xref: /linux-6.15/include/linux/fs.h (revision 95101401)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48 #include <linux/file_ref.h>
49 #include <linux/unicode.h>
50 
51 #include <asm/byteorder.h>
52 #include <uapi/linux/fs.h>
53 
54 struct backing_dev_info;
55 struct bdi_writeback;
56 struct bio;
57 struct io_comp_batch;
58 struct export_operations;
59 struct fiemap_extent_info;
60 struct hd_geometry;
61 struct iovec;
62 struct kiocb;
63 struct kobject;
64 struct pipe_inode_info;
65 struct poll_table_struct;
66 struct kstatfs;
67 struct vm_area_struct;
68 struct vfsmount;
69 struct cred;
70 struct swap_info_struct;
71 struct seq_file;
72 struct workqueue_struct;
73 struct iov_iter;
74 struct fscrypt_inode_info;
75 struct fscrypt_operations;
76 struct fsverity_info;
77 struct fsverity_operations;
78 struct fsnotify_mark_connector;
79 struct fsnotify_sb_info;
80 struct fs_context;
81 struct fs_parameter_spec;
82 struct fileattr;
83 struct iomap_ops;
84 
85 extern void __init inode_init(void);
86 extern void __init inode_init_early(void);
87 extern void __init files_init(void);
88 extern void __init files_maxfiles_init(void);
89 
90 extern unsigned long get_max_files(void);
91 extern unsigned int sysctl_nr_open;
92 
93 typedef __kernel_rwf_t rwf_t;
94 
95 struct buffer_head;
96 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
97 			struct buffer_head *bh_result, int create);
98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
99 			ssize_t bytes, void *private);
100 
101 #define MAY_EXEC		0x00000001
102 #define MAY_WRITE		0x00000002
103 #define MAY_READ		0x00000004
104 #define MAY_APPEND		0x00000008
105 #define MAY_ACCESS		0x00000010
106 #define MAY_OPEN		0x00000020
107 #define MAY_CHDIR		0x00000040
108 /* called from RCU mode, don't block */
109 #define MAY_NOT_BLOCK		0x00000080
110 
111 /*
112  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
113  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
114  */
115 
116 /* file is open for reading */
117 #define FMODE_READ		((__force fmode_t)(1 << 0))
118 /* file is open for writing */
119 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
120 /* file is seekable */
121 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
122 /* file can be accessed using pread */
123 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
124 /* file can be accessed using pwrite */
125 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
126 /* File is opened for execution with sys_execve / sys_uselib */
127 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
128 /* File writes are restricted (block device specific) */
129 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
130 /* File supports atomic writes */
131 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
132 
133 /* FMODE_* bit 8 */
134 
135 /* 32bit hashes as llseek() offset (for directories) */
136 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
137 /* 64bit hashes as llseek() offset (for directories) */
138 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
139 
140 /*
141  * Don't update ctime and mtime.
142  *
143  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
144  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
145  */
146 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
147 
148 /* Expect random access pattern */
149 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
150 
151 /* FMODE_* bit 13 */
152 
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH		((__force fmode_t)(1 << 14))
155 
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
164 
165 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
167 
168 /* File is stream-like */
169 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
170 
171 /* File supports DIRECT IO */
172 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
173 
174 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
175 
176 /* File is embedded in backing_file object */
177 #define FMODE_BACKING		((__force fmode_t)(1 << 24))
178 
179 /*
180  * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be
181  * generated (see below)
182  */
183 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 25))
184 
185 /*
186  * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be
187  * generated (see below)
188  */
189 #define FMODE_NONOTIFY_PERM	((__force fmode_t)(1 << 26))
190 
191 /* File is capable of returning -EAGAIN if I/O will block */
192 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
193 
194 /* File represents mount that needs unmounting */
195 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
196 
197 /* File does not contribute to nr_files count */
198 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
199 
200 /*
201  * The two FMODE_NONOTIFY* define which fsnotify events should not be generated
202  * for a file. These are the possible values of (f->f_mode &
203  * FMODE_FSNOTIFY_MASK) and their meaning:
204  *
205  * FMODE_NONOTIFY - suppress all (incl. non-permission) events.
206  * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events.
207  * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only pre-content events.
208  */
209 #define FMODE_FSNOTIFY_MASK \
210 	(FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)
211 
212 #define FMODE_FSNOTIFY_NONE(mode) \
213 	((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY)
214 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
215 #define FMODE_FSNOTIFY_PERM(mode) \
216 	((mode & FMODE_FSNOTIFY_MASK) == 0 || \
217 	 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM))
218 #define FMODE_FSNOTIFY_HSM(mode) \
219 	((mode & FMODE_FSNOTIFY_MASK) == 0)
220 #else
221 #define FMODE_FSNOTIFY_PERM(mode)	0
222 #define FMODE_FSNOTIFY_HSM(mode)	0
223 #endif
224 
225 /*
226  * Attribute flags.  These should be or-ed together to figure out what
227  * has been changed!
228  */
229 #define ATTR_MODE	(1 << 0)
230 #define ATTR_UID	(1 << 1)
231 #define ATTR_GID	(1 << 2)
232 #define ATTR_SIZE	(1 << 3)
233 #define ATTR_ATIME	(1 << 4)
234 #define ATTR_MTIME	(1 << 5)
235 #define ATTR_CTIME	(1 << 6)
236 #define ATTR_ATIME_SET	(1 << 7)
237 #define ATTR_MTIME_SET	(1 << 8)
238 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
239 #define ATTR_KILL_SUID	(1 << 11)
240 #define ATTR_KILL_SGID	(1 << 12)
241 #define ATTR_FILE	(1 << 13)
242 #define ATTR_KILL_PRIV	(1 << 14)
243 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
244 #define ATTR_TIMES_SET	(1 << 16)
245 #define ATTR_TOUCH	(1 << 17)
246 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
247 
248 /*
249  * Whiteout is represented by a char device.  The following constants define the
250  * mode and device number to use.
251  */
252 #define WHITEOUT_MODE 0
253 #define WHITEOUT_DEV 0
254 
255 /*
256  * This is the Inode Attributes structure, used for notify_change().  It
257  * uses the above definitions as flags, to know which values have changed.
258  * Also, in this manner, a Filesystem can look at only the values it cares
259  * about.  Basically, these are the attributes that the VFS layer can
260  * request to change from the FS layer.
261  *
262  * Derek Atkins <[email protected]> 94-10-20
263  */
264 struct iattr {
265 	unsigned int	ia_valid;
266 	umode_t		ia_mode;
267 	/*
268 	 * The two anonymous unions wrap structures with the same member.
269 	 *
270 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
271 	 * are a dedicated type requiring the filesystem to use the dedicated
272 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
273 	 * have been ported.
274 	 *
275 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
276 	 * pass down the same value on idmapped mounts as they would on regular
277 	 * mounts.
278 	 */
279 	union {
280 		kuid_t		ia_uid;
281 		vfsuid_t	ia_vfsuid;
282 	};
283 	union {
284 		kgid_t		ia_gid;
285 		vfsgid_t	ia_vfsgid;
286 	};
287 	loff_t		ia_size;
288 	struct timespec64 ia_atime;
289 	struct timespec64 ia_mtime;
290 	struct timespec64 ia_ctime;
291 
292 	/*
293 	 * Not an attribute, but an auxiliary info for filesystems wanting to
294 	 * implement an ftruncate() like method.  NOTE: filesystem should
295 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
296 	 */
297 	struct file	*ia_file;
298 };
299 
300 /*
301  * Includes for diskquotas.
302  */
303 #include <linux/quota.h>
304 
305 /*
306  * Maximum number of layers of fs stack.  Needs to be limited to
307  * prevent kernel stack overflow
308  */
309 #define FILESYSTEM_MAX_STACK_DEPTH 2
310 
311 /**
312  * enum positive_aop_returns - aop return codes with specific semantics
313  *
314  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
315  * 			    completed, that the page is still locked, and
316  * 			    should be considered active.  The VM uses this hint
317  * 			    to return the page to the active list -- it won't
318  * 			    be a candidate for writeback again in the near
319  * 			    future.  Other callers must be careful to unlock
320  * 			    the page if they get this return.  Returned by
321  * 			    writepage();
322  *
323  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
324  *  			unlocked it and the page might have been truncated.
325  *  			The caller should back up to acquiring a new page and
326  *  			trying again.  The aop will be taking reasonable
327  *  			precautions not to livelock.  If the caller held a page
328  *  			reference, it should drop it before retrying.  Returned
329  *  			by read_folio().
330  *
331  * address_space_operation functions return these large constants to indicate
332  * special semantics to the caller.  These are much larger than the bytes in a
333  * page to allow for functions that return the number of bytes operated on in a
334  * given page.
335  */
336 
337 enum positive_aop_returns {
338 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
339 	AOP_TRUNCATED_PAGE	= 0x80001,
340 };
341 
342 /*
343  * oh the beauties of C type declarations.
344  */
345 struct page;
346 struct address_space;
347 struct writeback_control;
348 struct readahead_control;
349 
350 /* Match RWF_* bits to IOCB bits */
351 #define IOCB_HIPRI		(__force int) RWF_HIPRI
352 #define IOCB_DSYNC		(__force int) RWF_DSYNC
353 #define IOCB_SYNC		(__force int) RWF_SYNC
354 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
355 #define IOCB_APPEND		(__force int) RWF_APPEND
356 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
357 #define IOCB_DONTCACHE		(__force int) RWF_DONTCACHE
358 
359 /* non-RWF related bits - start at 16 */
360 #define IOCB_EVENTFD		(1 << 16)
361 #define IOCB_DIRECT		(1 << 17)
362 #define IOCB_WRITE		(1 << 18)
363 /* iocb->ki_waitq is valid */
364 #define IOCB_WAITQ		(1 << 19)
365 #define IOCB_NOIO		(1 << 20)
366 /* can use bio alloc cache */
367 #define IOCB_ALLOC_CACHE	(1 << 21)
368 /*
369  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
370  * iocb completion can be passed back to the owner for execution from a safe
371  * context rather than needing to be punted through a workqueue. If this
372  * flag is set, the bio completion handling may set iocb->dio_complete to a
373  * handler function and iocb->private to context information for that handler.
374  * The issuer should call the handler with that context information from task
375  * context to complete the processing of the iocb. Note that while this
376  * provides a task context for the dio_complete() callback, it should only be
377  * used on the completion side for non-IO generating completions. It's fine to
378  * call blocking functions from this callback, but they should not wait for
379  * unrelated IO (like cache flushing, new IO generation, etc).
380  */
381 #define IOCB_DIO_CALLER_COMP	(1 << 22)
382 /* kiocb is a read or write operation submitted by fs/aio.c. */
383 #define IOCB_AIO_RW		(1 << 23)
384 #define IOCB_HAS_METADATA	(1 << 24)
385 
386 /* for use in trace events */
387 #define TRACE_IOCB_STRINGS \
388 	{ IOCB_HIPRI,		"HIPRI" }, \
389 	{ IOCB_DSYNC,		"DSYNC" }, \
390 	{ IOCB_SYNC,		"SYNC" }, \
391 	{ IOCB_NOWAIT,		"NOWAIT" }, \
392 	{ IOCB_APPEND,		"APPEND" }, \
393 	{ IOCB_ATOMIC,		"ATOMIC" }, \
394 	{ IOCB_DONTCACHE,	"DONTCACHE" }, \
395 	{ IOCB_EVENTFD,		"EVENTFD"}, \
396 	{ IOCB_DIRECT,		"DIRECT" }, \
397 	{ IOCB_WRITE,		"WRITE" }, \
398 	{ IOCB_WAITQ,		"WAITQ" }, \
399 	{ IOCB_NOIO,		"NOIO" }, \
400 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
401 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
402 
403 struct kiocb {
404 	struct file		*ki_filp;
405 	loff_t			ki_pos;
406 	void (*ki_complete)(struct kiocb *iocb, long ret);
407 	void			*private;
408 	int			ki_flags;
409 	u16			ki_ioprio; /* See linux/ioprio.h */
410 	union {
411 		/*
412 		 * Only used for async buffered reads, where it denotes the
413 		 * page waitqueue associated with completing the read. Valid
414 		 * IFF IOCB_WAITQ is set.
415 		 */
416 		struct wait_page_queue	*ki_waitq;
417 		/*
418 		 * Can be used for O_DIRECT IO, where the completion handling
419 		 * is punted back to the issuer of the IO. May only be set
420 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
421 		 * must then check for presence of this handler when ki_complete
422 		 * is invoked. The data passed in to this handler must be
423 		 * assigned to ->private when dio_complete is assigned.
424 		 */
425 		ssize_t (*dio_complete)(void *data);
426 	};
427 };
428 
429 static inline bool is_sync_kiocb(struct kiocb *kiocb)
430 {
431 	return kiocb->ki_complete == NULL;
432 }
433 
434 struct address_space_operations {
435 	int (*writepage)(struct page *page, struct writeback_control *wbc);
436 	int (*read_folio)(struct file *, struct folio *);
437 
438 	/* Write back some dirty pages from this mapping. */
439 	int (*writepages)(struct address_space *, struct writeback_control *);
440 
441 	/* Mark a folio dirty.  Return true if this dirtied it */
442 	bool (*dirty_folio)(struct address_space *, struct folio *);
443 
444 	void (*readahead)(struct readahead_control *);
445 
446 	int (*write_begin)(struct file *, struct address_space *mapping,
447 				loff_t pos, unsigned len,
448 				struct folio **foliop, void **fsdata);
449 	int (*write_end)(struct file *, struct address_space *mapping,
450 				loff_t pos, unsigned len, unsigned copied,
451 				struct folio *folio, void *fsdata);
452 
453 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
454 	sector_t (*bmap)(struct address_space *, sector_t);
455 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
456 	bool (*release_folio)(struct folio *, gfp_t);
457 	void (*free_folio)(struct folio *folio);
458 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
459 	/*
460 	 * migrate the contents of a folio to the specified target. If
461 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
462 	 */
463 	int (*migrate_folio)(struct address_space *, struct folio *dst,
464 			struct folio *src, enum migrate_mode);
465 	int (*launder_folio)(struct folio *);
466 	bool (*is_partially_uptodate) (struct folio *, size_t from,
467 			size_t count);
468 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
469 	int (*error_remove_folio)(struct address_space *, struct folio *);
470 
471 	/* swapfile support */
472 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
473 				sector_t *span);
474 	void (*swap_deactivate)(struct file *file);
475 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
476 };
477 
478 extern const struct address_space_operations empty_aops;
479 
480 /**
481  * struct address_space - Contents of a cacheable, mappable object.
482  * @host: Owner, either the inode or the block_device.
483  * @i_pages: Cached pages.
484  * @invalidate_lock: Guards coherency between page cache contents and
485  *   file offset->disk block mappings in the filesystem during invalidates.
486  *   It is also used to block modification of page cache contents through
487  *   memory mappings.
488  * @gfp_mask: Memory allocation flags to use for allocating pages.
489  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
490  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
491  * @i_mmap: Tree of private and shared mappings.
492  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
493  * @nrpages: Number of page entries, protected by the i_pages lock.
494  * @writeback_index: Writeback starts here.
495  * @a_ops: Methods.
