xref: /linux-6.15/include/linux/fs.h (revision 55cd6175)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/vfsdebug.h>
6 #include <linux/linkage.h>
7 #include <linux/wait_bit.h>
8 #include <linux/kdev_t.h>
9 #include <linux/dcache.h>
10 #include <linux/path.h>
11 #include <linux/stat.h>
12 #include <linux/cache.h>
13 #include <linux/list.h>
14 #include <linux/list_lru.h>
15 #include <linux/llist.h>
16 #include <linux/radix-tree.h>
17 #include <linux/xarray.h>
18 #include <linux/rbtree.h>
19 #include <linux/init.h>
20 #include <linux/pid.h>
21 #include <linux/bug.h>
22 #include <linux/mutex.h>
23 #include <linux/rwsem.h>
24 #include <linux/mm_types.h>
25 #include <linux/capability.h>
26 #include <linux/semaphore.h>
27 #include <linux/fcntl.h>
28 #include <linux/rculist_bl.h>
29 #include <linux/atomic.h>
30 #include <linux/shrinker.h>
31 #include <linux/migrate_mode.h>
32 #include <linux/uidgid.h>
33 #include <linux/lockdep.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/workqueue.h>
36 #include <linux/delayed_call.h>
37 #include <linux/uuid.h>
38 #include <linux/errseq.h>
39 #include <linux/ioprio.h>
40 #include <linux/fs_types.h>
41 #include <linux/build_bug.h>
42 #include <linux/stddef.h>
43 #include <linux/mount.h>
44 #include <linux/cred.h>
45 #include <linux/mnt_idmapping.h>
46 #include <linux/slab.h>
47 #include <linux/maple_tree.h>
48 #include <linux/rw_hint.h>
49 #include <linux/file_ref.h>
50 #include <linux/unicode.h>
51 
52 #include <asm/byteorder.h>
53 #include <uapi/linux/fs.h>
54 
55 struct backing_dev_info;
56 struct bdi_writeback;
57 struct bio;
58 struct io_comp_batch;
59 struct export_operations;
60 struct fiemap_extent_info;
61 struct hd_geometry;
62 struct iovec;
63 struct kiocb;
64 struct kobject;
65 struct pipe_inode_info;
66 struct poll_table_struct;
67 struct kstatfs;
68 struct vm_area_struct;
69 struct vfsmount;
70 struct cred;
71 struct swap_info_struct;
72 struct seq_file;
73 struct workqueue_struct;
74 struct iov_iter;
75 struct fscrypt_inode_info;
76 struct fscrypt_operations;
77 struct fsverity_info;
78 struct fsverity_operations;
79 struct fsnotify_mark_connector;
80 struct fsnotify_sb_info;
81 struct fs_context;
82 struct fs_parameter_spec;
83 struct fileattr;
84 struct iomap_ops;
85 
86 extern void __init inode_init(void);
87 extern void __init inode_init_early(void);
88 extern void __init files_init(void);
89 extern void __init files_maxfiles_init(void);
90 
91 extern unsigned long get_max_files(void);
92 extern unsigned int sysctl_nr_open;
93 
94 typedef __kernel_rwf_t rwf_t;
95 
96 struct buffer_head;
97 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
98 			struct buffer_head *bh_result, int create);
99 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
100 			ssize_t bytes, void *private);
101 
102 #define MAY_EXEC		0x00000001
103 #define MAY_WRITE		0x00000002
104 #define MAY_READ		0x00000004
105 #define MAY_APPEND		0x00000008
106 #define MAY_ACCESS		0x00000010
107 #define MAY_OPEN		0x00000020
108 #define MAY_CHDIR		0x00000040
109 /* called from RCU mode, don't block */
110 #define MAY_NOT_BLOCK		0x00000080
111 
112 /*
113  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
114  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
115  */
116 
117 /* file is open for reading */
118 #define FMODE_READ		((__force fmode_t)(1 << 0))
119 /* file is open for writing */
120 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
121 /* file is seekable */
122 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
123 /* file can be accessed using pread */
124 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
125 /* file can be accessed using pwrite */
126 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
127 /* File is opened for execution with sys_execve / sys_uselib */
128 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
129 /* File writes are restricted (block device specific) */
130 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
131 /* File supports atomic writes */
132 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
133 
134 /* FMODE_* bit 8 */
135 
136 /* 32bit hashes as llseek() offset (for directories) */
137 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
138 /* 64bit hashes as llseek() offset (for directories) */
139 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
140 
141 /*
142  * Don't update ctime and mtime.
143  *
144  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
145  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
146  */
147 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
148 
149 /* Expect random access pattern */
150 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
151 
152 /* FMODE_* bit 13 */
153 
154 /* File is opened with O_PATH; almost nothing can be done with it */
155 #define FMODE_PATH		((__force fmode_t)(1 << 14))
156 
157 /* File needs atomic accesses to f_pos */
158 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
159 /* Write access to underlying fs */
160 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
161 /* Has read method(s) */
162 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
163 /* Has write method(s) */
164 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
165 
166 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
167 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
168 
169 /* File is stream-like */
170 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
171 
172 /* File supports DIRECT IO */
173 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
174 
175 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
176 
177 /* File is embedded in backing_file object */
178 #define FMODE_BACKING		((__force fmode_t)(1 << 24))
179 
180 /*
181  * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be
182  * generated (see below)
183  */
184 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 25))
185 
186 /*
187  * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be
188  * generated (see below)
189  */
190 #define FMODE_NONOTIFY_PERM	((__force fmode_t)(1 << 26))
191 
192 /* File is capable of returning -EAGAIN if I/O will block */
193 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
194 
195 /* File represents mount that needs unmounting */
196 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
197 
198 /* File does not contribute to nr_files count */
199 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
200 
201 /*
202  * The two FMODE_NONOTIFY* define which fsnotify events should not be generated
203  * for a file. These are the possible values of (f->f_mode &
204  * FMODE_FSNOTIFY_MASK) and their meaning:
205  *
206  * FMODE_NONOTIFY - suppress all (incl. non-permission) events.
207  * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events.
208  * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only pre-content events.
209  */
210 #define FMODE_FSNOTIFY_MASK \
211 	(FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)
212 
213 #define FMODE_FSNOTIFY_NONE(mode) \
214 	((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY)
215 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
216 #define FMODE_FSNOTIFY_PERM(mode) \
217 	((mode & FMODE_FSNOTIFY_MASK) == 0 || \
218 	 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM))
219 #define FMODE_FSNOTIFY_HSM(mode) \
220 	((mode & FMODE_FSNOTIFY_MASK) == 0)
221 #else
222 #define FMODE_FSNOTIFY_PERM(mode)	0
223 #define FMODE_FSNOTIFY_HSM(mode)	0
224 #endif
225 
226 /*
227  * Attribute flags.  These should be or-ed together to figure out what
228  * has been changed!
229  */
230 #define ATTR_MODE	(1 << 0)
231 #define ATTR_UID	(1 << 1)
232 #define ATTR_GID	(1 << 2)
233 #define ATTR_SIZE	(1 << 3)
234 #define ATTR_ATIME	(1 << 4)
235 #define ATTR_MTIME	(1 << 5)
236 #define ATTR_CTIME	(1 << 6)
237 #define ATTR_ATIME_SET	(1 << 7)
238 #define ATTR_MTIME_SET	(1 << 8)
239 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
240 #define ATTR_KILL_SUID	(1 << 11)
241 #define ATTR_KILL_SGID	(1 << 12)
242 #define ATTR_FILE	(1 << 13)
243 #define ATTR_KILL_PRIV	(1 << 14)
244 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
245 #define ATTR_TIMES_SET	(1 << 16)
246 #define ATTR_TOUCH	(1 << 17)
247 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
248 
249 /*
250  * Whiteout is represented by a char device.  The following constants define the
251  * mode and device number to use.
252  */
253 #define WHITEOUT_MODE 0
254 #define WHITEOUT_DEV 0
255 
256 /*
257  * This is the Inode Attributes structure, used for notify_change().  It
258  * uses the above definitions as flags, to know which values have changed.
259  * Also, in this manner, a Filesystem can look at only the values it cares
260  * about.  Basically, these are the attributes that the VFS layer can
261  * request to change from the FS layer.
262  *
263  * Derek Atkins <[email protected]> 94-10-20
264  */
265 struct iattr {
266 	unsigned int	ia_valid;
267 	umode_t		ia_mode;
268 	/*
269 	 * The two anonymous unions wrap structures with the same member.
270 	 *
271 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
272 	 * are a dedicated type requiring the filesystem to use the dedicated
273 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
274 	 * have been ported.
275 	 *
276 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
277 	 * pass down the same value on idmapped mounts as they would on regular
278 	 * mounts.
279 	 */
280 	union {
281 		kuid_t		ia_uid;
282 		vfsuid_t	ia_vfsuid;
283 	};
284 	union {
285 		kgid_t		ia_gid;
286 		vfsgid_t	ia_vfsgid;
287 	};
288 	loff_t		ia_size;
289 	struct timespec64 ia_atime;
290 	struct timespec64 ia_mtime;
291 	struct timespec64 ia_ctime;
292 
293 	/*
294 	 * Not an attribute, but an auxiliary info for filesystems wanting to
295 	 * implement an ftruncate() like method.  NOTE: filesystem should
296 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
297 	 */
298 	struct file	*ia_file;
299 };
300 
301 /*
302  * Includes for diskquotas.
303  */
304 #include <linux/quota.h>
305 
306 /*
307  * Maximum number of layers of fs stack.  Needs to be limited to
308  * prevent kernel stack overflow
309  */
310 #define FILESYSTEM_MAX_STACK_DEPTH 2
311 
312 /**
313  * enum positive_aop_returns - aop return codes with specific semantics
314  *
315  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
316  * 			    completed, that the page is still locked, and
317  * 			    should be considered active.  The VM uses this hint
318  * 			    to return the page to the active list -- it won't
319  * 			    be a candidate for writeback again in the near
320  * 			    future.  Other callers must be careful to unlock
321  * 			    the page if they get this return.  Returned by
322  * 			    writepage();
323  *
324  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
325  *  			unlocked it and the page might have been truncated.
326  *  			The caller should back up to acquiring a new page and
327  *  			trying again.  The aop will be taking reasonable
328  *  			precautions not to livelock.  If the caller held a page
329  *  			reference, it should drop it before retrying.  Returned
330  *  			by read_folio().
331  *
332  * address_space_operation functions return these large constants to indicate
333  * special semantics to the caller.  These are much larger than the bytes in a
334  * page to allow for functions that return the number of bytes operated on in a
335  * given page.
336  */
337 
338 enum positive_aop_returns {
339 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
340 	AOP_TRUNCATED_PAGE	= 0x80001,
341 };
342 
343 /*
344  * oh the beauties of C type declarations.
345  */
346 struct page;
347 struct address_space;
348 struct writeback_control;
349 struct readahead_control;
350 
351 /* Match RWF_* bits to IOCB bits */
352 #define IOCB_HIPRI		(__force int) RWF_HIPRI
353 #define IOCB_DSYNC		(__force int) RWF_DSYNC
354 #define IOCB_SYNC		(__force int) RWF_SYNC
355 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
356 #define IOCB_APPEND		(__force int) RWF_APPEND
357 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
358 #define IOCB_DONTCACHE		(__force int) RWF_DONTCACHE
359 
360 /* non-RWF related bits - start at 16 */
361 #define IOCB_EVENTFD		(1 << 16)
362 #define IOCB_DIRECT		(1 << 17)
363 #define IOCB_WRITE		(1 << 18)
364 /* iocb->ki_waitq is valid */
365 #define IOCB_WAITQ		(1 << 19)
366 #define IOCB_NOIO		(1 << 20)
367 /* can use bio alloc cache */
368 #define IOCB_ALLOC_CACHE	(1 << 21)
369 /*
370  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
371  * iocb completion can be passed back to the owner for execution from a safe
372  * context rather than needing to be punted through a workqueue. If this
373  * flag is set, the bio completion handling may set iocb->dio_complete to a
374  * handler function and iocb->private to context information for that handler.
375  * The issuer should call the handler with that context information from task
376  * context to complete the processing of the iocb. Note that while this
377  * provides a task context for the dio_complete() callback, it should only be
378  * used on the completion side for non-IO generating completions. It's fine to
379  * call blocking functions from this callback, but they should not wait for
380  * unrelated IO (like cache flushing, new IO generation, etc).
381  */
382 #define IOCB_DIO_CALLER_COMP	(1 << 22)
383 /* kiocb is a read or write operation submitted by fs/aio.c. */
384 #define IOCB_AIO_RW		(1 << 23)
385 #define IOCB_HAS_METADATA	(1 << 24)
386 
387 /* for use in trace events */
388 #define TRACE_IOCB_STRINGS \
389 	{ IOCB_HIPRI,		"HIPRI" }, \
390 	{ IOCB_DSYNC,		"DSYNC" }, \
391 	{ IOCB_SYNC,		"SYNC" }, \
392 	{ IOCB_NOWAIT,		"NOWAIT" }, \
393 	{ IOCB_APPEND,		"APPEND" }, \
394 	{ IOCB_ATOMIC,		"ATOMIC" }, \
395 	{ IOCB_DONTCACHE,	"DONTCACHE" }, \
396 	{ IOCB_EVENTFD,		"EVENTFD"}, \
397 	{ IOCB_DIRECT,		"DIRECT" }, \
398 	{ IOCB_WRITE,		"WRITE" }, \
399 	{ IOCB_WAITQ,		"WAITQ" }, \
400 	{ IOCB_NOIO,		"NOIO" }, \
401 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
402 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
403 
404 struct kiocb {
405 	struct file		*ki_filp;
406 	loff_t			ki_pos;
407 	void (*ki_complete)(struct kiocb *iocb, long ret);
408 	void			*private;
409 	int			ki_flags;
410 	u16			ki_ioprio; /* See linux/ioprio.h */
411 	union {
412 		/*
413 		 * Only used for async buffered reads, where it denotes the
414 		 * page waitqueue associated with completing the read. Valid
415 		 * IFF IOCB_WAITQ is set.
416 		 */
417 		struct wait_page_queue	*ki_waitq;
418 		/*
419 		 * Can be used for O_DIRECT IO, where the completion handling
420 		 * is punted back to the issuer of the IO. May only be set
421 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
422 		 * must then check for presence of this handler when ki_complete
423 		 * is invoked. The data passed in to this handler must be
424 		 * assigned to ->private when dio_complete is assigned.
425 		 */
426 		ssize_t (*dio_complete)(void *data);
427 	};
428 };
429 
430 static inline bool is_sync_kiocb(struct kiocb *kiocb)
431 {
432 	return kiocb->ki_complete == NULL;
433 }
434 
435 struct address_space_operations {
436 	int (*writepage)(struct page *page, struct writeback_control *wbc);
437 	int (*read_folio)(struct file *, struct folio *);
438 
439 	/* Write back some dirty pages from this mapping. */
440 	int (*writepages)(struct address_space *, struct writeback_control *);
441 
442 	/* Mark a folio dirty.  Return true if this dirtied it */
443 	bool (*dirty_folio)(struct address_space *, struct folio *);
444 
445 	void (*readahead)(struct readahead_control *);
446 
447 	int (*write_begin)(struct file *, struct address_space *mapping,
448 				loff_t pos, unsigned len,
449 				struct folio **foliop, void **fsdata);
450 	int (*write_end)(struct file *, struct address_space *mapping,
451 				loff_t pos, unsigned len, unsigned copied,
452 				struct folio *folio, void *fsdata);
453 
454 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
455 	sector_t (*bmap)(struct address_space *, sector_t);
456 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
457 	bool (*release_folio)(struct folio *, gfp_t);
458 	void (*free_folio)(struct folio *folio);
459 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
460 	/*
461 	 * migrate the contents of a folio to the specified target. If
462 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
463 	 */
464 	int (*migrate_folio)(struct address_space *, struct folio *dst,
465 			struct folio *src, enum migrate_mode);
466 	int (*launder_folio)(struct folio *);
467 	bool (*is_partially_uptodate) (struct folio *, size_t from,
468 			size_t count);
469 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
470 	int (*error_remove_folio)(struct address_space *, struct folio *);
471 
472 	/* swapfile support */
473 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
474 				sector_t *span);
475 	void (*swap_deactivate)(struct file *file);
476 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
477 };
478 
479 extern const struct address_space_operations empty_aops;
480 
481 /**
482  * struct address_space - Contents of a cacheable, mappable object.
