1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* FMODE_* bit 24 */ 177 178 /* File is embedded in backing_file object */ 179 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 180 181 /* File was opened by fanotify and shouldn't generate fanotify events */ 182 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 183 184 /* File is capable of returning -EAGAIN if I/O will block */ 185 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 186 187 /* File represents mount that needs unmounting */ 188 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 189 190 /* File does not contribute to nr_files count */ 191 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 192 193 /* 194 * Attribute flags. These should be or-ed together to figure out what 195 * has been changed! 196 */ 197 #define ATTR_MODE (1 << 0) 198 #define ATTR_UID (1 << 1) 199 #define ATTR_GID (1 << 2) 200 #define ATTR_SIZE (1 << 3) 201 #define ATTR_ATIME (1 << 4) 202 #define ATTR_MTIME (1 << 5) 203 #define ATTR_CTIME (1 << 6) 204 #define ATTR_ATIME_SET (1 << 7) 205 #define ATTR_MTIME_SET (1 << 8) 206 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 207 #define ATTR_KILL_SUID (1 << 11) 208 #define ATTR_KILL_SGID (1 << 12) 209 #define ATTR_FILE (1 << 13) 210 #define ATTR_KILL_PRIV (1 << 14) 211 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 212 #define ATTR_TIMES_SET (1 << 16) 213 #define ATTR_TOUCH (1 << 17) 214 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 215 216 /* 217 * Whiteout is represented by a char device. The following constants define the 218 * mode and device number to use. 219 */ 220 #define WHITEOUT_MODE 0 221 #define WHITEOUT_DEV 0 222 223 /* 224 * This is the Inode Attributes structure, used for notify_change(). It 225 * uses the above definitions as flags, to know which values have changed. 226 * Also, in this manner, a Filesystem can look at only the values it cares 227 * about. Basically, these are the attributes that the VFS layer can 228 * request to change from the FS layer. 229 * 230 * Derek Atkins <[email protected]> 94-10-20 231 */ 232 struct iattr { 233 unsigned int ia_valid; 234 umode_t ia_mode; 235 /* 236 * The two anonymous unions wrap structures with the same member. 237 * 238 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 239 * are a dedicated type requiring the filesystem to use the dedicated 240 * helpers. Other filesystem can continue to use ia_{g,u}id until they 241 * have been ported. 242 * 243 * They always contain the same value. In other words FS_ALLOW_IDMAP 244 * pass down the same value on idmapped mounts as they would on regular 245 * mounts. 246 */ 247 union { 248 kuid_t ia_uid; 249 vfsuid_t ia_vfsuid; 250 }; 251 union { 252 kgid_t ia_gid; 253 vfsgid_t ia_vfsgid; 254 }; 255 loff_t ia_size; 256 struct timespec64 ia_atime; 257 struct timespec64 ia_mtime; 258 struct timespec64 ia_ctime; 259 260 /* 261 * Not an attribute, but an auxiliary info for filesystems wanting to 262 * implement an ftruncate() like method. NOTE: filesystem should 263 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 264 */ 265 struct file *ia_file; 266 }; 267 268 /* 269 * Includes for diskquotas. 270 */ 271 #include <linux/quota.h> 272 273 /* 274 * Maximum number of layers of fs stack. Needs to be limited to 275 * prevent kernel stack overflow 276 */ 277 #define FILESYSTEM_MAX_STACK_DEPTH 2 278 279 /** 280 * enum positive_aop_returns - aop return codes with specific semantics 281 * 282 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 283 * completed, that the page is still locked, and 284 * should be considered active. The VM uses this hint 285 * to return the page to the active list -- it won't 286 * be a candidate for writeback again in the near 287 * future. Other callers must be careful to unlock 288 * the page if they get this return. Returned by 289 * writepage(); 290 * 291 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 292 * unlocked it and the page might have been truncated. 293 * The caller should back up to acquiring a new page and 294 * trying again. The aop will be taking reasonable 295 * precautions not to livelock. If the caller held a page 296 * reference, it should drop it before retrying. Returned 297 * by read_folio(). 298 * 299 * address_space_operation functions return these large constants to indicate 300 * special semantics to the caller. These are much larger than the bytes in a 301 * page to allow for functions that return the number of bytes operated on in a 302 * given page. 303 */ 304 305 enum positive_aop_returns { 306 AOP_WRITEPAGE_ACTIVATE = 0x80000, 307 AOP_TRUNCATED_PAGE = 0x80001, 308 }; 309 310 /* 311 * oh the beauties of C type declarations. 312 */ 313 struct page; 314 struct address_space; 315 struct writeback_control; 316 struct readahead_control; 317 318 /* Match RWF_* bits to IOCB bits */ 319 #define IOCB_HIPRI (__force int) RWF_HIPRI 320 #define IOCB_DSYNC (__force int) RWF_DSYNC 321 #define IOCB_SYNC (__force int) RWF_SYNC 322 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 323 #define IOCB_APPEND (__force int) RWF_APPEND 324 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 325 326 /* non-RWF related bits - start at 16 */ 327 #define IOCB_EVENTFD (1 << 16) 328 #define IOCB_DIRECT (1 << 17) 329 #define IOCB_WRITE (1 << 18) 330 /* iocb->ki_waitq is valid */ 331 #define IOCB_WAITQ (1 << 19) 332 #define IOCB_NOIO (1 << 20) 333 /* can use bio alloc cache */ 334 #define IOCB_ALLOC_CACHE (1 << 21) 335 /* 336 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 337 * iocb completion can be passed back to the owner for execution from a safe 338 * context rather than needing to be punted through a workqueue. If this 339 * flag is set, the bio completion handling may set iocb->dio_complete to a 340 * handler function and iocb->private to context information for that handler. 341 * The issuer should call the handler with that context information from task 342 * context to complete the processing of the iocb. Note that while this 343 * provides a task context for the dio_complete() callback, it should only be 344 * used on the completion side for non-IO generating completions. It's fine to 345 * call blocking functions from this callback, but they should not wait for 346 * unrelated IO (like cache flushing, new IO generation, etc). 347 */ 348 #define IOCB_DIO_CALLER_COMP (1 << 22) 349 /* kiocb is a read or write operation submitted by fs/aio.c. */ 350 #define IOCB_AIO_RW (1 << 23) 351 #define IOCB_HAS_METADATA (1 << 24) 352 353 /* for use in trace events */ 354 #define TRACE_IOCB_STRINGS \ 355 { IOCB_HIPRI, "HIPRI" }, \ 356 { IOCB_DSYNC, "DSYNC" }, \ 357 { IOCB_SYNC, "SYNC" }, \ 358 { IOCB_NOWAIT, "NOWAIT" }, \ 359 { IOCB_APPEND, "APPEND" }, \ 360 { IOCB_ATOMIC, "ATOMIC"}, \ 361 { IOCB_EVENTFD, "EVENTFD"}, \ 362 { IOCB_DIRECT, "DIRECT" }, \ 363 { IOCB_WRITE, "WRITE" }, \ 364 { IOCB_WAITQ, "WAITQ" }, \ 365 { IOCB_NOIO, "NOIO" }, \ 366 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 367 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 368 369 struct kiocb { 370 struct file *ki_filp; 371 loff_t ki_pos; 372 void (*ki_complete)(struct kiocb *iocb, long ret); 373 void *private; 374 int ki_flags; 375 u16 ki_ioprio; /* See linux/ioprio.h */ 376 union { 377 /* 378 * Only used for async buffered reads, where it denotes the 379 * page waitqueue associated with completing the read. Valid 380 * IFF IOCB_WAITQ is set. 381 */ 382 struct wait_page_queue *ki_waitq; 383 /* 384 * Can be used for O_DIRECT IO, where the completion handling 385 * is punted back to the issuer of the IO. May only be set 386 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 387 * must then check for presence of this handler when ki_complete 388 * is invoked. The data passed in to this handler must be 389 * assigned to ->private when dio_complete is assigned. 390 */ 391 ssize_t (*dio_complete)(void *data); 392 }; 393 }; 394 395 static inline bool is_sync_kiocb(struct kiocb *kiocb) 396 { 397 return kiocb->ki_complete == NULL; 398 } 399 400 struct address_space_operations { 401 int (*writepage)(struct page *page, struct writeback_control *wbc); 402 int (*read_folio)(struct file *, struct folio *); 403 404 /* Write back some dirty pages from this mapping. */ 405 int (*writepages)(struct address_space *, struct writeback_control *); 406 407 /* Mark a folio dirty. Return true if this dirtied it */ 408 bool (*dirty_folio)(struct address_space *, struct folio *); 409 410 void (*readahead)(struct readahead_control *); 411 412 int (*write_begin)(struct file *, struct address_space *mapping, 413 loff_t pos, unsigned len, 414 struct folio **foliop, void **fsdata); 415 int (*write_end)(struct file *, struct address_space *mapping, 416 loff_t pos, unsigned len, unsigned copied, 417 struct folio *folio, void *fsdata); 418 419 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 420 sector_t (*bmap)(struct address_space *, sector_t); 421 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 422 bool (*release_folio)(struct folio *, gfp_t); 423 void (*free_folio)(struct folio *folio); 424 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 425 /* 426 * migrate the contents of a folio to the specified target. If 427 * migrate_mode is MIGRATE_ASYNC, it must not block. 428 */ 429 int (*migrate_folio)(struct address_space *, struct folio *dst, 430 struct folio *src, enum migrate_mode); 431 int (*launder_folio)(struct folio *); 432 bool (*is_partially_uptodate) (struct folio *, size_t from, 433 size_t count); 434 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 435 int (*error_remove_folio)(struct address_space *, struct folio *); 436 437 /* swapfile support */ 438 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 439 sector_t *span); 440 void (*swap_deactivate)(struct file *file); 441 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 442 }; 443 444 extern const struct address_space_operations empty_aops; 445 446 /** 447 * struct address_space - Contents of a cacheable, mappable object. 448 * @host: Owner, either the inode or the block_device. 449 * @i_pages: Cached pages. 450 * @invalidate_lock: Guards coherency between page cache contents and 451 * file offset->disk block mappings in the filesystem during invalidates. 452 * It is also used to block modification of page cache contents through 453 * memory mappings. 454 * @gfp_mask: Memory allocation flags to use for allocating pages. 455 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 456 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 457 * @i_mmap: Tree of private and shared mappings. 458 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 459 * @nrpages: Number of page entries, protected by the i_pages lock. 460 * @writeback_index: Writeback starts here. 461 * @a_ops: Methods. 462 * @flags: Error bits and flags (AS_*). 463 * @wb_err: The most recent error which has occurred. 464 * @i_private_lock: For use by the owner of the address_space. 465 * @i_private_list: For use by the owner of the address_space. 466 * @i_private_data: For use by the owner of the address_space. 467 */ 468 struct address_space { 469 struct inode *host; 470 struct xarray i_pages; 471 struct rw_semaphore invalidate_lock; 472 gfp_t gfp_mask; 473 atomic_t i_mmap_writable; 474 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 475 /* number of thp, only for non-shmem files */ 476 atomic_t nr_thps; 477 #endif 478 struct rb_root_cached i_mmap; 479 unsigned long nrpages; 480 pgoff_t writeback_index; 481 const struct address_space_operations *a_ops; 482 unsigned long flags; 483 errseq_t wb_err; 484 spinlock_t i_private_lock; 485 struct list_head i_private_list; 486 struct rw_semaphore i_mmap_rwsem; 487 void * i_private_data; 488 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 489 /* 490 * On most architectures that alignment is already the case; but 491 * must be enforced here for CRIS, to let the least significant bit 492 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 493 */ 494 495 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 496 #define PAGECACHE_TAG_DIRTY XA_MARK_0 497 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 498 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 499 500 /* 501 * Returns true if any of the pages in the mapping are marked with the tag. 502 */ 503 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 504 { 505 return xa_marked(&mapping->i_pages, tag); 506 } 507 508 static inline void i_mmap_lock_write(struct address_space *mapping) 509 { 510 down_write(&mapping->i_mmap_rwsem); 511 } 512 513 static inline int i_mmap_trylock_write(struct address_space *mapping) 514 { 515 return down_write_trylock(&mapping->i_mmap_rwsem); 516 } 517 518 static inline void i_mmap_unlock_write(struct address_space *mapping) 519 { 520 up_write(&mapping->i_mmap_rwsem); 521 } 522 523 static inline int i_mmap_trylock_read(struct address_space *mapping) 524 { 525 return down_read_trylock(&mapping->i_mmap_rwsem); 526 } 527 528 static inline void i_mmap_lock_read(struct address_space *mapping) 529 { 530 down_read(&mapping->i_mmap_rwsem); 531 } 532 533 static inline void i_mmap_unlock_read(struct address_space *mapping) 534 { 535 up_read(&mapping->i_mmap_rwsem); 536 } 537 538 static inline void i_mmap_assert_locked(struct address_space *mapping) 539 { 540 lockdep_assert_held(&mapping->i_mmap_rwsem); 541 } 542 543 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 544 { 545 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 546 } 547 548 /* 549 * Might pages of this file be mapped into userspace? 550 */ 551 static inline int mapping_mapped(struct address_space *mapping) 552 { 553 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 554 } 555 556 /* 557 * Might pages of this file have been modified in userspace? 558 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 559 * marks vma as VM_SHARED if it is shared, and the file was opened for 560 * writing i.e. vma may be mprotected writable even if now readonly. 561 * 562 * If i_mmap_writable is negative, no new writable mappings are allowed. You 563 * can only deny writable mappings, if none exists right now. 564 */ 565 static inline int mapping_writably_mapped(struct address_space *mapping) 566 { 567 return atomic_read(&mapping->i_mmap_writable) > 0; 568 } 569 570 static inline int mapping_map_writable(struct address_space *mapping) 571 { 572 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 573 0 : -EPERM; 574 } 575 576 static inline void mapping_unmap_writable(struct address_space *mapping) 577 { 578 atomic_dec(&mapping->i_mmap_writable); 579 } 580 581 static inline int mapping_deny_writable(struct address_space *mapping) 582 { 583 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 584 0 : -EBUSY; 585 } 586 587 static inline void mapping_allow_writable(struct address_space *mapping) 588 { 589 atomic_inc(&mapping->i_mmap_writable); 590 } 591 592 /* 593 * Use sequence counter to get consistent i_size on 32-bit processors. 