496  * @flags: Error bits and flags (AS_*).
497  * @wb_err: The most recent error which has occurred.
498  * @i_private_lock: For use by the owner of the address_space.
499  * @i_private_list: For use by the owner of the address_space.
500  * @i_private_data: For use by the owner of the address_space.
501  */
502 struct address_space {
503 	struct inode		*host;
504 	struct xarray		i_pages;
505 	struct rw_semaphore	invalidate_lock;
506 	gfp_t			gfp_mask;
507 	atomic_t		i_mmap_writable;
508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
509 	/* number of thp, only for non-shmem files */
510 	atomic_t		nr_thps;
511 #endif
512 	struct rb_root_cached	i_mmap;
513 	unsigned long		nrpages;
514 	pgoff_t			writeback_index;
515 	const struct address_space_operations *a_ops;
516 	unsigned long		flags;
517 	errseq_t		wb_err;
518 	spinlock_t		i_private_lock;
519 	struct list_head	i_private_list;
520 	struct rw_semaphore	i_mmap_rwsem;
521 	void *			i_private_data;
522 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
523 	/*
524 	 * On most architectures that alignment is already the case; but
525 	 * must be enforced here for CRIS, to let the least significant bit
526 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
527 	 */
528 
529 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
530 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
531 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
532 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
533 
534 /*
535  * Returns true if any of the pages in the mapping are marked with the tag.
536  */
537 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
538 {
539 	return xa_marked(&mapping->i_pages, tag);
540 }
541 
542 static inline void i_mmap_lock_write(struct address_space *mapping)
543 {
544 	down_write(&mapping->i_mmap_rwsem);
545 }
546 
547 static inline int i_mmap_trylock_write(struct address_space *mapping)
548 {
549 	return down_write_trylock(&mapping->i_mmap_rwsem);
550 }
551 
552 static inline void i_mmap_unlock_write(struct address_space *mapping)
553 {
554 	up_write(&mapping->i_mmap_rwsem);
555 }
556 
557 static inline int i_mmap_trylock_read(struct address_space *mapping)
558 {
559 	return down_read_trylock(&mapping->i_mmap_rwsem);
560 }
561 
562 static inline void i_mmap_lock_read(struct address_space *mapping)
563 {
564 	down_read(&mapping->i_mmap_rwsem);
565 }
566 
567 static inline void i_mmap_unlock_read(struct address_space *mapping)
568 {
569 	up_read(&mapping->i_mmap_rwsem);
570 }
571 
572 static inline void i_mmap_assert_locked(struct address_space *mapping)
573 {
574 	lockdep_assert_held(&mapping->i_mmap_rwsem);
575 }
576 
577 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
578 {
579 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
580 }
581 
582 /*
583  * Might pages of this file be mapped into userspace?
584  */
585 static inline int mapping_mapped(struct address_space *mapping)
586 {
587 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
588 }
589 
590 /*
591  * Might pages of this file have been modified in userspace?
592  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
593  * marks vma as VM_SHARED if it is shared, and the file was opened for
594  * writing i.e. vma may be mprotected writable even if now readonly.
595  *
596  * If i_mmap_writable is negative, no new writable mappings are allowed. You
597  * can only deny writable mappings, if none exists right now.
598  */
599 static inline int mapping_writably_mapped(struct address_space *mapping)
600 {
601 	return atomic_read(&mapping->i_mmap_writable) > 0;
602 }
603 
604 static inline int mapping_map_writable(struct address_space *mapping)
605 {
606 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
607 		0 : -EPERM;
608 }
609 
610 static inline void mapping_unmap_writable(struct address_space *mapping)
611 {
612 	atomic_dec(&mapping->i_mmap_writable);
613 }
614 
615 static inline int mapping_deny_writable(struct address_space *mapping)
616 {
617 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
618 		0 : -EBUSY;
619 }
620 
621 static inline void mapping_allow_writable(struct address_space *mapping)
622 {
623 	atomic_inc(&mapping->i_mmap_writable);
624 }
625 
626 /*
627  * Use sequence counter to get consistent i_size on 32-bit processors.
628  */
629 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
630 #include <linux/seqlock.h>
631 #define __NEED_I_SIZE_ORDERED
632 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
633 #else
634 #define i_size_ordered_init(inode) do { } while (0)
635 #endif
636 
637 struct posix_acl;
638 #define ACL_NOT_CACHED ((void *)(-1))
639 /*
640  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
641  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
642  * mode with the LOOKUP_RCU flag.
643  */
644 #define ACL_DONT_CACHE ((void *)(-3))
645 
646 static inline struct posix_acl *
647 uncached_acl_sentinel(struct task_struct *task)
648 {
649 	return (void *)task + 1;
650 }
651 
652 static inline bool
653 is_uncached_acl(struct posix_acl *acl)
654 {
655 	return (long)acl & 1;
656 }
657 
658 #define IOP_FASTPERM	0x0001
659 #define IOP_LOOKUP	0x0002
660 #define IOP_NOFOLLOW	0x0004
661 #define IOP_XATTR	0x0008
662 #define IOP_DEFAULT_READLINK	0x0010
663 #define IOP_MGTIME	0x0020
664 #define IOP_CACHED_LINK	0x0040
665 
666 /*
667  * Keep mostly read-only and often accessed (especially for
668  * the RCU path lookup and 'stat' data) fields at the beginning
669  * of the 'struct inode'
670  */
671 struct inode {
672 	umode_t			i_mode;
673 	unsigned short		i_opflags;
674 	kuid_t			i_uid;
675 	kgid_t			i_gid;
676 	unsigned int		i_flags;
677 
678 #ifdef CONFIG_FS_POSIX_ACL
679 	struct posix_acl	*i_acl;
680 	struct posix_acl	*i_default_acl;
681 #endif
682 
683 	const struct inode_operations	*i_op;
684 	struct super_block	*i_sb;
685 	struct address_space	*i_mapping;
686 
687 #ifdef CONFIG_SECURITY
688 	void			*i_security;
689 #endif
690 
691 	/* Stat data, not accessed from path walking */
692 	unsigned long		i_ino;
693 	/*
694 	 * Filesystems may only read i_nlink directly.  They shall use the
695 	 * following functions for modification:
696 	 *
697 	 *    (set|clear|inc|drop)_nlink
698 	 *    inode_(inc|dec)_link_count
699 	 */
700 	union {
701 		const unsigned int i_nlink;
702 		unsigned int __i_nlink;
703 	};
704 	dev_t			i_rdev;
705 	loff_t			i_size;
706 	time64_t		i_atime_sec;
707 	time64_t		i_mtime_sec;
708 	time64_t		i_ctime_sec;
709 	u32			i_atime_nsec;
710 	u32			i_mtime_nsec;
711 	u32			i_ctime_nsec;
712 	u32			i_generation;
713 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
714 	unsigned short          i_bytes;
715 	u8			i_blkbits;
716 	enum rw_hint		i_write_hint;
717 	blkcnt_t		i_blocks;
718 
719 #ifdef __NEED_I_SIZE_ORDERED
720 	seqcount_t		i_size_seqcount;
721 #endif
722 
723 	/* Misc */
724 	u32			i_state;
725 	/* 32-bit hole */
726 	struct rw_semaphore	i_rwsem;
727 
728 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
729 	unsigned long		dirtied_time_when;
730 
731 	struct hlist_node	i_hash;
732 	struct list_head	i_io_list;	/* backing dev IO list */
733 #ifdef CONFIG_CGROUP_WRITEBACK
734 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
735 
736 	/* foreign inode detection, see wbc_detach_inode() */
737 	int			i_wb_frn_winner;
738 	u16			i_wb_frn_avg_time;
739 	u16			i_wb_frn_history;
740 #endif
741 	struct list_head	i_lru;		/* inode LRU list */
742 	struct list_head	i_sb_list;
743 	struct list_head	i_wb_list;	/* backing dev writeback list */
744 	union {
745 		struct hlist_head	i_dentry;
746 		struct rcu_head		i_rcu;
747 	};
748 	atomic64_t		i_version;
749 	atomic64_t		i_sequence; /* see futex */
750 	atomic_t		i_count;
751 	atomic_t		i_dio_count;
752 	atomic_t		i_writecount;
753 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
754 	atomic_t		i_readcount; /* struct files open RO */
755 #endif
756 	union {
757 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
758 		void (*free_inode)(struct inode *);
759 	};
760 	struct file_lock_context	*i_flctx;
761 	struct address_space	i_data;
762 	union {
763 		struct list_head	i_devices;
764 		int			i_linklen;
765 	};
766 	union {
767 		struct pipe_inode_info	*i_pipe;
768 		struct cdev		*i_cdev;
769 		char			*i_link;
770 		unsigned		i_dir_seq;
771 	};
772 
773 
774 #ifdef CONFIG_FSNOTIFY
775 	__u32			i_fsnotify_mask; /* all events this inode cares about */
776 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
777 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
778 #endif
779 
780 #ifdef CONFIG_FS_ENCRYPTION
781 	struct fscrypt_inode_info	*i_crypt_info;
782 #endif
783 
784 #ifdef CONFIG_FS_VERITY
785 	struct fsverity_info	*i_verity_info;
786 #endif
787 
788 	void			*i_private; /* fs or device private pointer */
789 } __randomize_layout;
790 
791 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
792 {
793 	inode->i_link = link;
794 	inode->i_linklen = linklen;
795 	inode->i_opflags |= IOP_CACHED_LINK;
796 }
797 
798 /*
799  * Get bit address from inode->i_state to use with wait_var_event()
800  * infrastructre.
801  */
802 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
803 
804 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
805 					    struct inode *inode, u32 bit);
806 
807 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
808 {
809 	/* Caller is responsible for correct memory barriers. */
810 	wake_up_var(inode_state_wait_address(inode, bit));
811 }
812 
813 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
814 
815 static inline unsigned int i_blocksize(const struct inode *node)
816 {
817 	return (1 << node->i_blkbits);
818 }
819 
820 static inline int inode_unhashed(struct inode *inode)
821 {
822 	return hlist_unhashed(&inode->i_hash);
823 }
824 
825 /*
826  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
827  * want special inodes in the fileset inode space, we make them
828  * appear hashed, but do not put on any lists.  hlist_del()
829  * will work fine and require no locking.
830  */
831 static inline void inode_fake_hash(struct inode *inode)
832 {
833 	hlist_add_fake(&inode->i_hash);
834 }
835 
836 /*
837  * inode->i_mutex nesting subclasses for the lock validator:
838  *
839  * 0: the object of the current VFS operation
840  * 1: parent
841  * 2: child/target
842  * 3: xattr
843  * 4: second non-directory
844  * 5: second parent (when locking independent directories in rename)
845  *
846  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
847  * non-directories at once.
848  *
849  * The locking order between these classes is
850  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
851  */
852 enum inode_i_mutex_lock_class
853 {
854 	I_MUTEX_NORMAL,
855 	I_MUTEX_PARENT,
856 	I_MUTEX_CHILD,
857 	I_MUTEX_XATTR,
858 	I_MUTEX_NONDIR2,
859 	I_MUTEX_PARENT2,
860 };
861 
862 static inline void inode_lock(struct inode *inode)
863 {
864 	down_write(&inode->i_rwsem);
865 }
866 
867 static inline void inode_unlock(struct inode *inode)
868 {
869 	up_write(&inode->i_rwsem);
870 }
871 
872 static inline void inode_lock_shared(struct inode *inode)
873 {
874 	down_read(&inode->i_rwsem);
875 }
876 
877 static inline void inode_unlock_shared(struct inode *inode)
878 {
879 	up_read(&inode->i_rwsem);
880 }
881 
882 static inline int inode_trylock(struct inode *inode)
883 {
884 	return down_write_trylock(&inode->i_rwsem);
885 }
886 
887 static inline int inode_trylock_shared(struct inode *inode)
888 {
889 	return down_read_trylock(&inode->i_rwsem);
890 }
891 
892 static inline int inode_is_locked(struct inode *inode)
893 {
894 	return rwsem_is_locked(&inode->i_rwsem);
895 }
896 
897 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
898 {
899 	down_write_nested(&inode->i_rwsem, subclass);
900 }
901 
902 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
903 {
904 	down_read_nested(&inode->i_rwsem, subclass);
905 }
906 
907 static inline void filemap_invalidate_lock(struct address_space *mapping)
908 {
909 	down_write(&mapping->invalidate_lock);
910 }
911 
912 static inline void filemap_invalidate_unlock(struct address_space *mapping)
913 {
914 	up_write(&mapping->invalidate_lock);
915 }
916 
917 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
918 {
919 	down_read(&mapping->invalidate_lock);
920 }
921 
922 static inline int filemap_invalidate_trylock_shared(
923 					struct address_space *mapping)
924 {
925 	return down_read_trylock(&mapping->invalidate_lock);
926 }
927 
928 static inline void filemap_invalidate_unlock_shared(
929 					struct address_space *mapping)
930 {
931 	up_read(&mapping->invalidate_lock);
932 }
933 
934 void lock_two_nondirectories(struct inode *, struct inode*);
935 void unlock_two_nondirectories(struct inode *, struct inode*);
936 
937 void filemap_invalidate_lock_two(struct address_space *mapping1,
938 				 struct address_space *mapping2);
939 void filemap_invalidate_unlock_two(struct address_space *mapping1,
940 				   struct address_space *mapping2);
941 
942 
943 /*
944  * NOTE: in a 32bit arch with a preemptable kernel and
945  * an UP compile the i_size_read/write must be atomic
946  * with respect to the local cpu (unlike with preempt disabled),
947  * but they don't need to be atomic with respect to other cpus like in
948  * true SMP (so they need either to either locally disable irq around
949  * the read or for example on x86 they can be still implemented as a
950  * cmpxchg8b without the need of the lock prefix). For SMP compiles
951  * and 64bit archs it makes no difference if preempt is enabled or not.
952  */
953 static inline loff_t i_size_read(const struct inode *inode)
954 {
955 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
956 	loff_t i_size;
957 	unsigned int seq;
958 
959 	do {
960 		seq = read_seqcount_begin(&inode->i_size_seqcount);
961 		i_size = inode->i_size;
962 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
963 	return i_size;
964 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
965 	loff_t i_size;
966 
967 	preempt_disable();
968 	i_size = inode->i_size;
969 	preempt_enable();
970 	return i_size;
971 #else
972 	/* Pairs with smp_store_release() in i_size_write() */
973 	return smp_load_acquire(&inode->i_size);
974 #endif
975 }
976 
977 /*
978  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
979  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
980  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
981  */
982 static inline void i_size_write(struct inode *inode, loff_t i_size)
983 {
984 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
985 	preempt_disable();
986 	write_seqcount_begin(&inode->i_size_seqcount);
987 	inode->i_size = i_size;
988 	write_seqcount_end(&inode->i_size_seqcount);
989 	preempt_enable();
990 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
991 	preempt_disable();
992 	inode->i_size = i_size;
993 	preempt_enable();
994 #else
995 	/*
996 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
997 	 * changes related to inode size (such as page contents) are
998 	 * visible before we see the changed inode size.