483  * @host: Owner, either the inode or the block_device.
484  * @i_pages: Cached pages.
485  * @invalidate_lock: Guards coherency between page cache contents and
486  *   file offset->disk block mappings in the filesystem during invalidates.
487  *   It is also used to block modification of page cache contents through
488  *   memory mappings.
489  * @gfp_mask: Memory allocation flags to use for allocating pages.
490  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
491  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
492  * @i_mmap: Tree of private and shared mappings.
493  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
494  * @nrpages: Number of page entries, protected by the i_pages lock.
495  * @writeback_index: Writeback starts here.
496  * @a_ops: Methods.
497  * @flags: Error bits and flags (AS_*).
498  * @wb_err: The most recent error which has occurred.
499  * @i_private_lock: For use by the owner of the address_space.
500  * @i_private_list: For use by the owner of the address_space.
501  * @i_private_data: For use by the owner of the address_space.
502  */
503 struct address_space {
504 	struct inode		*host;
505 	struct xarray		i_pages;
506 	struct rw_semaphore	invalidate_lock;
507 	gfp_t			gfp_mask;
508 	atomic_t		i_mmap_writable;
509 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
510 	/* number of thp, only for non-shmem files */
511 	atomic_t		nr_thps;
512 #endif
513 	struct rb_root_cached	i_mmap;
514 	unsigned long		nrpages;
515 	pgoff_t			writeback_index;
516 	const struct address_space_operations *a_ops;
517 	unsigned long		flags;
518 	errseq_t		wb_err;
519 	spinlock_t		i_private_lock;
520 	struct list_head	i_private_list;
521 	struct rw_semaphore	i_mmap_rwsem;
522 	void *			i_private_data;
523 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
524 	/*
525 	 * On most architectures that alignment is already the case; but
526 	 * must be enforced here for CRIS, to let the least significant bit
527 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
528 	 */
529 
530 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
531 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
532 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
533 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
534 
535 /*
536  * Returns true if any of the pages in the mapping are marked with the tag.
537  */
538 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
539 {
540 	return xa_marked(&mapping->i_pages, tag);
541 }
542 
543 static inline void i_mmap_lock_write(struct address_space *mapping)
544 {
545 	down_write(&mapping->i_mmap_rwsem);
546 }
547 
548 static inline int i_mmap_trylock_write(struct address_space *mapping)
549 {
550 	return down_write_trylock(&mapping->i_mmap_rwsem);
551 }
552 
553 static inline void i_mmap_unlock_write(struct address_space *mapping)
554 {
555 	up_write(&mapping->i_mmap_rwsem);
556 }
557 
558 static inline int i_mmap_trylock_read(struct address_space *mapping)
559 {
560 	return down_read_trylock(&mapping->i_mmap_rwsem);
561 }
562 
563 static inline void i_mmap_lock_read(struct address_space *mapping)
564 {
565 	down_read(&mapping->i_mmap_rwsem);
566 }
567 
568 static inline void i_mmap_unlock_read(struct address_space *mapping)
569 {
570 	up_read(&mapping->i_mmap_rwsem);
571 }
572 
573 static inline void i_mmap_assert_locked(struct address_space *mapping)
574 {
575 	lockdep_assert_held(&mapping->i_mmap_rwsem);
576 }
577 
578 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
579 {
580 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
581 }
582 
583 /*
584  * Might pages of this file be mapped into userspace?
585  */
586 static inline int mapping_mapped(struct address_space *mapping)
587 {
588 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
589 }
590 
591 /*
592  * Might pages of this file have been modified in userspace?
593  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
594  * marks vma as VM_SHARED if it is shared, and the file was opened for
595  * writing i.e. vma may be mprotected writable even if now readonly.
596  *
597  * If i_mmap_writable is negative, no new writable mappings are allowed. You
598  * can only deny writable mappings, if none exists right now.
599  */
600 static inline int mapping_writably_mapped(struct address_space *mapping)
601 {
602 	return atomic_read(&mapping->i_mmap_writable) > 0;
603 }
604 
605 static inline int mapping_map_writable(struct address_space *mapping)
606 {
607 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
608 		0 : -EPERM;
609 }
610 
611 static inline void mapping_unmap_writable(struct address_space *mapping)
612 {
613 	atomic_dec(&mapping->i_mmap_writable);
614 }
615 
616 static inline int mapping_deny_writable(struct address_space *mapping)
617 {
618 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
619 		0 : -EBUSY;
620 }
621 
622 static inline void mapping_allow_writable(struct address_space *mapping)
623 {
624 	atomic_inc(&mapping->i_mmap_writable);
625 }
626 
627 /*
628  * Use sequence counter to get consistent i_size on 32-bit processors.
629  */
630 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
631 #include <linux/seqlock.h>
632 #define __NEED_I_SIZE_ORDERED
633 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
634 #else
635 #define i_size_ordered_init(inode) do { } while (0)
636 #endif
637 
638 struct posix_acl;
639 #define ACL_NOT_CACHED ((void *)(-1))
640 /*
641  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
642  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
643  * mode with the LOOKUP_RCU flag.
644  */
645 #define ACL_DONT_CACHE ((void *)(-3))
646 
647 static inline struct posix_acl *
648 uncached_acl_sentinel(struct task_struct *task)
649 {
650 	return (void *)task + 1;
651 }
652 
653 static inline bool
654 is_uncached_acl(struct posix_acl *acl)
655 {
656 	return (long)acl & 1;
657 }
658 
659 #define IOP_FASTPERM	0x0001
660 #define IOP_LOOKUP	0x0002
661 #define IOP_NOFOLLOW	0x0004
662 #define IOP_XATTR	0x0008
663 #define IOP_DEFAULT_READLINK	0x0010
664 #define IOP_MGTIME	0x0020
665 #define IOP_CACHED_LINK	0x0040
666 
667 /*
668  * Keep mostly read-only and often accessed (especially for
669  * the RCU path lookup and 'stat' data) fields at the beginning
670  * of the 'struct inode'
671  */
672 struct inode {
673 	umode_t			i_mode;
674 	unsigned short		i_opflags;
675 	kuid_t			i_uid;
676 	kgid_t			i_gid;
677 	unsigned int		i_flags;
678 
679 #ifdef CONFIG_FS_POSIX_ACL
680 	struct posix_acl	*i_acl;
681 	struct posix_acl	*i_default_acl;
682 #endif
683 
684 	const struct inode_operations	*i_op;
685 	struct super_block	*i_sb;
686 	struct address_space	*i_mapping;
687 
688 #ifdef CONFIG_SECURITY
689 	void			*i_security;
690 #endif
691 
692 	/* Stat data, not accessed from path walking */
693 	unsigned long		i_ino;
694 	/*
695 	 * Filesystems may only read i_nlink directly.  They shall use the
696 	 * following functions for modification:
697 	 *
698 	 *    (set|clear|inc|drop)_nlink
699 	 *    inode_(inc|dec)_link_count
700 	 */
701 	union {
702 		const unsigned int i_nlink;
703 		unsigned int __i_nlink;
704 	};
705 	dev_t			i_rdev;
706 	loff_t			i_size;
707 	time64_t		i_atime_sec;
708 	time64_t		i_mtime_sec;
709 	time64_t		i_ctime_sec;
710 	u32			i_atime_nsec;
711 	u32			i_mtime_nsec;
712 	u32			i_ctime_nsec;
713 	u32			i_generation;
714 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
715 	unsigned short          i_bytes;
716 	u8			i_blkbits;
717 	enum rw_hint		i_write_hint;
718 	blkcnt_t		i_blocks;
719 
720 #ifdef __NEED_I_SIZE_ORDERED
721 	seqcount_t		i_size_seqcount;
722 #endif
723 
724 	/* Misc */
725 	u32			i_state;
726 	/* 32-bit hole */
727 	struct rw_semaphore	i_rwsem;
728 
729 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
730 	unsigned long		dirtied_time_when;
731 
732 	struct hlist_node	i_hash;
733 	struct list_head	i_io_list;	/* backing dev IO list */
734 #ifdef CONFIG_CGROUP_WRITEBACK
735 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
736 
737 	/* foreign inode detection, see wbc_detach_inode() */
738 	int			i_wb_frn_winner;
739 	u16			i_wb_frn_avg_time;
740 	u16			i_wb_frn_history;
741 #endif
742 	struct list_head	i_lru;		/* inode LRU list */
743 	struct list_head	i_sb_list;
744 	struct list_head	i_wb_list;	/* backing dev writeback list */
745 	union {
746 		struct hlist_head	i_dentry;
747 		struct rcu_head		i_rcu;
748 	};
749 	atomic64_t		i_version;
750 	atomic64_t		i_sequence; /* see futex */
751 	atomic_t		i_count;
752 	atomic_t		i_dio_count;
753 	atomic_t		i_writecount;
754 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
755 	atomic_t		i_readcount; /* struct files open RO */
756 #endif
757 	union {
758 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
759 		void (*free_inode)(struct inode *);
760 	};
761 	struct file_lock_context	*i_flctx;
762 	struct address_space	i_data;
763 	union {
764 		struct list_head	i_devices;
765 		int			i_linklen;
766 	};
767 	union {
768 		struct pipe_inode_info	*i_pipe;
769 		struct cdev		*i_cdev;
770 		char			*i_link;
771 		unsigned		i_dir_seq;
772 	};
773 
774 
775 #ifdef CONFIG_FSNOTIFY
776 	__u32			i_fsnotify_mask; /* all events this inode cares about */
777 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
778 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
779 #endif
780 
781 #ifdef CONFIG_FS_ENCRYPTION
782 	struct fscrypt_inode_info	*i_crypt_info;
783 #endif
784 
785 #ifdef CONFIG_FS_VERITY
786 	struct fsverity_info	*i_verity_info;
787 #endif
788 
789 	void			*i_private; /* fs or device private pointer */
790 } __randomize_layout;
791 
792 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
793 {
794 	VFS_WARN_ON_INODE(strlen(link) != linklen, inode);
795 	VFS_WARN_ON_INODE(inode->i_opflags & IOP_CACHED_LINK, inode);
796 	inode->i_link = link;
797 	inode->i_linklen = linklen;
798 	inode->i_opflags |= IOP_CACHED_LINK;
799 }
800 
801 /*
802  * Get bit address from inode->i_state to use with wait_var_event()
803  * infrastructre.
804  */
805 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
806 
807 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
808 					    struct inode *inode, u32 bit);
809 
810 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
811 {
812 	/* Caller is responsible for correct memory barriers. */
813 	wake_up_var(inode_state_wait_address(inode, bit));
814 }
815 
816 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
817 
818 static inline unsigned int i_blocksize(const struct inode *node)
819 {
820 	return (1 << node->i_blkbits);
821 }
822 
823 static inline int inode_unhashed(struct inode *inode)
824 {
825 	return hlist_unhashed(&inode->i_hash);
826 }
827 
828 /*
829  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
830  * want special inodes in the fileset inode space, we make them
831  * appear hashed, but do not put on any lists.  hlist_del()
832  * will work fine and require no locking.
833  */
834 static inline void inode_fake_hash(struct inode *inode)
835 {
836 	hlist_add_fake(&inode->i_hash);
837 }
838 
839 /*
840  * inode->i_mutex nesting subclasses for the lock validator:
841  *
842  * 0: the object of the current VFS operation
843  * 1: parent
844  * 2: child/target
845  * 3: xattr
846  * 4: second non-directory
847  * 5: second parent (when locking independent directories in rename)
848  *
849  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
850  * non-directories at once.
851  *
852  * The locking order between these classes is
853  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
854  */
855 enum inode_i_mutex_lock_class
856 {
857 	I_MUTEX_NORMAL,
858 	I_MUTEX_PARENT,
859 	I_MUTEX_CHILD,
860 	I_MUTEX_XATTR,
861 	I_MUTEX_NONDIR2,
862 	I_MUTEX_PARENT2,
863 };
864 
865 static inline void inode_lock(struct inode *inode)
866 {
867 	down_write(&inode->i_rwsem);
868 }
869 
870 static inline void inode_unlock(struct inode *inode)
871 {
872 	up_write(&inode->i_rwsem);
873 }
874 
875 static inline void inode_lock_shared(struct inode *inode)
876 {
877 	down_read(&inode->i_rwsem);
878 }
879 
880 static inline void inode_unlock_shared(struct inode *inode)
881 {
882 	up_read(&inode->i_rwsem);
883 }
884 
885 static inline int inode_trylock(struct inode *inode)
886 {
887 	return down_write_trylock(&inode->i_rwsem);
888 }
889 
890 static inline int inode_trylock_shared(struct inode *inode)
891 {
892 	return down_read_trylock(&inode->i_rwsem);
893 }
894 
895 static inline int inode_is_locked(struct inode *inode)
896 {
897 	return rwsem_is_locked(&inode->i_rwsem);
898 }
899 
900 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
901 {
902 	down_write_nested(&inode->i_rwsem, subclass);
903 }
904 
905 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
906 {
907 	down_read_nested(&inode->i_rwsem, subclass);
908 }
909 
910 static inline void filemap_invalidate_lock(struct address_space *mapping)
911 {
912 	down_write(&mapping->invalidate_lock);
913 }
914 
915 static inline void filemap_invalidate_unlock(struct address_space *mapping)
916 {
917 	up_write(&mapping->invalidate_lock);
918 }
919 
920 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
921 {
922 	down_read(&mapping->invalidate_lock);
923 }
924 
925 static inline int filemap_invalidate_trylock_shared(
926 					struct address_space *mapping)
927 {
928 	return down_read_trylock(&mapping->invalidate_lock);
929 }
930 
931 static inline void filemap_invalidate_unlock_shared(
932 					struct address_space *mapping)
933 {
934 	up_read(&mapping->invalidate_lock);
935 }
936 
937 void lock_two_nondirectories(struct inode *, struct inode*);
938 void unlock_two_nondirectories(struct inode *, struct inode*);
939 
940 void filemap_invalidate_lock_two(struct address_space *mapping1,
941 				 struct address_space *mapping2);
942 void filemap_invalidate_unlock_two(struct address_space *mapping1,
943 				   struct address_space *mapping2);
944 
945 
946 /*
947  * NOTE: in a 32bit arch with a preemptable kernel and
948  * an UP compile the i_size_read/write must be atomic
949  * with respect to the local cpu (unlike with preempt disabled),
950  * but they don't need to be atomic with respect to other cpus like in
951  * true SMP (so they need either to either locally disable irq around
952  * the read or for example on x86 they can be still implemented as a
953  * cmpxchg8b without the need of the lock prefix). For SMP compiles
954  * and 64bit archs it makes no difference if preempt is enabled or not.
