_bytes(struct inode *inode, loff_t bytes); 3458 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3459 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3460 static inline loff_t __inode_get_bytes(struct inode *inode) 3461 { 3462 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3463 } 3464 loff_t inode_get_bytes(struct inode *inode); 3465 void inode_set_bytes(struct inode *inode, loff_t bytes); 3466 const char *simple_get_link(struct dentry *, struct inode *, 3467 struct delayed_call *); 3468 extern const struct inode_operations simple_symlink_inode_operations; 3469 3470 extern int iterate_dir(struct file *, struct dir_context *); 3471 3472 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3473 int flags); 3474 int vfs_fstat(int fd, struct kstat *stat); 3475 3476 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3477 { 3478 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3479 } 3480 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3481 { 3482 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3483 } 3484 3485 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3486 extern int vfs_readlink(struct dentry *, char __user *, int); 3487 3488 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3489 extern void put_filesystem(struct file_system_type *fs); 3490 extern struct file_system_type *get_fs_type(const char *name); 3491 extern void drop_super(struct super_block *sb); 3492 extern void drop_super_exclusive(struct super_block *sb); 3493 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3494 extern void iterate_supers_type(struct file_system_type *, 3495 void (*)(struct super_block *, void *), void *); 3496 3497 extern int dcache_dir_open(struct inode *, struct file *); 3498 extern int dcache_dir_close(struct inode *, struct file *); 3499 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3500 extern int dcache_readdir(struct file *, struct dir_context *); 3501 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3502 struct iattr *); 3503 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3504 struct kstat *, u32, unsigned int); 3505 extern int simple_statfs(struct dentry *, struct kstatfs *); 3506 extern int simple_open(struct inode *inode, struct file *file); 3507 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3508 extern int simple_unlink(struct inode *, struct dentry *); 3509 extern int simple_rmdir(struct inode *, struct dentry *); 3510 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3511 struct inode *new_dir, struct dentry *new_dentry); 3512 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3513 struct inode *new_dir, struct dentry *new_dentry); 3514 extern int simple_rename(struct mnt_idmap *, struct inode *, 3515 struct dentry *, struct inode *, struct dentry *, 3516 unsigned int); 3517 extern void simple_recursive_removal(struct dentry *, 3518 void (*callback)(struct dentry *)); 3519 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3520 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3521 extern int simple_empty(struct dentry *); 3522 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3523 loff_t pos, unsigned len, 3524 struct folio **foliop, void **fsdata); 3525 extern const struct address_space_operations ram_aops; 3526 extern int always_delete_dentry(const struct dentry *); 3527 extern struct inode *alloc_anon_inode(struct super_block *); 3528 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3529 extern const struct dentry_operations simple_dentry_operations; 3530 3531 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3532 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3533 extern const struct file_operations simple_dir_operations; 3534 extern const struct inode_operations simple_dir_inode_operations; 3535 extern void make_empty_dir_inode(struct inode *inode); 3536 extern bool is_empty_dir_inode(struct inode *inode); 3537 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3538 struct dentry *d_alloc_name(struct dentry *, const char *); 3539 extern int simple_fill_super(struct super_block *, unsigned long, 3540 const struct tree_descr *); 3541 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3542 extern void simple_release_fs(struct vfsmount **mount, int *count); 3543 3544 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3545 loff_t *ppos, const void *from, size_t available); 3546 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3547 const void __user *from, size_t count); 3548 3549 struct offset_ctx { 3550 struct maple_tree mt; 3551 unsigned long next_offset; 3552 }; 3553 3554 void simple_offset_init(struct offset_ctx *octx); 3555 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3556 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3557 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3558 struct inode *new_dir, struct dentry *new_dentry); 3559 int simple_offset_rename_exchange(struct inode *old_dir, 3560 struct dentry *old_dentry, 3561 struct inode *new_dir, 3562 struct dentry *new_dentry); 3563 void simple_offset_destroy(struct offset_ctx *octx); 3564 3565 extern const struct file_operations simple_offset_dir_operations; 3566 3567 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3568 