999 	 */
1000 	smp_store_release(&inode->i_size, i_size);
1001 #endif
1002 }
1003 
1004 static inline unsigned iminor(const struct inode *inode)
1005 {
1006 	return MINOR(inode->i_rdev);
1007 }
1008 
1009 static inline unsigned imajor(const struct inode *inode)
1010 {
1011 	return MAJOR(inode->i_rdev);
1012 }
1013 
1014 struct fown_struct {
1015 	struct file *file;	/* backpointer for security modules */
1016 	rwlock_t lock;          /* protects pid, uid, euid fields */
1017 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
1018 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
1019 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
1020 	int signum;		/* posix.1b rt signal to be delivered on IO */
1021 };
1022 
1023 /**
1024  * struct file_ra_state - Track a file's readahead state.
1025  * @start: Where the most recent readahead started.
1026  * @size: Number of pages read in the most recent readahead.
1027  * @async_size: Numer of pages that were/are not needed immediately
1028  *      and so were/are genuinely "ahead".  Start next readahead when
1029  *      the first of these pages is accessed.
1030  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
1031  * @mmap_miss: How many mmap accesses missed in the page cache.
1032  * @prev_pos: The last byte in the most recent read request.
1033  *
1034  * When this structure is passed to ->readahead(), the "most recent"
1035  * readahead means the current readahead.
1036  */
1037 struct file_ra_state {
1038 	pgoff_t start;
1039 	unsigned int size;
1040 	unsigned int async_size;
1041 	unsigned int ra_pages;
1042 	unsigned int mmap_miss;
1043 	loff_t prev_pos;
1044 };
1045 
1046 /*
1047  * Check if @index falls in the readahead windows.
1048  */
1049 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1050 {
1051 	return (index >= ra->start &&
1052 		index <  ra->start + ra->size);
1053 }
1054 
1055 /**
1056  * struct file - Represents a file
1057  * @f_ref: reference count
1058  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1059  * @f_mode: FMODE_* flags often used in hotpaths
1060  * @f_op: file operations
1061  * @f_mapping: Contents of a cacheable, mappable object.
1062  * @private_data: filesystem or driver specific data
1063  * @f_inode: cached inode
1064  * @f_flags: file flags
1065  * @f_iocb_flags: iocb flags
1066  * @f_cred: stashed credentials of creator/opener
1067  * @f_path: path of the file
1068  * @f_pos_lock: lock protecting file position
1069  * @f_pipe: specific to pipes
1070  * @f_pos: file position
1071  * @f_security: LSM security context of this file
1072  * @f_owner: file owner
1073  * @f_wb_err: writeback error
1074  * @f_sb_err: per sb writeback errors
1075  * @f_ep: link of all epoll hooks for this file
1076  * @f_task_work: task work entry point
1077  * @f_llist: work queue entrypoint
1078  * @f_ra: file's readahead state
1079  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1080  */
1081 struct file {
1082 	file_ref_t			f_ref;
1083 	spinlock_t			f_lock;
1084 	fmode_t				f_mode;
1085 	const struct file_operations	*f_op;
1086 	struct address_space		*f_mapping;
1087 	void				*private_data;
1088 	struct inode			*f_inode;
1089 	unsigned int			f_flags;
1090 	unsigned int			f_iocb_flags;
1091 	const struct cred		*f_cred;
1092 	/* --- cacheline 1 boundary (64 bytes) --- */
1093 	struct path			f_path;
1094 	union {
1095 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1096 		struct mutex		f_pos_lock;
1097 		/* pipes */
1098 		u64			f_pipe;
1099 	};
1100 	loff_t				f_pos;
1101 #ifdef CONFIG_SECURITY
1102 	void				*f_security;
1103 #endif
1104 	/* --- cacheline 2 boundary (128 bytes) --- */
1105 	struct fown_struct		*f_owner;
1106 	errseq_t			f_wb_err;
1107 	errseq_t			f_sb_err;
1108 #ifdef CONFIG_EPOLL
1109 	struct hlist_head		*f_ep;
1110 #endif
1111 	union {
1112 		struct callback_head	f_task_work;
1113 		struct llist_node	f_llist;
1114 		struct file_ra_state	f_ra;
1115 		freeptr_t		f_freeptr;
1116 	};
1117 	/* --- cacheline 3 boundary (192 bytes) --- */
1118 } __randomize_layout
1119   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1120 
1121 struct file_handle {
1122 	__u32 handle_bytes;
1123 	int handle_type;
1124 	/* file identifier */
1125 	unsigned char f_handle[] __counted_by(handle_bytes);
1126 };
1127 
1128 static inline struct file *get_file(struct file *f)
1129 {
1130 	file_ref_inc(&f->f_ref);
1131 	return f;
1132 }
1133 
1134 struct file *get_file_rcu(struct file __rcu **f);
1135 struct file *get_file_active(struct file **f);
1136 
1137 #define file_count(f)	file_ref_read(&(f)->f_ref)
1138 
1139 #define	MAX_NON_LFS	((1UL<<31) - 1)
1140 
1141 /* Page cache limit. The filesystems should put that into their s_maxbytes
1142    limits, otherwise bad things can happen in VM. */
1143 #if BITS_PER_LONG==32
1144 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1145 #elif BITS_PER_LONG==64
1146 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1147 #endif
1148 
1149 /* legacy typedef, should eventually be removed */
1150 typedef void *fl_owner_t;
1151 
1152 struct file_lock;
1153 struct file_lease;
1154 
1155 /* The following constant reflects the upper bound of the file/locking space */
1156 #ifndef OFFSET_MAX
1157 #define OFFSET_MAX	type_max(loff_t)
1158 #define OFFT_OFFSET_MAX	type_max(off_t)
1159 #endif
1160 
1161 int file_f_owner_allocate(struct file *file);
1162 static inline struct fown_struct *file_f_owner(const struct file *file)
1163 {
1164 	return READ_ONCE(file->f_owner);
1165 }
1166 
1167 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1168 
1169 static inline struct inode *file_inode(const struct file *f)
1170 {
1171 	return f->f_inode;
1172 }
1173 
1174 /*
1175  * file_dentry() is a relic from the days that overlayfs was using files with a
1176  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1177  * In those days, file_dentry() was needed to get the underlying fs dentry that
1178  * matches f_inode.
1179  * Files with "fake" path should not exist nowadays, so use an assertion to make
1180  * sure that file_dentry() was not papering over filesystem bugs.
1181  */
1182 static inline struct dentry *file_dentry(const struct file *file)
1183 {
1184 	struct dentry *dentry = file->f_path.dentry;
1185 
1186 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1187 	return dentry;
1188 }
1189 
1190 struct fasync_struct {
1191 	rwlock_t		fa_lock;
1192 	int			magic;
1193 	int			fa_fd;
1194 	struct fasync_struct	*fa_next; /* singly linked list */
1195 	struct file		*fa_file;
1196 	struct rcu_head		fa_rcu;
1197 };
1198 
1199 #define FASYNC_MAGIC 0x4601
1200 
1201 /* SMP safe fasync helpers: */
1202 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1203 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1204 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1205 extern struct fasync_struct *fasync_alloc(void);
1206 extern void fasync_free(struct fasync_struct *);
1207 
1208 /* can be called from interrupts */
1209 extern void kill_fasync(struct fasync_struct **, int, int);
1210 
1211 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1212 extern int f_setown(struct file *filp, int who, int force);
1213 extern void f_delown(struct file *filp);
1214 extern pid_t f_getown(struct file *filp);
1215 extern int send_sigurg(struct file *file);
1216 
1217 /*
1218  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1219  * represented in both.
1220  */
1221 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1222 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1223 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1224 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1225 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1226 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1227 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1228 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1229 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1230 #define SB_SILENT       BIT(15)
1231 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1232 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1233 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1234 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1235 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1236 
1237 /* These sb flags are internal to the kernel */
1238 #define SB_DEAD         BIT(21)
1239 #define SB_DYING        BIT(24)
1240 #define SB_SUBMOUNT     BIT(26)
1241 #define SB_FORCE        BIT(27)
1242 #define SB_NOSEC        BIT(28)
1243 #define SB_BORN         BIT(29)
1244 #define SB_ACTIVE       BIT(30)
1245 #define SB_NOUSER       BIT(31)
1246 
1247 /* These flags relate to encoding and casefolding */
1248 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1249 
1250 #define sb_has_strict_encoding(sb) \
1251 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1252 
1253 /*
1254  *	Umount options
1255  */
1256 
1257 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1258 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1259 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1260 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1261 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1262 
1263 /* sb->s_iflags */
1264 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1265 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1266 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1267 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1268 
1269 /* sb->s_iflags to limit user namespace mounts */
1270 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1271 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1272 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1273 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1274 
1275 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1276 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1277 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1278 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1279 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1280 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1281 #define SB_I_ALLOW_HSM	0x00004000	/* Allow HSM events on this superblock */
1282 
1283 /* Possible states of 'frozen' field */
1284 enum {
1285 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1286 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1287 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1288 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1289 					 * internal threads if needed) */
1290 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1291 };
1292 
1293 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1294 
1295 struct sb_writers {
1296 	unsigned short			frozen;		/* Is sb frozen? */
1297 	int				freeze_kcount;	/* How many kernel freeze requests? */
1298 	int				freeze_ucount;	/* How many userspace freeze requests? */
1299 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1300 };
1301 
1302 struct super_block {
1303 	struct list_head	s_list;		/* Keep this first */
1304 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1305 	unsigned char		s_blocksize_bits;
1306 	unsigned long		s_blocksize;
1307 	loff_t			s_maxbytes;	/* Max file size */
1308 	struct file_system_type	*s_type;
1309 	const struct super_operations	*s_op;
1310 	const struct dquot_operations	*dq_op;
1311 	const struct quotactl_ops	*s_qcop;
1312 	const struct export_operations *s_export_op;
1313 	unsigned long		s_flags;
1314 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1315 	unsigned long		s_magic;
1316 	struct dentry		*s_root;
1317 	struct rw_semaphore	s_umount;
1318 	int			s_count;
1319 	atomic_t		s_active;
1320 #ifdef CONFIG_SECURITY
1321 	void                    *s_security;
1322 #endif
1323 	const struct xattr_handler * const *s_xattr;
1324 #ifdef CONFIG_FS_ENCRYPTION
1325 	const struct fscrypt_operations	*s_cop;
1326 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1327 #endif
1328 #ifdef CONFIG_FS_VERITY
1329 	const struct fsverity_operations *s_vop;
1330 #endif
1331 #if IS_ENABLED(CONFIG_UNICODE)
1332 	struct unicode_map *s_encoding;
1333 	__u16 s_encoding_flags;
1334 #endif
1335 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1336 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1337 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1338 	struct file		*s_bdev_file;
1339 	struct backing_dev_info *s_bdi;
1340 	struct mtd_info		*s_mtd;
1341 	struct hlist_node	s_instances;
1342 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1343 	struct quota_info	s_dquot;	/* Diskquota specific options */
1344 
1345 	struct sb_writers	s_writers;
1346 
1347 	/*
1348 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1349 	 * s_fsnotify_info together for cache efficiency. They are frequently
1350 	 * accessed and rarely modified.
1351 	 */
1352 	void			*s_fs_info;	/* Filesystem private info */
1353 
1354 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1355 	u32			s_time_gran;
1356 	/* Time limits for c/m/atime in seconds */
1357 	time64_t		   s_time_min;
1358 	time64_t		   s_time_max;
1359 #ifdef CONFIG_FSNOTIFY
1360 	u32			s_fsnotify_mask;
1361 	struct fsnotify_sb_info	*s_fsnotify_info;
1362 #endif
1363 
1364 	/*
1365 	 * q: why are s_id and s_sysfs_name not the same? both are human
1366 	 * readable strings that identify the filesystem
1367 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1368 	 * and we want to when a device starts out as single device (s_id is dev
1369 	 * name) but then a device is hot added and we have to switch to
1370 	 * identifying it by UUID
1371 	 * but s_sysfs_name is a handle for programmatic access, and can't
1372 	 * change at runtime
1373 	 */
1374 	char			s_id[32];	/* Informational name */
1375 	uuid_t			s_uuid;		/* UUID */
1376 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1377 
1378 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1379 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1380 
1381 	unsigned int		s_max_links;
1382 
1383 	/*
1384 	 * The next field is for VFS *only*. No filesystems have any business
1385 	 * even looking at it. You had been warned.
1386 	 */
1387 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1388 
1389 	/*
1390 	 * Filesystem subtype.  If non-empty the filesystem type field
1391 	 * in /proc/mounts will be "type.subtype"
1392 	 */
1393 	const char *s_subtype;
1394 
1395 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1396 
1397 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1398 
1399 	/* Number of inodes with nlink == 0 but still referenced */
1400 	atomic_long_t s_remove_count;
1401 
1402 	/* Read-only state of the superblock is being changed */
1403 	int s_readonly_remount;
1404 
1405 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1406 	errseq_t s_wb_err;
1407 
1408 	/* AIO completions deferred from interrupt context */
1409 	struct workqueue_struct *s_dio_done_wq;
1410 	struct hlist_head s_pins;
1411 
1412 	/*
1413 	 * Owning user namespace and default context in which to
1414 	 * interpret filesystem uids, gids, quotas, device nodes,
1415 	 * xattrs and security labels.
1416 	 */
1417 	struct user_namespace *s_user_ns;
1418 
1419 	/*
1420 	 * The list_lru structure is essentially just a pointer to a table
1421 	 * of per-node lru lists, each of which has its own spinlock.
1422 	 * There is no need to put them into separate cachelines.
1423 	 */
1424 	struct list_lru		s_dentry_lru;
1425 	struct list_lru		s_inode_lru;
1426 	struct rcu_head		rcu;
1427 	struct work_struct	destroy_work;
1428 
1429 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1430 
1431 	/*
1432 	 * Indicates how deep in a filesystem stack this SB is
1433 	 */
1434 	int s_stack_depth;
1435 
1436 	/* s_inode_list_lock protects s_inodes */
1437 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1438 	struct list_head	s_inodes;	/* all inodes */
1439 
1440 	spinlock_t		s_inode_wblist_lock;
1441 	struct list_head	s_inodes_wb;	/* writeback inodes */
1442 } __randomize_layout;
1443 
1444 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1445 {
1446 	return inode->i_sb->s_user_ns;
1447 }
1448 
1449 /* Helper functions so that in most cases filesystems will
1450  * not need to deal directly with kuid_t and kgid_t and can
1451  * instead deal with the raw numeric values that are stored
1452  * in the filesystem.
1453  */
1454 static inline uid_t i_uid_read(const struct inode *inode)
1455 {
1456 	return from_kuid(i_user_ns(inode), inode->i_uid);
1457 }
1458 
1459 static inline gid_t i_gid_read(const struct inode *inode)
1460 {
1461 	return from_kgid(i_user_ns(inode), inode->i_gid);
1462 }
1463 
1464 static inline void i_uid_write(struct inode *inode, uid_t uid)
1465 {
1466 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1467 }
1468 
1469 static inline void i_gid_write(struct inode *inode, gid_t gid)
1470 {
1471 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1472 }
1473 
1474 /**
1475  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1476  * @idmap: idmap of the mount the inode was found from
1477  * @inode: inode to map
1478  *
1479  * Return: whe inode's i_uid mapped down according to @idmap.