955  */
956 static inline loff_t i_size_read(const struct inode *inode)
957 {
958 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
959 	loff_t i_size;
960 	unsigned int seq;
961 
962 	do {
963 		seq = read_seqcount_begin(&inode->i_size_seqcount);
964 		i_size = inode->i_size;
965 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
966 	return i_size;
967 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
968 	loff_t i_size;
969 
970 	preempt_disable();
971 	i_size = inode->i_size;
972 	preempt_enable();
973 	return i_size;
974 #else
975 	/* Pairs with smp_store_release() in i_size_write() */
976 	return smp_load_acquire(&inode->i_size);
977 #endif
978 }
979 
980 /*
981  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
982  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
983  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
984  */
985 static inline void i_size_write(struct inode *inode, loff_t i_size)
986 {
987 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
988 	preempt_disable();
989 	write_seqcount_begin(&inode->i_size_seqcount);
990 	inode->i_size = i_size;
991 	write_seqcount_end(&inode->i_size_seqcount);
992 	preempt_enable();
993 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
994 	preempt_disable();
995 	inode->i_size = i_size;
996 	preempt_enable();
997 #else
998 	/*
999 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
1000 	 * changes related to inode size (such as page contents) are
1001 	 * visible before we see the changed inode size.
1002 	 */
1003 	smp_store_release(&inode->i_size, i_size);
1004 #endif
1005 }
1006 
1007 static inline unsigned iminor(const struct inode *inode)
1008 {
1009 	return MINOR(inode->i_rdev);
1010 }
1011 
1012 static inline unsigned imajor(const struct inode *inode)
1013 {
1014 	return MAJOR(inode->i_rdev);
1015 }
1016 
1017 struct fown_struct {
1018 	struct file *file;	/* backpointer for security modules */
1019 	rwlock_t lock;          /* protects pid, uid, euid fields */
1020 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
1021 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
1022 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
1023 	int signum;		/* posix.1b rt signal to be delivered on IO */
1024 };
1025 
1026 /**
1027  * struct file_ra_state - Track a file's readahead state.
1028  * @start: Where the most recent readahead started.
1029  * @size: Number of pages read in the most recent readahead.
1030  * @async_size: Numer of pages that were/are not needed immediately
1031  *      and so were/are genuinely "ahead".  Start next readahead when
1032  *      the first of these pages is accessed.
1033  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
1034  * @mmap_miss: How many mmap accesses missed in the page cache.
1035  * @prev_pos: The last byte in the most recent read request.
1036  *
1037  * When this structure is passed to ->readahead(), the "most recent"
1038  * readahead means the current readahead.
1039  */
1040 struct file_ra_state {
1041 	pgoff_t start;
1042 	unsigned int size;
1043 	unsigned int async_size;
1044 	unsigned int ra_pages;
1045 	unsigned int mmap_miss;
1046 	loff_t prev_pos;
1047 };
1048 
1049 /*
1050  * Check if @index falls in the readahead windows.
1051  */
1052 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1053 {
1054 	return (index >= ra->start &&
1055 		index <  ra->start + ra->size);
1056 }
1057 
1058 /**
1059  * struct file - Represents a file
1060  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1061  * @f_mode: FMODE_* flags often used in hotpaths
1062  * @f_op: file operations
1063  * @f_mapping: Contents of a cacheable, mappable object.
1064  * @private_data: filesystem or driver specific data
1065  * @f_inode: cached inode
1066  * @f_flags: file flags
1067  * @f_iocb_flags: iocb flags
1068  * @f_cred: stashed credentials of creator/opener
1069  * @f_owner: file owner
1070  * @f_path: path of the file
1071  * @f_pos_lock: lock protecting file position
1072  * @f_pipe: specific to pipes
1073  * @f_pos: file position
1074  * @f_security: LSM security context of this file
1075  * @f_wb_err: writeback error
1076  * @f_sb_err: per sb writeback errors
1077  * @f_ep: link of all epoll hooks for this file
1078  * @f_task_work: task work entry point
1079  * @f_llist: work queue entrypoint
1080  * @f_ra: file's readahead state
1081  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1082  * @f_ref: reference count
1083  */
1084 struct file {
1085 	spinlock_t			f_lock;
1086 	fmode_t				f_mode;
1087 	const struct file_operations	*f_op;
1088 	struct address_space		*f_mapping;
1089 	void				*private_data;
1090 	struct inode			*f_inode;
1091 	unsigned int			f_flags;
1092 	unsigned int			f_iocb_flags;
1093 	const struct cred		*f_cred;
1094 	struct fown_struct		*f_owner;
1095 	/* --- cacheline 1 boundary (64 bytes) --- */
1096 	struct path			f_path;
1097 	union {
1098 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1099 		struct mutex		f_pos_lock;
1100 		/* pipes */
1101 		u64			f_pipe;
1102 	};
1103 	loff_t				f_pos;
1104 #ifdef CONFIG_SECURITY
1105 	void				*f_security;
1106 #endif
1107 	/* --- cacheline 2 boundary (128 bytes) --- */
1108 	errseq_t			f_wb_err;
1109 	errseq_t			f_sb_err;
1110 #ifdef CONFIG_EPOLL
1111 	struct hlist_head		*f_ep;
1112 #endif
1113 	union {
1114 		struct callback_head	f_task_work;
1115 		struct llist_node	f_llist;
1116 		struct file_ra_state	f_ra;
1117 		freeptr_t		f_freeptr;
1118 	};
1119 	file_ref_t			f_ref;
1120 	/* --- cacheline 3 boundary (192 bytes) --- */
1121 } __randomize_layout
1122   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1123 
1124 struct file_handle {
1125 	__u32 handle_bytes;
1126 	int handle_type;
1127 	/* file identifier */
1128 	unsigned char f_handle[] __counted_by(handle_bytes);
1129 };
1130 
1131 static inline struct file *get_file(struct file *f)
1132 {
1133 	file_ref_inc(&f->f_ref);
1134 	return f;
1135 }
1136 
1137 struct file *get_file_rcu(struct file __rcu **f);
1138 struct file *get_file_active(struct file **f);
1139 
1140 #define file_count(f)	file_ref_read(&(f)->f_ref)
1141 
1142 #define	MAX_NON_LFS	((1UL<<31) - 1)
1143 
1144 /* Page cache limit. The filesystems should put that into their s_maxbytes
1145    limits, otherwise bad things can happen in VM. */
1146 #if BITS_PER_LONG==32
1147 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1148 #elif BITS_PER_LONG==64
1149 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1150 #endif
1151 
1152 /* legacy typedef, should eventually be removed */
1153 typedef void *fl_owner_t;
1154 
1155 struct file_lock;
1156 struct file_lease;
1157 
1158 /* The following constant reflects the upper bound of the file/locking space */
1159 #ifndef OFFSET_MAX
1160 #define OFFSET_MAX	type_max(loff_t)
1161 #define OFFT_OFFSET_MAX	type_max(off_t)
1162 #endif
1163 
1164 int file_f_owner_allocate(struct file *file);
1165 static inline struct fown_struct *file_f_owner(const struct file *file)
1166 {
1167 	return READ_ONCE(file->f_owner);
1168 }
1169 
1170 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1171 
1172 static inline struct inode *file_inode(const struct file *f)
1173 {
1174 	return f->f_inode;
1175 }
1176 
1177 /*
1178  * file_dentry() is a relic from the days that overlayfs was using files with a
1179  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1180  * In those days, file_dentry() was needed to get the underlying fs dentry that
1181  * matches f_inode.
1182  * Files with "fake" path should not exist nowadays, so use an assertion to make
1183  * sure that file_dentry() was not papering over filesystem bugs.
1184  */
1185 static inline struct dentry *file_dentry(const struct file *file)
1186 {
1187 	struct dentry *dentry = file->f_path.dentry;
1188 
1189 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1190 	return dentry;
1191 }
1192 
1193 struct fasync_struct {
1194 	rwlock_t		fa_lock;
1195 	int			magic;
1196 	int			fa_fd;
1197 	struct fasync_struct	*fa_next; /* singly linked list */
1198 	struct file		*fa_file;
1199 	struct rcu_head		fa_rcu;
1200 };
1201 
1202 #define FASYNC_MAGIC 0x4601
1203 
1204 /* SMP safe fasync helpers: */
1205 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1206 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1207 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1208 extern struct fasync_struct *fasync_alloc(void);
1209 extern void fasync_free(struct fasync_struct *);
1210 
1211 /* can be called from interrupts */
1212 extern void kill_fasync(struct fasync_struct **, int, int);
1213 
1214 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1215 extern int f_setown(struct file *filp, int who, int force);
1216 extern void f_delown(struct file *filp);
1217 extern pid_t f_getown(struct file *filp);
1218 extern int send_sigurg(struct file *file);
1219 
1220 /*
1221  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1222  * represented in both.
1223  */
1224 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1225 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1226 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1227 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1228 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1229 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1230 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1231 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1232 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1233 #define SB_SILENT       BIT(15)
1234 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1235 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1236 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1237 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1238 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1239 
1240 /* These sb flags are internal to the kernel */
1241 #define SB_DEAD         BIT(21)
1242 #define SB_DYING        BIT(24)
1243 #define SB_SUBMOUNT     BIT(26)
1244 #define SB_FORCE        BIT(27)
1245 #define SB_NOSEC        BIT(28)
1246 #define SB_BORN         BIT(29)
1247 #define SB_ACTIVE       BIT(30)
1248 #define SB_NOUSER       BIT(31)
1249 
1250 /* These flags relate to encoding and casefolding */
1251 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1252 
1253 #define sb_has_strict_encoding(sb) \
1254 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1255 
1256 /*
1257  *	Umount options
1258  */
1259 
1260 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1261 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1262 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1263 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1264 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1265 
1266 /* sb->s_iflags */
1267 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1268 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1269 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1270 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1271 
1272 /* sb->s_iflags to limit user namespace mounts */
1273 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1274 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1275 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1276 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1277 
1278 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1279 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1280 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1281 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1282 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1283 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1284 #define SB_I_ALLOW_HSM	0x00004000	/* Allow HSM events on this superblock */
1285 
1286 /* Possible states of 'frozen' field */
1287 enum {
1288 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1289 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1290 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1291 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1292 					 * internal threads if needed) */
1293 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1294 };
1295 
1296 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1297 
1298 struct sb_writers {
1299 	unsigned short			frozen;		/* Is sb frozen? */
1300 	int				freeze_kcount;	/* How many kernel freeze requests? */
1301 	int				freeze_ucount;	/* How many userspace freeze requests? */
1302 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1303 };
1304 
1305 struct super_block {
1306 	struct list_head	s_list;		/* Keep this first */
1307 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1308 	unsigned char		s_blocksize_bits;
1309 	unsigned long		s_blocksize;
1310 	loff_t			s_maxbytes;	/* Max file size */
1311 	struct file_system_type	*s_type;
1312 	const struct super_operations	*s_op;
1313 	const struct dquot_operations	*dq_op;
1314 	const struct quotactl_ops	*s_qcop;
1315 	const struct export_operations *s_export_op;
1316 	unsigned long		s_flags;
1317 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1318 	unsigned long		s_magic;
1319 	struct dentry		*s_root;
1320 	struct rw_semaphore	s_umount;
1321 	int			s_count;
1322 	atomic_t		s_active;
1323 #ifdef CONFIG_SECURITY
1324 	void                    *s_security;
1325 #endif
1326 	const struct xattr_handler * const *s_xattr;
1327 #ifdef CONFIG_FS_ENCRYPTION
1328 	const struct fscrypt_operations	*s_cop;
1329 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1330 #endif
1331 #ifdef CONFIG_FS_VERITY
1332 	const struct fsverity_operations *s_vop;
1333 #endif
1334 #if IS_ENABLED(CONFIG_UNICODE)
1335 	struct unicode_map *s_encoding;
1336 	__u16 s_encoding_flags;
1337 #endif
1338 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1339 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1340 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1341 	struct file		*s_bdev_file;
1342 	struct backing_dev_info *s_bdi;
1343 	struct mtd_info		*s_mtd;
1344 	struct hlist_node	s_instances;
1345 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1346 	struct quota_info	s_dquot;	/* Diskquota specific options */
1347 
1348 	struct sb_writers	s_writers;
1349 
1350 	/*
1351 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1352 	 * s_fsnotify_info together for cache efficiency. They are frequently
1353 	 * accessed and rarely modified.
1354 	 */
1355 	void			*s_fs_info;	/* Filesystem private info */
1356 
1357 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1358 	u32			s_time_gran;
1359 	/* Time limits for c/m/atime in seconds */
1360 	time64_t		   s_time_min;
1361 	time64_t		   s_time_max;
1362 #ifdef CONFIG_FSNOTIFY
1363 	u32			s_fsnotify_mask;
1364 	struct fsnotify_sb_info	*s_fsnotify_info;
1365 #endif
1366 
1367 	/*
1368 	 * q: why are s_id and s_sysfs_name not the same? both are human
1369 	 * readable strings that identify the filesystem
1370 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1371 	 * and we want to when a device starts out as single device (s_id is dev
1372 	 * name) but then a device is hot added and we have to switch to
1373 	 * identifying it by UUID
1374 	 * but s_sysfs_name is a handle for programmatic access, and can't
1375 	 * change at runtime
1376 	 */
1377 	char			s_id[32];	/* Informational name */
1378 	uuid_t			s_uuid;		/* UUID */
1379 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1380 
1381 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1382 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1383 
1384 	unsigned int		s_max_links;
1385 
1386 	/*
1387 	 * The next field is for VFS *only*. No filesystems have any business
1388 	 * even looking at it. You had been warned.
1389 	 */
1390 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1391 
1392 	/*
1393 	 * Filesystem subtype.  If non-empty the filesystem type field
1394 	 * in /proc/mounts will be "type.subtype"
1395 	 */
1396 	const char *s_subtype;
1397 
1398 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1399 
1400 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1401 
1402 	/* Number of inodes with nlink == 0 but still referenced */
1403 	atomic_long_t s_remove_count;
1404 
1405 	/* Read-only state of the superblock is being changed */
1406 	int s_readonly_remount;
1407 
1408 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1409 	errseq_t s_wb_err;
1410 
1411 	/* AIO completions deferred from interrupt context */
1412 	struct workqueue_struct *s_dio_done_wq;
1413 	struct hlist_head s_pins;
1414 
1415 	/*
1416 	 * Owning user namespace and default context in which to
1417 	 * interpret filesystem uids, gids, quotas, device nodes,
1418 	 * xattrs and security labels.
1419 	 */
1420 	struct user_namespace *s_user_ns;
1421 
1422 	/*
1423 	 * The list_lru structure is essentially just a pointer to a table
1424 	 * of per-node lru lists, each of which has its own spinlock.
1425 	 * There is no need to put them into separate cachelines.
1426 	 */
1427 	struct list_lru		s_dentry_lru;
1428 	struct list_lru		s_inode_lru;
1429 	struct rcu_head		rcu;
1430 	struct work_struct	destroy_work;
1431 
1432 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1433 
1434 	/*
1435 	 * Indicates how deep in a filesystem stack this SB is
1436 	 */
1437 	int s_stack_depth;
1438 
1439 	/* s_inode_list_lock protects s_inodes */
1440 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1441 	struct list_head	s_inodes;	/* all inodes */
1442 
1443 	spinlock_t		s_inode_wblist_lock;
1444 	struct list_head	s_inodes_wb;	/* writeback inodes */
1445 } __randomize_layout;
1446 
1447 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1448 {
1449 	return inode->i_sb->s_user_ns;
1450 }
1451 
1452 /* Helper functions so that in most cases filesystems will
1453  * not need to deal directly with kuid_t and kgid_t and can
1454  * instead deal with the raw numeric values that are stored
1455  * in the filesystem.
