xref: /linux-6.15/include/linux/fs.h (revision 4de2ce04)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48 #include <linux/file_ref.h>
49 #include <linux/unicode.h>
50 
51 #include <asm/byteorder.h>
52 #include <uapi/linux/fs.h>
53 
54 struct backing_dev_info;
55 struct bdi_writeback;
56 struct bio;
57 struct io_comp_batch;
58 struct export_operations;
59 struct fiemap_extent_info;
60 struct hd_geometry;
61 struct iovec;
62 struct kiocb;
63 struct kobject;
64 struct pipe_inode_info;
65 struct poll_table_struct;
66 struct kstatfs;
67 struct vm_area_struct;
68 struct vfsmount;
69 struct cred;
70 struct swap_info_struct;
71 struct seq_file;
72 struct workqueue_struct;
73 struct iov_iter;
74 struct fscrypt_inode_info;
75 struct fscrypt_operations;
76 struct fsverity_info;
77 struct fsverity_operations;
78 struct fsnotify_mark_connector;
79 struct fsnotify_sb_info;
80 struct fs_context;
81 struct fs_parameter_spec;
82 struct fileattr;
83 struct iomap_ops;
84 
85 extern void __init inode_init(void);
86 extern void __init inode_init_early(void);
87 extern void __init files_init(void);
88 extern void __init files_maxfiles_init(void);
89 
90 extern unsigned long get_max_files(void);
91 extern unsigned int sysctl_nr_open;
92 
93 typedef __kernel_rwf_t rwf_t;
94 
95 struct buffer_head;
96 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
97 			struct buffer_head *bh_result, int create);
98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
99 			ssize_t bytes, void *private);
100 
101 #define MAY_EXEC		0x00000001
102 #define MAY_WRITE		0x00000002
103 #define MAY_READ		0x00000004
104 #define MAY_APPEND		0x00000008
105 #define MAY_ACCESS		0x00000010
106 #define MAY_OPEN		0x00000020
107 #define MAY_CHDIR		0x00000040
108 /* called from RCU mode, don't block */
109 #define MAY_NOT_BLOCK		0x00000080
110 
111 /*
112  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
113  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
114  */
115 
116 /* file is open for reading */
117 #define FMODE_READ		((__force fmode_t)(1 << 0))
118 /* file is open for writing */
119 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
120 /* file is seekable */
121 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
122 /* file can be accessed using pread */
123 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
124 /* file can be accessed using pwrite */
125 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
126 /* File is opened for execution with sys_execve / sys_uselib */
127 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
128 /* File writes are restricted (block device specific) */
129 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
130 /* File supports atomic writes */
131 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
132 
133 /* FMODE_* bit 8 */
134 
135 /* 32bit hashes as llseek() offset (for directories) */
136 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
137 /* 64bit hashes as llseek() offset (for directories) */
138 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
139 
140 /*
141  * Don't update ctime and mtime.
142  *
143  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
144  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
145  */
146 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
147 
148 /* Expect random access pattern */
149 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
150 
151 /* FMODE_* bit 13 */
152 
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH		((__force fmode_t)(1 << 14))
155 
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
164 
165 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
167 
168 /* File is stream-like */
169 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
170 
171 /* File supports DIRECT IO */
172 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
173 
174 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
175 
176 /* FMODE_* bit 24 */
177 
178 /* File is embedded in backing_file object */
179 #define FMODE_BACKING		((__force fmode_t)(1 << 25))
180 
181 /* File was opened by fanotify and shouldn't generate fanotify events */
182 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 26))
183 
184 /* File is capable of returning -EAGAIN if I/O will block */
185 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
186 
187 /* File represents mount that needs unmounting */
188 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
189 
190 /* File does not contribute to nr_files count */
191 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
192 
193 /*
194  * Attribute flags.  These should be or-ed together to figure out what
195  * has been changed!
196  */
197 #define ATTR_MODE	(1 << 0)
198 #define ATTR_UID	(1 << 1)
199 #define ATTR_GID	(1 << 2)
200 #define ATTR_SIZE	(1 << 3)
201 #define ATTR_ATIME	(1 << 4)
202 #define ATTR_MTIME	(1 << 5)
203 #define ATTR_CTIME	(1 << 6)
204 #define ATTR_ATIME_SET	(1 << 7)
205 #define ATTR_MTIME_SET	(1 << 8)
206 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
207 #define ATTR_KILL_SUID	(1 << 11)
208 #define ATTR_KILL_SGID	(1 << 12)
209 #define ATTR_FILE	(1 << 13)
210 #define ATTR_KILL_PRIV	(1 << 14)
211 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
212 #define ATTR_TIMES_SET	(1 << 16)
213 #define ATTR_TOUCH	(1 << 17)
214 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
215 
216 /*
217  * Whiteout is represented by a char device.  The following constants define the
218  * mode and device number to use.
219  */
220 #define WHITEOUT_MODE 0
221 #define WHITEOUT_DEV 0
222 
223 /*
224  * This is the Inode Attributes structure, used for notify_change().  It
225  * uses the above definitions as flags, to know which values have changed.