1480  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1481  */
1482 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1483 					 const struct inode *inode)
1484 {
1485 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1486 }
1487 
1488 /**
1489  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1490  * @idmap: idmap of the mount the inode was found from
1491  * @attr: the new attributes of @inode
1492  * @inode: the inode to update
1493  *
1494  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1495  * mounts into account if the filesystem supports it.
1496  *
1497  * Return: true if @inode's i_uid field needs to be updated, false if not.
1498  */
1499 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1500 				      const struct iattr *attr,
1501 				      const struct inode *inode)
1502 {
1503 	return ((attr->ia_valid & ATTR_UID) &&
1504 		!vfsuid_eq(attr->ia_vfsuid,
1505 			   i_uid_into_vfsuid(idmap, inode)));
1506 }
1507 
1508 /**
1509  * i_uid_update - update @inode's i_uid field
1510  * @idmap: idmap of the mount the inode was found from
1511  * @attr: the new attributes of @inode
1512  * @inode: the inode to update
1513  *
1514  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1515  * mount into the filesystem kuid.
1516  */
1517 static inline void i_uid_update(struct mnt_idmap *idmap,
1518 				const struct iattr *attr,
1519 				struct inode *inode)
1520 {
1521 	if (attr->ia_valid & ATTR_UID)
1522 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1523 					   attr->ia_vfsuid);
1524 }
1525 
1526 /**
1527  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1528  * @idmap: idmap of the mount the inode was found from
1529  * @inode: inode to map
1530  *
1531  * Return: the inode's i_gid mapped down according to @idmap.
1532  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1533  */
1534 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1535 					 const struct inode *inode)
1536 {
1537 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1538 }
1539 
1540 /**
1541  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1542  * @idmap: idmap of the mount the inode was found from
1543  * @attr: the new attributes of @inode
1544  * @inode: the inode to update
1545  *
1546  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1547  * mounts into account if the filesystem supports it.
1548  *
1549  * Return: true if @inode's i_gid field needs to be updated, false if not.
1550  */
1551 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1552 				      const struct iattr *attr,
1553 				      const struct inode *inode)
1554 {
1555 	return ((attr->ia_valid & ATTR_GID) &&
1556 		!vfsgid_eq(attr->ia_vfsgid,
1557 			   i_gid_into_vfsgid(idmap, inode)));
1558 }
1559 
1560 /**
1561  * i_gid_update - update @inode's i_gid field
1562  * @idmap: idmap of the mount the inode was found from
1563  * @attr: the new attributes of @inode
1564  * @inode: the inode to update
1565  *
1566  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1567  * mount into the filesystem kgid.
1568  */
1569 static inline void i_gid_update(struct mnt_idmap *idmap,
1570 				const struct iattr *attr,
1571 				struct inode *inode)
1572 {
1573 	if (attr->ia_valid & ATTR_GID)
1574 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1575 					   attr->ia_vfsgid);
1576 }
1577 
1578 /**
1579  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1580  * @inode: inode to initialize
1581  * @idmap: idmap of the mount the inode was found from
1582  *
1583  * Initialize the i_uid field of @inode. If the inode was found/created via
1584  * an idmapped mount map the caller's fsuid according to @idmap.
1585  */
1586 static inline void inode_fsuid_set(struct inode *inode,
1587 				   struct mnt_idmap *idmap)
1588 {
1589 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1590 }
1591 
1592 /**
1593  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1594  * @inode: inode to initialize
1595  * @idmap: idmap of the mount the inode was found from
1596  *
1597  * Initialize the i_gid field of @inode. If the inode was found/created via
1598  * an idmapped mount map the caller's fsgid according to @idmap.
1599  */
1600 static inline void inode_fsgid_set(struct inode *inode,
1601 				   struct mnt_idmap *idmap)
1602 {
1603 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1604 }
1605 
1606 /**
1607  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1608  * @sb: the superblock we want a mapping in
1609  * @idmap: idmap of the relevant mount
1610  *
1611  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1612  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1613  * the caller's fsuid and fsgid according to the @idmap first.
1614  *
1615  * Return: true if fsuid and fsgid is mapped, false if not.
1616  */
1617 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1618 					struct mnt_idmap *idmap)
1619 {
1620 	struct user_namespace *fs_userns = sb->s_user_ns;
1621 	kuid_t kuid;
1622 	kgid_t kgid;
1623 
1624 	kuid = mapped_fsuid(idmap, fs_userns);
1625 	if (!uid_valid(kuid))
1626 		return false;
1627 	kgid = mapped_fsgid(idmap, fs_userns);
1628 	if (!gid_valid(kgid))
1629 		return false;
1630 	return kuid_has_mapping(fs_userns, kuid) &&
1631 	       kgid_has_mapping(fs_userns, kgid);
1632 }
1633 
1634 struct timespec64 current_time(struct inode *inode);
1635 struct timespec64 inode_set_ctime_current(struct inode *inode);
1636 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1637 					struct timespec64 update);
1638 
1639 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1640 {
1641 	return inode->i_atime_sec;
1642 }
1643 
1644 static inline long inode_get_atime_nsec(const struct inode *inode)
1645 {
1646 	return inode->i_atime_nsec;
1647 }
1648 
1649 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1650 {
1651 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1652 				 .tv_nsec = inode_get_atime_nsec(inode) };
1653 
1654 	return ts;
1655 }
1656 
1657 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1658 						      struct timespec64 ts)
1659 {
1660 	inode->i_atime_sec = ts.tv_sec;
1661 	inode->i_atime_nsec = ts.tv_nsec;
1662 	return ts;
1663 }
1664 
1665 static inline struct timespec64 inode_set_atime(struct inode *inode,
1666 						time64_t sec, long nsec)
1667 {
1668 	struct timespec64 ts = { .tv_sec  = sec,
1669 				 .tv_nsec = nsec };
1670 
1671 	return inode_set_atime_to_ts(inode, ts);
1672 }
1673 
1674 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1675 {
1676 	return inode->i_mtime_sec;
1677 }
1678 
1679 static inline long inode_get_mtime_nsec(const struct inode *inode)
1680 {
1681 	return inode->i_mtime_nsec;
1682 }
1683 
1684 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1685 {
1686 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1687 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1688 	return ts;
1689 }
1690 
1691 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1692 						      struct timespec64 ts)
1693 {
1694 	inode->i_mtime_sec = ts.tv_sec;
1695 	inode->i_mtime_nsec = ts.tv_nsec;
1696 	return ts;
1697 }
1698 
1699 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1700 						time64_t sec, long nsec)
1701 {
1702 	struct timespec64 ts = { .tv_sec  = sec,
1703 				 .tv_nsec = nsec };
1704 	return inode_set_mtime_to_ts(inode, ts);
1705 }
1706 
1707 /*
1708  * Multigrain timestamps
1709  *
1710  * Conditionally use fine-grained ctime and mtime timestamps when there
1711  * are users actively observing them via getattr. The primary use-case
1712  * for this is NFS clients that use the ctime to distinguish between
1713  * different states of the file, and that are often fooled by multiple
1714  * operations that occur in the same coarse-grained timer tick.
1715  */
1716 #define I_CTIME_QUERIED		((u32)BIT(31))
1717 
1718 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1719 {
1720 	return inode->i_ctime_sec;
1721 }
1722 
1723 static inline long inode_get_ctime_nsec(const struct inode *inode)
1724 {
1725 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1726 }
1727 
1728 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1729 {
1730 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1731 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1732 
1733 	return ts;
1734 }
1735 
1736 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1737 
1738 /**
1739  * inode_set_ctime - set the ctime in the inode
1740  * @inode: inode in which to set the ctime
1741  * @sec: tv_sec value to set
1742  * @nsec: tv_nsec value to set
1743  *
1744  * Set the ctime in @inode to { @sec, @nsec }
1745  */
1746 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1747 						time64_t sec, long nsec)
1748 {
1749 	struct timespec64 ts = { .tv_sec  = sec,
1750 				 .tv_nsec = nsec };
1751 
1752 	return inode_set_ctime_to_ts(inode, ts);
1753 }
1754 
1755 struct timespec64 simple_inode_init_ts(struct inode *inode);
1756 
1757 /*
1758  * Snapshotting support.
1759  */
1760 
1761 /*
1762  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1763  * instead.
1764  */
1765 static inline void __sb_end_write(struct super_block *sb, int level)
1766 {
1767 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1768 }
1769 
1770 static inline void __sb_start_write(struct super_block *sb, int level)
1771 {
1772 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1773 }
1774 
1775 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1776 {
1777 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1778 }
1779 
1780 #define __sb_writers_acquired(sb, lev)	\
1781 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1782 #define __sb_writers_release(sb, lev)	\
1783 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1784 
1785 /**
1786  * __sb_write_started - check if sb freeze level is held
1787  * @sb: the super we write to
1788  * @level: the freeze level
1789  *
1790  * * > 0 - sb freeze level is held
1791  * *   0 - sb freeze level is not held
1792  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1793  */
1794 static inline int __sb_write_started(const struct super_block *sb, int level)
1795 {
1796 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1797 }
1798 
1799 /**
1800  * sb_write_started - check if SB_FREEZE_WRITE is held
1801  * @sb: the super we write to
1802  *
1803  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1804  */
1805 static inline bool sb_write_started(const struct super_block *sb)
1806 {
1807 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1808 }
1809 
1810 /**
1811  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1812  * @sb: the super we write to
1813  *
1814  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1815  */
1816 static inline bool sb_write_not_started(const struct super_block *sb)
1817 {
1818 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1819 }
1820 
1821 /**
1822  * file_write_started - check if SB_FREEZE_WRITE is held
1823  * @file: the file we write to
1824  *
1825  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1826  * May be false positive with !S_ISREG, because file_start_write() has
1827  * no effect on !S_ISREG.
1828  */
1829 static inline bool file_write_started(const struct file *file)
1830 {
1831 	if (!S_ISREG(file_inode(file)->i_mode))
1832 		return true;
1833 	return sb_write_started(file_inode(file)->i_sb);
1834 }
1835 
1836 /**
1837  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1838  * @file: the file we write to
1839  *
1840  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1841  * May be false positive with !S_ISREG, because file_start_write() has
1842  * no effect on !S_ISREG.
1843  */
1844 static inline bool file_write_not_started(const struct file *file)
1845 {
1846 	if (!S_ISREG(file_inode(file)->i_mode))
1847 		return true;
1848 	return sb_write_not_started(file_inode(file)->i_sb);
1849 }
1850 
1851 /**
1852  * sb_end_write - drop write access to a superblock
1853  * @sb: the super we wrote to
1854  *
1855  * Decrement number of writers to the filesystem. Wake up possible waiters
1856  * wanting to freeze the filesystem.
1857  */
1858 static inline void sb_end_write(struct super_block *sb)
1859 {
1860 	__sb_end_write(sb, SB_FREEZE_WRITE);
1861 }
1862 
1863 /**
1864  * sb_end_pagefault - drop write access to a superblock from a page fault
1865  * @sb: the super we wrote to
1866  *
1867  * Decrement number of processes handling write page fault to the filesystem.
1868  * Wake up possible waiters wanting to freeze the filesystem.
1869  */
1870 static inline void sb_end_pagefault(struct super_block *sb)
1871 {
1872 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1873 }
1874 
1875 /**
1876  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1877  * @sb: the super we wrote to
1878  *
1879  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1880  * waiters wanting to freeze the filesystem.
1881  */
1882 static inline void sb_end_intwrite(struct super_block *sb)
1883 {
1884 	__sb_end_write(sb, SB_FREEZE_FS);
1885 }
1886 
1887 /**
1888  * sb_start_write - get write access to a superblock
1889  * @sb: the super we write to
1890  *
1891  * When a process wants to write data or metadata to a file system (i.e. dirty
1892  * a page or an inode), it should embed the operation in a sb_start_write() -
1893  * sb_end_write() pair to get exclusion against file system freezing. This
1894  * function increments number of writers preventing freezing. If the file
1895  * system is already frozen, the function waits until the file system is
1896  * thawed.
1897  *
1898  * Since freeze protection behaves as a lock, users have to preserve
1899  * ordering of freeze protection and other filesystem locks. Generally,
1900  * freeze protection should be the outermost lock. In particular, we have:
1901  *
1902  * sb_start_write
1903  *   -> i_mutex			(write path, truncate, directory ops, ...)
1904  *   -> s_umount		(freeze_super, thaw_super)
1905  */
1906 static inline void sb_start_write(struct super_block *sb)
1907 {
1908 	__sb_start_write(sb, SB_FREEZE_WRITE);
1909 }
1910 
1911 static inline bool sb_start_write_trylock(struct super_block *sb)
1912 {
1913 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1914 }
1915 
1916 /**
1917  * sb_start_pagefault - get write access to a superblock from a page fault
1918  * @sb: the super we write to
1919  *
1920  * When a process starts handling write page fault, it should embed the
1921  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1922  * exclusion against file system freezing. This is needed since the page fault
1923  * is going to dirty a page. This function increments number of running page
1924  * faults preventing freezing. If the file system is already frozen, the
1925  * function waits until the file system is thawed.
1926  *
1927  * Since page fault freeze protection behaves as a lock, users have to preserve
1928  * ordering of freeze protection and other filesystem locks. It is advised to
1929  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1930  * handling code implies lock dependency:
1931  *
1932  * mmap_lock
1933  *   -> sb_start_pagefault
1934  */
1935 static inline void sb_start_pagefault(struct super_block *sb)
1936 {
1937 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1938 }
1939 
1940 /**
1941  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1942  * @sb: the super we write to
1943  *
1944  * This is the third level of protection against filesystem freezing. It is
1945  * free for use by a filesystem. The only requirement is that it must rank
1946  * below sb_start_pagefault.
1947  *
1948  * For example filesystem can call sb_start_intwrite() when starting a
1949  * transaction which somewhat eases handling of freezing for internal sources
1950  * of filesystem changes (internal fs threads, discarding preallocation on file
1951  * close, etc.).
1952  */
1953 static inline void sb_start_intwrite(struct super_block *sb)
1954 {
1955 	__sb_start_write(sb, SB_FREEZE_FS);
1956 }
1957 
1958 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1959 {
1960 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1961 }
1962 
1963 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1964 			    const struct inode *inode);
1965 
1966 /*
1967  * VFS helper functions..