1456  */
1457 static inline uid_t i_uid_read(const struct inode *inode)
1458 {
1459 	return from_kuid(i_user_ns(inode), inode->i_uid);
1460 }
1461 
1462 static inline gid_t i_gid_read(const struct inode *inode)
1463 {
1464 	return from_kgid(i_user_ns(inode), inode->i_gid);
1465 }
1466 
1467 static inline void i_uid_write(struct inode *inode, uid_t uid)
1468 {
1469 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1470 }
1471 
1472 static inline void i_gid_write(struct inode *inode, gid_t gid)
1473 {
1474 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1475 }
1476 
1477 /**
1478  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1479  * @idmap: idmap of the mount the inode was found from
1480  * @inode: inode to map
1481  *
1482  * Return: whe inode's i_uid mapped down according to @idmap.
1483  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1484  */
1485 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1486 					 const struct inode *inode)
1487 {
1488 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1489 }
1490 
1491 /**
1492  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1493  * @idmap: idmap of the mount the inode was found from
1494  * @attr: the new attributes of @inode
1495  * @inode: the inode to update
1496  *
1497  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1498  * mounts into account if the filesystem supports it.
1499  *
1500  * Return: true if @inode's i_uid field needs to be updated, false if not.
1501  */
1502 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1503 				      const struct iattr *attr,
1504 				      const struct inode *inode)
1505 {
1506 	return ((attr->ia_valid & ATTR_UID) &&
1507 		!vfsuid_eq(attr->ia_vfsuid,
1508 			   i_uid_into_vfsuid(idmap, inode)));
1509 }
1510 
1511 /**
1512  * i_uid_update - update @inode's i_uid field
1513  * @idmap: idmap of the mount the inode was found from
1514  * @attr: the new attributes of @inode
1515  * @inode: the inode to update
1516  *
1517  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1518  * mount into the filesystem kuid.
1519  */
1520 static inline void i_uid_update(struct mnt_idmap *idmap,
1521 				const struct iattr *attr,
1522 				struct inode *inode)
1523 {
1524 	if (attr->ia_valid & ATTR_UID)
1525 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1526 					   attr->ia_vfsuid);
1527 }
1528 
1529 /**
1530  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1531  * @idmap: idmap of the mount the inode was found from
1532  * @inode: inode to map
1533  *
1534  * Return: the inode's i_gid mapped down according to @idmap.
1535  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1536  */
1537 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1538 					 const struct inode *inode)
1539 {
1540 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1541 }
1542 
1543 /**
1544  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1545  * @idmap: idmap of the mount the inode was found from
1546  * @attr: the new attributes of @inode
1547  * @inode: the inode to update
1548  *
1549  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1550  * mounts into account if the filesystem supports it.
1551  *
1552  * Return: true if @inode's i_gid field needs to be updated, false if not.
1553  */
1554 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1555 				      const struct iattr *attr,
1556 				      const struct inode *inode)
1557 {
1558 	return ((attr->ia_valid & ATTR_GID) &&
1559 		!vfsgid_eq(attr->ia_vfsgid,
1560 			   i_gid_into_vfsgid(idmap, inode)));
1561 }
1562 
1563 /**
1564  * i_gid_update - update @inode's i_gid field
1565  * @idmap: idmap of the mount the inode was found from
1566  * @attr: the new attributes of @inode
1567  * @inode: the inode to update
1568  *
1569  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1570  * mount into the filesystem kgid.
1571  */
1572 static inline void i_gid_update(struct mnt_idmap *idmap,
1573 				const struct iattr *attr,
1574 				struct inode *inode)
1575 {
1576 	if (attr->ia_valid & ATTR_GID)
1577 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1578 					   attr->ia_vfsgid);
1579 }
1580 
1581 /**
1582  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1583  * @inode: inode to initialize
1584  * @idmap: idmap of the mount the inode was found from
1585  *
1586  * Initialize the i_uid field of @inode. If the inode was found/created via
1587  * an idmapped mount map the caller's fsuid according to @idmap.
1588  */
1589 static inline void inode_fsuid_set(struct inode *inode,
1590 				   struct mnt_idmap *idmap)
1591 {
1592 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1593 }
1594 
1595 /**
1596  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1597  * @inode: inode to initialize
1598  * @idmap: idmap of the mount the inode was found from
1599  *
1600  * Initialize the i_gid field of @inode. If the inode was found/created via
1601  * an idmapped mount map the caller's fsgid according to @idmap.
1602  */
1603 static inline void inode_fsgid_set(struct inode *inode,
1604 				   struct mnt_idmap *idmap)
1605 {
1606 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1607 }
1608 
1609 /**
1610  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1611  * @sb: the superblock we want a mapping in
1612  * @idmap: idmap of the relevant mount
1613  *
1614  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1615  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1616  * the caller's fsuid and fsgid according to the @idmap first.
1617  *
1618  * Return: true if fsuid and fsgid is mapped, false if not.
1619  */
1620 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1621 					struct mnt_idmap *idmap)
1622 {
1623 	struct user_namespace *fs_userns = sb->s_user_ns;
1624 	kuid_t kuid;
1625 	kgid_t kgid;
1626 
1627 	kuid = mapped_fsuid(idmap, fs_userns);
1628 	if (!uid_valid(kuid))
1629 		return false;
1630 	kgid = mapped_fsgid(idmap, fs_userns);
1631 	if (!gid_valid(kgid))
1632 		return false;
1633 	return kuid_has_mapping(fs_userns, kuid) &&
1634 	       kgid_has_mapping(fs_userns, kgid);
1635 }
1636 
1637 struct timespec64 current_time(struct inode *inode);
1638 struct timespec64 inode_set_ctime_current(struct inode *inode);
1639 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1640 					struct timespec64 update);
1641 
1642 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1643 {
1644 	return inode->i_atime_sec;
1645 }
1646 
1647 static inline long inode_get_atime_nsec(const struct inode *inode)
1648 {
1649 	return inode->i_atime_nsec;
1650 }
1651 
1652 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1653 {
1654 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1655 				 .tv_nsec = inode_get_atime_nsec(inode) };
1656 
1657 	return ts;
1658 }
1659 
1660 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1661 						      struct timespec64 ts)
1662 {
1663 	inode->i_atime_sec = ts.tv_sec;
1664 	inode->i_atime_nsec = ts.tv_nsec;
1665 	return ts;
1666 }
1667 
1668 static inline struct timespec64 inode_set_atime(struct inode *inode,
1669 						time64_t sec, long nsec)
1670 {
1671 	struct timespec64 ts = { .tv_sec  = sec,
1672 				 .tv_nsec = nsec };
1673 
1674 	return inode_set_atime_to_ts(inode, ts);
1675 }
1676 
1677 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1678 {
1679 	return inode->i_mtime_sec;
1680 }
1681 
1682 static inline long inode_get_mtime_nsec(const struct inode *inode)
1683 {
1684 	return inode->i_mtime_nsec;
1685 }
1686 
1687 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1688 {
1689 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1690 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1691 	return ts;
1692 }
1693 
1694 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1695 						      struct timespec64 ts)
1696 {
1697 	inode->i_mtime_sec = ts.tv_sec;
1698 	inode->i_mtime_nsec = ts.tv_nsec;
1699 	return ts;
1700 }
1701 
1702 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1703 						time64_t sec, long nsec)
1704 {
1705 	struct timespec64 ts = { .tv_sec  = sec,
1706 				 .tv_nsec = nsec };
1707 	return inode_set_mtime_to_ts(inode, ts);
1708 }
1709 
1710 /*
1711  * Multigrain timestamps
1712  *
1713  * Conditionally use fine-grained ctime and mtime timestamps when there
1714  * are users actively observing them via getattr. The primary use-case
1715  * for this is NFS clients that use the ctime to distinguish between
1716  * different states of the file, and that are often fooled by multiple
1717  * operations that occur in the same coarse-grained timer tick.
1718  */
1719 #define I_CTIME_QUERIED		((u32)BIT(31))
1720 
1721 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1722 {
1723 	return inode->i_ctime_sec;
1724 }
1725 
1726 static inline long inode_get_ctime_nsec(const struct inode *inode)
1727 {
1728 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1729 }
1730 
1731 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1732 {
1733 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1734 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1735 
1736 	return ts;
1737 }
1738 
1739 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1740 
1741 /**
1742  * inode_set_ctime - set the ctime in the inode
1743  * @inode: inode in which to set the ctime
1744  * @sec: tv_sec value to set
1745  * @nsec: tv_nsec value to set
1746  *
1747  * Set the ctime in @inode to { @sec, @nsec }
1748  */
1749 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1750 						time64_t sec, long nsec)
1751 {
1752 	struct timespec64 ts = { .tv_sec  = sec,
1753 				 .tv_nsec = nsec };
1754 
1755 	return inode_set_ctime_to_ts(inode, ts);
1756 }
1757 
1758 struct timespec64 simple_inode_init_ts(struct inode *inode);
1759 
1760 /*
1761  * Snapshotting support.
1762  */
1763 
1764 /*
1765  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1766  * instead.
1767  */
1768 static inline void __sb_end_write(struct super_block *sb, int level)
1769 {
1770 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1771 }
1772 
1773 static inline void __sb_start_write(struct super_block *sb, int level)
1774 {
1775 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1776 }
1777 
1778 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1779 {
1780 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1781 }
1782 
1783 #define __sb_writers_acquired(sb, lev)	\
1784 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1785 #define __sb_writers_release(sb, lev)	\
1786 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1787 
1788 /**
1789  * __sb_write_started - check if sb freeze level is held
1790  * @sb: the super we write to
1791  * @level: the freeze level
1792  *
1793  * * > 0 - sb freeze level is held
1794  * *   0 - sb freeze level is not held
1795  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1796  */
1797 static inline int __sb_write_started(const struct super_block *sb, int level)
1798 {
1799 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1800 }
1801 
1802 /**
1803  * sb_write_started - check if SB_FREEZE_WRITE is held
1804  * @sb: the super we write to
1805  *
1806  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1807  */
1808 static inline bool sb_write_started(const struct super_block *sb)
1809 {
1810 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1811 }
1812 
1813 /**
1814  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1815  * @sb: the super we write to
1816  *
1817  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1818  */
1819 static inline bool sb_write_not_started(const struct super_block *sb)
1820 {
1821 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1822 }
1823 
1824 /**
1825  * file_write_started - check if SB_FREEZE_WRITE is held
1826  * @file: the file we write to
1827  *
1828  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1829  * May be false positive with !S_ISREG, because file_start_write() has
1830  * no effect on !S_ISREG.
1831  */
1832 static inline bool file_write_started(const struct file *file)
1833 {
1834 	if (!S_ISREG(file_inode(file)->i_mode))
1835 		return true;
1836 	return sb_write_started(file_inode(file)->i_sb);
1837 }
1838 
1839 /**
1840  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1841  * @file: the file we write to
1842  *
1843  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1844  * May be false positive with !S_ISREG, because file_start_write() has
1845  * no effect on !S_ISREG.
1846  */
1847 static inline bool file_write_not_started(const struct file *file)
1848 {
1849 	if (!S_ISREG(file_inode(file)->i_mode))
1850 		return true;
1851 	return sb_write_not_started(file_inode(file)->i_sb);
1852 }
1853 
1854 /**
1855  * sb_end_write - drop write access to a superblock
1856  * @sb: the super we wrote to
1857  *
1858  * Decrement number of writers to the filesystem. Wake up possible waiters
1859  * wanting to freeze the filesystem.
1860  */
1861 static inline void sb_end_write(struct super_block *sb)
1862 {
1863 	__sb_end_write(sb, SB_FREEZE_WRITE);
1864 }
1865 
1866 /**
1867  * sb_end_pagefault - drop write access to a superblock from a page fault
1868  * @sb: the super we wrote to
1869  *
1870  * Decrement number of processes handling write page fault to the filesystem.
1871  * Wake up possible waiters wanting to freeze the filesystem.
1872  */
1873 static inline void sb_end_pagefault(struct super_block *sb)
1874 {
1875 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1876 }
1877 
1878 /**
1879  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1880  * @sb: the super we wrote to
1881  *
1882  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1883  * waiters wanting to freeze the filesystem.
1884  */
1885 static inline void sb_end_intwrite(struct super_block *sb)
1886 {
1887 	__sb_end_write(sb, SB_FREEZE_FS);
1888 }
1889 
1890 /**
1891  * sb_start_write - get write access to a superblock
1892  * @sb: the super we write to
1893  *
1894  * When a process wants to write data or metadata to a file system (i.e. dirty
1895  * a page or an inode), it should embed the operation in a sb_start_write() -
1896  * sb_end_write() pair to get exclusion against file system freezing. This
1897  * function increments number of writers preventing freezing. If the file
1898  * system is already frozen, the function waits until the file system is
1899  * thawed.
1900  *
1901  * Since freeze protection behaves as a lock, users have to preserve
1902  * ordering of freeze protection and other filesystem locks. Generally,
1903  * freeze protection should be the outermost lock. In particular, we have:
1904  *
1905  * sb_start_write
1906  *   -> i_mutex			(write path, truncate, directory ops, ...)
1907  *   -> s_umount		(freeze_super, thaw_super)
1908  */
1909 static inline void sb_start_write(struct super_block *sb)
1910 {
1911 	__sb_start_write(sb, SB_FREEZE_WRITE);
1912 }
1913 
1914 static inline bool sb_start_write_trylock(struct super_block *sb)
1915 {
1916 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1917 }
1918 
1919 /**
1920  * sb_start_pagefault - get write access to a superblock from a page fault
1921  * @sb: the super we write to
1922  *
1923  * When a process starts handling write page fault, it should embed the
1924  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1925  * exclusion against file system freezing. This is needed since the page fault
1926  * is going to dirty a page. This function increments number of running page
1927  * faults preventing freezing. If the file system is already frozen, the
1928  * function waits until the file system is thawed.
1929  *
1930  * Since page fault freeze protection behaves as a lock, users have to preserve
1931  * ordering of freeze protection and other filesystem locks. It is advised to
1932  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1933  * handling code implies lock dependency:
1934  *
1935  * mmap_lock
1936  *   -> sb_start_pagefault
1937  */
1938 static inline void sb_start_pagefault(struct super_block *sb)
1939 {
1940 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1941 }
1942 
1943 /**
1944  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1945  * @sb: the super we write to
1946  *
1947  * This is the third level of protection against filesystem freezing. It is
1948  * free for use by a filesystem. The only requirement is that it must rank
1949  * below sb_start_pagefault.
1950  *
1951  * For example filesystem can call sb_start_intwrite() when starting a
1952  * transaction which somewhat eases handling of freezing for internal sources
1953  * of filesystem changes (internal fs threads, discarding preallocation on file
1954  * close, etc.).
1955  */
1956 static inline void sb_start_intwrite(struct super_block *sb)
1957 {
1958 	__sb_start_write(sb, SB_FREEZE_FS);
1959 }
1960 
1961 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1962 {
1963 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1964 }
1965 
1966 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1967 			    const struct inode *inode);
1968 
1969 /*
1970  * VFS helper functions..