226  * Also, in this manner, a Filesystem can look at only the values it cares
227  * about.  Basically, these are the attributes that the VFS layer can
228  * request to change from the FS layer.
229  *
230  * Derek Atkins <[email protected]> 94-10-20
231  */
232 struct iattr {
233 	unsigned int	ia_valid;
234 	umode_t		ia_mode;
235 	/*
236 	 * The two anonymous unions wrap structures with the same member.
237 	 *
238 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
239 	 * are a dedicated type requiring the filesystem to use the dedicated
240 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
241 	 * have been ported.
242 	 *
243 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
244 	 * pass down the same value on idmapped mounts as they would on regular
245 	 * mounts.
246 	 */
247 	union {
248 		kuid_t		ia_uid;
249 		vfsuid_t	ia_vfsuid;
250 	};
251 	union {
252 		kgid_t		ia_gid;
253 		vfsgid_t	ia_vfsgid;
254 	};
255 	loff_t		ia_size;
256 	struct timespec64 ia_atime;
257 	struct timespec64 ia_mtime;
258 	struct timespec64 ia_ctime;
259 
260 	/*
261 	 * Not an attribute, but an auxiliary info for filesystems wanting to
262 	 * implement an ftruncate() like method.  NOTE: filesystem should
263 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
264 	 */
265 	struct file	*ia_file;
266 };
267 
268 /*
269  * Includes for diskquotas.
270  */
271 #include <linux/quota.h>
272 
273 /*
274  * Maximum number of layers of fs stack.  Needs to be limited to
275  * prevent kernel stack overflow
276  */
277 #define FILESYSTEM_MAX_STACK_DEPTH 2
278 
279 /**
280  * enum positive_aop_returns - aop return codes with specific semantics
281  *
282  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
283  * 			    completed, that the page is still locked, and
284  * 			    should be considered active.  The VM uses this hint
285  * 			    to return the page to the active list -- it won't
286  * 			    be a candidate for writeback again in the near
287  * 			    future.  Other callers must be careful to unlock
288  * 			    the page if they get this return.  Returned by
289  * 			    writepage();
290  *
291  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
292  *  			unlocked it and the page might have been truncated.
293  *  			The caller should back up to acquiring a new page and
294  *  			trying again.  The aop will be taking reasonable
295  *  			precautions not to livelock.  If the caller held a page
296  *  			reference, it should drop it before retrying.  Returned
297  *  			by read_folio().
298  *
299  * address_space_operation functions return these large constants to indicate
300  * special semantics to the caller.  These are much larger than the bytes in a
301  * page to allow for functions that return the number of bytes operated on in a
302  * given page.
303  */
304 
305 enum positive_aop_returns {
306 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
307 	AOP_TRUNCATED_PAGE	= 0x80001,
308 };
309 
310 /*
311  * oh the beauties of C type declarations.
312  */
313 struct page;
314 struct address_space;
315 struct writeback_control;
316 struct readahead_control;
317 
318 /* Match RWF_* bits to IOCB bits */
319 #define IOCB_HIPRI		(__force int) RWF_HIPRI
320 #define IOCB_DSYNC		(__force int) RWF_DSYNC
321 #define IOCB_SYNC		(__force int) RWF_SYNC
322 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
323 #define IOCB_APPEND		(__force int) RWF_APPEND
324 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
325 
326 /* non-RWF related bits - start at 16 */
327 #define IOCB_EVENTFD		(1 << 16)
328 #define IOCB_DIRECT		(1 << 17)
329 #define IOCB_WRITE		(1 << 18)
330 /* iocb->ki_waitq is valid */
331 #define IOCB_WAITQ		(1 << 19)
332 #define IOCB_NOIO		(1 << 20)
333 /* can use bio alloc cache */
334 #define IOCB_ALLOC_CACHE	(1 << 21)
335 /*
336  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
337  * iocb completion can be passed back to the owner for execution from a safe
338  * context rather than needing to be punted through a workqueue. If this
339  * flag is set, the bio completion handling may set iocb->dio_complete to a
340  * handler function and iocb->private to context information for that handler.
341  * The issuer should call the handler with that context information from task
342  * context to complete the processing of the iocb. Note that while this
343  * provides a task context for the dio_complete() callback, it should only be
344  * used on the completion side for non-IO generating completions. It's fine to
345  * call blocking functions from this callback, but they should not wait for
346  * unrelated IO (like cache flushing, new IO generation, etc).