1968  */
1969 int vfs_create(struct mnt_idmap *, struct inode *,
1970 	       struct dentry *, umode_t, bool);
1971 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1972 	      struct dentry *, umode_t);
1973 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1974               umode_t, dev_t);
1975 int vfs_symlink(struct mnt_idmap *, struct inode *,
1976 		struct dentry *, const char *);
1977 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1978 	     struct dentry *, struct inode **);
1979 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1980 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1981 	       struct inode **);
1982 
1983 /**
1984  * struct renamedata - contains all information required for renaming
1985  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1986  * @old_dir:           parent of source
1987  * @old_dentry:                source
1988  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1989  * @new_dir:           parent of destination
1990  * @new_dentry:                destination
1991  * @delegated_inode:   returns an inode needing a delegation break
1992  * @flags:             rename flags
1993  */
1994 struct renamedata {
1995 	struct mnt_idmap *old_mnt_idmap;
1996 	struct inode *old_dir;
1997 	struct dentry *old_dentry;
1998 	struct mnt_idmap *new_mnt_idmap;
1999 	struct inode *new_dir;
2000 	struct dentry *new_dentry;
2001 	struct inode **delegated_inode;
2002 	unsigned int flags;
2003 } __randomize_layout;
2004 
2005 int vfs_rename(struct renamedata *);
2006 
2007 static inline int vfs_whiteout(struct mnt_idmap *idmap,
2008 			       struct inode *dir, struct dentry *dentry)
2009 {
2010 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
2011 			 WHITEOUT_DEV);
2012 }
2013 
2014 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
2015 				 const struct path *parentpath,
2016 				 umode_t mode, int open_flag,
2017 				 const struct cred *cred);
2018 struct file *kernel_file_open(const struct path *path, int flags,
2019 			      const struct cred *cred);
2020 
2021 int vfs_mkobj(struct dentry *, umode_t,
2022 		int (*f)(struct dentry *, umode_t, void *),
2023 		void *);
2024 
2025 int vfs_fchown(struct file *file, uid_t user, gid_t group);
2026 int vfs_fchmod(struct file *file, umode_t mode);
2027 int vfs_utimes(const struct path *path, struct timespec64 *times);
2028 
2029 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2030 
2031 #ifdef CONFIG_COMPAT
2032 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2033 					unsigned long arg);
2034 #else
2035 #define compat_ptr_ioctl NULL
2036 #endif
2037 
2038 /*
2039  * VFS file helper functions.
2040  */
2041 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2042 		      const struct inode *dir, umode_t mode);
2043 extern bool may_open_dev(const struct path *path);
2044 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2045 			const struct inode *dir, umode_t mode);
2046 bool in_group_or_capable(struct mnt_idmap *idmap,
2047 			 const struct inode *inode, vfsgid_t vfsgid);
2048 
2049 /*
2050  * This is the "filldir" function type, used by readdir() to let
2051  * the kernel specify what kind of dirent layout it wants to have.
2052  * This allows the kernel to read directories into kernel space or
2053  * to have different dirent layouts depending on the binary type.
2054  * Return 'true' to keep going and 'false' if there are no more entries.
2055  */
2056 struct dir_context;
2057 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2058 			 unsigned);
2059 
2060 struct dir_context {
2061 	filldir_t actor;
2062 	loff_t pos;
2063 };
2064 
2065 /*
2066  * These flags let !MMU mmap() govern direct device mapping vs immediate
2067  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2068  *
2069  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2070  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2071  * NOMMU_MAP_READ:	Can be mapped for reading
2072  * NOMMU_MAP_WRITE:	Can be mapped for writing
2073  * NOMMU_MAP_EXEC:	Can be mapped for execution
2074  */
2075 #define NOMMU_MAP_COPY		0x00000001
2076 #define NOMMU_MAP_DIRECT	0x00000008
2077 #define NOMMU_MAP_READ		VM_MAYREAD
2078 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2079 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2080 
2081 #define NOMMU_VMFLAGS \
2082 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2083 
2084 /*
2085  * These flags control the behavior of the remap_file_range function pointer.
2086  * If it is called with len == 0 that means "remap to end of source file".
2087  * See Documentation/filesystems/vfs.rst for more details about this call.
2088  *
2089  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2090  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2091  */
2092 #define REMAP_FILE_DEDUP		(1 << 0)
2093 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2094 
2095 /*
2096  * These flags signal that the caller is ok with altering various aspects of
2097  * the behavior of the remap operation.  The changes must be made by the
2098  * implementation; the vfs remap helper functions can take advantage of them.
2099  * Flags in this category exist to preserve the quirky behavior of the hoisted
2100  * btrfs clone/dedupe ioctls.
2101  */
2102 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2103 
2104 /*
2105  * These flags control the behavior of vfs_copy_file_range().
2106  * They are not available to the user via syscall.
2107  *
2108  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2109  */
2110 #define COPY_FILE_SPLICE		(1 << 0)
2111 
2112 struct iov_iter;
2113 struct io_uring_cmd;
2114 struct offset_ctx;
2115 
2116 typedef unsigned int __bitwise fop_flags_t;
2117 
2118 struct file_operations {
2119 	struct module *owner;
2120 	fop_flags_t fop_flags;
2121 	loff_t (*llseek) (struct file *, loff_t, int);
2122 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2123 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2124 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2125 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2126 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2127 			unsigned int flags);
2128 	int (*iterate_shared) (struct file *, struct dir_context *);
2129 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2130 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2131 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2132 	int (*mmap) (struct file *, struct vm_area_struct *);
2133 	int (*open) (struct inode *, struct file *);
2134 	int (*flush) (struct file *, fl_owner_t id);
2135 	int (*release) (struct inode *, struct file *);
2136 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2137 	int (*fasync) (int, struct file *, int);
2138 	int (*lock) (struct file *, int, struct file_lock *);
2139 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2140 	int (*check_flags)(int);
2141 	int (*flock) (struct file *, int, struct file_lock *);
2142 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2143 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2144 	void (*splice_eof)(struct file *file);
2145 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2146 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2147 			  loff_t len);
2148 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2149 #ifndef CONFIG_MMU
2150 	unsigned (*mmap_capabilities)(struct file *);
2151 #endif
2152 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2153 			loff_t, size_t, unsigned int);
2154 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2155 				   struct file *file_out, loff_t pos_out,
2156 				   loff_t len, unsigned int remap_flags);
2157 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2158 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2159 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2160 				unsigned int poll_flags);
2161 } __randomize_layout;
2162 
2163 /* Supports async buffered reads */
2164 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2165 /* Supports async buffered writes */
2166 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2167 /* Supports synchronous page faults for mappings */
2168 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2169 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2170 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2171 /* Contains huge pages */
2172 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2173 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2174 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2175 /* Supports asynchronous lock callbacks */
2176 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2177 /* File system supports uncached read/write buffered IO */
2178 #define FOP_DONTCACHE		((__force fop_flags_t)(1 << 7))
2179 
2180 /* Wrap a directory iterator that needs exclusive inode access */
2181 int wrap_directory_iterator(struct file *, struct dir_context *,
2182 			    int (*) (struct file *, struct dir_context *));
2183 #define WRAP_DIR_ITER(x) \
2184 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2185 	{ return wrap_directory_iterator(file, ctx, x); }
2186 
2187 struct inode_operations {
2188 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2189 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2190 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2191 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2192 
2193 	int (*readlink) (struct dentry *, char __user *,int);
2194 
2195 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2196 		       umode_t, bool);
2197 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2198 	int (*unlink) (struct inode *,struct dentry *);
2199 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2200 			const char *);
2201 	int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2202 		      umode_t);
2203 	int (*rmdir) (struct inode *,struct dentry *);
2204 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2205 		      umode_t,dev_t);
2206 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2207 			struct inode *, struct dentry *, unsigned int);
2208 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2209 	int (*getattr) (struct mnt_idmap *, const struct path *,
2210 			struct kstat *, u32, unsigned int);
2211 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2212 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2213 		      u64 len);
2214 	int (*update_time)(struct inode *, int);
2215 	int (*atomic_open)(struct inode *, struct dentry *,
2216 			   struct file *, unsigned open_flag,
2217 			   umode_t create_mode);
2218 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2219 			struct file *, umode_t);
2220 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2221 				     int);
2222 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2223 		       struct posix_acl *, int);
2224 	int (*fileattr_set)(struct mnt_idmap *idmap,
2225 			    struct dentry *dentry, struct fileattr *fa);
2226 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2227 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2228 } ____cacheline_aligned;
2229 
2230 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2231 {
2232 	return file->f_op->mmap(file, vma);
2233 }
2234 
2235 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2236 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2237 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2238 				   loff_t, size_t, unsigned int);
2239 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2240 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2241 				    struct file *file_out, loff_t pos_out,
2242 				    loff_t *len, unsigned int remap_flags,
2243 				    const struct iomap_ops *dax_read_ops);
2244 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2245 				  struct file *file_out, loff_t pos_out,
2246 				  loff_t *count, unsigned int remap_flags);
2247 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2248 				   struct file *file_out, loff_t pos_out,
2249 				   loff_t len, unsigned int remap_flags);
2250 extern int vfs_dedupe_file_range(struct file *file,
2251 				 struct file_dedupe_range *same);
2252 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2253 					struct file *dst_file, loff_t dst_pos,
2254 					loff_t len, unsigned int remap_flags);
2255 
2256 /**
2257  * enum freeze_holder - holder of the freeze
2258  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2259  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2260  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2261  *
2262  * Indicate who the owner of the freeze or thaw request is and whether
2263  * the freeze needs to be exclusive or can nest.
2264  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2265  * same holder aren't allowed. It is however allowed to hold a single
2266  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2267  * the same time. This is relied upon by some filesystems during online
2268  * repair or similar.
2269  */
2270 enum freeze_holder {
2271 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2272 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2273 	FREEZE_MAY_NEST		= (1U << 2),
2274 };
2275 
2276 struct super_operations {
2277    	struct inode *(*alloc_inode)(struct super_block *sb);
2278 	void (*destroy_inode)(struct inode *);
2279 	void (*free_inode)(struct inode *);
2280 
2281    	void (*dirty_inode) (struct inode *, int flags);
2282 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2283 	int (*drop_inode) (struct inode *);
2284 	void (*evict_inode) (struct inode *);
2285 	void (*put_super) (struct super_block *);
2286 	int (*sync_fs)(struct super_block *sb, int wait);
2287 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2288 	int (*freeze_fs) (struct super_block *);
2289 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2290 	int (*unfreeze_fs) (struct super_block *);
2291 	int (*statfs) (struct dentry *, struct kstatfs *);
2292 	int (*remount_fs) (struct super_block *, int *, char *);
2293 	void (*umount_begin) (struct super_block *);
2294 
2295 	int (*show_options)(struct seq_file *, struct dentry *);
2296 	int (*show_devname)(struct seq_file *, struct dentry *);
2297 	int (*show_path)(struct seq_file *, struct dentry *);
2298 	int (*show_stats)(struct seq_file *, struct dentry *);
2299 #ifdef CONFIG_QUOTA
2300 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2301 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2302 	struct dquot __rcu **(*get_dquots)(struct inode *);
2303 #endif
2304 	long (*nr_cached_objects)(struct super_block *,
2305 				  struct shrink_control *);
2306 	long (*free_cached_objects)(struct super_block *,
2307 				    struct shrink_control *);
2308 	void (*shutdown)(struct super_block *sb);
2309 };
2310 
2311 /*
2312  * Inode flags - they have no relation to superblock flags now
2313  */
2314 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2315 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2316 #define S_APPEND	(1 << 2)  /* Append-only file */
2317 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2318 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2319 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2320 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2321 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2322 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2323 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2324 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2325 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2326 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2327 #ifdef CONFIG_FS_DAX
2328 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2329 #else
2330 #define S_DAX		0	  /* Make all the DAX code disappear */
2331 #endif
2332 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2333 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2334 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2335 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2336 
2337 /*
2338  * Note that nosuid etc flags are inode-specific: setting some file-system
2339  * flags just means all the inodes inherit those flags by default. It might be
2340  * possible to override it selectively if you really wanted to with some
2341  * ioctl() that is not currently implemented.
2342  *
2343  * Exception: SB_RDONLY is always applied to the entire file system.
2344  *
2345  * Unfortunately, it is possible to change a filesystems flags with it mounted
2346  * with files in use.  This means that all of the inodes will not have their
2347  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2348  * flags, so these have to be checked separately. -- [email protected]
2349  */
2350 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2351 
2352 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2353 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2354 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2355 					((inode)->i_flags & S_SYNC))
2356 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2357 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2358 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2359 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2360 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2361 
2362 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2363 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2364 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2365 
2366 #ifdef CONFIG_FS_POSIX_ACL
2367 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2368 #else
2369 #define IS_POSIXACL(inode)	0
2370 #endif
2371 
2372 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2373 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2374 
2375 #ifdef CONFIG_SWAP
2376 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2377 #else
2378 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2379 #endif
2380 
2381 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2382 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2383 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2384 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2385 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2386 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2387 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2388 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2389 
2390 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2391 				 (inode)->i_rdev == WHITEOUT_DEV)
2392 
2393 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2394 				   struct inode *inode)
2395 {
2396 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2397 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2398 }
2399 
2400 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2401 {
2402 	*kiocb = (struct kiocb) {
2403 		.ki_filp = filp,
2404 		.ki_flags = filp->f_iocb_flags,
2405 		.ki_ioprio = get_current_ioprio(),
2406 	};
2407 }
2408 
2409 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2410 			       struct file *filp)
2411 {
2412 	*kiocb = (struct kiocb) {
2413 		.ki_filp = filp,
2414 		.ki_flags = kiocb_src->ki_flags,
2415 		.ki_ioprio = kiocb_src->ki_ioprio,
2416 		.ki_pos = kiocb_src->ki_pos,
2417 	};
2418 }
2419 
2420 /*
2421  * Inode state bits.  Protected by inode->i_lock
2422  *
2423  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2424  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2425  *
2426  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2427  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2428  * various stages of removing an inode.
2429  *
2430  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2431  *
2432  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2433  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2434  *			Timestamp updates are the usual cause.
2435  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2436  *			these changes separately from I_DIRTY_SYNC so that we
2437  *			don't have to write inode on fdatasync() when only
2438  *			e.g. the timestamps have changed.
2439  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2440  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2441  *			lazytime mount option is enabled.  We keep track of this
2442  *			separately from I_DIRTY_SYNC in order to implement
2443  *			lazytime.  This gets cleared if I_DIRTY_INODE
2444  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2445  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2446  *			in place because writeback might already be in progress
2447  *			and we don't want to lose the time update
2448  * I_NEW		Serves as both a mutex and completion notification.
2449  *			New inodes set I_NEW.  If two processes both create
2450  *			the same inode, one of them will release its inode and
2451  *			wait for I_NEW to be released before returning.
2452  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2453  *			also cause waiting on I_NEW, without I_NEW actually
2454  *			being set.  find_inode() uses this to prevent returning
2455  *			nearly-dead inodes.
2456  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2457  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2458  *			cleared.
2459  * I_FREEING		Set when inode is about to be freed but still has dirty
2460  *			pages or buffers attached or the inode itself is still
2461  *			dirty.
2462  * I_CLEAR		Added by clear_inode().  In this state the inode is
2463  *			clean and can be destroyed.  Inode keeps I_FREEING.
2464  *
2465  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2466  *			prohibited for many purposes.  iget() must wait for
2467  *			the inode to be completely released, then create it
2468  *			anew.  Other functions will just ignore such inodes,
2469  *			if appropriate.  I_NEW is used for waiting.
2470  *
2471  * I_SYNC		Writeback of inode is running. The bit is set during
2472  *			data writeback, and cleared with a wakeup on the bit
2473  *			address once it is done. The bit is also used to pin
2474  *			the inode in memory for flusher thread.
2475  *
2476  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2477  *
2478  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2479  *			synchronize competing switching instances and to tell
2480  *			wb stat updates to grab the i_pages lock.  See
2481  *			inode_switch_wbs_work_fn() for details.
2482  *
2483  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2484  *			and work dirs among overlayfs mounts.
2485  *
2486  * I_CREATING		New object's inode in the middle of setting up.