1971  */
1972 int vfs_create(struct mnt_idmap *, struct inode *,
1973 	       struct dentry *, umode_t, bool);
1974 struct dentry *vfs_mkdir(struct mnt_idmap *, struct inode *,
1975 			 struct dentry *, umode_t);
1976 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1977               umode_t, dev_t);
1978 int vfs_symlink(struct mnt_idmap *, struct inode *,
1979 		struct dentry *, const char *);
1980 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1981 	     struct dentry *, struct inode **);
1982 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1983 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1984 	       struct inode **);
1985 
1986 /**
1987  * struct renamedata - contains all information required for renaming
1988  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1989  * @old_dir:           parent of source
1990  * @old_dentry:                source
1991  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1992  * @new_dir:           parent of destination
1993  * @new_dentry:                destination
1994  * @delegated_inode:   returns an inode needing a delegation break
1995  * @flags:             rename flags
1996  */
1997 struct renamedata {
1998 	struct mnt_idmap *old_mnt_idmap;
1999 	struct inode *old_dir;
2000 	struct dentry *old_dentry;
2001 	struct mnt_idmap *new_mnt_idmap;
2002 	struct inode *new_dir;
2003 	struct dentry *new_dentry;
2004 	struct inode **delegated_inode;
2005 	unsigned int flags;
2006 } __randomize_layout;
2007 
2008 int vfs_rename(struct renamedata *);
2009 
2010 static inline int vfs_whiteout(struct mnt_idmap *idmap,
2011 			       struct inode *dir, struct dentry *dentry)
2012 {
2013 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
2014 			 WHITEOUT_DEV);
2015 }
2016 
2017 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
2018 				 const struct path *parentpath,
2019 				 umode_t mode, int open_flag,
2020 				 const struct cred *cred);
2021 struct file *kernel_file_open(const struct path *path, int flags,
2022 			      const struct cred *cred);
2023 
2024 int vfs_mkobj(struct dentry *, umode_t,
2025 		int (*f)(struct dentry *, umode_t, void *),
2026 		void *);
2027 
2028 int vfs_fchown(struct file *file, uid_t user, gid_t group);
2029 int vfs_fchmod(struct file *file, umode_t mode);
2030 int vfs_utimes(const struct path *path, struct timespec64 *times);
2031 
2032 int vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2033 
2034 #ifdef CONFIG_COMPAT
2035 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2036 					unsigned long arg);
2037 #else
2038 #define compat_ptr_ioctl NULL
2039 #endif
2040 
2041 /*
2042  * VFS file helper functions.
2043  */
2044 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2045 		      const struct inode *dir, umode_t mode);
2046 extern bool may_open_dev(const struct path *path);
2047 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2048 			const struct inode *dir, umode_t mode);
2049 bool in_group_or_capable(struct mnt_idmap *idmap,
2050 			 const struct inode *inode, vfsgid_t vfsgid);
2051 
2052 /*
2053  * This is the "filldir" function type, used by readdir() to let
2054  * the kernel specify what kind of dirent layout it wants to have.
2055  * This allows the kernel to read directories into kernel space or
2056  * to have different dirent layouts depending on the binary type.
2057  * Return 'true' to keep going and 'false' if there are no more entries.
2058  */
2059 struct dir_context;
2060 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2061 			 unsigned);
2062 
2063 struct dir_context {
2064 	filldir_t actor;
2065 	loff_t pos;
2066 };
2067 
2068 /*
2069  * These flags let !MMU mmap() govern direct device mapping vs immediate
2070  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2071  *
2072  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2073  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2074  * NOMMU_MAP_READ:	Can be mapped for reading
2075  * NOMMU_MAP_WRITE:	Can be mapped for writing
2076  * NOMMU_MAP_EXEC:	Can be mapped for execution
2077  */
2078 #define NOMMU_MAP_COPY		0x00000001
2079 #define NOMMU_MAP_DIRECT	0x00000008
2080 #define NOMMU_MAP_READ		VM_MAYREAD
2081 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2082 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2083 
2084 #define NOMMU_VMFLAGS \
2085 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2086 
2087 /*
2088  * These flags control the behavior of the remap_file_range function pointer.
2089  * If it is called with len == 0 that means "remap to end of source file".
2090  * See Documentation/filesystems/vfs.rst for more details about this call.
2091  *
2092  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2093  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2094  */
2095 #define REMAP_FILE_DEDUP		(1 << 0)
2096 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2097 
2098 /*
2099  * These flags signal that the caller is ok with altering various aspects of
2100  * the behavior of the remap operation.  The changes must be made by the
2101  * implementation; the vfs remap helper functions can take advantage of them.
2102  * Flags in this category exist to preserve the quirky behavior of the hoisted
2103  * btrfs clone/dedupe ioctls.
2104  */
2105 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2106 
2107 /*
2108  * These flags control the behavior of vfs_copy_file_range().
2109  * They are not available to the user via syscall.
2110  *
2111  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2112  */
2113 #define COPY_FILE_SPLICE		(1 << 0)
2114 
2115 struct iov_iter;
2116 struct io_uring_cmd;
2117 struct offset_ctx;
2118 
2119 typedef unsigned int __bitwise fop_flags_t;
2120 
2121 struct file_operations {
2122 	struct module *owner;
2123 	fop_flags_t fop_flags;
2124 	loff_t (*llseek) (struct file *, loff_t, int);
2125 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2126 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2127 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2128 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2129 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2130 			unsigned int flags);
2131 	int (*iterate_shared) (struct file *, struct dir_context *);
2132 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2133 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2134 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2135 	int (*mmap) (struct file *, struct vm_area_struct *);
2136 	int (*open) (struct inode *, struct file *);
2137 	int (*flush) (struct file *, fl_owner_t id);
2138 	int (*release) (struct inode *, struct file *);
2139 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2140 	int (*fasync) (int, struct file *, int);
2141 	int (*lock) (struct file *, int, struct file_lock *);
2142 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2143 	int (*check_flags)(int);
2144 	int (*flock) (struct file *, int, struct file_lock *);
2145 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2146 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2147 	void (*splice_eof)(struct file *file);
2148 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2149 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2150 			  loff_t len);
2151 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2152 #ifndef CONFIG_MMU
2153 	unsigned (*mmap_capabilities)(struct file *);
2154 #endif
2155 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2156 			loff_t, size_t, unsigned int);
2157 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2158 				   struct file *file_out, loff_t pos_out,
2159 				   loff_t len, unsigned int remap_flags);
2160 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2161 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2162 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2163 				unsigned int poll_flags);
2164 } __randomize_layout;
2165 
2166 /* Supports async buffered reads */
2167 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2168 /* Supports async buffered writes */
2169 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2170 /* Supports synchronous page faults for mappings */
2171 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2172 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2173 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2174 /* Contains huge pages */
2175 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2176 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2177 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2178 /* Supports asynchronous lock callbacks */
2179 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2180 /* File system supports uncached read/write buffered IO */
2181 #define FOP_DONTCACHE		((__force fop_flags_t)(1 << 7))
2182 
2183 /* Wrap a directory iterator that needs exclusive inode access */
2184 int wrap_directory_iterator(struct file *, struct dir_context *,
2185 			    int (*) (struct file *, struct dir_context *));
2186 #define WRAP_DIR_ITER(x) \
2187 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2188 	{ return wrap_directory_iterator(file, ctx, x); }
2189 
2190 struct inode_operations {
2191 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2192 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2193 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2194 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2195 
2196 	int (*readlink) (struct dentry *, char __user *,int);
2197 
2198 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2199 		       umode_t, bool);
2200 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2201 	int (*unlink) (struct inode *,struct dentry *);
2202 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2203 			const char *);
2204 	struct dentry *(*mkdir) (struct mnt_idmap *, struct inode *,
2205 				 struct dentry *, umode_t);
2206 	int (*rmdir) (struct inode *,struct dentry *);
2207 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2208 		      umode_t,dev_t);
2209 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2210 			struct inode *, struct dentry *, unsigned int);
2211 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2212 	int (*getattr) (struct mnt_idmap *, const struct path *,
2213 			struct kstat *, u32, unsigned int);
2214 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2215 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2216 		      u64 len);
2217 	int (*update_time)(struct inode *, int);
2218 	int (*atomic_open)(struct inode *, struct dentry *,
2219 			   struct file *, unsigned open_flag,
2220 			   umode_t create_mode);
2221 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2222 			struct file *, umode_t);
2223 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2224 				     int);
2225 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2226 		       struct posix_acl *, int);
2227 	int (*fileattr_set)(struct mnt_idmap *idmap,
2228 			    struct dentry *dentry, struct fileattr *fa);
2229 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2230 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2231 } ____cacheline_aligned;
2232 
2233 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2234 {
2235 	return file->f_op->mmap(file, vma);
2236 }
2237 
2238 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2239 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2240 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2241 				   loff_t, size_t, unsigned int);
2242 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2243 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2244 				    struct file *file_out, loff_t pos_out,
2245 				    loff_t *len, unsigned int remap_flags,
2246 				    const struct iomap_ops *dax_read_ops);
2247 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2248 				  struct file *file_out, loff_t pos_out,
2249 				  loff_t *count, unsigned int remap_flags);
2250 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2251 				   struct file *file_out, loff_t pos_out,
2252 				   loff_t len, unsigned int remap_flags);
2253 extern int vfs_dedupe_file_range(struct file *file,
2254 				 struct file_dedupe_range *same);
2255 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2256 					struct file *dst_file, loff_t dst_pos,
2257 					loff_t len, unsigned int remap_flags);
2258 
2259 /**
2260  * enum freeze_holder - holder of the freeze
2261  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2262  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2263  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2264  *
2265  * Indicate who the owner of the freeze or thaw request is and whether
2266  * the freeze needs to be exclusive or can nest.
2267  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2268  * same holder aren't allowed. It is however allowed to hold a single
2269  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2270  * the same time. This is relied upon by some filesystems during online
2271  * repair or similar.
2272  */
2273 enum freeze_holder {
2274 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2275 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2276 	FREEZE_MAY_NEST		= (1U << 2),
2277 };
2278 
2279 struct super_operations {
2280    	struct inode *(*alloc_inode)(struct super_block *sb);
2281 	void (*destroy_inode)(struct inode *);
2282 	void (*free_inode)(struct inode *);
2283 
2284    	void (*dirty_inode) (struct inode *, int flags);
2285 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2286 	int (*drop_inode) (struct inode *);
2287 	void (*evict_inode) (struct inode *);
2288 	void (*put_super) (struct super_block *);
2289 	int (*sync_fs)(struct super_block *sb, int wait);
2290 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2291 	int (*freeze_fs) (struct super_block *);
2292 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2293 	int (*unfreeze_fs) (struct super_block *);
2294 	int (*statfs) (struct dentry *, struct kstatfs *);
2295 	int (*remount_fs) (struct super_block *, int *, char *);
2296 	void (*umount_begin) (struct super_block *);
2297 
2298 	int (*show_options)(struct seq_file *, struct dentry *);
2299 	int (*show_devname)(struct seq_file *, struct dentry *);
2300 	int (*show_path)(struct seq_file *, struct dentry *);
2301 	int (*show_stats)(struct seq_file *, struct dentry *);
2302 #ifdef CONFIG_QUOTA
2303 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2304 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2305 	struct dquot __rcu **(*get_dquots)(struct inode *);
2306 #endif
2307 	long (*nr_cached_objects)(struct super_block *,
2308 				  struct shrink_control *);
2309 	long (*free_cached_objects)(struct super_block *,
2310 				    struct shrink_control *);
2311 	void (*shutdown)(struct super_block *sb);
2312 };
2313 
2314 /*
2315  * Inode flags - they have no relation to superblock flags now
2316  */
2317 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2318 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2319 #define S_APPEND	(1 << 2)  /* Append-only file */
2320 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2321 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2322 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2323 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2324 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2325 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2326 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2327 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2328 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2329 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2330 #ifdef CONFIG_FS_DAX
2331 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2332 #else
2333 #define S_DAX		0	  /* Make all the DAX code disappear */
2334 #endif
2335 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2336 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2337 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2338 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2339 
2340 /*
2341  * Note that nosuid etc flags are inode-specific: setting some file-system
2342  * flags just means all the inodes inherit those flags by default. It might be
2343  * possible to override it selectively if you really wanted to with some
2344  * ioctl() that is not currently implemented.
2345  *
2346  * Exception: SB_RDONLY is always applied to the entire file system.
2347  *
2348  * Unfortunately, it is possible to change a filesystems flags with it mounted
2349  * with files in use.  This means that all of the inodes will not have their
2350  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2351  * flags, so these have to be checked separately. -- [email protected]
2352  */
2353 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2354 
2355 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2356 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2357 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2358 					((inode)->i_flags & S_SYNC))
2359 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2360 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2361 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2362 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2363 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2364 
2365 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2366 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2367 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2368 
2369 #ifdef CONFIG_FS_POSIX_ACL
2370 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2371 #else
2372 #define IS_POSIXACL(inode)	0
2373 #endif
2374 
2375 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2376 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2377 
2378 #ifdef CONFIG_SWAP
2379 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2380 #else
2381 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2382 #endif
2383 
2384 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2385 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2386 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2387 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2388 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2389 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2390 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2391 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2392 
2393 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2394 				 (inode)->i_rdev == WHITEOUT_DEV)
2395 
2396 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2397 				   struct inode *inode)
2398 {
2399 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2400 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2401 }
2402 
2403 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2404 {
2405 	*kiocb = (struct kiocb) {
2406 		.ki_filp = filp,
2407 		.ki_flags = filp->f_iocb_flags,
2408 		.ki_ioprio = get_current_ioprio(),
2409 	};
2410 }
2411 
2412 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2413 			       struct file *filp)
2414 {
2415 	*kiocb = (struct kiocb) {
2416 		.ki_filp = filp,
2417 		.ki_flags = kiocb_src->ki_flags,
2418 		.ki_ioprio = kiocb_src->ki_ioprio,
2419 		.ki_pos = kiocb_src->ki_pos,
2420 	};
2421 }
2422 
2423 /*
2424  * Inode state bits.  Protected by inode->i_lock
2425  *
2426  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2427  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2428  *
2429  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2430  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2431  * various stages of removing an inode.
2432  *
2433  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2434  *
2435  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2436  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2437  *			Timestamp updates are the usual cause.
2438  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2439  *			these changes separately from I_DIRTY_SYNC so that we
2440  *			don't have to write inode on fdatasync() when only
2441  *			e.g. the timestamps have changed.
2442  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2443  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2444  *			lazytime mount option is enabled.  We keep track of this
2445  *			separately from I_DIRTY_SYNC in order to implement
2446  *			lazytime.  This gets cleared if I_DIRTY_INODE
2447  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2448  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2449  *			in place because writeback might already be in progress
2450  *			and we don't want to lose the time update
2451  * I_NEW		Serves as both a mutex and completion notification.
2452  *			New inodes set I_NEW.  If two processes both create
2453  *			the same inode, one of them will release its inode and
2454  *			wait for I_NEW to be released before returning.
2455  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2456  *			also cause waiting on I_NEW, without I_NEW actually
2457  *			being set.  find_inode() uses this to prevent returning
2458  *			nearly-dead inodes.
2459  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2460  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2461  *			cleared.
2462  * I_FREEING		Set when inode is about to be freed but still has dirty
2463  *			pages or buffers attached or the inode itself is still
2464  *			dirty.
2465  * I_CLEAR		Added by clear_inode().  In this state the inode is
2466  *			clean and can be destroyed.  Inode keeps I_FREEING.
2467  *
2468  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2469  *			prohibited for many purposes.  iget() must wait for
2470  *			the inode to be completely released, then create it
2471  *			anew.  Other functions will just ignore such inodes,
2472  *			if appropriate.  I_NEW is used for waiting.