347  */
348 #define IOCB_DIO_CALLER_COMP	(1 << 22)
349 /* kiocb is a read or write operation submitted by fs/aio.c. */
350 #define IOCB_AIO_RW		(1 << 23)
351 #define IOCB_HAS_METADATA	(1 << 24)
352 
353 /* for use in trace events */
354 #define TRACE_IOCB_STRINGS \
355 	{ IOCB_HIPRI,		"HIPRI" }, \
356 	{ IOCB_DSYNC,		"DSYNC" }, \
357 	{ IOCB_SYNC,		"SYNC" }, \
358 	{ IOCB_NOWAIT,		"NOWAIT" }, \
359 	{ IOCB_APPEND,		"APPEND" }, \
360 	{ IOCB_ATOMIC,		"ATOMIC"}, \
361 	{ IOCB_EVENTFD,		"EVENTFD"}, \
362 	{ IOCB_DIRECT,		"DIRECT" }, \
363 	{ IOCB_WRITE,		"WRITE" }, \
364 	{ IOCB_WAITQ,		"WAITQ" }, \
365 	{ IOCB_NOIO,		"NOIO" }, \
366 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
367 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
368 
369 struct kiocb {
370 	struct file		*ki_filp;
371 	loff_t			ki_pos;
372 	void (*ki_complete)(struct kiocb *iocb, long ret);
373 	void			*private;
374 	int			ki_flags;
375 	u16			ki_ioprio; /* See linux/ioprio.h */
376 	union {
377 		/*
378 		 * Only used for async buffered reads, where it denotes the
379 		 * page waitqueue associated with completing the read. Valid
380 		 * IFF IOCB_WAITQ is set.
381 		 */
382 		struct wait_page_queue	*ki_waitq;
383 		/*
384 		 * Can be used for O_DIRECT IO, where the completion handling
385 		 * is punted back to the issuer of the IO. May only be set
386 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
387 		 * must then check for presence of this handler when ki_complete
388 		 * is invoked. The data passed in to this handler must be
389 		 * assigned to ->private when dio_complete is assigned.
390 		 */
391 		ssize_t (*dio_complete)(void *data);
392 	};
393 };
394 
395 static inline bool is_sync_kiocb(struct kiocb *kiocb)
396 {
397 	return kiocb->ki_complete == NULL;
398 }
399 
400 struct address_space_operations {
401 	int (*writepage)(struct page *page, struct writeback_control *wbc);
402 	int (*read_folio)(struct file *, struct folio *);
403 
404 	/* Write back some dirty pages from this mapping. */
405 	int (*writepages)(struct address_space *, struct writeback_control *);
406 
407 	/* Mark a folio dirty.  Return true if this dirtied it */
408 	bool (*dirty_folio)(struct address_space *, struct folio *);
409 
410 	void (*readahead)(struct readahead_control *);
411 
412 	int (*write_begin)(struct file *, struct address_space *mapping,
413 				loff_t pos, unsigned len,
414 				struct folio **foliop, void **fsdata);
415 	int (*write_end)(struct file *, struct address_space *mapping,
416 				loff_t pos, unsigned len, unsigned copied,
417 				struct folio *folio, void *fsdata);
418 
419 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
420 	sector_t (*bmap)(struct address_space *, sector_t);
421 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
422 	bool (*release_folio)(struct folio *, gfp_t);
423 	void (*free_folio)(struct folio *folio);
424 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
425 	/*
426 	 * migrate the contents of a folio to the specified target. If
427 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
428 	 */
429 	int (*migrate_folio)(struct address_space *, struct folio *dst,
430 			struct folio *src, enum migrate_mode);
431 	int (*launder_folio)(struct folio *);
432 	bool (*is_partially_uptodate) (struct folio *, size_t from,
433 			size_t count);
434 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
435 	int (*error_remove_folio)(struct address_space *, struct folio *);
436 
437 	/* swapfile support */
438 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
439 				sector_t *span);
440 	void (*swap_deactivate)(struct file *file);
441 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
442 };
443 
444 extern const struct address_space_operations empty_aops;
445 
446 /**
447  * struct address_space - Contents of a cacheable, mappable object.
448  * @host: Owner, either the inode or the block_device.
449  * @i_pages: Cached pages.
450  * @invalidate_lock: Guards coherency between page cache contents and
451  *   file offset->disk block mappings in the filesystem during invalidates.
452  *   It is also used to block modification of page cache contents through
453  *   memory mappings.
454  * @gfp_mask: Memory allocation flags to use for allocating pages.
455  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
456  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
457  * @i_mmap: Tree of private and shared mappings.
458  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
459  * @nrpages: Number of page entries, protected by the i_pages lock.
460  * @writeback_index: Writeback starts here.
461  * @a_ops: Methods.
462  * @flags: Error bits and flags (AS_*).
463  * @wb_err: The most recent error which has occurred.
464  * @i_private_lock: For use by the owner of the address_space.
465  * @i_private_list: For use by the owner of the address_space.
466  * @i_private_data: For use by the owner of the address_space.