2487  *
2488  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2489  *
2490  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2491  *			Used to detect that mark_inode_dirty() should not move
2492  * 			inode between dirty lists.
2493  *
2494  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2495  *
2496  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2497  *			i_count.
2498  *
2499  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2500  *
2501  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2502  * upon. There's one free address left.
2503  */
2504 #define __I_NEW			0
2505 #define I_NEW			(1 << __I_NEW)
2506 #define __I_SYNC		1
2507 #define I_SYNC			(1 << __I_SYNC)
2508 #define __I_LRU_ISOLATING	2
2509 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2510 
2511 #define I_DIRTY_SYNC		(1 << 3)
2512 #define I_DIRTY_DATASYNC	(1 << 4)
2513 #define I_DIRTY_PAGES		(1 << 5)
2514 #define I_WILL_FREE		(1 << 6)
2515 #define I_FREEING		(1 << 7)
2516 #define I_CLEAR			(1 << 8)
2517 #define I_REFERENCED		(1 << 9)
2518 #define I_LINKABLE		(1 << 10)
2519 #define I_DIRTY_TIME		(1 << 11)
2520 #define I_WB_SWITCH		(1 << 12)
2521 #define I_OVL_INUSE		(1 << 13)
2522 #define I_CREATING		(1 << 14)
2523 #define I_DONTCACHE		(1 << 15)
2524 #define I_SYNC_QUEUED		(1 << 16)
2525 #define I_PINNING_NETFS_WB	(1 << 17)
2526 
2527 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2528 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2529 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2530 
2531 extern void __mark_inode_dirty(struct inode *, int);
2532 static inline void mark_inode_dirty(struct inode *inode)
2533 {
2534 	__mark_inode_dirty(inode, I_DIRTY);
2535 }
2536 
2537 static inline void mark_inode_dirty_sync(struct inode *inode)
2538 {
2539 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2540 }
2541 
2542 /*
2543  * Returns true if the given inode itself only has dirty timestamps (its pages
2544  * may still be dirty) and isn't currently being allocated or freed.
2545  * Filesystems should call this if when writing an inode when lazytime is
2546  * enabled, they want to opportunistically write the timestamps of other inodes
2547  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2548  * if the given inode is in need of such an opportunistic update.  Requires
2549  * i_lock, or at least later re-checking under i_lock.
2550  */
2551 static inline bool inode_is_dirtytime_only(struct inode *inode)
2552 {
2553 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2554 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2555 }
2556 
2557 extern void inc_nlink(struct inode *inode);
2558 extern void drop_nlink(struct inode *inode);
2559 extern void clear_nlink(struct inode *inode);
2560 extern void set_nlink(struct inode *inode, unsigned int nlink);
2561 
2562 static inline void inode_inc_link_count(struct inode *inode)
2563 {
2564 	inc_nlink(inode);
2565 	mark_inode_dirty(inode);
2566 }
2567 
2568 static inline void inode_dec_link_count(struct inode *inode)
2569 {
2570 	drop_nlink(inode);
2571 	mark_inode_dirty(inode);
2572 }
2573 
2574 enum file_time_flags {
2575 	S_ATIME = 1,
2576 	S_MTIME = 2,
2577 	S_CTIME = 4,
2578 	S_VERSION = 8,
2579 };
2580 
2581 extern bool atime_needs_update(const struct path *, struct inode *);
2582 extern void touch_atime(const struct path *);
2583 int inode_update_time(struct inode *inode, int flags);
2584 
2585 static inline void file_accessed(struct file *file)
2586 {
2587 	if (!(file->f_flags & O_NOATIME))
2588 		touch_atime(&file->f_path);
2589 }
2590 
2591 extern int file_modified(struct file *file);
2592 int kiocb_modified(struct kiocb *iocb);
2593 
2594 int sync_inode_metadata(struct inode *inode, int wait);
2595 
2596 struct file_system_type {
2597 	const char *name;
2598 	int fs_flags;
2599 #define FS_REQUIRES_DEV		1
2600 #define FS_BINARY_MOUNTDATA	2
2601 #define FS_HAS_SUBTYPE		4
2602 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2603 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2604 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2605 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2606 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2607 	int (*init_fs_context)(struct fs_context *);
2608 	const struct fs_parameter_spec *parameters;
2609 	struct dentry *(*mount) (struct file_system_type *, int,
2610 		       const char *, void *);
2611 	void (*kill_sb) (struct super_block *);
2612 	struct module *owner;
2613 	struct file_system_type * next;
2614 	struct hlist_head fs_supers;
2615 
2616 	struct lock_class_key s_lock_key;
2617 	struct lock_class_key s_umount_key;
2618 	struct lock_class_key s_vfs_rename_key;
2619 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2620 
2621 	struct lock_class_key i_lock_key;
2622 	struct lock_class_key i_mutex_key;
2623 	struct lock_class_key invalidate_lock_key;
2624 	struct lock_class_key i_mutex_dir_key;
2625 };
2626 
2627 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2628 
2629 /**
2630  * is_mgtime: is this inode using multigrain timestamps
2631  * @inode: inode to test for multigrain timestamps
2632  *
2633  * Return true if the inode uses multigrain timestamps, false otherwise.
2634  */
2635 static inline bool is_mgtime(const struct inode *inode)
2636 {
2637 	return inode->i_opflags & IOP_MGTIME;
2638 }
2639 
2640 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2641 	int flags, const char *dev_name, void *data,
2642 	int (*fill_super)(struct super_block *, void *, int));
2643 extern struct dentry *mount_single(struct file_system_type *fs_type,
2644 	int flags, void *data,
2645 	int (*fill_super)(struct super_block *, void *, int));
2646 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2647 	int flags, void *data,
2648 	int (*fill_super)(struct super_block *, void *, int));
2649 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2650 void retire_super(struct super_block *sb);
2651 void generic_shutdown_super(struct super_block *sb);
2652 void kill_block_super(struct super_block *sb);
2653 void kill_anon_super(struct super_block *sb);
2654 void kill_litter_super(struct super_block *sb);
2655 void deactivate_super(struct super_block *sb);
2656 void deactivate_locked_super(struct super_block *sb);
2657 int set_anon_super(struct super_block *s, void *data);
2658 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2659 int get_anon_bdev(dev_t *);
2660 void free_anon_bdev(dev_t);
2661 struct super_block *sget_fc(struct fs_context *fc,
2662 			    int (*test)(struct super_block *, struct fs_context *),
2663 			    int (*set)(struct super_block *, struct fs_context *));
2664 struct super_block *sget(struct file_system_type *type,
2665 			int (*test)(struct super_block *,void *),
2666 			int (*set)(struct super_block *,void *),
2667 			int flags, void *data);
2668 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2669 
2670 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2671 #define fops_get(fops) ({						\
2672 	const struct file_operations *_fops = (fops);			\
2673 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2674 })
2675 
2676 #define fops_put(fops) ({						\
2677 	const struct file_operations *_fops = (fops);			\
2678 	if (_fops)							\
2679 		module_put((_fops)->owner);				\
2680 })
2681 
2682 /*
2683  * This one is to be used *ONLY* from ->open() instances.
2684  * fops must be non-NULL, pinned down *and* module dependencies
2685  * should be sufficient to pin the caller down as well.
2686  */
2687 #define replace_fops(f, fops) \
2688 	do {	\
2689 		struct file *__file = (f); \
2690 		fops_put(__file->f_op); \
2691 		BUG_ON(!(__file->f_op = (fops))); \
2692 	} while(0)
2693 
2694 extern int register_filesystem(struct file_system_type *);
2695 extern int unregister_filesystem(struct file_system_type *);
2696 extern int vfs_statfs(const struct path *, struct kstatfs *);
2697 extern int user_statfs(const char __user *, struct kstatfs *);
2698 extern int fd_statfs(int, struct kstatfs *);
2699 int freeze_super(struct super_block *super, enum freeze_holder who);
2700 int thaw_super(struct super_block *super, enum freeze_holder who);
2701 extern __printf(2, 3)
2702 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2703 extern int super_setup_bdi(struct super_block *sb);
2704 
2705 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2706 {
2707 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2708 		len = sizeof(sb->s_uuid);
2709 	sb->s_uuid_len = len;
2710 	memcpy(&sb->s_uuid, uuid, len);
2711 }
2712 
2713 /* set sb sysfs name based on sb->s_bdev */
2714 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2715 {
2716 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2717 }
2718 
2719 /* set sb sysfs name based on sb->s_uuid */
2720 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2721 {
2722 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2723 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2724 }
2725 
2726 /* set sb sysfs name based on sb->s_id */
2727 static inline void super_set_sysfs_name_id(struct super_block *sb)
2728 {
2729 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2730 }
2731 
2732 /* try to use something standard before you use this */
2733 __printf(2, 3)
2734 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2735 {
2736 	va_list args;
2737 
2738 	va_start(args, fmt);
2739 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2740 	va_end(args);
2741 }
2742 
2743 extern int current_umask(void);
2744 
2745 extern void ihold(struct inode * inode);
2746 extern void iput(struct inode *);
2747 int inode_update_timestamps(struct inode *inode, int flags);
2748 int generic_update_time(struct inode *, int);
2749 
2750 /* /sys/fs */
2751 extern struct kobject *fs_kobj;
2752 
2753 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2754 
2755 /* fs/open.c */
2756 struct audit_names;
2757 struct filename {
2758 	const char		*name;	/* pointer to actual string */
2759 	const __user char	*uptr;	/* original userland pointer */
2760 	atomic_t		refcnt;
2761 	struct audit_names	*aname;
2762 	const char		iname[];
2763 };
2764 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2765 
2766 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2767 {
2768 	return mnt_idmap(file->f_path.mnt);
2769 }
2770 
2771 /**
2772  * is_idmapped_mnt - check whether a mount is mapped
2773  * @mnt: the mount to check
2774  *
2775  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2776  *
2777  * Return: true if mount is mapped, false if not.
2778  */
2779 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2780 {
2781 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2782 }
2783 
2784 extern long vfs_truncate(const struct path *, loff_t);
2785 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2786 		unsigned int time_attrs, struct file *filp);
2787 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2788 			loff_t len);
2789 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2790 			umode_t mode);
2791 extern struct file *file_open_name(struct filename *, int, umode_t);
2792 extern struct file *filp_open(const char *, int, umode_t);
2793 extern struct file *file_open_root(const struct path *,
2794 				   const char *, int, umode_t);
2795 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2796 				   const char *name, int flags, umode_t mode)
2797 {
2798 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2799 			      name, flags, mode);
2800 }
2801 struct file *dentry_open(const struct path *path, int flags,
2802 			 const struct cred *creds);
2803 struct file *dentry_open_nonotify(const struct path *path, int flags,
2804 				  const struct cred *cred);
2805 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2806 			   const struct cred *cred);
2807 struct path *backing_file_user_path(struct file *f);
2808 
2809 /*
2810  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2811  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2812  * filesystem.  When the mapped file path and inode number are displayed to
2813  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2814  * path and inode number to display to the user, which is the path of the fd
2815  * that user has requested to map and the inode number that would be returned
2816  * by fstat() on that same fd.
2817  */
2818 /* Get the path to display in /proc/<pid>/maps */
2819 static inline const struct path *file_user_path(struct file *f)
2820 {
2821 	if (unlikely(f->f_mode & FMODE_BACKING))
2822 		return backing_file_user_path(f);
2823 	return &f->f_path;
2824 }
2825 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2826 static inline const struct inode *file_user_inode(struct file *f)
2827 {
2828 	if (unlikely(f->f_mode & FMODE_BACKING))
2829 		return d_inode(backing_file_user_path(f)->dentry);
2830 	return file_inode(f);
2831 }
2832 
2833 static inline struct file *file_clone_open(struct file *file)
2834 {
2835 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2836 }
2837 extern int filp_close(struct file *, fl_owner_t id);
2838 
2839 extern struct filename *getname_flags(const char __user *, int);
2840 extern struct filename *getname_uflags(const char __user *, int);
2841 extern struct filename *getname(const char __user *);
2842 extern struct filename *getname_kernel(const char *);
2843 extern struct filename *__getname_maybe_null(const char __user *);
2844 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2845 {
2846 	if (!(flags & AT_EMPTY_PATH))
2847 		return getname(name);
2848 
2849 	if (!name)
2850 		return NULL;
2851 	return __getname_maybe_null(name);
2852 }
2853 extern void putname(struct filename *name);
2854 
2855 extern int finish_open(struct file *file, struct dentry *dentry,
2856 			int (*open)(struct inode *, struct file *));
2857 extern int finish_no_open(struct file *file, struct dentry *dentry);
2858 
2859 /* Helper for the simple case when original dentry is used */
2860 static inline int finish_open_simple(struct file *file, int error)
2861 {
2862 	if (error)
2863 		return error;
2864 
2865 	return finish_open(file, file->f_path.dentry, NULL);
2866 }
2867 
2868 /* fs/dcache.c */
2869 extern void __init vfs_caches_init_early(void);
2870 extern void __init vfs_caches_init(void);
2871 
2872 extern struct kmem_cache *names_cachep;
2873 
2874 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2875 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2876 
2877 extern struct super_block *blockdev_superblock;
2878 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2879 {
2880 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2881 }
2882 
2883 void emergency_thaw_all(void);
2884 extern int sync_filesystem(struct super_block *);
2885 extern const struct file_operations def_blk_fops;
2886 extern const struct file_operations def_chr_fops;
2887 
2888 /* fs/char_dev.c */
2889 #define CHRDEV_MAJOR_MAX 512
2890 /* Marks the bottom of the first segment of free char majors */
2891 #define CHRDEV_MAJOR_DYN_END 234
2892 /* Marks the top and bottom of the second segment of free char majors */
2893 #define CHRDEV_MAJOR_DYN_EXT_START 511
2894 #define CHRDEV_MAJOR_DYN_EXT_END 384
2895 
2896 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2897 extern int register_chrdev_region(dev_t, unsigned, const char *);
2898 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2899 			     unsigned int count, const char *name,
2900 			     const struct file_operations *fops);
2901 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2902 				unsigned int count, const char *name);
2903 extern void unregister_chrdev_region(dev_t, unsigned);
2904 extern void chrdev_show(struct seq_file *,off_t);
2905 
2906 static inline int register_chrdev(unsigned int major, const char *name,
2907 				  const struct file_operations *fops)
2908 {
2909 	return __register_chrdev(major, 0, 256, name, fops);
2910 }
2911 
2912 static inline void unregister_chrdev(unsigned int major, const char *name)
2913 {
2914 	__unregister_chrdev(major, 0, 256, name);
2915 }
2916 
2917 extern void init_special_inode(struct inode *, umode_t, dev_t);
2918 
2919 /* Invalid inode operations -- fs/bad_inode.c */
2920 extern void make_bad_inode(struct inode *);
2921 extern bool is_bad_inode(struct inode *);
2922 
2923 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2924 						loff_t lend);
2925 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2926 extern int __must_check file_write_and_wait_range(struct file *file,
2927 						loff_t start, loff_t end);
2928 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
2929 		loff_t end);
2930 
2931 static inline int file_write_and_wait(struct file *file)
2932 {
2933 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2934 }
2935 
2936 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2937 			   int datasync);
2938 extern int vfs_fsync(struct file *file, int datasync);
2939 
2940 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2941 				unsigned int flags);
2942 
2943 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2944 {
2945 	return (iocb->ki_flags & IOCB_DSYNC) ||
2946 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2947 }
2948 
2949 /*
2950  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2951  * to already be updated for the write, and will return either the amount
2952  * of bytes passed in, or an error if syncing the file failed.