594 */ 595 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 596 #include <linux/seqlock.h> 597 #define __NEED_I_SIZE_ORDERED 598 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 599 #else 600 #define i_size_ordered_init(inode) do { } while (0) 601 #endif 602 603 struct posix_acl; 604 #define ACL_NOT_CACHED ((void *)(-1)) 605 /* 606 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 607 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 608 * mode with the LOOKUP_RCU flag. 609 */ 610 #define ACL_DONT_CACHE ((void *)(-3)) 611 612 static inline struct posix_acl * 613 uncached_acl_sentinel(struct task_struct *task) 614 { 615 return (void *)task + 1; 616 } 617 618 static inline bool 619 is_uncached_acl(struct posix_acl *acl) 620 { 621 return (long)acl & 1; 622 } 623 624 #define IOP_FASTPERM 0x0001 625 #define IOP_LOOKUP 0x0002 626 #define IOP_NOFOLLOW 0x0004 627 #define IOP_XATTR 0x0008 628 #define IOP_DEFAULT_READLINK 0x0010 629 #define IOP_MGTIME 0x0020 630 631 /* 632 * Keep mostly read-only and often accessed (especially for 633 * the RCU path lookup and 'stat' data) fields at the beginning 634 * of the 'struct inode' 635 */ 636 struct inode { 637 umode_t i_mode; 638 unsigned short i_opflags; 639 kuid_t i_uid; 640 kgid_t i_gid; 641 unsigned int i_flags; 642 643 #ifdef CONFIG_FS_POSIX_ACL 644 struct posix_acl *i_acl; 645 struct posix_acl *i_default_acl; 646 #endif 647 648 const struct inode_operations *i_op; 649 struct super_block *i_sb; 650 struct address_space *i_mapping; 651 652 #ifdef CONFIG_SECURITY 653 void *i_security; 654 #endif 655 656 /* Stat data, not accessed from path walking */ 657 unsigned long i_ino; 658 /* 659 * Filesystems may only read i_nlink directly. They shall use the 660 * following functions for modification: 661 * 662 * (set|clear|inc|drop)_nlink 663 * inode_(inc|dec)_link_count 664 */ 665 union { 666 const unsigned int i_nlink; 667 unsigned int __i_nlink; 668 }; 669 dev_t i_rdev; 670 loff_t i_size; 671 time64_t i_atime_sec; 672 time64_t i_mtime_sec; 673 time64_t i_ctime_sec; 674 u32 i_atime_nsec; 675 u32 i_mtime_nsec; 676 u32 i_ctime_nsec; 677 u32 i_generation; 678 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 679 unsigned short i_bytes; 680 u8 i_blkbits; 681 enum rw_hint i_write_hint; 682 blkcnt_t i_blocks; 683 684 #ifdef __NEED_I_SIZE_ORDERED 685 seqcount_t i_size_seqcount; 686 #endif 687 688 /* Misc */ 689 u32 i_state; 690 /* 32-bit hole */ 691 struct rw_semaphore i_rwsem; 692 693 unsigned long dirtied_when; /* jiffies of first dirtying */ 694 unsigned long dirtied_time_when; 695 696 struct hlist_node i_hash; 697 struct list_head i_io_list; /* backing dev IO list */ 698 #ifdef CONFIG_CGROUP_WRITEBACK 699 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 700 701 /* foreign inode detection, see wbc_detach_inode() */ 702 int i_wb_frn_winner; 703 u16 i_wb_frn_avg_time; 704 u16 i_wb_frn_history; 705 #endif 706 struct list_head i_lru; /* inode LRU list */ 707 struct list_head i_sb_list; 708 struct list_head i_wb_list; /* backing dev writeback list */ 709 union { 710 struct hlist_head i_dentry; 711 struct rcu_head i_rcu; 712 }; 713 atomic64_t i_version; 714 atomic64_t i_sequence; /* see futex */ 715 atomic_t i_count; 716 atomic_t i_dio_count; 717 atomic_t i_writecount; 718 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 719 atomic_t i_readcount; /* struct files open RO */ 720 #endif 721 union { 722 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 723 void (*free_inode)(struct inode *); 724 }; 725 struct file_lock_context *i_flctx; 726 struct address_space i_data; 727 struct list_head i_devices; 728 union { 729 struct pipe_inode_info *i_pipe; 730 struct cdev *i_cdev; 731 char *i_link; 732 unsigned i_dir_seq; 733 }; 734 735 736 #ifdef CONFIG_FSNOTIFY 737 __u32 i_fsnotify_mask; /* all events this inode cares about */ 738 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 739 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 740 #endif 741 742 #ifdef CONFIG_FS_ENCRYPTION 743 struct fscrypt_inode_info *i_crypt_info; 744 #endif 745 746 #ifdef CONFIG_FS_VERITY 747 struct fsverity_info *i_verity_info; 748 #endif 749 750 void *i_private; /* fs or device private pointer */ 751 } __randomize_layout; 752 753 /* 754 * Get bit address from inode->i_state to use with wait_var_event() 755 * infrastructre. 756 */ 757 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 758 759 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 760 struct inode *inode, u32 bit); 761 762 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 763 { 764 /* Caller is responsible for correct memory barriers. */ 765 wake_up_var(inode_state_wait_address(inode, bit)); 766 } 767 768 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 769 770 static inline unsigned int i_blocksize(const struct inode *node) 771 { 772 return (1 << node->i_blkbits); 773 } 774 775 static inline int inode_unhashed(struct inode *inode) 776 { 777 return hlist_unhashed(&inode->i_hash); 778 } 779 780 /* 781 * __mark_inode_dirty expects inodes to be hashed. Since we don't 782 * want special inodes in the fileset inode space, we make them 783 * appear hashed, but do not put on any lists. hlist_del() 784 * will work fine and require no locking. 785 */ 786 static inline void inode_fake_hash(struct inode *inode) 787 { 788 hlist_add_fake(&inode->i_hash); 789 } 790 791 /* 792 * inode->i_mutex nesting subclasses for the lock validator: 793 * 794 * 0: the object of the current VFS operation 795 * 1: parent 796 * 2: child/target 797 * 3: xattr 798 * 4: second non-directory 799 * 5: second parent (when locking independent directories in rename) 800 * 801 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 802 * non-directories at once. 803 * 804 * The locking order between these classes is 805 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 806 */ 807 enum inode_i_mutex_lock_class 808 { 809 I_MUTEX_NORMAL, 810 I_MUTEX_PARENT, 811 I_MUTEX_CHILD, 812 I_MUTEX_XATTR, 813 I_MUTEX_NONDIR2, 814 I_MUTEX_PARENT2, 815 }; 816 817 static inline void inode_lock(struct inode *inode) 818 { 819 down_write(&inode->i_rwsem); 820 } 821 822 static inline void inode_unlock(struct inode *inode) 823 { 824 up_write(&inode->i_rwsem); 825 } 826 827 static inline void inode_lock_shared(struct inode *inode) 828 { 829 down_read(&inode->i_rwsem); 830 } 831 832 static inline void inode_unlock_shared(struct inode *inode) 833 { 834 up_read(&inode->i_rwsem); 835 } 836 837 static inline int inode_trylock(struct inode *inode) 838 { 839 return down_write_trylock(&inode->i_rwsem); 840 } 841 842 static inline int inode_trylock_shared(struct inode *inode) 843 { 844 return down_read_trylock(&inode->i_rwsem); 845 } 846 847 static inline int inode_is_locked(struct inode *inode) 848 { 849 return rwsem_is_locked(&inode->i_rwsem); 850 } 851 852 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 853 { 854 down_write_nested(&inode->i_rwsem, subclass); 855 } 856 857 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 858 { 859 down_read_nested(&inode->i_rwsem, subclass); 860 } 861 862 static inline void filemap_invalidate_lock(struct address_space *mapping) 863 { 864 down_write(&mapping->invalidate_lock); 865 } 866 867 static inline void filemap_invalidate_unlock(struct address_space *mapping) 868 { 869 up_write(&mapping->invalidate_lock); 870 } 871 872 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 873 { 874 down_read(&mapping->invalidate_lock); 875 } 876 877 static inline int filemap_invalidate_trylock_shared( 878 struct address_space *mapping) 879 { 880 return down_read_trylock(&mapping->invalidate_lock); 881 } 882 883 static inline void filemap_invalidate_unlock_shared( 884 struct address_space *mapping) 885 { 886 up_read(&mapping->invalidate_lock); 887 } 888 889 void lock_two_nondirectories(struct inode *, struct inode*); 890 void unlock_two_nondirectories(struct inode *, struct inode*); 891 892 void filemap_invalidate_lock_two(struct address_space *mapping1, 893 struct address_space *mapping2); 894 void filemap_invalidate_unlock_two(struct address_space *mapping1, 895 struct address_space *mapping2); 896 897 898 /* 899 * NOTE: in a 32bit arch with a preemptable kernel and 900 * an UP compile the i_size_read/write must be atomic 901 * with respect to the local cpu (unlike with preempt disabled), 902 * but they don't need to be atomic with respect to other cpus like in 903 * true SMP (so they need either to either locally disable irq around 904 * the read or for example on x86 they can be still implemented as a 905 * cmpxchg8b without the need of the lock prefix). For SMP compiles 906 * and 64bit archs it makes no difference if preempt is enabled or not. 907 */ 908 static inline loff_t i_size_read(const struct inode *inode) 909 { 910 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 911 loff_t i_size; 912 unsigned int seq; 913 914 do { 915 seq = read_seqcount_begin(&inode->i_size_seqcount); 916 i_size = inode->i_size; 917 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 918 return i_size; 919 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 920 loff_t i_size; 921 922 preempt_disable(); 923 i_size = inode->i_size; 924 preempt_enable(); 925 return i_size; 926 #else 927 /* Pairs with smp_store_release() in i_size_write() */ 928 return smp_load_acquire(&inode->i_size); 929 #endif 930 } 931 932 /* 933 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 934 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 935 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 936 */ 937 static inline void i_size_write(struct inode *inode, loff_t i_size) 938 { 939 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 940 preempt_disable(); 941 write_seqcount_begin(&inode->i_size_seqcount); 942 inode->i_size = i_size; 943 write_seqcount_end(&inode->i_size_seqcount); 944 preempt_enable(); 945 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 946 preempt_disable(); 947 inode->i_size = i_size; 948 preempt_enable(); 949 #else 950 /* 951 * Pairs with smp_load_acquire() in i_size_read() to ensure 952 * changes related to inode size (such as page contents) are 953 * visible before we see the changed inode size. 954 */ 955 smp_store_release(&inode->i_size, i_size); 956 #endif 957 } 958 959 static inline unsigned iminor(const struct inode *inode) 960 { 961 return MINOR(inode->i_rdev); 962 } 963 964 static inline unsigned imajor(const struct inode *inode) 965 { 966 return MAJOR(inode->i_rdev); 967 } 968 969 struct fown_struct { 970 struct file *file; /* backpointer for security modules */ 971 rwlock_t lock; /* protects pid, uid, euid fields */ 972 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 973 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 974 kuid_t uid, euid; /* uid/euid of process setting the owner */ 975 int signum; /* posix.1b rt signal to be delivered on IO */ 976 }; 977 978 /** 979 * struct file_ra_state - Track a file's readahead state. 980 * @start: Where the most recent readahead started. 981 * @size: Number of pages read in the most recent readahead. 982 * @async_size: Numer of pages that were/are not needed immediately 983 * and so were/are genuinely "ahead". Start next readahead when 984 * the first of these pages is accessed. 985 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 986 * @mmap_miss: How many mmap accesses missed in the page cache. 987 * @prev_pos: The last byte in the most recent read request. 988 * 989 * When this structure is passed to ->readahead(), the "most recent" 990 * readahead means the current readahead. 991 */ 992 struct file_ra_state { 993 pgoff_t start; 994 unsigned int size; 995 unsigned int async_size; 996 unsigned int ra_pages; 997 unsigned int mmap_miss; 998 loff_t prev_pos; 999 }; 1000 1001 /* 1002 * Check if @index falls in the readahead windows. 1003 */ 1004 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1005 { 1006 return (index >= ra->start && 1007 index < ra->start + ra->size); 1008 } 1009 1010 /** 1011 * struct file - Represents a file 1012 * @f_ref: reference count 1013 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1014 * @f_mode: FMODE_* flags often used in hotpaths 1015 * @f_op: file operations 1016 * @f_mapping: Contents of a cacheable, mappable object. 1017 * @private_data: filesystem or driver specific data 1018 * @f_inode: cached inode 1019 * @f_flags: file flags 1020 * @f_iocb_flags: iocb flags 1021 * @f_cred: stashed credentials of creator/opener 1022 * @f_path: path of the file 1023 * @f_pos_lock: lock protecting file position 1024 * @f_pipe: specific to pipes 1025 * @f_pos: file position 1026 * @f_security: LSM security context of this file 1027 * @f_owner: file owner 1028 * @f_wb_err: writeback error 1029 * @f_sb_err: per sb writeback errors 1030 * @f_ep: link of all epoll hooks for this file 1031 * @f_task_work: task work entry point 1032 * @f_llist: work queue entrypoint 1033 * @f_ra: file's readahead state 1034 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1035 */ 1036 struct file { 1037 file_ref_t f_ref; 1038 spinlock_t f_lock; 1039 fmode_t f_mode; 1040 const struct file_operations *f_op; 1041 struct address_space *f_mapping; 1042 void *private_data; 1043 struct inode *f_inode; 1044 unsigned int f_flags; 1045 unsigned int f_iocb_flags; 1046 const struct cred *f_cred; 1047 /* --- cacheline 1 boundary (64 bytes) --- */ 1048 struct path f_path; 1049 union { 1050 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1051 struct mutex f_pos_lock; 1052 /* pipes */ 1053 u64 f_pipe; 1054 }; 1055 loff_t f_pos; 1056 #ifdef CONFIG_SECURITY 1057 void *f_security; 1058 #endif 1059 /* --- cacheline 2 boundary (128 bytes) --- */ 1060 struct fown_struct *f_owner; 1061 errseq_t f_wb_err; 1062 errseq_t f_sb_err; 1063 #ifdef CONFIG_EPOLL 1064 struct hlist_head *f_ep; 1065 #endif 1066 union { 1067 struct callback_head f_task_work; 1068 struct llist_node f_llist; 1069 struct file_ra_state f_ra; 1070 freeptr_t f_freeptr; 1071 }; 1072 /* --- cacheline 3 boundary (192 bytes) --- */ 1073 } __randomize_layout 1074 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1075 1076 struct file_handle { 1077 __u32 handle_bytes; 1078 int handle_type; 1079 /* file identifier */ 1080 unsigned char f_handle[] __counted_by(handle_bytes); 1081 }; 1082 1083 static inline struct file *get_file(struct file *f) 1084 { 1085 file_ref_inc(&f->f_ref); 1086 return f; 1087 } 1088 1089 struct file *get_file_rcu(struct file __rcu **f); 1090 struct file *get_file_active(struct file **f); 1091 1092 #define file_count(f) file_ref_read(&(f)->f_ref) 1093 1094 #define MAX_NON_LFS ((1UL<<31) - 1) 1095 1096 /* Page cache limit. The filesystems should put that into their s_maxbytes 1097 limits, otherwise bad things can happen in VM. */ 1098 #if BITS_PER_LONG==32 1099 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1100 #elif BITS_PER_LONG==64 1101 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1102 #endif 1103 1104 /* legacy typedef, should eventually be removed */ 1105 typedef void *fl_owner_t; 1106 1107 struct file_lock; 1108 struct file_lease; 1109 1110 /* The following constant reflects the upper bound of the file/locking space */ 1111 #ifndef OFFSET_MAX 1112 #define OFFSET_MAX type_max(loff_t) 1113 #define OFFT_OFFSET_MAX type_max(off_t) 1114 #endif 1115 1116 int file_f_owner_allocate(struct file *file); 1117 static inline struct fown_struct *file_f_owner(const struct file *file) 1118 { 1119 return READ_ONCE(file->f_owner); 1120 } 1121 1122 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1123 1124 static inline struct inode *file_inode(const struct file *f) 1125 { 1126 return f->f_inode; 1127 } 1128 1129 /* 1130 * file_dentry() is a relic from the days that overlayfs was using files with a 1131 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1132 * In those days, file_dentry() was needed to get the underlying fs dentry that 1133 * matches f_inode. 