467  */
468 struct address_space {
469 	struct inode		*host;
470 	struct xarray		i_pages;
471 	struct rw_semaphore	invalidate_lock;
472 	gfp_t			gfp_mask;
473 	atomic_t		i_mmap_writable;
474 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
475 	/* number of thp, only for non-shmem files */
476 	atomic_t		nr_thps;
477 #endif
478 	struct rb_root_cached	i_mmap;
479 	unsigned long		nrpages;
480 	pgoff_t			writeback_index;
481 	const struct address_space_operations *a_ops;
482 	unsigned long		flags;
483 	errseq_t		wb_err;
484 	spinlock_t		i_private_lock;
485 	struct list_head	i_private_list;
486 	struct rw_semaphore	i_mmap_rwsem;
487 	void *			i_private_data;
488 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
489 	/*
490 	 * On most architectures that alignment is already the case; but
491 	 * must be enforced here for CRIS, to let the least significant bit
492 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
493 	 */
494 
495 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
496 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
497 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
498 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
499 
500 /*
501  * Returns true if any of the pages in the mapping are marked with the tag.
502  */
503 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
504 {
505 	return xa_marked(&mapping->i_pages, tag);
506 }
507 
508 static inline void i_mmap_lock_write(struct address_space *mapping)
509 {
510 	down_write(&mapping->i_mmap_rwsem);
511 }
512 
513 static inline int i_mmap_trylock_write(struct address_space *mapping)
514 {
515 	return down_write_trylock(&mapping->i_mmap_rwsem);
516 }
517 
518 static inline void i_mmap_unlock_write(struct address_space *mapping)
519 {
520 	up_write(&mapping->i_mmap_rwsem);
521 }
522 
523 static inline int i_mmap_trylock_read(struct address_space *mapping)
524 {
525 	return down_read_trylock(&mapping->i_mmap_rwsem);
526 }
527 
528 static inline void i_mmap_lock_read(struct address_space *mapping)
529 {
530 	down_read(&mapping->i_mmap_rwsem);
531 }
532 
533 static inline void i_mmap_unlock_read(struct address_space *mapping)
534 {
535 	up_read(&mapping->i_mmap_rwsem);
536 }
537 
538 static inline void i_mmap_assert_locked(struct address_space *mapping)
539 {
540 	lockdep_assert_held(&mapping->i_mmap_rwsem);
541 }
542 
543 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
544 {
545 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
546 }
547 
548 /*
549  * Might pages of this file be mapped into userspace?
550  */
551 static inline int mapping_mapped(struct address_space *mapping)
552 {
553 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
554 }
555 
556 /*
557  * Might pages of this file have been modified in userspace?
558  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
559  * marks vma as VM_SHARED if it is shared, and the file was opened for
560  * writing i.e. vma may be mprotected writable even if now readonly.
561  *
562  * If i_mmap_writable is negative, no new writable mappings are allowed. You
563  * can only deny writable mappings, if none exists right now.
564  */
565 static inline int mapping_writably_mapped(struct address_space *mapping)
566 {
567 	return atomic_read(&mapping->i_mmap_writable) > 0;
568 }
569 
570 static inline int mapping_map_writable(struct address_space *mapping)
571 {
572 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
573 		0 : -EPERM;
574 }
575 
576 static inline void mapping_unmap_writable(struct address_space *mapping)
577 {
578 	atomic_dec(&mapping->i_mmap_writable);
579 }
580 
581 static inline int mapping_deny_writable(struct address_space *mapping)
582 {
583 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
584 		0 : -EBUSY;
585 }
586 
587 static inline void mapping_allow_writable(struct address_space *mapping)
588 {
589 	atomic_inc(&mapping->i_mmap_writable);
590 }
591 
592 /*
593  * Use sequence counter to get consistent i_size on 32-bit processors.
594  */
595 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
596 #include <linux/seqlock.h>
597 #define __NEED_I_SIZE_ORDERED
598 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
599 #else
600 #define i_size_ordered_init(inode) do { } while (0)
601 #endif
602 
603 struct posix_acl;
604 #define ACL_NOT_CACHED ((void *)(-1))
605 /*
606  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
607  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
608  * mode with the LOOKUP_RCU flag.