2953  */
2954 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2955 {
2956 	if (iocb_is_dsync(iocb)) {
2957 		int ret = vfs_fsync_range(iocb->ki_filp,
2958 				iocb->ki_pos - count, iocb->ki_pos - 1,
2959 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2960 		if (ret)
2961 			return ret;
2962 	} else if (iocb->ki_flags & IOCB_DONTCACHE) {
2963 		struct address_space *mapping = iocb->ki_filp->f_mapping;
2964 
2965 		filemap_fdatawrite_range_kick(mapping, iocb->ki_pos,
2966 					      iocb->ki_pos + count);
2967 	}
2968 
2969 	return count;
2970 }
2971 
2972 extern void emergency_sync(void);
2973 extern void emergency_remount(void);
2974 
2975 #ifdef CONFIG_BLOCK
2976 extern int bmap(struct inode *inode, sector_t *block);
2977 #else
2978 static inline int bmap(struct inode *inode,  sector_t *block)
2979 {
2980 	return -EINVAL;
2981 }
2982 #endif
2983 
2984 int notify_change(struct mnt_idmap *, struct dentry *,
2985 		  struct iattr *, struct inode **);
2986 int inode_permission(struct mnt_idmap *, struct inode *, int);
2987 int generic_permission(struct mnt_idmap *, struct inode *, int);
2988 static inline int file_permission(struct file *file, int mask)
2989 {
2990 	return inode_permission(file_mnt_idmap(file),
2991 				file_inode(file), mask);
2992 }
2993 static inline int path_permission(const struct path *path, int mask)
2994 {
2995 	return inode_permission(mnt_idmap(path->mnt),
2996 				d_inode(path->dentry), mask);
2997 }
2998 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2999 		   struct inode *inode);
3000 
3001 static inline bool execute_ok(struct inode *inode)
3002 {
3003 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
3004 }
3005 
3006 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
3007 {
3008 	return (inode->i_mode ^ mode) & S_IFMT;
3009 }
3010 
3011 /**
3012  * file_start_write - get write access to a superblock for regular file io
3013  * @file: the file we want to write to
3014  *
3015  * This is a variant of sb_start_write() which is a noop on non-regualr file.
3016  * Should be matched with a call to file_end_write().
3017  */
3018 static inline void file_start_write(struct file *file)
3019 {
3020 	if (!S_ISREG(file_inode(file)->i_mode))
3021 		return;
3022 	sb_start_write(file_inode(file)->i_sb);
3023 }
3024 
3025 static inline bool file_start_write_trylock(struct file *file)
3026 {
3027 	if (!S_ISREG(file_inode(file)->i_mode))
3028 		return true;
3029 	return sb_start_write_trylock(file_inode(file)->i_sb);
3030 }
3031 
3032 /**
3033  * file_end_write - drop write access to a superblock of a regular file
3034  * @file: the file we wrote to
3035  *
3036  * Should be matched with a call to file_start_write().
3037  */
3038 static inline void file_end_write(struct file *file)
3039 {
3040 	if (!S_ISREG(file_inode(file)->i_mode))
3041 		return;
3042 	sb_end_write(file_inode(file)->i_sb);
3043 }
3044 
3045 /**
3046  * kiocb_start_write - get write access to a superblock for async file io
3047  * @iocb: the io context we want to submit the write with
3048  *
3049  * This is a variant of sb_start_write() for async io submission.
3050  * Should be matched with a call to kiocb_end_write().
3051  */
3052 static inline void kiocb_start_write(struct kiocb *iocb)
3053 {
3054 	struct inode *inode = file_inode(iocb->ki_filp);
3055 
3056 	sb_start_write(inode->i_sb);
3057 	/*
3058 	 * Fool lockdep by telling it the lock got released so that it
3059 	 * doesn't complain about the held lock when we return to userspace.
3060 	 */
3061 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3062 }
3063 
3064 /**
3065  * kiocb_end_write - drop write access to a superblock after async file io
3066  * @iocb: the io context we sumbitted the write with
3067  *
3068  * Should be matched with a call to kiocb_start_write().
3069  */
3070 static inline void kiocb_end_write(struct kiocb *iocb)
3071 {
3072 	struct inode *inode = file_inode(iocb->ki_filp);
3073 
3074 	/*
3075 	 * Tell lockdep we inherited freeze protection from submission thread.
3076 	 */
3077 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3078 	sb_end_write(inode->i_sb);
3079 }
3080 
3081 /*
3082  * This is used for regular files where some users -- especially the
3083  * currently executed binary in a process, previously handled via
3084  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3085  * read-write shared) accesses.
3086  *
3087  * get_write_access() gets write permission for a file.
3088  * put_write_access() releases this write permission.
3089  * deny_write_access() denies write access to a file.
3090  * allow_write_access() re-enables write access to a file.
3091  *
3092  * The i_writecount field of an inode can have the following values:
3093  * 0: no write access, no denied write access
3094  * < 0: (-i_writecount) users that denied write access to the file.
3095  * > 0: (i_writecount) users that have write access to the file.
3096  *
3097  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3098  * except for the cases where we don't hold i_writecount yet. Then we need to
3099  * use {get,deny}_write_access() - these functions check the sign and refuse
3100  * to do the change if sign is wrong.
3101  */
3102 static inline int get_write_access(struct inode *inode)
3103 {
3104 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3105 }
3106 static inline int deny_write_access(struct file *file)
3107 {
3108 	struct inode *inode = file_inode(file);
3109 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3110 }
3111 static inline void put_write_access(struct inode * inode)
3112 {
3113 	atomic_dec(&inode->i_writecount);
3114 }
3115 static inline void allow_write_access(struct file *file)
3116 {
3117 	if (file)
3118 		atomic_inc(&file_inode(file)->i_writecount);
3119 }
3120 
3121 /*
3122  * Do not prevent write to executable file when watched by pre-content events.
3123  *
3124  * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at
3125  * the time of file open and remains constant for entire lifetime of the file,
3126  * so if pre-content watches are added post execution or removed before the end
3127  * of the execution, it will not cause i_writecount reference leak.
3128  */
3129 static inline int exe_file_deny_write_access(struct file *exe_file)
3130 {
3131 	if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3132 		return 0;
3133 	return deny_write_access(exe_file);
3134 }
3135 static inline void exe_file_allow_write_access(struct file *exe_file)
3136 {
3137 	if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3138 		return;
3139 	allow_write_access(exe_file);
3140 }
3141 
3142 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode)
3143 {
3144 	file->f_mode &= ~FMODE_FSNOTIFY_MASK;
3145 	file->f_mode |= mode;
3146 }
3147 
3148 static inline bool inode_is_open_for_write(const struct inode *inode)
3149 {
3150 	return atomic_read(&inode->i_writecount) > 0;
3151 }
3152 
3153 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3154 static inline void i_readcount_dec(struct inode *inode)
3155 {
3156 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3157 }
3158 static inline void i_readcount_inc(struct inode *inode)
3159 {
3160 	atomic_inc(&inode->i_readcount);
3161 }
3162 #else
3163 static inline void i_readcount_dec(struct inode *inode)
3164 {
3165 	return;
3166 }
3167 static inline void i_readcount_inc(struct inode *inode)
3168 {
3169 	return;
3170 }
3171 #endif
3172 extern int do_pipe_flags(int *, int);
3173 
3174 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3175 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3176 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3177 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3178 extern struct file * open_exec(const char *);
3179 
3180 /* fs/dcache.c -- generic fs support functions */
3181 extern bool is_subdir(struct dentry *, struct dentry *);
3182 extern bool path_is_under(const struct path *, const struct path *);
3183 
3184 extern char *file_path(struct file *, char *, int);
3185 
3186 /**
3187  * is_dot_dotdot - returns true only if @name is "." or ".."
3188  * @name: file name to check
3189  * @len: length of file name, in bytes
3190  */
3191 static inline bool is_dot_dotdot(const char *name, size_t len)
3192 {
3193 	return len && unlikely(name[0] == '.') &&
3194 		(len == 1 || (len == 2 && name[1] == '.'));
3195 }
3196 
3197 #include <linux/err.h>
3198 
3199 /* needed for stackable file system support */
3200 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3201 
3202 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3203 
3204 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3205 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3206 {
3207 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3208 }
3209 
3210 extern void inode_init_once(struct inode *);
3211 extern void address_space_init_once(struct address_space *mapping);
3212 extern struct inode * igrab(struct inode *);
3213 extern ino_t iunique(struct super_block *, ino_t);
3214 extern int inode_needs_sync(struct inode *inode);
3215 extern int generic_delete_inode(struct inode *inode);
3216 static inline int generic_drop_inode(struct inode *inode)
3217 {
3218 	return !inode->i_nlink || inode_unhashed(inode);
3219 }
3220 extern void d_mark_dontcache(struct inode *inode);
3221 
3222 extern struct inode *ilookup5_nowait(struct super_block *sb,
3223 		unsigned long hashval, int (*test)(struct inode *, void *),
3224 		void *data);
3225 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3226 		int (*test)(struct inode *, void *), void *data);
3227 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3228 
3229 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3230 		int (*test)(struct inode *, void *),
3231 		int (*set)(struct inode *, void *),
3232 		void *data);
3233 struct inode *iget5_locked(struct super_block *, unsigned long,
3234 			   int (*test)(struct inode *, void *),
3235 			   int (*set)(struct inode *, void *), void *);
3236 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3237 			       int (*test)(struct inode *, void *),
3238 			       int (*set)(struct inode *, void *), void *);
3239 extern struct inode * iget_locked(struct super_block *, unsigned long);
3240 extern struct inode *find_inode_nowait(struct super_block *,
3241 				       unsigned long,
3242 				       int (*match)(struct inode *,
3243 						    unsigned long, void *),
3244 				       void *data);
3245 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3246 				    int (*)(struct inode *, void *), void *);
3247 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3248 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3249 extern int insert_inode_locked(struct inode *);
3250 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3251 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3252 #else
3253 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3254 #endif
3255 extern void unlock_new_inode(struct inode *);
3256 extern void discard_new_inode(struct inode *);
3257 extern unsigned int get_next_ino(void);
3258 extern void evict_inodes(struct super_block *sb);
3259 void dump_mapping(const struct address_space *);
3260 
3261 /*
3262  * Userspace may rely on the inode number being non-zero. For example, glibc
3263  * simply ignores files with zero i_ino in unlink() and other places.
3264  *
3265  * As an additional complication, if userspace was compiled with
3266  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3267  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3268  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3269  * better safe than sorry.
3270  */
3271 static inline bool is_zero_ino(ino_t ino)
3272 {
3273 	return (u32)ino == 0;
3274 }
3275 
3276 /*
3277  * inode->i_lock must be held
3278  */
3279 static inline void __iget(struct inode *inode)
3280 {
3281 	atomic_inc(&inode->i_count);
3282 }
3283 
3284 extern void iget_failed(struct inode *);
3285 extern void clear_inode(struct inode *);
3286 extern void __destroy_inode(struct inode *);
3287 extern struct inode *new_inode_pseudo(struct super_block *sb);
3288 extern struct inode *new_inode(struct super_block *sb);
3289 extern void free_inode_nonrcu(struct inode *inode);
3290 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3291 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3292 extern int file_remove_privs(struct file *);
3293 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3294 			     const struct inode *inode);
3295 
3296 /*
3297  * This must be used for allocating filesystems specific inodes to set
3298  * up the inode reclaim context correctly.
3299  */
3300 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3301 
3302 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3303 static inline void insert_inode_hash(struct inode *inode)
3304 {
3305 	__insert_inode_hash(inode, inode->i_ino);
3306 }
3307 
3308 extern void __remove_inode_hash(struct inode *);
3309 static inline void remove_inode_hash(struct inode *inode)
3310 {
3311 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3312 		__remove_inode_hash(inode);
3313 }
3314 
3315 extern void inode_sb_list_add(struct inode *inode);
3316 extern void inode_add_lru(struct inode *inode);
3317 
3318 extern int sb_set_blocksize(struct super_block *, int);
3319 extern int sb_min_blocksize(struct super_block *, int);
3320 
3321 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3322 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3323 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3324 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3325 extern int generic_write_check_limits(struct file *file, loff_t pos,
3326 		loff_t *count);
3327 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3328 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3329 		ssize_t already_read);
3330 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3331 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3332 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3333 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3334 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3335 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3336 		ssize_t direct_written, ssize_t buffered_written);
3337 
3338 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3339 		rwf_t flags);
3340 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3341 		rwf_t flags);
3342 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3343 			   struct iov_iter *iter);
3344 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3345 			    struct iov_iter *iter);
3346 
3347 /* fs/splice.c */
3348 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3349 			    struct pipe_inode_info *pipe,
3350 			    size_t len, unsigned int flags);
3351 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3352 			 struct pipe_inode_info *pipe,
3353 			 size_t len, unsigned int flags);
3354 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3355 		struct file *, loff_t *, size_t, unsigned int);
3356 
3357 
3358 extern void
3359 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3360 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3361 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3362 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3363 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3364 		int whence, loff_t maxsize, loff_t eof);
3365 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3366 			     u64 *cookie);
3367 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3368 		int whence, loff_t size);
3369 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3370 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3371 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3372 extern int generic_file_open(struct inode * inode, struct file * filp);
3373 extern int nonseekable_open(struct inode * inode, struct file * filp);
3374 extern int stream_open(struct inode * inode, struct file * filp);
3375 
3376 #ifdef CONFIG_BLOCK
3377 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3378 			    loff_t file_offset);
3379 
3380 enum {
3381 	/* need locking between buffered and direct access */
3382 	DIO_LOCKING	= 0x01,
3383 
3384 	/* filesystem does not support filling holes */
3385 	DIO_SKIP_HOLES	= 0x02,
3386 };
3387 
3388 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3389 			     struct block_device *bdev, struct iov_iter *iter,
3390 			     get_block_t get_block,
3391 			     dio_iodone_t end_io,
3392 			     int flags);
3393 
3394 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3395 					 struct inode *inode,
3396 					 struct iov_iter *iter,
3397 					 get_block_t get_block)
3398 {
3399 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3400 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3401 }
3402 #endif
3403 
3404 bool inode_dio_finished(const struct inode *inode);
3405 void inode_dio_wait(struct inode *inode);
3406 void inode_dio_wait_interruptible(struct inode *inode);
3407 
3408 /**
3409  * inode_dio_begin - signal start of a direct I/O requests
3410  * @inode: inode the direct I/O happens on
3411  *
3412  * This is called once we've finished processing a direct I/O request,
3413  * and is used to wake up callers waiting for direct I/O to be quiesced.
3414  */
3415 static inline void inode_dio_begin(struct inode *inode)
3416 {
3417 	atomic_inc(&inode->i_dio_count);
3418 }
3419 
3420 /**
3421  * inode_dio_end - signal finish of a direct I/O requests
3422  * @inode: inode the direct I/O happens on
3423  *
3424  * This is called once we've finished processing a direct I/O request,
3425  * and is used to wake up callers waiting for direct I/O to be quiesced.