1134 * Files with "fake" path should not exist nowadays, so use an assertion to make 1135 * sure that file_dentry() was not papering over filesystem bugs. 1136 */ 1137 static inline struct dentry *file_dentry(const struct file *file) 1138 { 1139 struct dentry *dentry = file->f_path.dentry; 1140 1141 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1142 return dentry; 1143 } 1144 1145 struct fasync_struct { 1146 rwlock_t fa_lock; 1147 int magic; 1148 int fa_fd; 1149 struct fasync_struct *fa_next; /* singly linked list */ 1150 struct file *fa_file; 1151 struct rcu_head fa_rcu; 1152 }; 1153 1154 #define FASYNC_MAGIC 0x4601 1155 1156 /* SMP safe fasync helpers: */ 1157 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1158 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1159 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1160 extern struct fasync_struct *fasync_alloc(void); 1161 extern void fasync_free(struct fasync_struct *); 1162 1163 /* can be called from interrupts */ 1164 extern void kill_fasync(struct fasync_struct **, int, int); 1165 1166 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1167 extern int f_setown(struct file *filp, int who, int force); 1168 extern void f_delown(struct file *filp); 1169 extern pid_t f_getown(struct file *filp); 1170 extern int send_sigurg(struct file *file); 1171 1172 /* 1173 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1174 * represented in both. 1175 */ 1176 #define SB_RDONLY BIT(0) /* Mount read-only */ 1177 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1178 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1179 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1180 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1181 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1182 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1183 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1184 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1185 #define SB_SILENT BIT(15) 1186 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1187 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1188 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1189 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1190 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1191 1192 /* These sb flags are internal to the kernel */ 1193 #define SB_DEAD BIT(21) 1194 #define SB_DYING BIT(24) 1195 #define SB_SUBMOUNT BIT(26) 1196 #define SB_FORCE BIT(27) 1197 #define SB_NOSEC BIT(28) 1198 #define SB_BORN BIT(29) 1199 #define SB_ACTIVE BIT(30) 1200 #define SB_NOUSER BIT(31) 1201 1202 /* These flags relate to encoding and casefolding */ 1203 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1204 1205 #define sb_has_strict_encoding(sb) \ 1206 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1207 1208 /* 1209 * Umount options 1210 */ 1211 1212 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1213 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1214 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1215 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1216 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1217 1218 /* sb->s_iflags */ 1219 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1220 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1221 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1222 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1223 1224 /* sb->s_iflags to limit user namespace mounts */ 1225 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1226 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1227 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1228 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1229 1230 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1231 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1232 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1233 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1234 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1235 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1236 1237 /* Possible states of 'frozen' field */ 1238 enum { 1239 SB_UNFROZEN = 0, /* FS is unfrozen */ 1240 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1241 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1242 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1243 * internal threads if needed) */ 1244 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1245 }; 1246 1247 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1248 1249 struct sb_writers { 1250 unsigned short frozen; /* Is sb frozen? */ 1251 int freeze_kcount; /* How many kernel freeze requests? */ 1252 int freeze_ucount; /* How many userspace freeze requests? */ 1253 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1254 }; 1255 1256 struct super_block { 1257 struct list_head s_list; /* Keep this first */ 1258 dev_t s_dev; /* search index; _not_ kdev_t */ 1259 unsigned char s_blocksize_bits; 1260 unsigned long s_blocksize; 1261 loff_t s_maxbytes; /* Max file size */ 1262 struct file_system_type *s_type; 1263 const struct super_operations *s_op; 1264 const struct dquot_operations *dq_op; 1265 const struct quotactl_ops *s_qcop; 1266 const struct export_operations *s_export_op; 1267 unsigned long s_flags; 1268 unsigned long s_iflags; /* internal SB_I_* flags */ 1269 unsigned long s_magic; 1270 struct dentry *s_root; 1271 struct rw_semaphore s_umount; 1272 int s_count; 1273 atomic_t s_active; 1274 #ifdef CONFIG_SECURITY 1275 void *s_security; 1276 #endif 1277 const struct xattr_handler * const *s_xattr; 1278 #ifdef CONFIG_FS_ENCRYPTION 1279 const struct fscrypt_operations *s_cop; 1280 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1281 #endif 1282 #ifdef CONFIG_FS_VERITY 1283 const struct fsverity_operations *s_vop; 1284 #endif 1285 #if IS_ENABLED(CONFIG_UNICODE) 1286 struct unicode_map *s_encoding; 1287 __u16 s_encoding_flags; 1288 #endif 1289 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1290 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1291 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1292 struct file *s_bdev_file; 1293 struct backing_dev_info *s_bdi; 1294 struct mtd_info *s_mtd; 1295 struct hlist_node s_instances; 1296 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1297 struct quota_info s_dquot; /* Diskquota specific options */ 1298 1299 struct sb_writers s_writers; 1300 1301 /* 1302 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1303 * s_fsnotify_info together for cache efficiency. They are frequently 1304 * accessed and rarely modified. 1305 */ 1306 void *s_fs_info; /* Filesystem private info */ 1307 1308 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1309 u32 s_time_gran; 1310 /* Time limits for c/m/atime in seconds */ 1311 time64_t s_time_min; 1312 time64_t s_time_max; 1313 #ifdef CONFIG_FSNOTIFY 1314 u32 s_fsnotify_mask; 1315 struct fsnotify_sb_info *s_fsnotify_info; 1316 #endif 1317 1318 /* 1319 * q: why are s_id and s_sysfs_name not the same? both are human 1320 * readable strings that identify the filesystem 1321 * a: s_id is allowed to change at runtime; it's used in log messages, 1322 * and we want to when a device starts out as single device (s_id is dev 1323 * name) but then a device is hot added and we have to switch to 1324 * identifying it by UUID 1325 * but s_sysfs_name is a handle for programmatic access, and can't 1326 * change at runtime 1327 */ 1328 char s_id[32]; /* Informational name */ 1329 uuid_t s_uuid; /* UUID */ 1330 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1331 1332 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1333 char s_sysfs_name[UUID_STRING_LEN + 1]; 1334 1335 unsigned int s_max_links; 1336 1337 /* 1338 * The next field is for VFS *only*. No filesystems have any business 1339 * even looking at it. You had been warned. 1340 */ 1341 struct mutex s_vfs_rename_mutex; /* Kludge */ 1342 1343 /* 1344 * Filesystem subtype. If non-empty the filesystem type field 1345 * in /proc/mounts will be "type.subtype" 1346 */ 1347 const char *s_subtype; 1348 1349 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1350 1351 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1352 1353 /* Number of inodes with nlink == 0 but still referenced */ 1354 atomic_long_t s_remove_count; 1355 1356 /* Read-only state of the superblock is being changed */ 1357 int s_readonly_remount; 1358 1359 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1360 errseq_t s_wb_err; 1361 1362 /* AIO completions deferred from interrupt context */ 1363 struct workqueue_struct *s_dio_done_wq; 1364 struct hlist_head s_pins; 1365 1366 /* 1367 * Owning user namespace and default context in which to 1368 * interpret filesystem uids, gids, quotas, device nodes, 1369 * xattrs and security labels. 1370 */ 1371 struct user_namespace *s_user_ns; 1372 1373 /* 1374 * The list_lru structure is essentially just a pointer to a table 1375 * of per-node lru lists, each of which has its own spinlock. 1376 * There is no need to put them into separate cachelines. 1377 */ 1378 struct list_lru s_dentry_lru; 1379 struct list_lru s_inode_lru; 1380 struct rcu_head rcu; 1381 struct work_struct destroy_work; 1382 1383 struct mutex s_sync_lock; /* sync serialisation lock */ 1384 1385 /* 1386 * Indicates how deep in a filesystem stack this SB is 1387 */ 1388 int s_stack_depth; 1389 1390 /* s_inode_list_lock protects s_inodes */ 1391 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1392 struct list_head s_inodes; /* all inodes */ 1393 1394 spinlock_t s_inode_wblist_lock; 1395 struct list_head s_inodes_wb; /* writeback inodes */ 1396 } __randomize_layout; 1397 1398 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1399 { 1400 return inode->i_sb->s_user_ns; 1401 } 1402 1403 /* Helper functions so that in most cases filesystems will 1404 * not need to deal directly with kuid_t and kgid_t and can 1405 * instead deal with the raw numeric values that are stored 1406 * in the filesystem. 1407 */ 1408 static inline uid_t i_uid_read(const struct inode *inode) 1409 { 1410 return from_kuid(i_user_ns(inode), inode->i_uid); 1411 } 1412 1413 static inline gid_t i_gid_read(const struct inode *inode) 1414 { 1415 return from_kgid(i_user_ns(inode), inode->i_gid); 1416 } 1417 1418 static inline void i_uid_write(struct inode *inode, uid_t uid) 1419 { 1420 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1421 } 1422 1423 static inline void i_gid_write(struct inode *inode, gid_t gid) 1424 { 1425 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1426 } 1427 1428 /** 1429 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1430 * @idmap: idmap of the mount the inode was found from 1431 * @inode: inode to map 1432 * 1433 * Return: whe inode's i_uid mapped down according to @idmap. 1434 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1435 */ 1436 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1437 const struct inode *inode) 1438 { 1439 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1440 } 1441 1442 /** 1443 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1444 * @idmap: idmap of the mount the inode was found from 1445 * @attr: the new attributes of @inode 1446 * @inode: the inode to update 1447 * 1448 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1449 * mounts into account if the filesystem supports it. 1450 * 1451 * Return: true if @inode's i_uid field needs to be updated, false if not. 1452 */ 1453 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1454 const struct iattr *attr, 1455 const struct inode *inode) 1456 { 1457 return ((attr->ia_valid & ATTR_UID) && 1458 !vfsuid_eq(attr->ia_vfsuid, 1459 i_uid_into_vfsuid(idmap, inode))); 1460 } 1461 1462 /** 1463 * i_uid_update - update @inode's i_uid field 1464 * @idmap: idmap of the mount the inode was found from 1465 * @attr: the new attributes of @inode 1466 * @inode: the inode to update 1467 * 1468 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1469 * mount into the filesystem kuid. 1470 */ 1471 static inline void i_uid_update(struct mnt_idmap *idmap, 1472 const struct iattr *attr, 1473 struct inode *inode) 1474 { 1475 if (attr->ia_valid & ATTR_UID) 1476 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1477 attr->ia_vfsuid); 1478 } 1479 1480 /** 1481 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1482 * @idmap: idmap of the mount the inode was found from 1483 * @inode: inode to map 1484 * 1485 * Return: the inode's i_gid mapped down according to @idmap. 1486 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1487 */ 1488 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1489 const struct inode *inode) 1490 { 1491 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1492 } 1493 1494 /** 1495 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1496 * @idmap: idmap of the mount the inode was found from 1497 * @attr: the new attributes of @inode 1498 * @inode: the inode to update 1499 * 1500 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1501 * mounts into account if the filesystem supports it. 1502 * 1503 * Return: true if @inode's i_gid field needs to be updated, false if not. 1504 */ 1505 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1506 const struct iattr *attr, 1507 const struct inode *inode) 1508 { 1509 return ((attr->ia_valid & ATTR_GID) && 1510 !vfsgid_eq(attr->ia_vfsgid, 1511 i_gid_into_vfsgid(idmap, inode))); 1512 } 1513 1514 /** 1515 * i_gid_update - update @inode's i_gid field 1516 * @idmap: idmap of the mount the inode was found from 1517 * @attr: the new attributes of @inode 1518 * @inode: the inode to update 1519 * 1520 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1521 * mount into the filesystem kgid. 1522 */ 1523 static inline void i_gid_update(struct mnt_idmap *idmap, 1524 const struct iattr *attr, 1525 struct inode *inode) 1526 { 1527 if (attr->ia_valid & ATTR_GID) 1528 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1529 attr->ia_vfsgid); 1530 } 1531 1532 /** 1533 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1534 * @inode: inode to initialize 1535 * @idmap: idmap of the mount the inode was found from 1536 * 1537 * Initialize the i_uid field of @inode. If the inode was found/created via 1538 * an idmapped mount map the caller's fsuid according to @idmap. 1539 */ 1540 static inline void inode_fsuid_set(struct inode *inode, 1541 struct mnt_idmap *idmap) 1542 { 1543 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1544 } 1545 1546 /** 1547 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1548 * @inode: inode to initialize 1549 * @idmap: idmap of the mount the inode was found from 1550 * 1551 * Initialize the i_gid field of @inode. If the inode was found/created via 1552 * an idmapped mount map the caller's fsgid according to @idmap. 1553 */ 1554 static inline void inode_fsgid_set(struct inode *inode, 1555 struct mnt_idmap *idmap) 1556 { 1557 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1558 } 1559 1560 /** 1561 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1562 * @sb: the superblock we want a mapping in 1563 * @idmap: idmap of the relevant mount 1564 * 1565 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1566 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1567 * the caller's fsuid and fsgid according to the @idmap first. 1568 * 1569 * Return: true if fsuid and fsgid is mapped, false if not. 1570 */ 1571 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1572 struct mnt_idmap *idmap) 1573 { 1574 struct user_namespace *fs_userns = sb->s_user_ns; 1575 kuid_t kuid; 1576 kgid_t kgid; 1577 1578 kuid = mapped_fsuid(idmap, fs_userns); 1579 if (!uid_valid(kuid)) 1580 return false; 1581 kgid = mapped_fsgid(idmap, fs_userns); 1582 if (!gid_valid(kgid)) 1583 return false; 1584 return kuid_has_mapping(fs_userns, kuid) && 1585 kgid_has_mapping(fs_userns, kgid); 1586 } 1587 1588 struct timespec64 current_time(struct inode *inode); 1589 struct timespec64 inode_set_ctime_current(struct inode *inode); 1590 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1591 struct timespec64 update); 1592 1593 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1594 { 1595 return inode->i_atime_sec; 1596 } 1597 1598 static inline long inode_get_atime_nsec(const struct inode *inode) 1599 { 1600 return inode->i_atime_nsec; 1601 } 1602 1603 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1604 { 1605 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1606 .tv_nsec = inode_get_atime_nsec(inode) }; 1607 1608 return ts; 1609 } 1610 1611 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1612 struct timespec64 ts) 1613 { 1614 inode->i_atime_sec = ts.tv_sec; 1615 inode->i_atime_nsec = ts.tv_nsec; 1616 return ts; 1617 } 1618 1619 static inline struct timespec64 inode_set_atime(struct inode *inode, 1620 time64_t sec, long nsec) 1621 { 1622 struct timespec64 ts = { .tv_sec = sec, 1623 .tv_nsec = nsec }; 1624 1625 return inode_set_atime_to_ts(inode, ts); 1626 } 1627 1628 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1629 { 1630 return inode->i_mtime_sec; 1631 } 1632 1633 static inline long inode_get_mtime_nsec(const struct inode *inode) 1634 { 1635 return inode->i_mtime_nsec; 1636 } 1637 1638 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1639 { 1640 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1641 .tv_nsec = inode_get_mtime_nsec(inode) }; 1642 return ts; 1643 } 1644 1645 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1646 struct timespec64 ts) 1647 { 1648 inode->i_mtime_sec = ts.tv_sec; 1649 inode->i_mtime_nsec = ts.tv_nsec; 1650 return ts; 1651 } 1652 1653 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1654 time64_t sec, long nsec) 1655 { 1656 struct timespec64 ts = { .tv_sec = sec, 1657 .tv_nsec = nsec }; 1658 return inode_set_mtime_to_ts(inode, ts); 1659 } 1660 1661 /* 1662 * Multigrain timestamps 1663 * 1664 * Conditionally use fine-grained ctime and mtime timestamps when there 1665 * are users actively observing them via getattr. The primary use-case 1666 * for this is NFS clients that use the ctime to distinguish between 1667 * different states of the file, and that are often fooled by multiple 1668 * operations that occur in the same coarse-grained timer tick. 1669 */ 1670 #define I_CTIME_QUERIED ((u32)BIT(31)) 1671 1672 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1673 { 1674 return inode->i_ctime_sec; 1675 } 1676 1677 static inline long inode_get_ctime_nsec(const struct inode *inode) 1678 { 1679 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1680 } 1681 1682 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1683 { 1684 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1685 .tv_nsec = inode_get_ctime_nsec(inode) }; 1686 1687 return ts; 1688 } 1689 1690 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1691 1692 /** 1693 * inode_set_ctime - set the ctime in the inode 1694 * @inode: inode in which to set the ctime 1695 * @sec: tv_sec value to set 1696 * @nsec: tv_nsec value to set 1697 * 1698 * Set the ctime in @inode to { @sec, @nsec } 1699 */ 1700 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1701 time64_t sec, long nsec) 1702 { 1703 struct timespec64 ts = { .tv_sec = sec, 1704 .tv_nsec = nsec }; 1705 1706 return inode_set_ctime_to_ts(inode, ts); 1707 } 1708 1709 struct timespec64 simple_inode_init_ts(struct inode *inode); 1710 1711 /* 1712 * Snapshotting support. 