609  */
610 #define ACL_DONT_CACHE ((void *)(-3))
611 
612 static inline struct posix_acl *
613 uncached_acl_sentinel(struct task_struct *task)
614 {
615 	return (void *)task + 1;
616 }
617 
618 static inline bool
619 is_uncached_acl(struct posix_acl *acl)
620 {
621 	return (long)acl & 1;
622 }
623 
624 #define IOP_FASTPERM	0x0001
625 #define IOP_LOOKUP	0x0002
626 #define IOP_NOFOLLOW	0x0004
627 #define IOP_XATTR	0x0008
628 #define IOP_DEFAULT_READLINK	0x0010
629 #define IOP_MGTIME	0x0020
630 
631 /*
632  * Keep mostly read-only and often accessed (especially for
633  * the RCU path lookup and 'stat' data) fields at the beginning
634  * of the 'struct inode'
635  */
636 struct inode {
637 	umode_t			i_mode;
638 	unsigned short		i_opflags;
639 	kuid_t			i_uid;
640 	kgid_t			i_gid;
641 	unsigned int		i_flags;
642 
643 #ifdef CONFIG_FS_POSIX_ACL
644 	struct posix_acl	*i_acl;
645 	struct posix_acl	*i_default_acl;
646 #endif
647 
648 	const struct inode_operations	*i_op;
649 	struct super_block	*i_sb;
650 	struct address_space	*i_mapping;
651 
652 #ifdef CONFIG_SECURITY
653 	void			*i_security;
654 #endif
655 
656 	/* Stat data, not accessed from path walking */
657 	unsigned long		i_ino;
658 	/*
659 	 * Filesystems may only read i_nlink directly.  They shall use the
660 	 * following functions for modification:
661 	 *
662 	 *    (set|clear|inc|drop)_nlink
663 	 *    inode_(inc|dec)_link_count
664 	 */
665 	union {
666 		const unsigned int i_nlink;
667 		unsigned int __i_nlink;
668 	};
669 	dev_t			i_rdev;
670 	loff_t			i_size;
671 	time64_t		i_atime_sec;
672 	time64_t		i_mtime_sec;
673 	time64_t		i_ctime_sec;
674 	u32			i_atime_nsec;
675 	u32			i_mtime_nsec;
676 	u32			i_ctime_nsec;
677 	u32			i_generation;
678 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
679 	unsigned short          i_bytes;
680 	u8			i_blkbits;
681 	enum rw_hint		i_write_hint;
682 	blkcnt_t		i_blocks;
683 
684 #ifdef __NEED_I_SIZE_ORDERED
685 	seqcount_t		i_size_seqcount;
686 #endif
687 
688 	/* Misc */
689 	u32			i_state;
690 	/* 32-bit hole */
691 	struct rw_semaphore	i_rwsem;
692 
693 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
694 	unsigned long		dirtied_time_when;
695 
696 	struct hlist_node	i_hash;
697 	struct list_head	i_io_list;	/* backing dev IO list */
698 #ifdef CONFIG_CGROUP_WRITEBACK
699 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
700 
701 	/* foreign inode detection, see wbc_detach_inode() */
702 	int			i_wb_frn_winner;
703 	u16			i_wb_frn_avg_time;
704 	u16			i_wb_frn_history;
705 #endif
706 	struct list_head	i_lru;		/* inode LRU list */
707 	struct list_head	i_sb_list;
708 	struct list_head	i_wb_list;	/* backing dev writeback list */
709 	union {
710 		struct hlist_head	i_dentry;
711 		struct rcu_head		i_rcu;
712 	};
713 	atomic64_t		i_version;
714 	atomic64_t		i_sequence; /* see futex */
715 	atomic_t		i_count;
716 	atomic_t		i_dio_count;
717 	atomic_t		i_writecount;
718 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
719 	atomic_t		i_readcount; /* struct files open RO */
720 #endif
721 	union {
722 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
723 		void (*free_inode)(struct inode *);
724 	};
725 	struct file_lock_context	*i_flctx;
726 	struct address_space	i_data;
727 	struct list_head	i_devices;
728 	union {
729 		struct pipe_inode_info	*i_pipe;
730 		struct cdev		*i_cdev;
731 		char			*i_link;
732 		unsigned		i_dir_seq;
733 	};
734 
735 
736 #ifdef CONFIG_FSNOTIFY
737 	__u32			i_fsnotify_mask; /* all events this inode cares about */
738 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
739 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
740 #endif
741 
742 #ifdef CONFIG_FS_ENCRYPTION
743 	struct fscrypt_inode_info	*i_crypt_info;
744 #endif
745 
746 #ifdef CONFIG_FS_VERITY
747 	struct fsverity_info	*i_verity_info;
748 #endif
749 
750 	void			*i_private; /* fs or device private pointer */
751 } __randomize_layout;
752 
753 /*
754  * Get bit address from inode->i_state to use with wait_var_event()
755  * infrastructre.
756  */
757 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
758 
759 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
760 					    struct inode *inode, u32 bit);
761 
762 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
763 {
764 	/* Caller is responsible for correct memory barriers. */
765 	wake_up_var(inode_state_wait_address(inode, bit));
766 }
767 
768 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
769 
770 static inline unsigned int i_blocksize(const struct inode *node)
771 {
772 	return (1 << node->i_blkbits);
773 }
774 
775 static inline int inode_unhashed(struct inode *inode)
776 {
777 	return hlist_unhashed(&inode->i_hash);
778 }
779 
780 /*
781  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
782  * want special inodes in the fileset inode space, we make them
783  * appear hashed, but do not put on any lists.  hlist_del()
784  * will work fine and require no locking.
785  */
786 static inline void inode_fake_hash(struct inode *inode)
787 {
788 	hlist_add_fake(&inode->i_hash);
789 }
790 
791 /*
792  * inode->i_mutex nesting subclasses for the lock validator:
793  *
794  * 0: the object of the current VFS operation
795  * 1: parent
796  * 2: child/target
797  * 3: xattr
798  * 4: second non-directory
799  * 5: second parent (when locking independent directories in rename)
800  *
801  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
802  * non-directories at once.