2473  *
2474  * I_SYNC		Writeback of inode is running. The bit is set during
2475  *			data writeback, and cleared with a wakeup on the bit
2476  *			address once it is done. The bit is also used to pin
2477  *			the inode in memory for flusher thread.
2478  *
2479  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2480  *
2481  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2482  *			synchronize competing switching instances and to tell
2483  *			wb stat updates to grab the i_pages lock.  See
2484  *			inode_switch_wbs_work_fn() for details.
2485  *
2486  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2487  *			and work dirs among overlayfs mounts.
2488  *
2489  * I_CREATING		New object's inode in the middle of setting up.
2490  *
2491  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2492  *
2493  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2494  *			Used to detect that mark_inode_dirty() should not move
2495  * 			inode between dirty lists.
2496  *
2497  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2498  *
2499  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2500  *			i_count.
2501  *
2502  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2503  *
2504  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2505  * upon. There's one free address left.
2506  */
2507 #define __I_NEW			0
2508 #define I_NEW			(1 << __I_NEW)
2509 #define __I_SYNC		1
2510 #define I_SYNC			(1 << __I_SYNC)
2511 #define __I_LRU_ISOLATING	2
2512 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2513 
2514 #define I_DIRTY_SYNC		(1 << 3)
2515 #define I_DIRTY_DATASYNC	(1 << 4)
2516 #define I_DIRTY_PAGES		(1 << 5)
2517 #define I_WILL_FREE		(1 << 6)
2518 #define I_FREEING		(1 << 7)
2519 #define I_CLEAR			(1 << 8)
2520 #define I_REFERENCED		(1 << 9)
2521 #define I_LINKABLE		(1 << 10)
2522 #define I_DIRTY_TIME		(1 << 11)
2523 #define I_WB_SWITCH		(1 << 12)
2524 #define I_OVL_INUSE		(1 << 13)
2525 #define I_CREATING		(1 << 14)
2526 #define I_DONTCACHE		(1 << 15)
2527 #define I_SYNC_QUEUED		(1 << 16)
2528 #define I_PINNING_NETFS_WB	(1 << 17)
2529 
2530 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2531 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2532 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2533 
2534 extern void __mark_inode_dirty(struct inode *, int);
2535 static inline void mark_inode_dirty(struct inode *inode)
2536 {
2537 	__mark_inode_dirty(inode, I_DIRTY);
2538 }
2539 
2540 static inline void mark_inode_dirty_sync(struct inode *inode)
2541 {
2542 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2543 }
2544 
2545 /*
2546  * Returns true if the given inode itself only has dirty timestamps (its pages
2547  * may still be dirty) and isn't currently being allocated or freed.
2548  * Filesystems should call this if when writing an inode when lazytime is
2549  * enabled, they want to opportunistically write the timestamps of other inodes
2550  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2551  * if the given inode is in need of such an opportunistic update.  Requires
2552  * i_lock, or at least later re-checking under i_lock.
2553  */
2554 static inline bool inode_is_dirtytime_only(struct inode *inode)
2555 {
2556 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2557 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2558 }
2559 
2560 extern void inc_nlink(struct inode *inode);
2561 extern void drop_nlink(struct inode *inode);
2562 extern void clear_nlink(struct inode *inode);
2563 extern void set_nlink(struct inode *inode, unsigned int nlink);
2564 
2565 static inline void inode_inc_link_count(struct inode *inode)
2566 {
2567 	inc_nlink(inode);
2568 	mark_inode_dirty(inode);
2569 }
2570 
2571 static inline void inode_dec_link_count(struct inode *inode)
2572 {
2573 	drop_nlink(inode);
2574 	mark_inode_dirty(inode);
2575 }
2576 
2577 enum file_time_flags {
2578 	S_ATIME = 1,
2579 	S_MTIME = 2,
2580 	S_CTIME = 4,
2581 	S_VERSION = 8,
2582 };
2583 
2584 extern bool atime_needs_update(const struct path *, struct inode *);
2585 extern void touch_atime(const struct path *);
2586 int inode_update_time(struct inode *inode, int flags);
2587 
2588 static inline void file_accessed(struct file *file)
2589 {
2590 	if (!(file->f_flags & O_NOATIME))
2591 		touch_atime(&file->f_path);
2592 }
2593 
2594 extern int file_modified(struct file *file);
2595 int kiocb_modified(struct kiocb *iocb);
2596 
2597 int sync_inode_metadata(struct inode *inode, int wait);
2598 
2599 struct file_system_type {
2600 	const char *name;
2601 	int fs_flags;
2602 #define FS_REQUIRES_DEV		1
2603 #define FS_BINARY_MOUNTDATA	2
2604 #define FS_HAS_SUBTYPE		4
2605 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2606 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2607 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2608 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2609 #define FS_LBS			128	/* FS supports LBS */
2610 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2611 	int (*init_fs_context)(struct fs_context *);
2612 	const struct fs_parameter_spec *parameters;
2613 	struct dentry *(*mount) (struct file_system_type *, int,
2614 		       const char *, void *);
2615 	void (*kill_sb) (struct super_block *);
2616 	struct module *owner;
2617 	struct file_system_type * next;
2618 	struct hlist_head fs_supers;
2619 
2620 	struct lock_class_key s_lock_key;
2621 	struct lock_class_key s_umount_key;
2622 	struct lock_class_key s_vfs_rename_key;
2623 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2624 
2625 	struct lock_class_key i_lock_key;
2626 	struct lock_class_key i_mutex_key;
2627 	struct lock_class_key invalidate_lock_key;
2628 	struct lock_class_key i_mutex_dir_key;
2629 };
2630 
2631 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2632 
2633 /**
2634  * is_mgtime: is this inode using multigrain timestamps
2635  * @inode: inode to test for multigrain timestamps
2636  *
2637  * Return true if the inode uses multigrain timestamps, false otherwise.
2638  */
2639 static inline bool is_mgtime(const struct inode *inode)
2640 {
2641 	return inode->i_opflags & IOP_MGTIME;
2642 }
2643 
2644 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2645 	int flags, const char *dev_name, void *data,
2646 	int (*fill_super)(struct super_block *, void *, int));
2647 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2648 	int flags, void *data,
2649 	int (*fill_super)(struct super_block *, void *, int));
2650 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2651 void retire_super(struct super_block *sb);
2652 void generic_shutdown_super(struct super_block *sb);
2653 void kill_block_super(struct super_block *sb);
2654 void kill_anon_super(struct super_block *sb);
2655 void kill_litter_super(struct super_block *sb);
2656 void deactivate_super(struct super_block *sb);
2657 void deactivate_locked_super(struct super_block *sb);
2658 int set_anon_super(struct super_block *s, void *data);
2659 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2660 int get_anon_bdev(dev_t *);
2661 void free_anon_bdev(dev_t);
2662 struct super_block *sget_fc(struct fs_context *fc,
2663 			    int (*test)(struct super_block *, struct fs_context *),
2664 			    int (*set)(struct super_block *, struct fs_context *));
2665 struct super_block *sget(struct file_system_type *type,
2666 			int (*test)(struct super_block *,void *),
2667 			int (*set)(struct super_block *,void *),
2668 			int flags, void *data);
2669 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2670 
2671 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2672 #define fops_get(fops) ({						\
2673 	const struct file_operations *_fops = (fops);			\
2674 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2675 })
2676 
2677 #define fops_put(fops) ({						\
2678 	const struct file_operations *_fops = (fops);			\
2679 	if (_fops)							\
2680 		module_put((_fops)->owner);				\
2681 })
2682 
2683 /*
2684  * This one is to be used *ONLY* from ->open() instances.
2685  * fops must be non-NULL, pinned down *and* module dependencies
2686  * should be sufficient to pin the caller down as well.
2687  */
2688 #define replace_fops(f, fops) \
2689 	do {	\
2690 		struct file *__file = (f); \
2691 		fops_put(__file->f_op); \
2692 		BUG_ON(!(__file->f_op = (fops))); \
2693 	} while(0)
2694 
2695 extern int register_filesystem(struct file_system_type *);
2696 extern int unregister_filesystem(struct file_system_type *);
2697 extern int vfs_statfs(const struct path *, struct kstatfs *);
2698 extern int user_statfs(const char __user *, struct kstatfs *);
2699 extern int fd_statfs(int, struct kstatfs *);
2700 int freeze_super(struct super_block *super, enum freeze_holder who);
2701 int thaw_super(struct super_block *super, enum freeze_holder who);
2702 extern __printf(2, 3)
2703 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2704 extern int super_setup_bdi(struct super_block *sb);
2705 
2706 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2707 {
2708 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2709 		len = sizeof(sb->s_uuid);
2710 	sb->s_uuid_len = len;
2711 	memcpy(&sb->s_uuid, uuid, len);
2712 }
2713 
2714 /* set sb sysfs name based on sb->s_bdev */
2715 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2716 {
2717 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2718 }
2719 
2720 /* set sb sysfs name based on sb->s_uuid */
2721 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2722 {
2723 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2724 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2725 }
2726 
2727 /* set sb sysfs name based on sb->s_id */
2728 static inline void super_set_sysfs_name_id(struct super_block *sb)
2729 {
2730 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2731 }
2732 
2733 /* try to use something standard before you use this */
2734 __printf(2, 3)
2735 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2736 {
2737 	va_list args;
2738 
2739 	va_start(args, fmt);
2740 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2741 	va_end(args);
2742 }
2743 
2744 extern int current_umask(void);
2745 
2746 extern void ihold(struct inode * inode);
2747 extern void iput(struct inode *);
2748 int inode_update_timestamps(struct inode *inode, int flags);
2749 int generic_update_time(struct inode *, int);
2750 
2751 /* /sys/fs */
2752 extern struct kobject *fs_kobj;
2753 
2754 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2755 
2756 /* fs/open.c */
2757 struct audit_names;
2758 struct filename {
2759 	const char		*name;	/* pointer to actual string */
2760 	const __user char	*uptr;	/* original userland pointer */
2761 	atomic_t		refcnt;
2762 	struct audit_names	*aname;
2763 	const char		iname[];
2764 };
2765 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2766 
2767 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2768 {
2769 	return mnt_idmap(file->f_path.mnt);
2770 }
2771 
2772 /**
2773  * is_idmapped_mnt - check whether a mount is mapped
2774  * @mnt: the mount to check
2775  *
2776  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2777  *
2778  * Return: true if mount is mapped, false if not.
2779  */
2780 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2781 {
2782 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2783 }
2784 
2785 int vfs_truncate(const struct path *, loff_t);
2786 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2787 		unsigned int time_attrs, struct file *filp);
2788 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2789 			loff_t len);
2790 int do_sys_open(int dfd, const char __user *filename, int flags,
2791 		umode_t mode);
2792 extern struct file *file_open_name(struct filename *, int, umode_t);
2793 extern struct file *filp_open(const char *, int, umode_t);
2794 extern struct file *file_open_root(const struct path *,
2795 				   const char *, int, umode_t);
2796 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2797 				   const char *name, int flags, umode_t mode)
2798 {
2799 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2800 			      name, flags, mode);
2801 }
2802 struct file *dentry_open(const struct path *path, int flags,
2803 			 const struct cred *creds);
2804 struct file *dentry_open_nonotify(const struct path *path, int flags,
2805 				  const struct cred *cred);
2806 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2807 			   const struct cred *cred);
2808 struct path *backing_file_user_path(struct file *f);
2809 
2810 /*
2811  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2812  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2813  * filesystem.  When the mapped file path and inode number are displayed to
2814  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2815  * path and inode number to display to the user, which is the path of the fd
2816  * that user has requested to map and the inode number that would be returned
2817  * by fstat() on that same fd.
2818  */
2819 /* Get the path to display in /proc/<pid>/maps */
2820 static inline const struct path *file_user_path(struct file *f)
2821 {
2822 	if (unlikely(f->f_mode & FMODE_BACKING))
2823 		return backing_file_user_path(f);
2824 	return &f->f_path;
2825 }
2826 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2827 static inline const struct inode *file_user_inode(struct file *f)
2828 {
2829 	if (unlikely(f->f_mode & FMODE_BACKING))
2830 		return d_inode(backing_file_user_path(f)->dentry);
2831 	return file_inode(f);
2832 }
2833 
2834 static inline struct file *file_clone_open(struct file *file)
2835 {
2836 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2837 }
2838 extern int filp_close(struct file *, fl_owner_t id);
2839 
2840 extern struct filename *getname_flags(const char __user *, int);
2841 extern struct filename *getname_uflags(const char __user *, int);
2842 static inline struct filename *getname(const char __user *name)
2843 {
2844 	return getname_flags(name, 0);
2845 }
2846 extern struct filename *getname_kernel(const char *);
2847 extern struct filename *__getname_maybe_null(const char __user *);
2848 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2849 {
2850 	if (!(flags & AT_EMPTY_PATH))
2851 		return getname(name);
2852 
2853 	if (!name)
2854 		return NULL;
2855 	return __getname_maybe_null(name);
2856 }
2857 extern void putname(struct filename *name);
2858 DEFINE_FREE(putname, struct filename *, if (!IS_ERR_OR_NULL(_T)) putname(_T))
2859 
2860 static inline struct filename *refname(struct filename *name)
2861 {
2862 	atomic_inc(&name->refcnt);
2863 	return name;
2864 }
2865 
2866 extern int finish_open(struct file *file, struct dentry *dentry,
2867 			int (*open)(struct inode *, struct file *));
2868 extern int finish_no_open(struct file *file, struct dentry *dentry);
2869 
2870 /* Helper for the simple case when original dentry is used */
2871 static inline int finish_open_simple(struct file *file, int error)
2872 {
2873 	if (error)
2874 		return error;
2875 
2876 	return finish_open(file, file->f_path.dentry, NULL);
2877 }
2878 
2879 /* fs/dcache.c */
2880 extern void __init vfs_caches_init_early(void);
2881 extern void __init vfs_caches_init(void);
2882 
2883 extern struct kmem_cache *names_cachep;
2884 
2885 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2886 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2887 
2888 extern struct super_block *blockdev_superblock;
2889 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2890 {
2891 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2892 }
2893 
2894 void emergency_thaw_all(void);
2895 extern int sync_filesystem(struct super_block *);
2896 extern const struct file_operations def_blk_fops;
2897 extern const struct file_operations def_chr_fops;
2898 
2899 /* fs/char_dev.c */
2900 #define CHRDEV_MAJOR_MAX 512
2901 /* Marks the bottom of the first segment of free char majors */
2902 #define CHRDEV_MAJOR_DYN_END 234
2903 /* Marks the top and bottom of the second segment of free char majors */
2904 #define CHRDEV_MAJOR_DYN_EXT_START 511
2905 #define CHRDEV_MAJOR_DYN_EXT_END 384
2906 
2907 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2908 extern int register_chrdev_region(dev_t, unsigned, const char *);
2909 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2910 			     unsigned int count, const char *name,
2911 			     const struct file_operations *fops);
2912 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2913 				unsigned int count, const char *name);
2914 extern void unregister_chrdev_region(dev_t, unsigned);
2915 extern void chrdev_show(struct seq_file *,off_t);
2916 
2917 static inline int register_chrdev(unsigned int major, const char *name,
2918 				  const struct file_operations *fops)
2919 {
2920 	return __register_chrdev(major, 0, 256, name, fops);
2921 }
2922 
2923 static inline void unregister_chrdev(unsigned int major, const char *name)
2924 {
2925 	__unregister_chrdev(major, 0, 256, name);
2926 }
2927 
2928 extern void init_special_inode(struct inode *, umode_t, dev_t);
2929 
2930 /* Invalid inode operations -- fs/bad_inode.c */
2931 extern void make_bad_inode(struct inode *);
2932 extern bool is_bad_inode(struct inode *);
2933 
2934 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2935 						loff_t lend);
2936 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2937 extern int __must_check file_write_and_wait_range(struct file *file,
2938 						loff_t start, loff_t end);
2939 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
2940 		loff_t end);
2941 
2942 static inline int file_write_and_wait(struct file *file)
2943 {
2944 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2945 }
2946 
2947 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2948 			   int datasync);
2949 extern int vfs_fsync(struct file *file, int datasync);
2950 
2951 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2952 				unsigned int flags);
2953 
2954 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2955 {
2956 	return (iocb->ki_flags & IOCB_DSYNC) ||
2957 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2958 }
2959 
2960 /*
2961  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2962  * to already be updated for the write, and will return either the amount
2963  * of bytes passed in, or an error if syncing the file failed.