3426  */
3427 static inline void inode_dio_end(struct inode *inode)
3428 {
3429 	if (atomic_dec_and_test(&inode->i_dio_count))
3430 		wake_up_var(&inode->i_dio_count);
3431 }
3432 
3433 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3434 			    unsigned int mask);
3435 
3436 extern const struct file_operations generic_ro_fops;
3437 
3438 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3439 
3440 extern int readlink_copy(char __user *, int, const char *, int);
3441 extern int page_readlink(struct dentry *, char __user *, int);
3442 extern const char *page_get_link(struct dentry *, struct inode *,
3443 				 struct delayed_call *);
3444 extern void page_put_link(void *);
3445 extern int page_symlink(struct inode *inode, const char *symname, int len);
3446 extern const struct inode_operations page_symlink_inode_operations;
3447 extern void kfree_link(void *);
3448 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3449 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3450 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3451 void generic_fill_statx_atomic_writes(struct kstat *stat,
3452 				      unsigned int unit_min,
3453 				      unsigned int unit_max);
3454 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3455 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3456 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3457 void inode_add_bytes(struct inode *inode, loff_t bytes);
3458 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3459 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3460 static inline loff_t __inode_get_bytes(struct inode *inode)
3461 {
3462 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3463 }
3464 loff_t inode_get_bytes(struct inode *inode);
3465 void inode_set_bytes(struct inode *inode, loff_t bytes);
3466 const char *simple_get_link(struct dentry *, struct inode *,
3467 			    struct delayed_call *);
3468 extern const struct inode_operations simple_symlink_inode_operations;
3469 
3470 extern int iterate_dir(struct file *, struct dir_context *);
3471 
3472 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3473 		int flags);
3474 int vfs_fstat(int fd, struct kstat *stat);
3475 
3476 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3477 {
3478 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3479 }
3480 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3481 {
3482 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3483 }
3484 
3485 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3486 extern int vfs_readlink(struct dentry *, char __user *, int);
3487 
3488 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3489 extern void put_filesystem(struct file_system_type *fs);
3490 extern struct file_system_type *get_fs_type(const char *name);
3491 extern void drop_super(struct super_block *sb);
3492 extern void drop_super_exclusive(struct super_block *sb);
3493 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3494 extern void iterate_supers_type(struct file_system_type *,
3495 			        void (*)(struct super_block *, void *), void *);
3496 
3497 extern int dcache_dir_open(struct inode *, struct file *);
3498 extern int dcache_dir_close(struct inode *, struct file *);
3499 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3500 extern int dcache_readdir(struct file *, struct dir_context *);
3501 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3502 			  struct iattr *);
3503 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3504 			  struct kstat *, u32, unsigned int);
3505 extern int simple_statfs(struct dentry *, struct kstatfs *);
3506 extern int simple_open(struct inode *inode, struct file *file);
3507 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3508 extern int simple_unlink(struct inode *, struct dentry *);
3509 extern int simple_rmdir(struct inode *, struct dentry *);
3510 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3511 			     struct inode *new_dir, struct dentry *new_dentry);
3512 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3513 				  struct inode *new_dir, struct dentry *new_dentry);
3514 extern int simple_rename(struct mnt_idmap *, struct inode *,
3515 			 struct dentry *, struct inode *, struct dentry *,
3516 			 unsigned int);
3517 extern void simple_recursive_removal(struct dentry *,
3518                               void (*callback)(struct dentry *));
3519 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3520 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3521 extern int simple_empty(struct dentry *);
3522 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3523 			loff_t pos, unsigned len,
3524 			struct folio **foliop, void **fsdata);
3525 extern const struct address_space_operations ram_aops;
3526 extern int always_delete_dentry(const struct dentry *);
3527 extern struct inode *alloc_anon_inode(struct super_block *);
3528 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3529 extern const struct dentry_operations simple_dentry_operations;
3530 
3531 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3532 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3533 extern const struct file_operations simple_dir_operations;
3534 extern const struct inode_operations simple_dir_inode_operations;
3535 extern void make_empty_dir_inode(struct inode *inode);
3536 extern bool is_empty_dir_inode(struct inode *inode);
3537 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3538 struct dentry *d_alloc_name(struct dentry *, const char *);
3539 extern int simple_fill_super(struct super_block *, unsigned long,
3540 			     const struct tree_descr *);
3541 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3542 extern void simple_release_fs(struct vfsmount **mount, int *count);
3543 
3544 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3545 			loff_t *ppos, const void *from, size_t available);
3546 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3547 		const void __user *from, size_t count);
3548 
3549 struct offset_ctx {
3550 	struct maple_tree	mt;
3551 	unsigned long		next_offset;
3552 };
3553 
3554 void simple_offset_init(struct offset_ctx *octx);
3555 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3556 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3557 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3558 			 struct inode *new_dir, struct dentry *new_dentry);
3559 int simple_offset_rename_exchange(struct inode *old_dir,
3560 				  struct dentry *old_dentry,
3561 				  struct inode *new_dir,
3562 				  struct dentry *new_dentry);
3563 void simple_offset_destroy(struct offset_ctx *octx);
3564 
3565 extern const struct file_operations simple_offset_dir_operations;
3566 
3567 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3568 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3569 
3570 extern int generic_check_addressable(unsigned, u64);
3571 
3572 extern void generic_set_sb_d_ops(struct super_block *sb);
3573 extern int generic_ci_match(const struct inode *parent,
3574 			    const struct qstr *name,
3575 			    const struct qstr *folded_name,
3576 			    const u8 *de_name, u32 de_name_len);
3577 
3578 #if IS_ENABLED(CONFIG_UNICODE)
3579 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3580 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3581 			 const char *str, const struct qstr *name);
3582 
3583 /**
3584  * generic_ci_validate_strict_name - Check if a given name is suitable
3585  * for a directory
3586  *
3587  * This functions checks if the proposed filename is valid for the
3588  * parent directory. That means that only valid UTF-8 filenames will be
3589  * accepted for casefold directories from filesystems created with the
3590  * strict encoding flag.  That also means that any name will be
3591  * accepted for directories that doesn't have casefold enabled, or
3592  * aren't being strict with the encoding.
3593  *
3594  * @dir: inode of the directory where the new file will be created
3595  * @name: name of the new file
3596  *
3597  * Return:
3598  * * True: if the filename is suitable for this directory. It can be
3599  *   true if a given name is not suitable for a strict encoding
3600  *   directory, but the directory being used isn't strict
3601  * * False if the filename isn't suitable for this directory. This only
3602  *   happens when a directory is casefolded and the filesystem is strict
3603  *   about its encoding.
3604  */
3605 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3606 {
3607 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3608 		return true;
3609 
3610 	/*
3611 	 * A casefold dir must have a encoding set, unless the filesystem
3612 	 * is corrupted
3613 	 */
3614 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3615 		return true;
3616 
3617 	return !utf8_validate(dir->i_sb->s_encoding, name);
3618 }
3619 #else
3620 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3621 {
3622 	return true;
3623 }
3624 #endif
3625 
3626 static inline bool sb_has_encoding(const struct super_block *sb)
3627 {
3628 #if IS_ENABLED(CONFIG_UNICODE)
3629 	return !!sb->s_encoding;
3630 #else
3631 	return false;
3632 #endif
3633 }
3634 
3635 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3636 		unsigned int ia_valid);
3637 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3638 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3639 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3640 		  const struct iattr *attr);
3641 
3642 extern int file_update_time(struct file *file);
3643 
3644 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3645 {
3646 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3647 }
3648 
3649 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3650 {
3651 	struct inode *inode;
3652 
3653 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3654 		return false;
3655 	if (!vma_is_dax(vma))
3656 		return false;
3657 	inode = file_inode(vma->vm_file);
3658 	if (S_ISCHR(inode->i_mode))
3659 		return false; /* device-dax */
3660 	return true;
3661 }
3662 
3663 static inline int iocb_flags(struct file *file)
3664 {
3665 	int res = 0;
3666 	if (file->f_flags & O_APPEND)
3667 		res |= IOCB_APPEND;
3668 	if (file->f_flags & O_DIRECT)
3669 		res |= IOCB_DIRECT;
3670 	if (file->f_flags & O_DSYNC)
3671 		res |= IOCB_DSYNC;
3672 	if (file->f_flags & __O_SYNC)
3673 		res |= IOCB_SYNC;
3674 	return res;
3675 }
3676 
3677 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3678 				     int rw_type)
3679 {
3680 	int kiocb_flags = 0;
3681 
3682 	/* make sure there's no overlap between RWF and private IOCB flags */
3683 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3684 
3685 	if (!flags)
3686 		return 0;
3687 	if (unlikely(flags & ~RWF_SUPPORTED))
3688 		return -EOPNOTSUPP;
3689 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3690 		return -EINVAL;
3691 
3692 	if (flags & RWF_NOWAIT) {
3693 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3694 			return -EOPNOTSUPP;
3695 	}
3696 	if (flags & RWF_ATOMIC) {
3697 		if (rw_type != WRITE)
3698 			return -EOPNOTSUPP;
3699 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3700 			return -EOPNOTSUPP;
3701 	}
3702 	if (flags & RWF_DONTCACHE) {
3703 		/* file system must support it */
3704 		if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3705 			return -EOPNOTSUPP;
3706 		/* DAX mappings not supported */
3707 		if (IS_DAX(ki->ki_filp->f_mapping->host))
3708 			return -EOPNOTSUPP;
3709 	}
3710 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3711 	if (flags & RWF_SYNC)
3712 		kiocb_flags |= IOCB_DSYNC;
3713 
3714 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3715 		if (IS_APPEND(file_inode(ki->ki_filp)))
3716 			return -EPERM;
3717 		ki->ki_flags &= ~IOCB_APPEND;
3718 	}
3719 
3720 	ki->ki_flags |= kiocb_flags;
3721 	return 0;
3722 }
3723 
3724 /* Transaction based IO helpers */
3725 
3726 /*
3727  * An argresp is stored in an allocated page and holds the
3728  * size of the argument or response, along with its content
3729  */
3730 struct simple_transaction_argresp {
3731 	ssize_t size;
3732 	char data[];
3733 };
3734 
3735 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3736 
3737 char *simple_transaction_get(struct file *file, const char __user *buf,
3738 				size_t size);
3739 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3740 				size_t size, loff_t *pos);
3741 int simple_transaction_release(struct inode *inode, struct file *file);
3742 
3743 void simple_transaction_set(struct file *file, size_t n);
3744 
3745 /*
3746  * simple attribute files
3747  *
3748  * These attributes behave similar to those in sysfs:
3749  *
3750  * Writing to an attribute immediately sets a value, an open file can be
3751  * written to multiple times.
3752  *
3753  * Reading from an attribute creates a buffer from the value that might get
3754  * read with multiple read calls. When the attribute has been read
3755  * completely, no further read calls are possible until the file is opened
3756  * again.
3757  *
3758  * All attributes contain a text representation of a numeric value
3759  * that are accessed with the get() and set() functions.
3760  */
3761 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3762 static int __fops ## _open(struct inode *inode, struct file *file)	\
3763 {									\
3764 	__simple_attr_check_format(__fmt, 0ull);			\
3765 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3766 }									\
3767 static const struct file_operations __fops = {				\
3768 	.owner	 = THIS_MODULE,						\
3769 	.open	 = __fops ## _open,					\
3770 	.release = simple_attr_release,					\
3771 	.read	 = simple_attr_read,					\
3772 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3773 	.llseek	 = generic_file_llseek,					\
3774 }
3775 
3776 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3777 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3778 
3779 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3780 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3781 
3782 static inline __printf(1, 2)
3783 void __simple_attr_check_format(const char *fmt, ...)
3784 {
3785 	/* don't do anything, just let the compiler check the arguments; */
3786 }
3787 
3788 int simple_attr_open(struct inode *inode, struct file *file,
3789 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3790 		     const char *fmt);
3791 int simple_attr_release(struct inode *inode, struct file *file);
3792 ssize_t simple_attr_read(struct file *file, char __user *buf,
3793 			 size_t len, loff_t *ppos);
3794 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3795 			  size_t len, loff_t *ppos);
3796 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3797 				 size_t len, loff_t *ppos);
3798 
3799 struct ctl_table;
3800 int __init list_bdev_fs_names(char *buf, size_t size);
3801 
3802 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3803 
3804 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3805 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE))
3806 
3807 static inline bool is_sxid(umode_t mode)
3808 {
3809 	return mode & (S_ISUID | S_ISGID);
3810 }
3811 
3812 static inline int check_sticky(struct mnt_idmap *idmap,
3813 			       struct inode *dir, struct inode *inode)
3814 {
3815 	if (!(dir->i_mode & S_ISVTX))
3816 		return 0;
3817 
3818 	return __check_sticky(idmap, dir, inode);
3819 }
3820 
3821 static inline void inode_has_no_xattr(struct inode *inode)
3822 {
3823 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3824 		inode->i_flags |= S_NOSEC;
3825 }
3826 
3827 static inline bool is_root_inode(struct inode *inode)
3828 {
3829 	return inode == inode->i_sb->s_root->d_inode;
3830 }
3831 
3832 static inline bool dir_emit(struct dir_context *ctx,
3833 			    const char *name, int namelen,
3834 			    u64 ino, unsigned type)
3835 {
3836 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3837 }
3838 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3839 {
3840 	return ctx->actor(ctx, ".", 1, ctx->pos,
3841 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3842 }
3843 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3844 {
3845 	return ctx->actor(ctx, "..", 2, ctx->pos,
3846 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3847 }
3848 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3849 {
3850 	if (ctx->pos == 0) {
3851 		if (!dir_emit_dot(file, ctx))
3852 			return false;
3853 		ctx->pos = 1;
3854 	}
3855 	if (ctx->pos == 1) {
3856 		if (!dir_emit_dotdot(file, ctx))
3857 			return false;
3858 		ctx->pos = 2;
3859 	}
3860 	return true;
3861 }
3862 static inline bool dir_relax(struct inode *inode)
3863 {
3864 	inode_unlock(inode);
3865 	inode_lock(inode);
3866 	return !IS_DEADDIR(inode);
3867 }
3868 
3869 static inline bool dir_relax_shared(struct inode *inode)
3870 {
3871 	inode_unlock_shared(inode);
3872 	inode_lock_shared(inode);
3873 	return !IS_DEADDIR(inode);
3874 }
3875 
3876 extern bool path_noexec(const struct path *path);
3877 extern void inode_nohighmem(struct inode *inode);
3878 
3879 /* mm/fadvise.c */
3880 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3881 		       int advice);
3882 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3883 			   int advice);
3884 
3885 static inline bool vfs_empty_path(int dfd, const char __user *path)
3886 {
3887 	char c;
3888 
3889 	if (dfd < 0)
3890 		return false;
3891 
3892 	/* We now allow NULL to be used for empty path. */
3893 	if (!path)
3894 		return true;
3895 
3896 	if (unlikely(get_user(c, path)))
3897 		return false;
3898 
3899 	return !c;
3900 }
3901 
3902 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3903 
3904 #endif /* _LINUX_FS_H */
3905