803  *
804  * The locking order between these classes is
805  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
806  */
807 enum inode_i_mutex_lock_class
808 {
809 	I_MUTEX_NORMAL,
810 	I_MUTEX_PARENT,
811 	I_MUTEX_CHILD,
812 	I_MUTEX_XATTR,
813 	I_MUTEX_NONDIR2,
814 	I_MUTEX_PARENT2,
815 };
816 
817 static inline void inode_lock(struct inode *inode)
818 {
819 	down_write(&inode->i_rwsem);
820 }
821 
822 static inline void inode_unlock(struct inode *inode)
823 {
824 	up_write(&inode->i_rwsem);
825 }
826 
827 static inline void inode_lock_shared(struct inode *inode)
828 {
829 	down_read(&inode->i_rwsem);
830 }
831 
832 static inline void inode_unlock_shared(struct inode *inode)
833 {
834 	up_read(&inode->i_rwsem);
835 }
836 
837 static inline int inode_trylock(struct inode *inode)
838 {
839 	return down_write_trylock(&inode->i_rwsem);
840 }
841 
842 static inline int inode_trylock_shared(struct inode *inode)
843 {
844 	return down_read_trylock(&inode->i_rwsem);
845 }
846 
847 static inline int inode_is_locked(struct inode *inode)
848 {
849 	return rwsem_is_locked(&inode->i_rwsem);
850 }
851 
852 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
853 {
854 	down_write_nested(&inode->i_rwsem, subclass);
855 }
856 
857 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
858 {
859 	down_read_nested(&inode->i_rwsem, subclass);
860 }
861 
862 static inline void filemap_invalidate_lock(struct address_space *mapping)
863 {
864 	down_write(&mapping->invalidate_lock);
865 }
866 
867 static inline void filemap_invalidate_unlock(struct address_space *mapping)
868 {
869 	up_write(&mapping->invalidate_lock);
870 }
871 
872 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
873 {
874 	down_read(&mapping->invalidate_lock);
875 }
876 
877 static inline int filemap_invalidate_trylock_shared(
878 					struct address_space *mapping)
879 {
880 	return down_read_trylock(&mapping->invalidate_lock);
881 }
882 
883 static inline void filemap_invalidate_unlock_shared(
884 					struct address_space *mapping)
885 {
886 	up_read(&mapping->invalidate_lock);
887 }
888 
889 void lock_two_nondirectories(struct inode *, struct inode*);
890 void unlock_two_nondirectories(struct inode *, struct inode*);
891 
892 void filemap_invalidate_lock_two(struct address_space *mapping1,
893 				 struct address_space *mapping2);
894 void filemap_invalidate_unlock_two(struct address_space *mapping1,
895 				   struct address_space *mapping2);
896 
897 
898 /*
899  * NOTE: in a 32bit arch with a preemptable kernel and
900  * an UP compile the i_size_read/write must be atomic
901  * with respect to the local cpu (unlike with preempt disabled),
902  * but they don't need to be atomic with respect to other cpus like in
903  * true SMP (so they need either to either locally disable irq around
904  * the read or for example on x86 they can be still implemented as a
905  * cmpxchg8b without the need of the lock prefix). For SMP compiles
906  * and 64bit archs it makes no difference if preempt is enabled or not.
907  */
908 static inline loff_t i_size_read(const struct inode *inode)
909 {
910 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
911 	loff_t i_size;
912 	unsigned int seq;
913 
914 	do {
915 		seq = read_seqcount_begin(&inode->i_size_seqcount);
916 		i_size = inode->i_size;
917 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
918 	return i_size;
919 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
920 	loff_t i_size;
921 
922 	preempt_disable();
923 	i_size = inode->i_size;
924 	preempt_enable();
925 	return i_size;
926 #else
927 	/* Pairs with smp_store_release() in i_size_write() */
928 	return smp_load_acquire(&inode->i_size);
929 #endif
930 }
931 
932 /*
933  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
934  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
935  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
936  */
937 static inline void i_size_write(struct inode *inode, loff_t i_size)
938 {
939 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
940 	preempt_disable();
941 	write_seqcount_begin(&inode->i_size_seqcount);
942 	inode->i_size = i_size;
943 	write_seqcount_end(&inode->i_size_seqcount);
944 	preempt_enable();
945 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
946 	preempt_disable();
947 	inode->i_size = i_size;
948 	preempt_enable();
949 #else
950 	/*
951 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
952 	 * changes related to inode size (such as page contents) are
953 	 * visible before we see the changed inode size.
954 	 */
955 	smp_store_release(&inode->i_size, i_size);
956 #endif
957 }
958 
959 static inline unsigned iminor(const struct inode *inode)
960 {
961 	return MINOR(inode->i_rdev);
962 }
963 
964 static inline unsigned imajor(const struct inode *inode)
965 {
966 	return MAJOR(inode->i_rdev);
967 }
968 
969 struct fown_struct {
970 	struct file *file;	/* backpointer for security modules */
971 	rwlock_t lock;          /* protects pid, uid, euid fields */
972 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
973 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
974 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
975 	int signum;		/* posix.1b rt signal to be delivered on IO */
976 };
977 
978 /**
979  * struct file_ra_state - Track a file's readahead state.