2964  */
2965 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2966 {
2967 	if (iocb_is_dsync(iocb)) {
2968 		int ret = vfs_fsync_range(iocb->ki_filp,
2969 				iocb->ki_pos - count, iocb->ki_pos - 1,
2970 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2971 		if (ret)
2972 			return ret;
2973 	} else if (iocb->ki_flags & IOCB_DONTCACHE) {
2974 		struct address_space *mapping = iocb->ki_filp->f_mapping;
2975 
2976 		filemap_fdatawrite_range_kick(mapping, iocb->ki_pos - count,
2977 					      iocb->ki_pos - 1);
2978 	}
2979 
2980 	return count;
2981 }
2982 
2983 extern void emergency_sync(void);
2984 extern void emergency_remount(void);
2985 
2986 #ifdef CONFIG_BLOCK
2987 extern int bmap(struct inode *inode, sector_t *block);
2988 #else
2989 static inline int bmap(struct inode *inode,  sector_t *block)
2990 {
2991 	return -EINVAL;
2992 }
2993 #endif
2994 
2995 int notify_change(struct mnt_idmap *, struct dentry *,
2996 		  struct iattr *, struct inode **);
2997 int inode_permission(struct mnt_idmap *, struct inode *, int);
2998 int generic_permission(struct mnt_idmap *, struct inode *, int);
2999 static inline int file_permission(struct file *file, int mask)
3000 {
3001 	return inode_permission(file_mnt_idmap(file),
3002 				file_inode(file), mask);
3003 }
3004 static inline int path_permission(const struct path *path, int mask)
3005 {
3006 	return inode_permission(mnt_idmap(path->mnt),
3007 				d_inode(path->dentry), mask);
3008 }
3009 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3010 		   struct inode *inode);
3011 
3012 static inline bool execute_ok(struct inode *inode)
3013 {
3014 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
3015 }
3016 
3017 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
3018 {
3019 	return (inode->i_mode ^ mode) & S_IFMT;
3020 }
3021 
3022 /**
3023  * file_start_write - get write access to a superblock for regular file io
3024  * @file: the file we want to write to
3025  *
3026  * This is a variant of sb_start_write() which is a noop on non-regualr file.
3027  * Should be matched with a call to file_end_write().
3028  */
3029 static inline void file_start_write(struct file *file)
3030 {
3031 	if (!S_ISREG(file_inode(file)->i_mode))
3032 		return;
3033 	sb_start_write(file_inode(file)->i_sb);
3034 }
3035 
3036 static inline bool file_start_write_trylock(struct file *file)
3037 {
3038 	if (!S_ISREG(file_inode(file)->i_mode))
3039 		return true;
3040 	return sb_start_write_trylock(file_inode(file)->i_sb);
3041 }
3042 
3043 /**
3044  * file_end_write - drop write access to a superblock of a regular file
3045  * @file: the file we wrote to
3046  *
3047  * Should be matched with a call to file_start_write().
3048  */
3049 static inline void file_end_write(struct file *file)
3050 {
3051 	if (!S_ISREG(file_inode(file)->i_mode))
3052 		return;
3053 	sb_end_write(file_inode(file)->i_sb);
3054 }
3055 
3056 /**
3057  * kiocb_start_write - get write access to a superblock for async file io
3058  * @iocb: the io context we want to submit the write with
3059  *
3060  * This is a variant of sb_start_write() for async io submission.
3061  * Should be matched with a call to kiocb_end_write().
3062  */
3063 static inline void kiocb_start_write(struct kiocb *iocb)
3064 {
3065 	struct inode *inode = file_inode(iocb->ki_filp);
3066 
3067 	sb_start_write(inode->i_sb);
3068 	/*
3069 	 * Fool lockdep by telling it the lock got released so that it
3070 	 * doesn't complain about the held lock when we return to userspace.
3071 	 */
3072 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3073 }
3074 
3075 /**
3076  * kiocb_end_write - drop write access to a superblock after async file io
3077  * @iocb: the io context we sumbitted the write with
3078  *
3079  * Should be matched with a call to kiocb_start_write().
3080  */
3081 static inline void kiocb_end_write(struct kiocb *iocb)
3082 {
3083 	struct inode *inode = file_inode(iocb->ki_filp);
3084 
3085 	/*
3086 	 * Tell lockdep we inherited freeze protection from submission thread.
3087 	 */
3088 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3089 	sb_end_write(inode->i_sb);
3090 }
3091 
3092 /*
3093  * This is used for regular files where some users -- especially the
3094  * currently executed binary in a process, previously handled via
3095  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3096  * read-write shared) accesses.
3097  *
3098  * get_write_access() gets write permission for a file.
3099  * put_write_access() releases this write permission.
3100  * deny_write_access() denies write access to a file.
3101  * allow_write_access() re-enables write access to a file.
3102  *
3103  * The i_writecount field of an inode can have the following values:
3104  * 0: no write access, no denied write access
3105  * < 0: (-i_writecount) users that denied write access to the file.
3106  * > 0: (i_writecount) users that have write access to the file.
3107  *
3108  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3109  * except for the cases where we don't hold i_writecount yet. Then we need to
3110  * use {get,deny}_write_access() - these functions check the sign and refuse
3111  * to do the change if sign is wrong.
3112  */
3113 static inline int get_write_access(struct inode *inode)
3114 {
3115 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3116 }
3117 static inline int deny_write_access(struct file *file)
3118 {
3119 	struct inode *inode = file_inode(file);
3120 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3121 }
3122 static inline void put_write_access(struct inode * inode)
3123 {
3124 	atomic_dec(&inode->i_writecount);
3125 }
3126 static inline void allow_write_access(struct file *file)
3127 {
3128 	if (file)
3129 		atomic_inc(&file_inode(file)->i_writecount);
3130 }
3131 
3132 /*
3133  * Do not prevent write to executable file when watched by pre-content events.
3134  *
3135  * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at
3136  * the time of file open and remains constant for entire lifetime of the file,
3137  * so if pre-content watches are added post execution or removed before the end
3138  * of the execution, it will not cause i_writecount reference leak.
3139  */
3140 static inline int exe_file_deny_write_access(struct file *exe_file)
3141 {
3142 	if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3143 		return 0;
3144 	return deny_write_access(exe_file);
3145 }
3146 static inline void exe_file_allow_write_access(struct file *exe_file)
3147 {
3148 	if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3149 		return;
3150 	allow_write_access(exe_file);
3151 }
3152 
3153 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode)
3154 {
3155 	file->f_mode &= ~FMODE_FSNOTIFY_MASK;
3156 	file->f_mode |= mode;
3157 }
3158 
3159 static inline bool inode_is_open_for_write(const struct inode *inode)
3160 {
3161 	return atomic_read(&inode->i_writecount) > 0;
3162 }
3163 
3164 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3165 static inline void i_readcount_dec(struct inode *inode)
3166 {
3167 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3168 }
3169 static inline void i_readcount_inc(struct inode *inode)
3170 {
3171 	atomic_inc(&inode->i_readcount);
3172 }
3173 #else
3174 static inline void i_readcount_dec(struct inode *inode)
3175 {
3176 	return;
3177 }
3178 static inline void i_readcount_inc(struct inode *inode)
3179 {
3180 	return;
3181 }
3182 #endif
3183 extern int do_pipe_flags(int *, int);
3184 
3185 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3186 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3187 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3188 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3189 extern struct file * open_exec(const char *);
3190 
3191 /* fs/dcache.c -- generic fs support functions */
3192 extern bool is_subdir(struct dentry *, struct dentry *);
3193 extern bool path_is_under(const struct path *, const struct path *);
3194 
3195 extern char *file_path(struct file *, char *, int);
3196 
3197 /**
3198  * is_dot_dotdot - returns true only if @name is "." or ".."
3199  * @name: file name to check
3200  * @len: length of file name, in bytes
3201  */
3202 static inline bool is_dot_dotdot(const char *name, size_t len)
3203 {
3204 	return len && unlikely(name[0] == '.') &&
3205 		(len == 1 || (len == 2 && name[1] == '.'));
3206 }
3207 
3208 #include <linux/err.h>
3209 
3210 /* needed for stackable file system support */
3211 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3212 
3213 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3214 
3215 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3216 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3217 {
3218 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3219 }
3220 
3221 extern void inode_init_once(struct inode *);
3222 extern void address_space_init_once(struct address_space *mapping);
3223 extern struct inode * igrab(struct inode *);
3224 extern ino_t iunique(struct super_block *, ino_t);
3225 extern int inode_needs_sync(struct inode *inode);
3226 extern int generic_delete_inode(struct inode *inode);
3227 static inline int generic_drop_inode(struct inode *inode)
3228 {
3229 	return !inode->i_nlink || inode_unhashed(inode);
3230 }
3231 extern void d_mark_dontcache(struct inode *inode);
3232 
3233 extern struct inode *ilookup5_nowait(struct super_block *sb,
3234 		unsigned long hashval, int (*test)(struct inode *, void *),
3235 		void *data);
3236 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3237 		int (*test)(struct inode *, void *), void *data);
3238 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3239 
3240 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3241 		int (*test)(struct inode *, void *),
3242 		int (*set)(struct inode *, void *),
3243 		void *data);
3244 struct inode *iget5_locked(struct super_block *, unsigned long,
3245 			   int (*test)(struct inode *, void *),
3246 			   int (*set)(struct inode *, void *), void *);
3247 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3248 			       int (*test)(struct inode *, void *),
3249 			       int (*set)(struct inode *, void *), void *);
3250 extern struct inode * iget_locked(struct super_block *, unsigned long);
3251 extern struct inode *find_inode_nowait(struct super_block *,
3252 				       unsigned long,
3253 				       int (*match)(struct inode *,
3254 						    unsigned long, void *),
3255 				       void *data);
3256 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3257 				    int (*)(struct inode *, void *), void *);
3258 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3259 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3260 extern int insert_inode_locked(struct inode *);
3261 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3262 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3263 #else
3264 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3265 #endif
3266 extern void unlock_new_inode(struct inode *);
3267 extern void discard_new_inode(struct inode *);
3268 extern unsigned int get_next_ino(void);
3269 extern void evict_inodes(struct super_block *sb);
3270 void dump_mapping(const struct address_space *);
3271 
3272 /*
3273  * Userspace may rely on the inode number being non-zero. For example, glibc
3274  * simply ignores files with zero i_ino in unlink() and other places.
3275  *
3276  * As an additional complication, if userspace was compiled with
3277  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3278  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3279  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3280  * better safe than sorry.
3281  */
3282 static inline bool is_zero_ino(ino_t ino)
3283 {
3284 	return (u32)ino == 0;
3285 }
3286 
3287 /*
3288  * inode->i_lock must be held
3289  */
3290 static inline void __iget(struct inode *inode)
3291 {
3292 	atomic_inc(&inode->i_count);
3293 }
3294 
3295 extern void iget_failed(struct inode *);
3296 extern void clear_inode(struct inode *);
3297 extern void __destroy_inode(struct inode *);
3298 struct inode *alloc_inode(struct super_block *sb);
3299 static inline struct inode *new_inode_pseudo(struct super_block *sb)
3300 {
3301 	return alloc_inode(sb);
3302 }
3303 extern struct inode *new_inode(struct super_block *sb);
3304 extern void free_inode_nonrcu(struct inode *inode);
3305 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3306 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3307 extern int file_remove_privs(struct file *);
3308 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3309 			     const struct inode *inode);
3310 
3311 /*
3312  * This must be used for allocating filesystems specific inodes to set
3313  * up the inode reclaim context correctly.
3314  */
3315 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3316 
3317 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3318 static inline void insert_inode_hash(struct inode *inode)
3319 {
3320 	__insert_inode_hash(inode, inode->i_ino);
3321 }
3322 
3323 extern void __remove_inode_hash(struct inode *);
3324 static inline void remove_inode_hash(struct inode *inode)
3325 {
3326 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3327 		__remove_inode_hash(inode);
3328 }
3329 
3330 extern void inode_sb_list_add(struct inode *inode);
3331 extern void inode_add_lru(struct inode *inode);
3332 
3333 extern int sb_set_blocksize(struct super_block *, int);
3334 extern int sb_min_blocksize(struct super_block *, int);
3335 
3336 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3337 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3338 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3339 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3340 extern int generic_write_check_limits(struct file *file, loff_t pos,
3341 		loff_t *count);
3342 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3343 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3344 		ssize_t already_read);
3345 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3346 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3347 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3348 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3349 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3350 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3351 		ssize_t direct_written, ssize_t buffered_written);
3352 
3353 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3354 		rwf_t flags);
3355 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3356 		rwf_t flags);
3357 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3358 			   struct iov_iter *iter);
3359 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3360 			    struct iov_iter *iter);
3361 
3362 /* fs/splice.c */
3363 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3364 			    struct pipe_inode_info *pipe,
3365 			    size_t len, unsigned int flags);
3366 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3367 			 struct pipe_inode_info *pipe,
3368 			 size_t len, unsigned int flags);
3369 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3370 		struct file *, loff_t *, size_t, unsigned int);
3371 
3372 
3373 extern void
3374 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3375 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3376 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3377 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3378 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3379 		int whence, loff_t maxsize, loff_t eof);
3380 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3381 			     u64 *cookie);
3382 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3383 		int whence, loff_t size);
3384 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3385 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3386 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3387 extern int generic_file_open(struct inode * inode, struct file * filp);
3388 extern int nonseekable_open(struct inode * inode, struct file * filp);
3389 extern int stream_open(struct inode * inode, struct file * filp);
3390 
3391 #ifdef CONFIG_BLOCK
3392 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3393 			    loff_t file_offset);
3394 
3395 enum {
3396 	/* need locking between buffered and direct access */
3397 	DIO_LOCKING	= 0x01,
3398 
3399 	/* filesystem does not support filling holes */
3400 	DIO_SKIP_HOLES	= 0x02,
3401 };
3402 
3403 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3404 			     struct block_device *bdev, struct iov_iter *iter,
3405 			     get_block_t get_block,
3406 			     dio_iodone_t end_io,
3407 			     int flags);
3408 
3409 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3410 					 struct inode *inode,
3411 					 struct iov_iter *iter,
3412 					 get_block_t get_block)
3413 {
3414 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3415 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3416 }
3417 #endif
3418 
3419 bool inode_dio_finished(const struct inode *inode);
3420 void inode_dio_wait(struct inode *inode);
3421 void inode_dio_wait_interruptible(struct inode *inode);
3422 
3423 /**
3424  * inode_dio_begin - signal start of a direct I/O requests
3425  * @inode: inode the direct I/O happens on
3426  *
3427  * This is called once we've finished processing a direct I/O request,
3428  * and is used to wake up callers waiting for direct I/O to be quiesced.