1713 */ 1714 1715 /* 1716 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1717 * instead. 1718 */ 1719 static inline void __sb_end_write(struct super_block *sb, int level) 1720 { 1721 percpu_up_read(sb->s_writers.rw_sem + level-1); 1722 } 1723 1724 static inline void __sb_start_write(struct super_block *sb, int level) 1725 { 1726 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1727 } 1728 1729 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1730 { 1731 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1732 } 1733 1734 #define __sb_writers_acquired(sb, lev) \ 1735 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1736 #define __sb_writers_release(sb, lev) \ 1737 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1738 1739 /** 1740 * __sb_write_started - check if sb freeze level is held 1741 * @sb: the super we write to 1742 * @level: the freeze level 1743 * 1744 * * > 0 - sb freeze level is held 1745 * * 0 - sb freeze level is not held 1746 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1747 */ 1748 static inline int __sb_write_started(const struct super_block *sb, int level) 1749 { 1750 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1751 } 1752 1753 /** 1754 * sb_write_started - check if SB_FREEZE_WRITE is held 1755 * @sb: the super we write to 1756 * 1757 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1758 */ 1759 static inline bool sb_write_started(const struct super_block *sb) 1760 { 1761 return __sb_write_started(sb, SB_FREEZE_WRITE); 1762 } 1763 1764 /** 1765 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1766 * @sb: the super we write to 1767 * 1768 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1769 */ 1770 static inline bool sb_write_not_started(const struct super_block *sb) 1771 { 1772 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1773 } 1774 1775 /** 1776 * file_write_started - check if SB_FREEZE_WRITE is held 1777 * @file: the file we write to 1778 * 1779 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1780 * May be false positive with !S_ISREG, because file_start_write() has 1781 * no effect on !S_ISREG. 1782 */ 1783 static inline bool file_write_started(const struct file *file) 1784 { 1785 if (!S_ISREG(file_inode(file)->i_mode)) 1786 return true; 1787 return sb_write_started(file_inode(file)->i_sb); 1788 } 1789 1790 /** 1791 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1792 * @file: the file we write to 1793 * 1794 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1795 * May be false positive with !S_ISREG, because file_start_write() has 1796 * no effect on !S_ISREG. 1797 */ 1798 static inline bool file_write_not_started(const struct file *file) 1799 { 1800 if (!S_ISREG(file_inode(file)->i_mode)) 1801 return true; 1802 return sb_write_not_started(file_inode(file)->i_sb); 1803 } 1804 1805 /** 1806 * sb_end_write - drop write access to a superblock 1807 * @sb: the super we wrote to 1808 * 1809 * Decrement number of writers to the filesystem. Wake up possible waiters 1810 * wanting to freeze the filesystem. 1811 */ 1812 static inline void sb_end_write(struct super_block *sb) 1813 { 1814 __sb_end_write(sb, SB_FREEZE_WRITE); 1815 } 1816 1817 /** 1818 * sb_end_pagefault - drop write access to a superblock from a page fault 1819 * @sb: the super we wrote to 1820 * 1821 * Decrement number of processes handling write page fault to the filesystem. 1822 * Wake up possible waiters wanting to freeze the filesystem. 1823 */ 1824 static inline void sb_end_pagefault(struct super_block *sb) 1825 { 1826 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1827 } 1828 1829 /** 1830 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1831 * @sb: the super we wrote to 1832 * 1833 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1834 * waiters wanting to freeze the filesystem. 1835 */ 1836 static inline void sb_end_intwrite(struct super_block *sb) 1837 { 1838 __sb_end_write(sb, SB_FREEZE_FS); 1839 } 1840 1841 /** 1842 * sb_start_write - get write access to a superblock 1843 * @sb: the super we write to 1844 * 1845 * When a process wants to write data or metadata to a file system (i.e. dirty 1846 * a page or an inode), it should embed the operation in a sb_start_write() - 1847 * sb_end_write() pair to get exclusion against file system freezing. This 1848 * function increments number of writers preventing freezing. If the file 1849 * system is already frozen, the function waits until the file system is 1850 * thawed. 1851 * 1852 * Since freeze protection behaves as a lock, users have to preserve 1853 * ordering of freeze protection and other filesystem locks. Generally, 1854 * freeze protection should be the outermost lock. In particular, we have: 1855 * 1856 * sb_start_write 1857 * -> i_mutex (write path, truncate, directory ops, ...) 1858 * -> s_umount (freeze_super, thaw_super) 1859 */ 1860 static inline void sb_start_write(struct super_block *sb) 1861 { 1862 __sb_start_write(sb, SB_FREEZE_WRITE); 1863 } 1864 1865 static inline bool sb_start_write_trylock(struct super_block *sb) 1866 { 1867 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1868 } 1869 1870 /** 1871 * sb_start_pagefault - get write access to a superblock from a page fault 1872 * @sb: the super we write to 1873 * 1874 * When a process starts handling write page fault, it should embed the 1875 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1876 * exclusion against file system freezing. This is needed since the page fault 1877 * is going to dirty a page. This function increments number of running page 1878 * faults preventing freezing. If the file system is already frozen, the 1879 * function waits until the file system is thawed. 1880 * 1881 * Since page fault freeze protection behaves as a lock, users have to preserve 1882 * ordering of freeze protection and other filesystem locks. It is advised to 1883 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1884 * handling code implies lock dependency: 1885 * 1886 * mmap_lock 1887 * -> sb_start_pagefault 1888 */ 1889 static inline void sb_start_pagefault(struct super_block *sb) 1890 { 1891 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1892 } 1893 1894 /** 1895 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1896 * @sb: the super we write to 1897 * 1898 * This is the third level of protection against filesystem freezing. It is 1899 * free for use by a filesystem. The only requirement is that it must rank 1900 * below sb_start_pagefault. 1901 * 1902 * For example filesystem can call sb_start_intwrite() when starting a 1903 * transaction which somewhat eases handling of freezing for internal sources 1904 * of filesystem changes (internal fs threads, discarding preallocation on file 1905 * close, etc.). 1906 */ 1907 static inline void sb_start_intwrite(struct super_block *sb) 1908 { 1909 __sb_start_write(sb, SB_FREEZE_FS); 1910 } 1911 1912 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1913 { 1914 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1915 } 1916 1917 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1918 const struct inode *inode); 1919 1920 /* 1921 * VFS helper functions.. 1922 */ 1923 int vfs_create(struct mnt_idmap *, struct inode *, 1924 struct dentry *, umode_t, bool); 1925 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1926 struct dentry *, umode_t); 1927 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1928 umode_t, dev_t); 1929 int vfs_symlink(struct mnt_idmap *, struct inode *, 1930 struct dentry *, const char *); 1931 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1932 struct dentry *, struct inode **); 1933 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1934 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1935 struct inode **); 1936 1937 /** 1938 * struct renamedata - contains all information required for renaming 1939 * @old_mnt_idmap: idmap of the old mount the inode was found from 1940 * @old_dir: parent of source 1941 * @old_dentry: source 1942 * @new_mnt_idmap: idmap of the new mount the inode was found from 1943 * @new_dir: parent of destination 1944 * @new_dentry: destination 1945 * @delegated_inode: returns an inode needing a delegation break 1946 * @flags: rename flags 1947 */ 1948 struct renamedata { 1949 struct mnt_idmap *old_mnt_idmap; 1950 struct inode *old_dir; 1951 struct dentry *old_dentry; 1952 struct mnt_idmap *new_mnt_idmap; 1953 struct inode *new_dir; 1954 struct dentry *new_dentry; 1955 struct inode **delegated_inode; 1956 unsigned int flags; 1957 } __randomize_layout; 1958 1959 int vfs_rename(struct renamedata *); 1960 1961 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1962 struct inode *dir, struct dentry *dentry) 1963 { 1964 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1965 WHITEOUT_DEV); 1966 } 1967 1968 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1969 const struct path *parentpath, 1970 umode_t mode, int open_flag, 1971 const struct cred *cred); 1972 struct file *kernel_file_open(const struct path *path, int flags, 1973 const struct cred *cred); 1974 1975 int vfs_mkobj(struct dentry *, umode_t, 1976 int (*f)(struct dentry *, umode_t, void *), 1977 void *); 1978 1979 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1980 int vfs_fchmod(struct file *file, umode_t mode); 1981 int vfs_utimes(const struct path *path, struct timespec64 *times); 1982 1983 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1984 1985 #ifdef CONFIG_COMPAT 1986 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1987 unsigned long arg); 1988 #else 1989 #define compat_ptr_ioctl NULL 1990 #endif 1991 1992 /* 1993 * VFS file helper functions. 1994 */ 1995 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1996 const struct inode *dir, umode_t mode); 1997 extern bool may_open_dev(const struct path *path); 1998 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1999 const struct inode *dir, umode_t mode); 2000 bool in_group_or_capable(struct mnt_idmap *idmap, 2001 const struct inode *inode, vfsgid_t vfsgid); 2002 2003 /* 2004 * This is the "filldir" function type, used by readdir() to let 2005 * the kernel specify what kind of dirent layout it wants to have. 2006 * This allows the kernel to read directories into kernel space or 2007 * to have different dirent layouts depending on the binary type. 2008 * Return 'true' to keep going and 'false' if there are no more entries. 2009 */ 2010 struct dir_context; 2011 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2012 unsigned); 2013 2014 struct dir_context { 2015 filldir_t actor; 2016 loff_t pos; 2017 }; 2018 2019 /* 2020 * These flags let !MMU mmap() govern direct device mapping vs immediate 2021 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2022 * 2023 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2024 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2025 * NOMMU_MAP_READ: Can be mapped for reading 2026 * NOMMU_MAP_WRITE: Can be mapped for writing 2027 * NOMMU_MAP_EXEC: Can be mapped for execution 2028 */ 2029 #define NOMMU_MAP_COPY 0x00000001 2030 #define NOMMU_MAP_DIRECT 0x00000008 2031 #define NOMMU_MAP_READ VM_MAYREAD 2032 #define NOMMU_MAP_WRITE VM_MAYWRITE 2033 #define NOMMU_MAP_EXEC VM_MAYEXEC 2034 2035 #define NOMMU_VMFLAGS \ 2036 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2037 2038 /* 2039 * These flags control the behavior of the remap_file_range function pointer. 2040 * If it is called with len == 0 that means "remap to end of source file". 2041 * See Documentation/filesystems/vfs.rst for more details about this call. 2042 * 2043 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2044 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2045 */ 2046 #define REMAP_FILE_DEDUP (1 << 0) 2047 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2048 2049 /* 2050 * These flags signal that the caller is ok with altering various aspects of 2051 * the behavior of the remap operation. The changes must be made by the 2052 * implementation; the vfs remap helper functions can take advantage of them. 2053 * Flags in this category exist to preserve the quirky behavior of the hoisted 2054 * btrfs clone/dedupe ioctls. 2055 */ 2056 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2057 2058 /* 2059 * These flags control the behavior of vfs_copy_file_range(). 2060 * They are not available to the user via syscall. 