980  * @start: Where the most recent readahead started.
981  * @size: Number of pages read in the most recent readahead.
982  * @async_size: Numer of pages that were/are not needed immediately
983  *      and so were/are genuinely "ahead".  Start next readahead when
984  *      the first of these pages is accessed.
985  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
986  * @mmap_miss: How many mmap accesses missed in the page cache.
987  * @prev_pos: The last byte in the most recent read request.
988  *
989  * When this structure is passed to ->readahead(), the "most recent"
990  * readahead means the current readahead.
991  */
992 struct file_ra_state {
993 	pgoff_t start;
994 	unsigned int size;
995 	unsigned int async_size;
996 	unsigned int ra_pages;
997 	unsigned int mmap_miss;
998 	loff_t prev_pos;
999 };
1000 
1001 /*
1002  * Check if @index falls in the readahead windows.
1003  */
1004 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1005 {
1006 	return (index >= ra->start &&
1007 		index <  ra->start + ra->size);
1008 }
1009 
1010 /**
1011  * struct file - Represents a file
1012  * @f_ref: reference count
1013  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1014  * @f_mode: FMODE_* flags often used in hotpaths
1015  * @f_op: file operations
1016  * @f_mapping: Contents of a cacheable, mappable object.
1017  * @private_data: filesystem or driver specific data
1018  * @f_inode: cached inode
1019  * @f_flags: file flags
1020  * @f_iocb_flags: iocb flags
1021  * @f_cred: stashed credentials of creator/opener
1022  * @f_path: path of the file
1023  * @f_pos_lock: lock protecting file position
1024  * @f_pipe: specific to pipes
1025  * @f_pos: file position
1026  * @f_security: LSM security context of this file
1027  * @f_owner: file owner
1028  * @f_wb_err: writeback error
1029  * @f_sb_err: per sb writeback errors
1030  * @f_ep: link of all epoll hooks for this file
1031  * @f_task_work: task work entry point
1032  * @f_llist: work queue entrypoint
1033  * @f_ra: file's readahead state
1034  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1035  */
1036 struct file {
1037 	file_ref_t			f_ref;
1038 	spinlock_t			f_lock;
1039 	fmode_t				f_mode;
1040 	const struct file_operations	*f_op;
1041 	struct address_space		*f_mapping;
1042 	void				*private_data;
1043 	struct inode			*f_inode;
1044 	unsigned int			f_flags;
1045 	unsigned int			f_iocb_flags;
1046 	const struct cred		*f_cred;
1047 	/* --- cacheline 1 boundary (64 bytes) --- */
1048 	struct path			f_path;
1049 	union {
1050 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1051 		struct mutex		f_pos_lock;
1052 		/* pipes */
1053 		u64			f_pipe;
1054 	};
1055 	loff_t				f_pos;
1056 #ifdef CONFIG_SECURITY
1057 	void				*f_security;
1058 #endif
1059 	/* --- cacheline 2 boundary (128 bytes) --- */
1060 	struct fown_struct		*f_owner;
1061 	errseq_t			f_wb_err;
1062 	errseq_t			f_sb_err;
1063 #ifdef CONFIG_EPOLL
1064 	struct hlist_head		*f_ep;
1065 #endif
1066 	union {
1067 		struct callback_head	f_task_work;
1068 		struct llist_node	f_llist;
1069 		struct file_ra_state	f_ra;
1070 		freeptr_t		f_freeptr;
1071 	};
1072 	/* --- cacheline 3 boundary (192 bytes) --- */
1073 } __randomize_layout
1074   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1075 
1076 struct file_handle {
1077 	__u32 handle_bytes;
1078 	int handle_type;
1079 	/* file identifier */
1080 	unsigned char f_handle[] __counted_by(handle_bytes);
1081 };
1082 
1083 static inline struct file *get_file(struct file *f)
1084 {
1085 	file_ref_inc(&f->f_ref);
1086 	return f;
1087 }
1088 
1089 struct file *get_file_rcu(struct file __rcu **f);
1090 struct file *get_file_active(struct file **f);
1091 
1092 #define file_count(f)	file_ref_read(&(f)->f_ref)
1093 
1094 #define	MAX_NON_LFS	((1UL<<31) - 1)
1095 
1096 /* Page cache limit. The filesystems should put that into their s_maxbytes
1097    limits, otherwise bad things can happen in VM. */
1098 #if BITS_PER_LONG==32
1099 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1100 #elif BITS_PER_LONG==64
1101 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1102 #endif
1103 
1104 /* legacy typedef, should eventually be removed */
1105 typedef void *fl_owner_t;
1106 
1107 struct file_lock;
1108 struct file_lease;
1109 
1110 /* The following constant reflects the upper bound of the file/locking space */
1111 #ifndef OFFSET_MAX
1112 #define OFFSET_MAX	type_max(loff_t)
1113 #define OFFT_OFFSET_MAX	type_max(off_t)
1114 #endif
1115 
1116 int file_f_owner_allocate(struct file *file);
1117 static inline struct fown_struct *file_f_owner(const struct file *file)
1118 {
1119 	return READ_ONCE(file->f_owner);
1120 }
1121 
1122 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1123 
1124 static inline struct inode *file_inode(const struct file *f)
1125 {
1126 	return f->f_inode;
1127 }
1128 
1129 /*
1130  * file_dentry() is a relic from the days that overlayfs was using files with a
1131  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1132  * In those days, file_dentry() was needed to get the underlying fs dentry that
1133  * matches f_inode.