3429  */
3430 static inline void inode_dio_begin(struct inode *inode)
3431 {
3432 	atomic_inc(&inode->i_dio_count);
3433 }
3434 
3435 /**
3436  * inode_dio_end - signal finish of a direct I/O requests
3437  * @inode: inode the direct I/O happens on
3438  *
3439  * This is called once we've finished processing a direct I/O request,
3440  * and is used to wake up callers waiting for direct I/O to be quiesced.
3441  */
3442 static inline void inode_dio_end(struct inode *inode)
3443 {
3444 	if (atomic_dec_and_test(&inode->i_dio_count))
3445 		wake_up_var(&inode->i_dio_count);
3446 }
3447 
3448 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3449 			    unsigned int mask);
3450 
3451 extern const struct file_operations generic_ro_fops;
3452 
3453 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3454 
3455 extern int readlink_copy(char __user *, int, const char *, int);
3456 extern int page_readlink(struct dentry *, char __user *, int);
3457 extern const char *page_get_link_raw(struct dentry *, struct inode *,
3458 				     struct delayed_call *);
3459 extern const char *page_get_link(struct dentry *, struct inode *,
3460 				 struct delayed_call *);
3461 extern void page_put_link(void *);
3462 extern int page_symlink(struct inode *inode, const char *symname, int len);
3463 extern const struct inode_operations page_symlink_inode_operations;
3464 extern void kfree_link(void *);
3465 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3466 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3467 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3468 void generic_fill_statx_atomic_writes(struct kstat *stat,
3469 				      unsigned int unit_min,
3470 				      unsigned int unit_max);
3471 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3472 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3473 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3474 void inode_add_bytes(struct inode *inode, loff_t bytes);
3475 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3476 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3477 static inline loff_t __inode_get_bytes(struct inode *inode)
3478 {
3479 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3480 }
3481 loff_t inode_get_bytes(struct inode *inode);
3482 void inode_set_bytes(struct inode *inode, loff_t bytes);
3483 const char *simple_get_link(struct dentry *, struct inode *,
3484 			    struct delayed_call *);
3485 extern const struct inode_operations simple_symlink_inode_operations;
3486 
3487 extern int iterate_dir(struct file *, struct dir_context *);
3488 
3489 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3490 		int flags);
3491 int vfs_fstat(int fd, struct kstat *stat);
3492 
3493 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3494 {
3495 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3496 }
3497 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3498 {
3499 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3500 }
3501 
3502 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3503 extern int vfs_readlink(struct dentry *, char __user *, int);
3504 
3505 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3506 extern void put_filesystem(struct file_system_type *fs);
3507 extern struct file_system_type *get_fs_type(const char *name);
3508 extern void drop_super(struct super_block *sb);
3509 extern void drop_super_exclusive(struct super_block *sb);
3510 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3511 extern void iterate_supers_type(struct file_system_type *,
3512 			        void (*)(struct super_block *, void *), void *);
3513 
3514 extern int dcache_dir_open(struct inode *, struct file *);
3515 extern int dcache_dir_close(struct inode *, struct file *);
3516 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3517 extern int dcache_readdir(struct file *, struct dir_context *);
3518 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3519 			  struct iattr *);
3520 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3521 			  struct kstat *, u32, unsigned int);
3522 extern int simple_statfs(struct dentry *, struct kstatfs *);
3523 extern int simple_open(struct inode *inode, struct file *file);
3524 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3525 extern int simple_unlink(struct inode *, struct dentry *);
3526 extern int simple_rmdir(struct inode *, struct dentry *);
3527 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3528 			     struct inode *new_dir, struct dentry *new_dentry);
3529 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3530 				  struct inode *new_dir, struct dentry *new_dentry);
3531 extern int simple_rename(struct mnt_idmap *, struct inode *,
3532 			 struct dentry *, struct inode *, struct dentry *,
3533 			 unsigned int);
3534 extern void simple_recursive_removal(struct dentry *,
3535                               void (*callback)(struct dentry *));
3536 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3537 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3538 extern int simple_empty(struct dentry *);
3539 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3540 			loff_t pos, unsigned len,
3541 			struct folio **foliop, void **fsdata);
3542 extern const struct address_space_operations ram_aops;
3543 extern int always_delete_dentry(const struct dentry *);
3544 extern struct inode *alloc_anon_inode(struct super_block *);
3545 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3546 extern const struct dentry_operations simple_dentry_operations;
3547 
3548 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3549 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3550 extern const struct file_operations simple_dir_operations;
3551 extern const struct inode_operations simple_dir_inode_operations;
3552 extern void make_empty_dir_inode(struct inode *inode);
3553 extern bool is_empty_dir_inode(struct inode *inode);
3554 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3555 struct dentry *d_alloc_name(struct dentry *, const char *);
3556 extern int simple_fill_super(struct super_block *, unsigned long,
3557 			     const struct tree_descr *);
3558 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3559 extern void simple_release_fs(struct vfsmount **mount, int *count);
3560 
3561 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3562 			loff_t *ppos, const void *from, size_t available);
3563 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3564 		const void __user *from, size_t count);
3565 
3566 struct offset_ctx {
3567 	struct maple_tree	mt;
3568 	unsigned long		next_offset;
3569 };
3570 
3571 void simple_offset_init(struct offset_ctx *octx);
3572 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3573 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3574 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3575 			 struct inode *new_dir, struct dentry *new_dentry);
3576 int simple_offset_rename_exchange(struct inode *old_dir,
3577 				  struct dentry *old_dentry,
3578 				  struct inode *new_dir,
3579 				  struct dentry *new_dentry);
3580 void simple_offset_destroy(struct offset_ctx *octx);
3581 
3582 extern const struct file_operations simple_offset_dir_operations;
3583 
3584 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3585 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3586 
3587 extern int generic_check_addressable(unsigned, u64);
3588 
3589 extern void generic_set_sb_d_ops(struct super_block *sb);
3590 extern int generic_ci_match(const struct inode *parent,
3591 			    const struct qstr *name,
3592 			    const struct qstr *folded_name,
3593 			    const u8 *de_name, u32 de_name_len);
3594 
3595 #if IS_ENABLED(CONFIG_UNICODE)
3596 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3597 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3598 			 const char *str, const struct qstr *name);
3599 
3600 /**
3601  * generic_ci_validate_strict_name - Check if a given name is suitable
3602  * for a directory
3603  *
3604  * This functions checks if the proposed filename is valid for the
3605  * parent directory. That means that only valid UTF-8 filenames will be
3606  * accepted for casefold directories from filesystems created with the
3607  * strict encoding flag.  That also means that any name will be
3608  * accepted for directories that doesn't have casefold enabled, or
3609  * aren't being strict with the encoding.
3610  *
3611  * @dir: inode of the directory where the new file will be created
3612  * @name: name of the new file
3613  *
3614  * Return:
3615  * * True: if the filename is suitable for this directory. It can be
3616  *   true if a given name is not suitable for a strict encoding
3617  *   directory, but the directory being used isn't strict
3618  * * False if the filename isn't suitable for this directory. This only
3619  *   happens when a directory is casefolded and the filesystem is strict
3620  *   about its encoding.
3621  */
3622 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3623 {
3624 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3625 		return true;
3626 
3627 	/*
3628 	 * A casefold dir must have a encoding set, unless the filesystem
3629 	 * is corrupted
3630 	 */
3631 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3632 		return true;
3633 
3634 	return !utf8_validate(dir->i_sb->s_encoding, name);
3635 }
3636 #else
3637 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3638 {
3639 	return true;
3640 }
3641 #endif
3642 
3643 static inline bool sb_has_encoding(const struct super_block *sb)
3644 {
3645 #if IS_ENABLED(CONFIG_UNICODE)
3646 	return !!sb->s_encoding;
3647 #else
3648 	return false;
3649 #endif
3650 }
3651 
3652 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3653 		unsigned int ia_valid);
3654 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3655 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3656 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3657 		  const struct iattr *attr);
3658 
3659 extern int file_update_time(struct file *file);
3660 
3661 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3662 {
3663 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3664 }
3665 
3666 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3667 {
3668 	struct inode *inode;
3669 
3670 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3671 		return false;
3672 	if (!vma_is_dax(vma))
3673 		return false;
3674 	inode = file_inode(vma->vm_file);
3675 	if (S_ISCHR(inode->i_mode))
3676 		return false; /* device-dax */
3677 	return true;
3678 }
3679 
3680 static inline int iocb_flags(struct file *file)
3681 {
3682 	int res = 0;
3683 	if (file->f_flags & O_APPEND)
3684 		res |= IOCB_APPEND;
3685 	if (file->f_flags & O_DIRECT)
3686 		res |= IOCB_DIRECT;
3687 	if (file->f_flags & O_DSYNC)
3688 		res |= IOCB_DSYNC;
3689 	if (file->f_flags & __O_SYNC)
3690 		res |= IOCB_SYNC;
3691 	return res;
3692 }
3693 
3694 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3695 				     int rw_type)
3696 {
3697 	int kiocb_flags = 0;
3698 
3699 	/* make sure there's no overlap between RWF and private IOCB flags */
3700 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3701 
3702 	if (!flags)
3703 		return 0;
3704 	if (unlikely(flags & ~RWF_SUPPORTED))
3705 		return -EOPNOTSUPP;
3706 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3707 		return -EINVAL;
3708 
3709 	if (flags & RWF_NOWAIT) {
3710 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3711 			return -EOPNOTSUPP;
3712 	}
3713 	if (flags & RWF_ATOMIC) {
3714 		if (rw_type != WRITE)
3715 			return -EOPNOTSUPP;
3716 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3717 			return -EOPNOTSUPP;
3718 	}
3719 	if (flags & RWF_DONTCACHE) {
3720 		/* file system must support it */
3721 		if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3722 			return -EOPNOTSUPP;
3723 		/* DAX mappings not supported */
3724 		if (IS_DAX(ki->ki_filp->f_mapping->host))
3725 			return -EOPNOTSUPP;
3726 	}
3727 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3728 	if (flags & RWF_SYNC)
3729 		kiocb_flags |= IOCB_DSYNC;
3730 
3731 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3732 		if (IS_APPEND(file_inode(ki->ki_filp)))
3733 			return -EPERM;
3734 		ki->ki_flags &= ~IOCB_APPEND;
3735 	}
3736 
3737 	ki->ki_flags |= kiocb_flags;
3738 	return 0;
3739 }
3740 
3741 /* Transaction based IO helpers */
3742 
3743 /*
3744  * An argresp is stored in an allocated page and holds the
3745  * size of the argument or response, along with its content
3746  */
3747 struct simple_transaction_argresp {
3748 	ssize_t size;
3749 	char data[];
3750 };
3751 
3752 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3753 
3754 char *simple_transaction_get(struct file *file, const char __user *buf,
3755 				size_t size);
3756 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3757 				size_t size, loff_t *pos);
3758 int simple_transaction_release(struct inode *inode, struct file *file);
3759 
3760 void simple_transaction_set(struct file *file, size_t n);
3761 
3762 /*
3763  * simple attribute files
3764  *
3765  * These attributes behave similar to those in sysfs:
3766  *
3767  * Writing to an attribute immediately sets a value, an open file can be
3768  * written to multiple times.
3769  *
3770  * Reading from an attribute creates a buffer from the value that might get
3771  * read with multiple read calls. When the attribute has been read
3772  * completely, no further read calls are possible until the file is opened
3773  * again.
3774  *
3775  * All attributes contain a text representation of a numeric value
3776  * that are accessed with the get() and set() functions.
3777  */
3778 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3779 static int __fops ## _open(struct inode *inode, struct file *file)	\
3780 {									\
3781 	__simple_attr_check_format(__fmt, 0ull);			\
3782 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3783 }									\
3784 static const struct file_operations __fops = {				\
3785 	.owner	 = THIS_MODULE,						\
3786 	.open	 = __fops ## _open,					\
3787 	.release = simple_attr_release,					\
3788 	.read	 = simple_attr_read,					\
3789 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3790 	.llseek	 = generic_file_llseek,					\
3791 }
3792 
3793 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3794 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3795 
3796 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3797 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3798 
3799 static inline __printf(1, 2)
3800 void __simple_attr_check_format(const char *fmt, ...)
3801 {
3802 	/* don't do anything, just let the compiler check the arguments; */
3803 }
3804 
3805 int simple_attr_open(struct inode *inode, struct file *file,
3806 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3807 		     const char *fmt);
3808 int simple_attr_release(struct inode *inode, struct file *file);
3809 ssize_t simple_attr_read(struct file *file, char __user *buf,
3810 			 size_t len, loff_t *ppos);
3811 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3812 			  size_t len, loff_t *ppos);
3813 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3814 				 size_t len, loff_t *ppos);
3815 
3816 struct ctl_table;
3817 int __init list_bdev_fs_names(char *buf, size_t size);
3818 
3819 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3820 
3821 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3822 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE))
3823 
3824 static inline bool is_sxid(umode_t mode)
3825 {
3826 	return mode & (S_ISUID | S_ISGID);
3827 }
3828 
3829 static inline int check_sticky(struct mnt_idmap *idmap,
3830 			       struct inode *dir, struct inode *inode)
3831 {
3832 	if (!(dir->i_mode & S_ISVTX))
3833 		return 0;
3834 
3835 	return __check_sticky(idmap, dir, inode);
3836 }
3837 
3838 static inline void inode_has_no_xattr(struct inode *inode)
3839 {
3840 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3841 		inode->i_flags |= S_NOSEC;
3842 }
3843 
3844 static inline bool is_root_inode(struct inode *inode)
3845 {
3846 	return inode == inode->i_sb->s_root->d_inode;
3847 }
3848 
3849 static inline bool dir_emit(struct dir_context *ctx,
3850 			    const char *name, int namelen,
3851 			    u64 ino, unsigned type)
3852 {
3853 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3854 }
3855 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3856 {
3857 	return ctx->actor(ctx, ".", 1, ctx->pos,
3858 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3859 }
3860 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3861 {
3862 	return ctx->actor(ctx, "..", 2, ctx->pos,
3863 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3864 }
3865 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3866 {
3867 	if (ctx->pos == 0) {
3868 		if (!dir_emit_dot(file, ctx))
3869 			return false;
3870 		ctx->pos = 1;
3871 	}
3872 	if (ctx->pos == 1) {
3873 		if (!dir_emit_dotdot(file, ctx))
3874 			return false;
3875 		ctx->pos = 2;
3876 	}
3877 	return true;
3878 }
3879 static inline bool dir_relax(struct inode *inode)
3880 {
3881 	inode_unlock(inode);
3882 	inode_lock(inode);
3883 	return !IS_DEADDIR(inode);
3884 }
3885 
3886 static inline bool dir_relax_shared(struct inode *inode)
3887 {
3888 	inode_unlock_shared(inode);
3889 	inode_lock_shared(inode);
3890 	return !IS_DEADDIR(inode);
3891 }
3892 
3893 extern bool path_noexec(const struct path *path);
3894 extern void inode_nohighmem(struct inode *inode);
3895 
3896 /* mm/fadvise.c */
3897 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3898 		       int advice);
3899 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3900 			   int advice);
3901 
3902 static inline bool vfs_empty_path(int dfd, const char __user *path)
3903 {
3904 	char c;
3905 
3906 	if (dfd < 0)
3907 		return false;
3908 
3909 	/* We now allow NULL to be used for empty path. */
3910 	if (!path)
3911 		return true;
3912 
3913 	if (unlikely(get_user(c, path)))
3914 		return false;
3915 
3916 	return !c;
3917 }
3918 
3919 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3920 
3921 #endif /* _LINUX_FS_H */
3922