2061 * 2062 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2063 */ 2064 #define COPY_FILE_SPLICE (1 << 0) 2065 2066 struct iov_iter; 2067 struct io_uring_cmd; 2068 struct offset_ctx; 2069 2070 typedef unsigned int __bitwise fop_flags_t; 2071 2072 struct file_operations { 2073 struct module *owner; 2074 fop_flags_t fop_flags; 2075 loff_t (*llseek) (struct file *, loff_t, int); 2076 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2077 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2078 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2079 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2080 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2081 unsigned int flags); 2082 int (*iterate_shared) (struct file *, struct dir_context *); 2083 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2084 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2085 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2086 int (*mmap) (struct file *, struct vm_area_struct *); 2087 int (*open) (struct inode *, struct file *); 2088 int (*flush) (struct file *, fl_owner_t id); 2089 int (*release) (struct inode *, struct file *); 2090 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2091 int (*fasync) (int, struct file *, int); 2092 int (*lock) (struct file *, int, struct file_lock *); 2093 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2094 int (*check_flags)(int); 2095 int (*flock) (struct file *, int, struct file_lock *); 2096 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2097 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2098 void (*splice_eof)(struct file *file); 2099 int (*setlease)(struct file *, int, struct file_lease **, void **); 2100 long (*fallocate)(struct file *file, int mode, loff_t offset, 2101 loff_t len); 2102 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2103 #ifndef CONFIG_MMU 2104 unsigned (*mmap_capabilities)(struct file *); 2105 #endif 2106 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2107 loff_t, size_t, unsigned int); 2108 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2109 struct file *file_out, loff_t pos_out, 2110 loff_t len, unsigned int remap_flags); 2111 int (*fadvise)(struct file *, loff_t, loff_t, int); 2112 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2113 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2114 unsigned int poll_flags); 2115 } __randomize_layout; 2116 2117 /* Supports async buffered reads */ 2118 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2119 /* Supports async buffered writes */ 2120 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2121 /* Supports synchronous page faults for mappings */ 2122 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2123 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2124 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2125 /* Contains huge pages */ 2126 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2127 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2128 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2129 /* Supports asynchronous lock callbacks */ 2130 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2131 2132 /* Wrap a directory iterator that needs exclusive inode access */ 2133 int wrap_directory_iterator(struct file *, struct dir_context *, 2134 int (*) (struct file *, struct dir_context *)); 2135 #define WRAP_DIR_ITER(x) \ 2136 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2137 { return wrap_directory_iterator(file, ctx, x); } 2138 2139 struct inode_operations { 2140 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2141 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2142 int (*permission) (struct mnt_idmap *, struct inode *, int); 2143 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2144 2145 int (*readlink) (struct dentry *, char __user *,int); 2146 2147 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2148 umode_t, bool); 2149 int (*link) (struct dentry *,struct inode *,struct dentry *); 2150 int (*unlink) (struct inode *,struct dentry *); 2151 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2152 const char *); 2153 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2154 umode_t); 2155 int (*rmdir) (struct inode *,struct dentry *); 2156 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2157 umode_t,dev_t); 2158 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2159 struct inode *, struct dentry *, unsigned int); 2160 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2161 int (*getattr) (struct mnt_idmap *, const struct path *, 2162 struct kstat *, u32, unsigned int); 2163 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2164 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2165 u64 len); 2166 int (*update_time)(struct inode *, int); 2167 int (*atomic_open)(struct inode *, struct dentry *, 2168 struct file *, unsigned open_flag, 2169 umode_t create_mode); 2170 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2171 struct file *, umode_t); 2172 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2173 int); 2174 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2175 struct posix_acl *, int); 2176 int (*fileattr_set)(struct mnt_idmap *idmap, 2177 struct dentry *dentry, struct fileattr *fa); 2178 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2179 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2180 } ____cacheline_aligned; 2181 2182 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2183 { 2184 return file->f_op->mmap(file, vma); 2185 } 2186 2187 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2188 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2189 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2190 loff_t, size_t, unsigned int); 2191 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2192 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2193 struct file *file_out, loff_t pos_out, 2194 loff_t *len, unsigned int remap_flags, 2195 const struct iomap_ops *dax_read_ops); 2196 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2197 struct file *file_out, loff_t pos_out, 2198 loff_t *count, unsigned int remap_flags); 2199 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2200 struct file *file_out, loff_t pos_out, 2201 loff_t len, unsigned int remap_flags); 2202 extern int vfs_dedupe_file_range(struct file *file, 2203 struct file_dedupe_range *same); 2204 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2205 struct file *dst_file, loff_t dst_pos, 2206 loff_t len, unsigned int remap_flags); 2207 2208 /** 2209 * enum freeze_holder - holder of the freeze 2210 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2211 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2212 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2213 * 2214 * Indicate who the owner of the freeze or thaw request is and whether 2215 * the freeze needs to be exclusive or can nest. 2216 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2217 * same holder aren't allowed. It is however allowed to hold a single 2218 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2219 * the same time. This is relied upon by some filesystems during online 2220 * repair or similar. 2221 */ 2222 enum freeze_holder { 2223 FREEZE_HOLDER_KERNEL = (1U << 0), 2224 FREEZE_HOLDER_USERSPACE = (1U << 1), 2225 FREEZE_MAY_NEST = (1U << 2), 2226 }; 2227 2228 struct super_operations { 2229 struct inode *(*alloc_inode)(struct super_block *sb); 2230 void (*destroy_inode)(struct inode *); 2231 void (*free_inode)(struct inode *); 2232 2233 void (*dirty_inode) (struct inode *, int flags); 2234 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2235 int (*drop_inode) (struct inode *); 2236 void (*evict_inode) (struct inode *); 2237 void (*put_super) (struct super_block *); 2238 int (*sync_fs)(struct super_block *sb, int wait); 2239 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2240 int (*freeze_fs) (struct super_block *); 2241 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2242 int (*unfreeze_fs) (struct super_block *); 2243 int (*statfs) (struct dentry *, struct kstatfs *); 2244 int (*remount_fs) (struct super_block *, int *, char *); 2245 void (*umount_begin) (struct super_block *); 2246 2247 int (*show_options)(struct seq_file *, struct dentry *); 2248 int (*show_devname)(struct seq_file *, struct dentry *); 2249 int (*show_path)(struct seq_file *, struct dentry *); 2250 int (*show_stats)(struct seq_file *, struct dentry *); 2251 #ifdef CONFIG_QUOTA 2252 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2253 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2254 struct dquot __rcu **(*get_dquots)(struct inode *); 2255 #endif 2256 long (*nr_cached_objects)(struct super_block *, 2257 struct shrink_control *); 2258 long (*free_cached_objects)(struct super_block *, 2259 struct shrink_control *); 2260 void (*shutdown)(struct super_block *sb); 2261 }; 2262 2263 /* 2264 * Inode flags - they have no relation to superblock flags now 2265 */ 2266 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2267 #define S_NOATIME (1 << 1) /* Do not update access times */ 2268 #define S_APPEND (1 << 2) /* Append-only file */ 2269 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2270 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2271 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2272 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2273 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2274 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2275 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2276 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2277 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2278 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2279 #ifdef CONFIG_FS_DAX 2280 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2281 #else 2282 #define S_DAX 0 /* Make all the DAX code disappear */ 2283 #endif 2284 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2285 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2286 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2287 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2288 2289 /* 2290 * Note that nosuid etc flags are inode-specific: setting some file-system 2291 * flags just means all the inodes inherit those flags by default. It might be 2292 * possible to override it selectively if you really wanted to with some 2293 * ioctl() that is not currently implemented. 2294 * 2295 * Exception: SB_RDONLY is always applied to the entire file system. 2296 * 2297 * Unfortunately, it is possible to change a filesystems flags with it mounted 2298 * with files in use. This means that all of the inodes will not have their 2299 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2300 * flags, so these have to be checked separately. -- [email protected] 2301 */ 2302 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2303 2304 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2305 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2306 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2307 ((inode)->i_flags & S_SYNC)) 2308 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2309 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2310 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2311 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2312 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2313 2314 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2315 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2316 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2317 2318 #ifdef CONFIG_FS_POSIX_ACL 2319 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2320 #else 2321 #define IS_POSIXACL(inode) 0 2322 #endif 2323 2324 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2325 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2326 2327 #ifdef CONFIG_SWAP 2328 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2329 #else 2330 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2331 #endif 2332 2333 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2334 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2335 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2336 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2337 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2338 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2339 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2340 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2341 2342 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2343 (inode)->i_rdev == WHITEOUT_DEV) 2344 2345 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2346 struct inode *inode) 2347 { 2348 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2349 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2350 } 2351 2352 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2353 { 2354 *kiocb = (struct kiocb) { 2355 .ki_filp = filp, 2356 .ki_flags = filp->f_iocb_flags, 2357 .ki_ioprio = get_current_ioprio(), 2358 }; 2359 } 2360 2361 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2362 struct file *filp) 2363 { 2364 *kiocb = (struct kiocb) { 2365 .ki_filp = filp, 2366 .ki_flags = kiocb_src->ki_flags, 2367 .ki_ioprio = kiocb_src->ki_ioprio, 2368 .ki_pos = kiocb_src->ki_pos, 2369 }; 2370 } 2371 2372 /* 2373 * Inode state bits. Protected by inode->i_lock 2374 * 2375 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2376 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2377 * 2378 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2379 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2380 * various stages of removing an inode. 2381 * 2382 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2383 * 2384 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2385 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2386 * Timestamp updates are the usual cause. 2387 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2388 * these changes separately from I_DIRTY_SYNC so that we 2389 * don't have to write inode on fdatasync() when only 2390 * e.g. the timestamps have changed. 2391 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2392 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2393 * lazytime mount option is enabled. We keep track of this 2394 * separately from I_DIRTY_SYNC in order to implement 2395 * lazytime. This gets cleared if I_DIRTY_INODE 2396 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2397 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2398 * in place because writeback might already be in progress 2399 * and we don't want to lose the time update 2400 * I_NEW Serves as both a mutex and completion notification. 2401 * New inodes set I_NEW. If two processes both create 2402 * the same inode, one of them will release its inode and 2403 * wait for I_NEW to be released before returning. 2404 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2405 * also cause waiting on I_NEW, without I_NEW actually 2406 * being set. find_inode() uses this to prevent returning 2407 * nearly-dead inodes. 2408 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2409 * is zero. I_FREEING must be set when I_WILL_FREE is 2410 * cleared. 2411 * I_FREEING Set when inode is about to be freed but still has dirty 2412 * pages or buffers attached or the inode itself is still 2413 * dirty. 2414 * I_CLEAR Added by clear_inode(). In this state the inode is 2415 * clean and can be destroyed. Inode keeps I_FREEING. 2416 * 2417 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2418 * prohibited for many purposes. iget() must wait for 2419 * the inode to be completely released, then create it 2420 * anew. Other functions will just ignore such inodes, 2421 * if appropriate. I_NEW is used for waiting. 2422 * 2423 * I_SYNC Writeback of inode is running. The bit is set during 2424 * data writeback, and cleared with a wakeup on the bit 2425 * address once it is done. The bit is also used to pin 2426 * the inode in memory for flusher thread. 2427 * 2428 * I_REFERENCED Marks the inode as recently references on the LRU list. 2429 * 2430 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2431 * synchronize competing switching instances and to tell 2432 * wb stat updates to grab the i_pages lock. See 2433 * inode_switch_wbs_work_fn() for details. 2434 * 2435 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2436 * and work dirs among overlayfs mounts. 2437 * 2438 * I_CREATING New object's inode in the middle of setting up. 2439 * 2440 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2441 * 2442 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2443 * Used to detect that mark_inode_dirty() should not move 2444 * inode between dirty lists. 2445 * 2446 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2447 * 2448 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2449 * i_count. 2450 * 2451 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2452 * 2453 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2454 * upon. There's one free address left. 2455 */ 2456 #define __I_NEW 0 2457 #define I_NEW (1 << __I_NEW) 2458 #define __I_SYNC 1 2459 #define I_SYNC (1 << __I_SYNC) 2460 #define __I_LRU_ISOLATING 2 2461 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2462 2463 #define I_DIRTY_SYNC (1 << 3) 2464 #define I_DIRTY_DATASYNC (1 << 4) 2465 #define I_DIRTY_PAGES (1 << 5) 2466 #define I_WILL_FREE (1 << 6) 2467 #define I_FREEING (1 << 7) 2468 #define I_CLEAR (1 << 8) 2469 #define I_REFERENCED (1 << 9) 2470 #define I_LINKABLE (1 << 10) 2471 #define I_DIRTY_TIME (1 << 11) 2472 #define I_WB_SWITCH (1 << 12) 2473 #define I_OVL_INUSE (1 << 13) 2474 #define I_CREATING (1 << 14) 2475 #define I_DONTCACHE (1 << 15) 2476 #define I_SYNC_QUEUED (1 << 16) 2477 #define I_PINNING_NETFS_WB (1 << 17) 2478 2479 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2480 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2481 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2482 2483 extern void __mark_inode_dirty(struct inode *, int); 2484 static inline void mark_inode_dirty(struct inode *inode) 2485 { 2486 __mark_inode_dirty(inode, I_DIRTY); 2487 } 2488 2489 static inline void mark_inode_dirty_sync(struct inode *inode) 2490 { 2491 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2492 } 2493 2494 /* 2495 * Returns true if the given inode itself only has dirty timestamps (its pages 2496 * may still be dirty) and isn't currently being allocated or freed. 