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3569 3570 extern int generic_check_addressable(unsigned, u64); 3571 3572 extern void generic_set_sb_d_ops(struct super_block *sb); 3573 extern int generic_ci_match(const struct inode *parent, 3574 const struct qstr *name, 3575 const struct qstr *folded_name, 3576 const u8 *de_name, u32 de_name_len); 3577 3578 #if IS_ENABLED(CONFIG_UNICODE) 3579 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3580 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3581 const char *str, const struct qstr *name); 3582 3583 /** 3584 * generic_ci_validate_strict_name - Check if a given name is suitable 3585 * for a directory 3586 * 3587 * This functions checks if the proposed filename is valid for the 3588 * parent directory. That means that only valid UTF-8 filenames will be 3589 * accepted for casefold directories from filesystems created with the 3590 * strict encoding flag. That also means that any name will be 3591 * accepted for directories that doesn't have casefold enabled, or 3592 * aren't being strict with the encoding. 3593 * 3594 * @dir: inode of the directory where the new file will be created 3595 * @name: name of the new file 3596 * 3597 * Return: 3598 * * True: if the filename is suitable for this directory. It can be 3599 * true if a given name is not suitable for a strict encoding 3600 * directory, but the directory being used isn't strict 3601 * * False if the filename isn't suitable for this directory. This only 3602 * happens when a directory is casefolded and the filesystem is strict 3603 * about its encoding. 3604 */ 3605 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3606 { 3607 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3608 return true; 3609 3610 /* 3611 * A casefold dir must have a encoding set, unless the filesystem 3612 * is corrupted 3613 */ 3614 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3615 return true; 3616 3617 return !utf8_validate(dir->i_sb->s_encoding, name); 3618 } 3619 #else 3620 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3621 { 3622 return true; 3623 } 3624 #endif 3625 3626 static inline bool sb_has_encoding(const struct super_block *sb) 3627 { 3628 #if IS_ENABLED(CONFIG_UNICODE) 3629 return !!sb->s_encoding; 3630 #else 3631 return false; 3632 #endif 3633 } 3634 3635 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3636 unsigned int ia_valid); 3637 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3638 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3639 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3640 const struct iattr *attr); 3641 3642 extern int file_update_time(struct file *file); 3643 3644 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3645 { 3646 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3647 } 3648 3649 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3650 { 3651 struct inode *inode; 3652 3653 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3654 return false; 3655 if (!vma_is_dax(vma)) 3656 return false; 3657 inode = file_inode(vma->vm_file); 3658 if (S_ISCHR(inode->i_mode)) 3659 return false; /* device-dax */ 3660 return true; 3661 } 3662 3663 static inline int iocb_flags(struct file *file) 3664 { 3665 int res = 0; 3666 if (file->f_flags & O_APPEND) 3667 res |= IOCB_APPEND; 3668 if (file->f_flags & O_DIRECT) 3669 res |= IOCB_DIRECT; 3670 if (file->f_flags & O_DSYNC) 3671 res |= IOCB_DSYNC; 3672 if (file->f_flags & __O_SYNC) 3673 res |= IOCB_SYNC; 3674 return res; 3675 } 3676 3677 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3678 int rw_type) 3679 { 3680 int kiocb_flags = 0; 3681 3682 /* make sure there's no overlap between RWF and private IOCB flags */ 3683 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3684 3685 if (!flags) 3686 return 0; 3687 if (unlikely(flags & ~RWF_SUPPORTED)) 3688 return -EOPNOTSUPP; 3689 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3690 return -EINVAL; 3691 3692 if (flags & RWF_NOWAIT) { 3693 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3694 return -EOPNOTSUPP; 3695 } 3696 if (flags & RWF_ATOMIC) { 3697 if (rw_type != WRITE) 3698 return -EOPNOTSUPP; 3699 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3700 return -EOPNOTSUPP; 3701 } 3702 if (flags & RWF_DONTCACHE) { 3703 /* file system must support it */ 3704 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3705 return -EOPNOTSUPP; 3706 /* DAX mappings not supported */ 3707 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3708 return -EOPNOTSUPP; 3709 } 3710 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3711 if (flags & RWF_SYNC) 3712 kiocb_flags |= IOCB_DSYNC; 3713 3714 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3715 if (IS_APPEND(file_inode(ki->ki_filp))) 3716 return -EPERM; 3717 ki->ki_flags &= ~IOCB_APPEND; 3718 } 3719 3720 ki->ki_flags |= kiocb_flags; 3721 return 0; 3722 } 3723 3724 /* Transaction based IO helpers */ 3725 3726 /* 3727 * An argresp is stored in an allocated page and holds the 3728 * size of the argument or response, along with its content 3729 */ 3730 struct simple_transaction_argresp { 3731 ssize_t size; 3732 char data[]; 3733 }; 3734 3735 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3736 3737 char *simple_transaction_get(struct file *file, const char __user *buf, 3738 size_t size); 3739 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3740 size_t size, loff_t *pos); 3741 int simple_transaction_release(struct inode *inode, struct file *file); 3742 3743 void simple_transaction_set(struct file *file, size_t n); 3744 3745 /* 3746 * simple attribute files 3747 * 3748 * These attributes behave similar to those in sysfs: 3749 * 3750 * Writing to an attribute immediately sets a value, an open file can be 3751 * written to multiple times. 