2497 * Filesystems should call this if when writing an inode when lazytime is 2498 * enabled, they want to opportunistically write the timestamps of other inodes 2499 * located very nearby on-disk, e.g. in the same inode block. This returns true 2500 * if the given inode is in need of such an opportunistic update. Requires 2501 * i_lock, or at least later re-checking under i_lock. 2502 */ 2503 static inline bool inode_is_dirtytime_only(struct inode *inode) 2504 { 2505 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2506 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2507 } 2508 2509 extern void inc_nlink(struct inode *inode); 2510 extern void drop_nlink(struct inode *inode); 2511 extern void clear_nlink(struct inode *inode); 2512 extern void set_nlink(struct inode *inode, unsigned int nlink); 2513 2514 static inline void inode_inc_link_count(struct inode *inode) 2515 { 2516 inc_nlink(inode); 2517 mark_inode_dirty(inode); 2518 } 2519 2520 static inline void inode_dec_link_count(struct inode *inode) 2521 { 2522 drop_nlink(inode); 2523 mark_inode_dirty(inode); 2524 } 2525 2526 enum file_time_flags { 2527 S_ATIME = 1, 2528 S_MTIME = 2, 2529 S_CTIME = 4, 2530 S_VERSION = 8, 2531 }; 2532 2533 extern bool atime_needs_update(const struct path *, struct inode *); 2534 extern void touch_atime(const struct path *); 2535 int inode_update_time(struct inode *inode, int flags); 2536 2537 static inline void file_accessed(struct file *file) 2538 { 2539 if (!(file->f_flags & O_NOATIME)) 2540 touch_atime(&file->f_path); 2541 } 2542 2543 extern int file_modified(struct file *file); 2544 int kiocb_modified(struct kiocb *iocb); 2545 2546 int sync_inode_metadata(struct inode *inode, int wait); 2547 2548 struct file_system_type { 2549 const char *name; 2550 int fs_flags; 2551 #define FS_REQUIRES_DEV 1 2552 #define FS_BINARY_MOUNTDATA 2 2553 #define FS_HAS_SUBTYPE 4 2554 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2555 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2556 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2557 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2558 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2559 int (*init_fs_context)(struct fs_context *); 2560 const struct fs_parameter_spec *parameters; 2561 struct dentry *(*mount) (struct file_system_type *, int, 2562 const char *, void *); 2563 void (*kill_sb) (struct super_block *); 2564 struct module *owner; 2565 struct file_system_type * next; 2566 struct hlist_head fs_supers; 2567 2568 struct lock_class_key s_lock_key; 2569 struct lock_class_key s_umount_key; 2570 struct lock_class_key s_vfs_rename_key; 2571 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2572 2573 struct lock_class_key i_lock_key; 2574 struct lock_class_key i_mutex_key; 2575 struct lock_class_key invalidate_lock_key; 2576 struct lock_class_key i_mutex_dir_key; 2577 }; 2578 2579 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2580 2581 /** 2582 * is_mgtime: is this inode using multigrain timestamps 2583 * @inode: inode to test for multigrain timestamps 2584 * 2585 * Return true if the inode uses multigrain timestamps, false otherwise. 2586 */ 2587 static inline bool is_mgtime(const struct inode *inode) 2588 { 2589 return inode->i_opflags & IOP_MGTIME; 2590 } 2591 2592 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2593 int flags, const char *dev_name, void *data, 2594 int (*fill_super)(struct super_block *, void *, int)); 2595 extern struct dentry *mount_single(struct file_system_type *fs_type, 2596 int flags, void *data, 2597 int (*fill_super)(struct super_block *, void *, int)); 2598 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2599 int flags, void *data, 2600 int (*fill_super)(struct super_block *, void *, int)); 2601 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2602 void retire_super(struct super_block *sb); 2603 void generic_shutdown_super(struct super_block *sb); 2604 void kill_block_super(struct super_block *sb); 2605 void kill_anon_super(struct super_block *sb); 2606 void kill_litter_super(struct super_block *sb); 2607 void deactivate_super(struct super_block *sb); 2608 void deactivate_locked_super(struct super_block *sb); 2609 int set_anon_super(struct super_block *s, void *data); 2610 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2611 int get_anon_bdev(dev_t *); 2612 void free_anon_bdev(dev_t); 2613 struct super_block *sget_fc(struct fs_context *fc, 2614 int (*test)(struct super_block *, struct fs_context *), 2615 int (*set)(struct super_block *, struct fs_context *)); 2616 struct super_block *sget(struct file_system_type *type, 2617 int (*test)(struct super_block *,void *), 2618 int (*set)(struct super_block *,void *), 2619 int flags, void *data); 2620 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2621 2622 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2623 #define fops_get(fops) ({ \ 2624 const struct file_operations *_fops = (fops); \ 2625 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2626 }) 2627 2628 #define fops_put(fops) ({ \ 2629 const struct file_operations *_fops = (fops); \ 2630 if (_fops) \ 2631 module_put((_fops)->owner); \ 2632 }) 2633 2634 /* 2635 * This one is to be used *ONLY* from ->open() instances. 2636 * fops must be non-NULL, pinned down *and* module dependencies 2637 * should be sufficient to pin the caller down as well. 2638 */ 2639 #define replace_fops(f, fops) \ 2640 do { \ 2641 struct file *__file = (f); \ 2642 fops_put(__file->f_op); \ 2643 BUG_ON(!(__file->f_op = (fops))); \ 2644 } while(0) 2645 2646 extern int register_filesystem(struct file_system_type *); 2647 extern int unregister_filesystem(struct file_system_type *); 2648 extern int vfs_statfs(const struct path *, struct kstatfs *); 2649 extern int user_statfs(const char __user *, struct kstatfs *); 2650 extern int fd_statfs(int, struct kstatfs *); 2651 int freeze_super(struct super_block *super, enum freeze_holder who); 2652 int thaw_super(struct super_block *super, enum freeze_holder who); 2653 extern __printf(2, 3) 2654 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2655 extern int super_setup_bdi(struct super_block *sb); 2656 2657 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2658 { 2659 if (WARN_ON(len > sizeof(sb->s_uuid))) 2660 len = sizeof(sb->s_uuid); 2661 sb->s_uuid_len = len; 2662 memcpy(&sb->s_uuid, uuid, len); 2663 } 2664 2665 /* set sb sysfs name based on sb->s_bdev */ 2666 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2667 { 2668 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2669 } 2670 2671 /* set sb sysfs name based on sb->s_uuid */ 2672 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2673 { 2674 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2675 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2676 } 2677 2678 /* set sb sysfs name based on sb->s_id */ 2679 static inline void super_set_sysfs_name_id(struct super_block *sb) 2680 { 2681 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2682 } 2683 2684 /* try to use something standard before you use this */ 2685 __printf(2, 3) 2686 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2687 { 2688 va_list args; 2689 2690 va_start(args, fmt); 2691 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2692 va_end(args); 2693 } 2694 2695 extern int current_umask(void); 2696 2697 extern void ihold(struct inode * inode); 2698 extern void iput(struct inode *); 2699 int inode_update_timestamps(struct inode *inode, int flags); 2700 int generic_update_time(struct inode *, int); 2701 2702 /* /sys/fs */ 2703 extern struct kobject *fs_kobj; 2704 2705 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2706 2707 /* fs/open.c */ 2708 struct audit_names; 2709 struct filename { 2710 const char *name; /* pointer to actual string */ 2711 const __user char *uptr; /* original userland pointer */ 2712 atomic_t refcnt; 2713 struct audit_names *aname; 2714 const char iname[]; 2715 }; 2716 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2717 2718 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2719 { 2720 return mnt_idmap(file->f_path.mnt); 2721 } 2722 2723 /** 2724 * is_idmapped_mnt - check whether a mount is mapped 2725 * @mnt: the mount to check 2726 * 2727 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2728 * 2729 * Return: true if mount is mapped, false if not. 2730 */ 2731 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2732 { 2733 return mnt_idmap(mnt) != &nop_mnt_idmap; 2734 } 2735 2736 extern long vfs_truncate(const struct path *, loff_t); 2737 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2738 unsigned int time_attrs, struct file *filp); 2739 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2740 loff_t len); 2741 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2742 umode_t mode); 2743 extern struct file *file_open_name(struct filename *, int, umode_t); 2744 extern struct file *filp_open(const char *, int, umode_t); 2745 extern struct file *file_open_root(const struct path *, 2746 const char *, int, umode_t); 2747 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2748 const char *name, int flags, umode_t mode) 2749 { 2750 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2751 name, flags, mode); 2752 } 2753 struct file *dentry_open(const struct path *path, int flags, 2754 const struct cred *creds); 2755 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2756 const struct cred *cred); 2757 struct path *backing_file_user_path(struct file *f); 2758 2759 /* 2760 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2761 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2762 * filesystem. When the mapped file path and inode number are displayed to 2763 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2764 * path and inode number to display to the user, which is the path of the fd 2765 * that user has requested to map and the inode number that would be returned 2766 * by fstat() on that same fd. 2767 */ 2768 /* Get the path to display in /proc/<pid>/maps */ 2769 static inline const struct path *file_user_path(struct file *f) 2770 { 2771 if (unlikely(f->f_mode & FMODE_BACKING)) 2772 return backing_file_user_path(f); 2773 return &f->f_path; 2774 } 2775 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2776 static inline const struct inode *file_user_inode(struct file *f) 2777 { 2778 if (unlikely(f->f_mode & FMODE_BACKING)) 2779 return d_inode(backing_file_user_path(f)->dentry); 2780 return file_inode(f); 2781 } 2782 2783 static inline struct file *file_clone_open(struct file *file) 2784 { 2785 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2786 } 2787 extern int filp_close(struct file *, fl_owner_t id); 2788 2789 extern struct filename *getname_flags(const char __user *, int); 2790 extern struct filename *getname_uflags(const char __user *, int); 2791 extern struct filename *getname(const char __user *); 2792 extern struct filename *getname_kernel(const char *); 2793 extern struct filename *__getname_maybe_null(const char __user *); 2794 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2795 { 2796 if (!(flags & AT_EMPTY_PATH)) 2797 return getname(name); 2798 2799 if (!name) 2800 return NULL; 2801 return __getname_maybe_null(name); 2802 } 2803 extern void putname(struct filename *name); 2804 2805 extern int finish_open(struct file *file, struct dentry *dentry, 2806 int (*open)(struct inode *, struct file *)); 2807 extern int finish_no_open(struct file *file, struct dentry *dentry); 2808 2809 /* Helper for the simple case when original dentry is used */ 2810 static inline int finish_open_simple(struct file *file, int error) 2811 { 2812 if (error) 2813 return error; 2814 2815 return finish_open(file, file->f_path.dentry, NULL); 2816 } 2817 2818 /* fs/dcache.c */ 2819 extern void __init vfs_caches_init_early(void); 2820 extern void __init vfs_caches_init(void); 2821 2822 extern struct kmem_cache *names_cachep; 2823 2824 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2825 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2826 2827 extern struct super_block *blockdev_superblock; 2828 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2829 { 2830 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2831 } 2832 2833 void emergency_thaw_all(void); 2834 extern int sync_filesystem(struct super_block *); 2835 extern const struct file_operations def_blk_fops; 2836 extern const struct file_operations def_chr_fops; 2837 2838 /* fs/char_dev.c */ 2839 #define CHRDEV_MAJOR_MAX 512 2840 /* Marks the bottom of the first segment of free char majors */ 2841 #define CHRDEV_MAJOR_DYN_END 234 2842 /* Marks the top and bottom of the second segment of free char majors */ 2843 #define CHRDEV_MAJOR_DYN_EXT_START 511 2844 #define CHRDEV_MAJOR_DYN_EXT_END 384 2845 2846 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2847 extern int register_chrdev_region(dev_t, unsigned, const char *); 2848 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2849 unsigned int count, const char *name, 2850 const struct file_operations *fops); 2851 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2852 unsigned int count, const char *name); 2853 extern void unregister_chrdev_region(dev_t, unsigned); 2854 extern void chrdev_show(struct seq_file *,off_t); 2855 2856 static inline int register_chrdev(unsigned int major, const char *name, 2857 const struct file_operations *fops) 2858 { 2859 return __register_chrdev(major, 0, 256, name, fops); 2860 } 2861 2862 static inline void unregister_chrdev(unsigned int major, const char *name) 2863 { 2864 __unregister_chrdev(major, 0, 256, name); 2865 } 2866 2867 extern void init_special_inode(struct inode *, umode_t, dev_t); 2868 2869 /* Invalid inode operations -- fs/bad_inode.c */ 2870 extern void make_bad_inode(struct inode *); 2871 extern bool is_bad_inode(struct inode *); 2872 2873 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2874 loff_t lend); 2875 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2876 extern int __must_check file_write_and_wait_range(struct file *file, 2877 loff_t start, loff_t end); 2878 2879 static inline int file_write_and_wait(struct file *file) 2880 { 2881 return file_write_and_wait_range(file, 0, LLONG_MAX); 2882 } 2883 2884 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2885 int datasync); 2886 extern int vfs_fsync(struct file *file, int datasync); 2887 2888 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2889 unsigned int flags); 2890 2891 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2892 { 2893 return (iocb->ki_flags & IOCB_DSYNC) || 2894 IS_SYNC(iocb->ki_filp->f_mapping->host); 2895 } 2896 2897 /* 2898 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2899 * to already be updated for the write, and will return either the amount 2900 * of bytes passed in, or an error if syncing the file failed. 2901 */ 2902 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2903 { 2904 if (iocb_is_dsync(iocb)) { 2905 int ret = vfs_fsync_range(iocb->ki_filp, 2906 iocb->ki_pos - count, iocb->ki_pos - 1, 2907 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2908 if (ret) 2909 return ret; 2910 } 2911 2912 return count; 2913 } 2914 2915 extern void emergency_sync(void); 2916 extern void emergency_remount(void); 2917 2918 #ifdef CONFIG_BLOCK 2919 extern int bmap(struct inode *inode, sector_t *block); 2920 #else 2921 static inline int bmap(struct inode *inode, sector_t *block) 2922 { 2923 return -EINVAL; 2924 } 2925 #endif 2926 2927 int notify_change(struct mnt_idmap *, struct dentry *, 2928 struct iattr *, struct inode **); 2929 int inode_permission(struct mnt_idmap *, struct inode *, int); 2930 int generic_permission(struct mnt_idmap *, struct inode *, int); 2931 static inline int file_permission(struct file *file, int mask) 2932 { 2933 return inode_permission(file_mnt_idmap(file), 2934 file_inode(file), mask); 2935 } 2936 static inline int path_permission(const struct path *path, int mask) 2937 { 2938 return inode_permission(mnt_idmap(path->mnt), 2939 d_inode(path->dentry), mask); 2940 } 2941 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2942 struct inode *inode); 2943 2944 static inline bool execute_ok(struct inode *inode) 2945 { 2946 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2947 } 2948 2949 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2950 { 2951 return (inode->i_mode ^ mode) & S_IFMT; 2952 } 2953 2954 /** 2955 * file_start_write - get write access to a superblock for regular file io 2956 * @file: the file we want to write to 2957 * 2958 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2959 * Should be matched with a call to file_end_write(). 2960 */ 2961 static inline void file_start_write(struct file *file) 2962 { 2963 if (!S_ISREG(file_inode(file)->i_mode)) 2964 return; 2965 sb_start_write(file_inode(file)->i_sb); 2966 } 2967 2968 static inline bool file_start_write_trylock(struct file *file) 2969 { 2970 if (!S_ISREG(file_inode(file)->i_mode)) 2971 return true; 2972 return sb_start_write_trylock(file_inode(file)->i_sb); 2973 } 2974 2975 /** 2976 * file_end_write - drop write access to a superblock of a regular file 2977 * @file: the file we wrote to 2978 * 2979 * Should be matched with a call to file_start_write(). 2980 */ 2981 static inline void file_end_write(struct file *file) 2982 { 2983 if (!S_ISREG(file_inode(file)->i_mode)) 2984 return; 2985 sb_end_write(file_inode(file)->i_sb); 2986 } 2987 2988 /** 2989 * kiocb_start_write - get write access to a superblock for async file io 2990 * @iocb: the io context we want to submit the write with 2991 * 2992 * This is a variant of sb_start_write() for async io submission. 2993 * Should be matched with a call to kiocb_end_write(). 2994 */ 2995 static inline void kiocb_start_write(struct kiocb *iocb) 2996 { 2997 struct inode *inode = file_inode(iocb->ki_filp); 2998 2999 sb_start_write(inode->i_sb); 3000 /* 3001 * Fool lockdep by telling it the lock got released so that it 3002 * doesn't complain about the held lock when we return to userspace. 3003 */ 3004 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3005 } 3006 3007 /** 3008 * kiocb_end_write - drop write access to a superblock after async file io 3009 * @iocb: the io context we sumbitted the write with 3010 * 3011 * Should be matched with a call to kiocb_start_write(). 3012 */ 3013 static inline void kiocb_end_write(struct kiocb *iocb) 3014 { 3015 struct inode *inode = file_inode(iocb->ki_filp); 3016 3017 /* 3018 * Tell lockdep we inherited freeze protection from submission thread. 3019 */ 3020 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3021 sb_end_write(inode->i_sb); 3022 } 3023 3024 /* 3025 * This is used for regular files where some users -- especially the 3026 * currently executed binary in a process, previously handled via 3027 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3028 * read-write shared) accesses. 3029 * 3030 * get_write_access() gets write permission for a file. 3031 * put_write_access() releases this write permission. 3032 * deny_write_access() denies write access to a file. 3033 * allow_write_access() re-enables write access to a file. 3034 * 3035 * The i_writecount field of an inode can have the following values: 3036 * 0: no write access, no denied write access 3037 * < 0: (-i_writecount) users that denied write access to the file. 3038 * > 0: (i_writecount) users that have write access to the file. 3039 * 3040 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3041 * except for the cases where we don't hold i_writecount yet. Then we need to 3042 * use {get,deny}_write_access() - these functions check the sign and refuse 3043 * to do the change if sign is wrong. 3044 */ 3045 static inline int get_write_access(struct inode *inode) 3046 { 3047 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3048 } 3049 static inline int deny_write_access(struct file *file) 3050 { 3051 struct inode *inode = file_inode(file); 3052 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3053 } 3054 static inline void put_write_access(struct inode * inode) 3055 { 3056 atomic_dec(&inode->i_writecount); 3057 } 3058 static inline void allow_write_access(struct file *file) 3059 { 3060 if (file) 3061 atomic_inc(&file_inode(file)->i_writecount); 3062 } 3063 static inline bool inode_is_open_for_write(const struct inode *inode) 3064 { 3065 return atomic_read(&inode->i_writecount) > 0; 3066 } 3067 3068 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3069 static inline void i_readcount_dec(struct inode *inode) 3070 { 3071 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3072 } 3073 static inline void i_readcount_inc(struct inode *inode) 3074 { 3075 atomic_inc(&inode->i_readcount); 3076 } 3077 #else 3078 static inline void i_readcount_dec(struct inode *inode) 3079 { 3080 return; 3081 } 3082 static inline void i_readcount_inc(struct inode *inode) 3083 { 3084 return; 3085 } 3086 #endif 3087 extern int do_pipe_flags(int *, int); 3088 3089 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3090 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3091 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3092 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3093 extern struct file * open_exec(const char *); 3094 3095 /* fs/dcache.c -- generic fs support functions */ 3096 extern bool is_subdir(struct dentry *, struct dentry *); 3097 extern bool path_is_under(const struct path *, const struct path *); 3098 3099 extern char *file_path(struct file *, char *, int); 3100 3101 /** 3102 * is_dot_dotdot - returns true only if @name is "." or ".." 3103 * @name: file name to check 3104 * @len: length of file name, in bytes 3105 */ 3106 static inline bool is_dot_dotdot(const char *name, size_t len) 3107 { 3108 return len && unlikely(name[0] == '.') && 3109 (len == 1 || (len == 2 && name[1] == '.')); 3110 } 3111 3112 #include <linux/err.h> 3113 3114 /* needed for stackable file system support */ 3115 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3116 3117 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3118 3119 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3120 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3121 { 3122 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3123 } 3124 3125 extern void inode_init_once(struct inode *); 3126 extern void address_space_init_once(struct address_space *mapping); 3127 extern struct inode * igrab(struct inode *); 3128 extern ino_t iunique(struct super_block *, ino_t); 3129 extern int inode_needs_sync(struct inode *inode); 3130 extern int generic_delete_inode(struct inode *inode); 3131 static inline int generic_drop_inode(struct inode *inode) 3132 { 3133 return !inode->i_nlink || inode_unhashed(inode); 3134 } 3135 extern void d_mark_dontcache(struct inode *inode); 3136 3137 extern struct inode *ilookup5_nowait(struct super_block *sb, 3138 unsigned long hashval, int (*test)(struct inode *, void *), 3139 void *data); 3140 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3141 int (*test)(struct inode *, void *), void *data); 3142 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3143 3144 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3145 int (*test)(struct inode *, void *), 3146 int (*set)(struct inode *, void *), 3147 void *data); 3148 struct inode *iget5_locked(struct super_block *, unsigned long, 3149 int (*test)(struct inode *, void *), 3150 int (*set)(struct inode *, void *), void *); 3151 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3152 int (*test)(struct inode *, void *), 3153 int (*set)(struct inode *, void *), void *); 3154 extern struct inode * iget_locked(struct super_block *, unsigned long); 3155 extern struct inode *find_inode_nowait(struct super_block *, 3156 unsigned long, 3157 int (*match)(struct inode *, 3158 unsigned long, void *), 3159 void *data); 3160 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3161 int (*)(struct inode *, void *), void *); 3162 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3163 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3164 extern int insert_inode_locked(struct inode *); 3165 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3166 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3167 #else 3168 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3169 #endif 3170 extern void unlock_new_inode(struct inode *); 3171 extern void discard_new_inode(struct inode *); 3172 extern unsigned int get_next_ino(void); 3173 extern void evict_inodes(struct super_block *sb); 3174 void dump_mapping(const struct address_space *); 3175 3176 /* 3177 * Userspace may rely on the inode number being non-zero. For example, glibc 3178 * simply ignores files with zero i_ino in unlink() and other places. 3179 * 3180 * As an additional complication, if userspace was compiled with 3181 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3182 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3183 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3184 * better safe than sorry. 3185 */ 3186 static inline bool is_zero_ino(ino_t ino) 3187 { 3188 return (u32)ino == 0; 3189 } 3190 3191 /* 3192 * inode->i_lock must be held 3193 */ 3194 static inline void __iget(struct inode *inode) 3195 { 3196 atomic_inc(&inode->i_count); 3197 } 3198 3199 extern void iget_failed(struct inode *); 3200 extern void clear_inode(struct inode *); 3201 extern void __destroy_inode(struct inode *); 3202 extern struct inode *new_inode_pseudo(struct super_block *sb); 3203 extern struct inode *new_inode(struct super_block *sb); 3204 extern void free_inode_nonrcu(struct inode *inode); 3205 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3206 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3207 extern int file_remove_privs(struct file *); 3208 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3209 const struct inode *inode); 3210 3211 /* 3212 * This must be used for allocating filesystems specific inodes to set 3213 * up the inode reclaim context correctly. 3214 */ 3215 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3216 3217 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3218 static inline void insert_inode_hash(struct inode *inode) 3219 { 3220 __insert_inode_hash(inode, inode->i_ino); 3221 } 3222 3223 extern void __remove_inode_hash(struct inode *); 3224 static inline void remove_inode_hash(struct inode *inode) 3225 { 3226 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3227 __remove_inode_hash(inode); 3228 } 3229 3230 extern void inode_sb_list_add(struct inode *inode); 3231 extern void inode_add_lru(struct inode *inode); 3232 3233 extern int sb_set_blocksize(struct super_block *, int); 3234 extern int sb_min_blocksize(struct super_block *, int); 3235 3236 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3237 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3238 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3239 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3240 extern int generic_write_check_limits(struct file *file, loff_t pos, 3241 loff_t *count); 3242 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3243 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3244 ssize_t already_read); 3245 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3246 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3247 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3248 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3249 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3250 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3251 ssize_t direct_written, ssize_t buffered_written); 3252 3253 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3254 rwf_t flags); 3255 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3256 rwf_t flags); 3257 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3258 struct iov_iter *iter); 3259 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3260 struct iov_iter *iter); 3261 3262 /* fs/splice.c */ 3263 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3264 struct pipe_inode_info *pipe, 3265 size_t len, unsigned int flags); 3266 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3267 struct pipe_inode_info *pipe, 3268 size_t len, unsigned int flags); 3269 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3270 struct file *, loff_t *, size_t, unsigned int); 3271 3272 3273 extern void 3274 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3275 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3276 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3277 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3278 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3279 int whence, loff_t maxsize, loff_t eof); 3280 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3281 u64 *cookie); 3282 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3283 int whence, loff_t size); 3284 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3285 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3286 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3287 extern int generic_file_open(struct inode * inode, struct file * filp); 3288 extern int nonseekable_open(struct inode * inode, struct file * filp); 3289 extern int stream_open(struct inode * inode, struct file * filp); 3290 3291 #ifdef CONFIG_BLOCK 3292 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3293 loff_t file_offset); 3294 3295 enum { 3296 /* need locking between buffered and direct access */ 3297 DIO_LOCKING = 0x01, 3298 3299 /* filesystem does not support filling holes */ 3300 DIO_SKIP_HOLES = 0x02, 3301 }; 3302 3303 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3304 struct block_device *bdev, struct iov_iter *iter, 3305 get_block_t get_block, 3306 dio_iodone_t end_io, 3307 int flags); 3308 3309 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3310 struct inode *inode, 3311 struct iov_iter *iter, 3312 get_block_t get_block) 3313 { 3314 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3315 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3316 } 3317 #endif 3318 3319 bool inode_dio_finished(const struct inode *inode); 3320 void inode_dio_wait(struct inode *inode); 3321 void inode_dio_wait_interruptible(struct inode *inode); 3322 3323 /** 3324 * inode_dio_begin - signal start of a direct I/O requests 3325 * @inode: inode the direct I/O happens on 3326 * 3327 * This is called once we've finished processing a direct I/O request, 3328 * and is used to wake up callers waiting for direct I/O to be quiesced. 3329 */ 3330 static inline void inode_dio_begin(struct inode *inode) 3331 { 3332 atomic_inc(&inode->i_dio_count); 3333 } 3334 3335 /** 3336 * inode_dio_end - signal finish of a direct I/O requests 3337 * @inode: inode the direct I/O happens on 3338 * 3339 * This is called once we've finished processing a direct I/O request, 3340 * and is used to wake up callers waiting for direct I/O to be quiesced. 