3752 * 3753 * Reading from an attribute creates a buffer from the value that might get 3754 * read with multiple read calls. When the attribute has been read 3755 * completely, no further read calls are possible until the file is opened 3756 * again. 3757 * 3758 * All attributes contain a text representation of a numeric value 3759 * that are accessed with the get() and set() functions. 3760 */ 3761 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3762 static int __fops ## _open(struct inode *inode, struct file *file) \ 3763 { \ 3764 __simple_attr_check_format(__fmt, 0ull); \ 3765 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3766 } \ 3767 static const struct file_operations __fops = { \ 3768 .owner = THIS_MODULE, \ 3769 .open = __fops ## _open, \ 3770 .release = simple_attr_release, \ 3771 .read = simple_attr_read, \ 3772 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3773 .llseek = generic_file_llseek, \ 3774 } 3775 3776 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3777 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3778 3779 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3780 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3781 3782 static inline __printf(1, 2) 3783 void __simple_attr_check_format(const char *fmt, ...) 3784 { 3785 /* don't do anything, just let the compiler check the arguments; */ 3786 } 3787 3788 int simple_attr_open(struct inode *inode, struct file *file, 3789 int (*get)(void *, u64 *), int (*set)(void *, u64), 3790 const char *fmt); 3791 int simple_attr_release(struct inode *inode, struct file *file); 3792 ssize_t simple_attr_read(struct file *file, char __user *buf, 3793 size_t len, loff_t *ppos); 3794 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3795 size_t len, loff_t *ppos); 3796 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3797 size_t len, loff_t *ppos); 3798 3799 struct ctl_table; 3800 int __init list_bdev_fs_names(char *buf, size_t size); 3801 3802 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3803 3804 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3805 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE)) 3806 3807 static inline bool is_sxid(umode_t mode) 3808 { 3809 return mode & (S_ISUID | S_ISGID); 3810 } 3811 3812 static inline int check_sticky(struct mnt_idmap *idmap, 3813 struct inode *dir, struct inode *inode) 3814 { 3815 if (!(dir->i_mode & S_ISVTX)) 3816 return 0; 3817 3818 return __check_sticky(idmap, dir, inode); 3819 } 3820 3821 static inline void inode_has_no_xattr(struct inode *inode) 3822 { 3823 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3824 inode->i_flags |= S_NOSEC; 3825 } 3826 3827 static inline bool is_root_inode(struct inode *inode) 3828 { 3829 return inode == inode->i_sb->s_root->d_inode; 3830 } 3831 3832 static inline bool dir_emit(struct dir_context *ctx, 3833 const char *name, int namelen, 3834 u64 ino, unsigned type) 3835 { 3836 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3837 } 3838 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3839 { 3840 return ctx->actor(ctx, ".", 1, ctx->pos, 3841 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3842 } 3843 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3844 { 3845 return ctx->actor(ctx, "..", 2, ctx->pos, 3846 d_parent_ino(file->f_path.dentry), DT_DIR); 3847 } 3848 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3849 { 3850 if (ctx->pos == 0) { 3851 if (!dir_emit_dot(file, ctx)) 3852 return false; 3853 ctx->pos = 1; 3854 } 3855 if (ctx->pos == 1) { 3856 if (!dir_emit_dotdot(file, ctx)) 3857 return false; 3858 ctx->pos = 2; 3859 } 3860 return true; 3861 } 3862 static inline bool dir_relax(struct inode *inode) 3863 { 3864 inode_unlock(inode); 3865 inode_lock(inode); 3866 return !IS_DEADDIR(inode); 3867 } 3868 3869 static inline bool dir_relax_shared(struct inode *inode) 3870 { 3871 inode_unlock_shared(inode); 3872 inode_lock_shared(inode); 3873 return !IS_DEADDIR(inode); 3874 } 3875 3876 extern bool path_noexec(const struct path *path); 3877 extern void inode_nohighmem(struct inode *inode); 3878 3879 /* mm/fadvise.c */ 3880 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3881 int advice); 3882 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3883 int advice); 3884 3885 static inline bool vfs_empty_path(int dfd, const char __user *path) 3886 { 3887 char c; 3888 3889 if (dfd < 0) 3890 return false; 3891 3892 /* We now allow NULL to be used for empty path. */ 3893 if (!path) 3894 return true; 3895 3896 if (unlikely(get_user(c, path))) 3897 return false; 3898 3899 return !c; 3900 } 3901 3902 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3903 3904 #endif /* _LINUX_FS_H */ 3905