3341 */ 3342 static inline void inode_dio_end(struct inode *inode) 3343 { 3344 if (atomic_dec_and_test(&inode->i_dio_count)) 3345 wake_up_var(&inode->i_dio_count); 3346 } 3347 3348 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3349 unsigned int mask); 3350 3351 extern const struct file_operations generic_ro_fops; 3352 3353 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3354 3355 extern int readlink_copy(char __user *, int, const char *); 3356 extern int page_readlink(struct dentry *, char __user *, int); 3357 extern const char *page_get_link(struct dentry *, struct inode *, 3358 struct delayed_call *); 3359 extern void page_put_link(void *); 3360 extern int page_symlink(struct inode *inode, const char *symname, int len); 3361 extern const struct inode_operations page_symlink_inode_operations; 3362 extern void kfree_link(void *); 3363 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3364 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3365 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3366 void generic_fill_statx_atomic_writes(struct kstat *stat, 3367 unsigned int unit_min, 3368 unsigned int unit_max); 3369 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3370 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3371 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3372 void inode_add_bytes(struct inode *inode, loff_t bytes); 3373 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3374 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3375 static inline loff_t __inode_get_bytes(struct inode *inode) 3376 { 3377 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3378 } 3379 loff_t inode_get_bytes(struct inode *inode); 3380 void inode_set_bytes(struct inode *inode, loff_t bytes); 3381 const char *simple_get_link(struct dentry *, struct inode *, 3382 struct delayed_call *); 3383 extern const struct inode_operations simple_symlink_inode_operations; 3384 3385 extern int iterate_dir(struct file *, struct dir_context *); 3386 3387 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3388 int flags); 3389 int vfs_fstat(int fd, struct kstat *stat); 3390 3391 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3392 { 3393 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3394 } 3395 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3396 { 3397 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3398 } 3399 3400 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3401 extern int vfs_readlink(struct dentry *, char __user *, int); 3402 3403 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3404 extern void put_filesystem(struct file_system_type *fs); 3405 extern struct file_system_type *get_fs_type(const char *name); 3406 extern void drop_super(struct super_block *sb); 3407 extern void drop_super_exclusive(struct super_block *sb); 3408 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3409 extern void iterate_supers_type(struct file_system_type *, 3410 void (*)(struct super_block *, void *), void *); 3411 3412 extern int dcache_dir_open(struct inode *, struct file *); 3413 extern int dcache_dir_close(struct inode *, struct file *); 3414 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3415 extern int dcache_readdir(struct file *, struct dir_context *); 3416 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3417 struct iattr *); 3418 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3419 struct kstat *, u32, unsigned int); 3420 extern int simple_statfs(struct dentry *, struct kstatfs *); 3421 extern int simple_open(struct inode *inode, struct file *file); 3422 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3423 extern int simple_unlink(struct inode *, struct dentry *); 3424 extern int simple_rmdir(struct inode *, struct dentry *); 3425 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3426 struct inode *new_dir, struct dentry *new_dentry); 3427 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3428 struct inode *new_dir, struct dentry *new_dentry); 3429 extern int simple_rename(struct mnt_idmap *, struct inode *, 3430 struct dentry *, struct inode *, struct dentry *, 3431 unsigned int); 3432 extern void simple_recursive_removal(struct dentry *, 3433 void (*callback)(struct dentry *)); 3434 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3435 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3436 extern int simple_empty(struct dentry *); 3437 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3438 loff_t pos, unsigned len, 3439 struct folio **foliop, void **fsdata); 3440 extern const struct address_space_operations ram_aops; 3441 extern int always_delete_dentry(const struct dentry *); 3442 extern struct inode *alloc_anon_inode(struct super_block *); 3443 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3444 extern const struct dentry_operations simple_dentry_operations; 3445 3446 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3447 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3448 extern const struct file_operations simple_dir_operations; 3449 extern const struct inode_operations simple_dir_inode_operations; 3450 extern void make_empty_dir_inode(struct inode *inode); 3451 extern bool is_empty_dir_inode(struct inode *inode); 3452 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3453 struct dentry *d_alloc_name(struct dentry *, const char *); 3454 extern int simple_fill_super(struct super_block *, unsigned long, 3455 const struct tree_descr *); 3456 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3457 extern void simple_release_fs(struct vfsmount **mount, int *count); 3458 3459 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3460 loff_t *ppos, const void *from, size_t available); 3461 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3462 const void __user *from, size_t count); 3463 3464 struct offset_ctx { 3465 struct maple_tree mt; 3466 unsigned long next_offset; 3467 }; 3468 3469 void simple_offset_init(struct offset_ctx *octx); 3470 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3471 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3472 int simple_offset_empty(struct dentry *dentry); 3473 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3474 struct inode *new_dir, struct dentry *new_dentry); 3475 int simple_offset_rename_exchange(struct inode *old_dir, 3476 struct dentry *old_dentry, 3477 struct inode *new_dir, 3478 struct dentry *new_dentry); 3479 void simple_offset_destroy(struct offset_ctx *octx); 3480 3481 extern const struct file_operations simple_offset_dir_operations; 3482 3483 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3484 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3485 3486 extern int generic_check_addressable(unsigned, u64); 3487 3488 extern void generic_set_sb_d_ops(struct super_block *sb); 3489 extern int generic_ci_match(const struct inode *parent, 3490 const struct qstr *name, 3491 const struct qstr *folded_name, 3492 const u8 *de_name, u32 de_name_len); 3493 3494 #if IS_ENABLED(CONFIG_UNICODE) 3495 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3496 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3497 const char *str, const struct qstr *name); 3498 3499 /** 3500 * generic_ci_validate_strict_name - Check if a given name is suitable 3501 * for a directory 3502 * 3503 * This functions checks if the proposed filename is valid for the 3504 * parent directory. That means that only valid UTF-8 filenames will be 3505 * accepted for casefold directories from filesystems created with the 3506 * strict encoding flag. That also means that any name will be 3507 * accepted for directories that doesn't have casefold enabled, or 3508 * aren't being strict with the encoding. 3509 * 3510 * @dir: inode of the directory where the new file will be created 3511 * @name: name of the new file 3512 * 3513 * Return: 3514 * * True: if the filename is suitable for this directory. It can be 3515 * true if a given name is not suitable for a strict encoding 3516 * directory, but the directory being used isn't strict 3517 * * False if the filename isn't suitable for this directory. This only 3518 * happens when a directory is casefolded and the filesystem is strict 3519 * about its encoding. 3520 */ 3521 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3522 { 3523 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3524 return true; 3525 3526 /* 3527 * A casefold dir must have a encoding set, unless the filesystem 3528 * is corrupted 3529 */ 3530 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3531 return true; 3532 3533 return !utf8_validate(dir->i_sb->s_encoding, name); 3534 } 3535 #else 3536 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3537 { 3538 return true; 3539 } 3540 #endif 3541 3542 static inline bool sb_has_encoding(const struct super_block *sb) 3543 { 3544 #if IS_ENABLED(CONFIG_UNICODE) 3545 return !!sb->s_encoding; 3546 #else 3547 return false; 3548 #endif 3549 } 3550 3551 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3552 unsigned int ia_valid); 3553 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3554 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3555 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3556 const struct iattr *attr); 3557 3558 extern int file_update_time(struct file *file); 3559 3560 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3561 { 3562 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3563 } 3564 3565 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3566 { 3567 struct inode *inode; 3568 3569 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3570 return false; 3571 if (!vma_is_dax(vma)) 3572 return false; 3573 inode = file_inode(vma->vm_file); 3574 if (S_ISCHR(inode->i_mode)) 3575 return false; /* device-dax */ 3576 return true; 3577 } 3578 3579 static inline int iocb_flags(struct file *file) 3580 { 3581 int res = 0; 3582 if (file->f_flags & O_APPEND) 3583 res |= IOCB_APPEND; 3584 if (file->f_flags & O_DIRECT) 3585 res |= IOCB_DIRECT; 3586 if (file->f_flags & O_DSYNC) 3587 res |= IOCB_DSYNC; 3588 if (file->f_flags & __O_SYNC) 3589 res |= IOCB_SYNC; 3590 return res; 3591 } 3592 3593 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3594 int rw_type) 3595 { 3596 int kiocb_flags = 0; 3597 3598 /* make sure there's no overlap between RWF and private IOCB flags */ 3599 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3600 3601 if (!flags) 3602 return 0; 3603 if (unlikely(flags & ~RWF_SUPPORTED)) 3604 return -EOPNOTSUPP; 3605 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3606 return -EINVAL; 3607 3608 if (flags & RWF_NOWAIT) { 3609 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3610 return -EOPNOTSUPP; 3611 } 3612 if (flags & RWF_ATOMIC) { 3613 if (rw_type != WRITE) 3614 return -EOPNOTSUPP; 3615 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3616 return -EOPNOTSUPP; 3617 } 3618 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3619 if (flags & RWF_SYNC) 3620 kiocb_flags |= IOCB_DSYNC; 3621 3622 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3623 if (IS_APPEND(file_inode(ki->ki_filp))) 3624 return -EPERM; 3625 ki->ki_flags &= ~IOCB_APPEND; 3626 } 3627 3628 ki->ki_flags |= kiocb_flags; 3629 return 0; 3630 } 3631 3632 /* Transaction based IO helpers */ 3633 3634 /* 3635 * An argresp is stored in an allocated page and holds the 3636 * size of the argument or response, along with its content 3637 */ 3638 struct simple_transaction_argresp { 3639 ssize_t size; 3640 char data[]; 3641 }; 3642 3643 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3644 3645 char *simple_transaction_get(struct file *file, const char __user *buf, 3646 size_t size); 3647 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3648 size_t size, loff_t *pos); 3649 int simple_transaction_release(struct inode *inode, struct file *file); 3650 3651 void simple_transaction_set(struct file *file, size_t n); 3652 3653 /* 3654 * simple attribute files 3655 * 3656 * These attributes behave similar to those in sysfs: 3657 * 3658 * Writing to an attribute immediately sets a value, an open file can be 3659 * written to multiple times. 3660 * 3661 * Reading from an attribute creates a buffer from the value that might get 3662 * read with multiple read calls. When the attribute has been read 3663 * completely, no further read calls are possible until the file is opened 3664 * again. 3665 * 3666 * All attributes contain a text representation of a numeric value 3667 * that are accessed with the get() and set() functions. 3668 */ 3669 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3670 static int __fops ## _open(struct inode *inode, struct file *file) \ 3671 { \ 3672 __simple_attr_check_format(__fmt, 0ull); \ 3673 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3674 } \ 3675 static const struct file_operations __fops = { \ 3676 .owner = THIS_MODULE, \ 3677 .open = __fops ## _open, \ 3678 .release = simple_attr_release, \ 3679 .read = simple_attr_read, \ 3680 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3681 .llseek = generic_file_llseek, \ 3682 } 3683 3684 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3685 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3686 3687 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3688 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3689 3690 static inline __printf(1, 2) 3691 void __simple_attr_check_format(const char *fmt, ...) 3692 { 3693 /* don't do anything, just let the compiler check the arguments; */ 3694 } 3695 3696 int simple_attr_open(struct inode *inode, struct file *file, 3697 int (*get)(void *, u64 *), int (*set)(void *, u64), 3698 const char *fmt); 3699 int simple_attr_release(struct inode *inode, struct file *file); 3700 ssize_t simple_attr_read(struct file *file, char __user *buf, 3701 size_t len, loff_t *ppos); 3702 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3703 size_t len, loff_t *ppos); 3704 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3705 size_t len, loff_t *ppos); 3706 3707 struct ctl_table; 3708 int __init list_bdev_fs_names(char *buf, size_t size); 3709 3710 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3711 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3712 3713 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3714 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3715 (flag & __FMODE_NONOTIFY))) 3716 3717 static inline bool is_sxid(umode_t mode) 3718 { 3719 return mode & (S_ISUID | S_ISGID); 3720 } 3721 3722 static inline int check_sticky(struct mnt_idmap *idmap, 3723 struct inode *dir, struct inode *inode) 3724 { 3725 if (!(dir->i_mode & S_ISVTX)) 3726 return 0; 3727 3728 return __check_sticky(idmap, dir, inode); 3729 } 3730 3731 static inline void inode_has_no_xattr(struct inode *inode) 3732 { 3733 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3734 inode->i_flags |= S_NOSEC; 3735 } 3736 3737 static inline bool is_root_inode(struct inode *inode) 3738 { 3739 return inode == inode->i_sb->s_root->d_inode; 3740 } 3741 3742 static inline bool dir_emit(struct dir_context *ctx, 3743 const char *name, int namelen, 3744 u64 ino, unsigned type) 3745 { 3746 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3747 } 3748 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3749 { 3750 return ctx->actor(ctx, ".", 1, ctx->pos, 3751 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3752 } 3753 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3754 { 3755 return ctx->actor(ctx, "..", 2, ctx->pos, 3756 d_parent_ino(file->f_path.dentry), DT_DIR); 3757 } 3758 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3759 { 3760 if (ctx->pos == 0) { 3761 if (!dir_emit_dot(file, ctx)) 3762 return false; 3763 ctx->pos = 1; 3764 } 3765 if (ctx->pos == 1) { 3766 if (!dir_emit_dotdot(file, ctx)) 3767 return false; 3768 ctx->pos = 2; 3769 } 3770 return true; 3771 } 3772 static inline bool dir_relax(struct inode *inode) 3773 { 3774 inode_unlock(inode); 3775 inode_lock(inode); 3776 return !IS_DEADDIR(inode); 3777 } 3778 3779 static inline bool dir_relax_shared(struct inode *inode) 3780 { 3781 inode_unlock_shared(inode); 3782 inode_lock_shared(inode); 3783 return !IS_DEADDIR(inode); 3784 } 3785 3786 extern bool path_noexec(const struct path *path); 3787 extern void inode_nohighmem(struct inode *inode); 3788 3789 /* mm/fadvise.c */ 3790 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3791 int advice); 3792 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3793 int advice); 3794 3795 static inline bool vfs_empty_path(int dfd, const char __user *path) 3796 { 3797 char c; 3798 3799 if (dfd < 0) 3800 return false; 3801 3802 /* We now allow NULL to be used for empty path. */ 3803 if (!path) 3804 return true; 3805 3806 if (unlikely(get_user(c, path))) 3807 return false; 3808 3809 return !c; 3810 } 3811 3812 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3813 3814 #endif /* _LINUX_FS_H */ 3815