1134  * Files with "fake" path should not exist nowadays, so use an assertion to make
1135  * sure that file_dentry() was not papering over filesystem bugs.
1136  */
1137 static inline struct dentry *file_dentry(const struct file *file)
1138 {
1139 	struct dentry *dentry = file->f_path.dentry;
1140 
1141 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1142 	return dentry;
1143 }
1144 
1145 struct fasync_struct {
1146 	rwlock_t		fa_lock;
1147 	int			magic;
1148 	int			fa_fd;
1149 	struct fasync_struct	*fa_next; /* singly linked list */
1150 	struct file		*fa_file;
1151 	struct rcu_head		fa_rcu;
1152 };
1153 
1154 #define FASYNC_MAGIC 0x4601
1155 
1156 /* SMP safe fasync helpers: */
1157 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1158 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1159 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1160 extern struct fasync_struct *fasync_alloc(void);
1161 extern void fasync_free(struct fasync_struct *);
1162 
1163 /* can be called from interrupts */
1164 extern void kill_fasync(struct fasync_struct **, int, int);
1165 
1166 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1167 extern int f_setown(struct file *filp, int who, int force);
1168 extern void f_delown(struct file *filp);
1169 extern pid_t f_getown(struct file *filp);
1170 extern int send_sigurg(struct file *file);
1171 
1172 /*
1173  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1174  * represented in both.
1175  */
1176 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1177 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1178 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1179 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1180 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1181 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1182 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1183 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1184 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1185 #define SB_SILENT       BIT(15)
1186 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1187 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1188 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1189 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1190 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1191 
1192 /* These sb flags are internal to the kernel */
1193 #define SB_DEAD         BIT(21)
1194 #define SB_DYING        BIT(24)
1195 #define SB_SUBMOUNT     BIT(26)
1196 #define SB_FORCE        BIT(27)
1197 #define SB_NOSEC        BIT(28)
1198 #define SB_BORN         BIT(29)
1199 #define SB_ACTIVE       BIT(30)
1200 #define SB_NOUSER       BIT(31)
1201 
1202 /* These flags relate to encoding and casefolding */
1203 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1204 
1205 #define sb_has_strict_encoding(sb) \
1206 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1207 
1208 /*
1209  *	Umount options
1210  */
1211 
1212 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1213 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1214 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1215 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1216 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1217 
1218 /* sb->s_iflags */
1219 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1220 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1221 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1222 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1223 
1224 /* sb->s_iflags to limit user namespace mounts */
1225 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1226 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1227 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1228 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1229 
1230 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1231 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1232 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1233 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1234 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1235 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1236 
1237 /* Possible states of 'frozen' field */
1238 enum {
1239 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1240 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1241 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1242 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1243 					 * internal threads if needed) */
1244 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1245 };
1246 
1247 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1248 
1249 struct sb_writers {
1250 	unsigned short			frozen;		/* Is sb frozen? */
1251 	int				freeze_kcount;	/* How many kernel freeze requests? */
1252 	int				freeze_ucount;	/* How many userspace freeze requests? */
1253 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1254 };
1255 
1256 struct super_block {
1257 	struct list_head	s_list;		/* Keep this first */
1258 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1259 	unsigned char		s_blocksize_bits;
1260 	unsigned long		s_blocksize;
1261 	loff_t			s_maxbytes;	/* Max file size */
1262 	struct file_system_type	*s_type;
1263 	const struct super_operations	*s_op;
1264 	const struct dquot_operations	*dq_op;
1265 	const struct quotactl_ops	*s_qcop;
1266 	const struct export_operations *s_export_op;
1267 	unsigned long		s_flags;
1268 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1269 	unsigned long		s_magic;
1270 	struct dentry		*s_root;
1271 	struct rw_semaphore	s_umount;
1272 	int			s_count;
1273 	atomic_t		s_active;
1274 #ifdef CONFIG_SECURITY
1275 	void                    *s_security;
1276 #endif
1277 	const struct xattr_handler * const *s_xattr;
1278 #ifdef CONFIG_FS_ENCRYPTION
1279 	const struct fscrypt_operations	*s_cop;
1280 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1281 #endif
1282 #ifdef CONFIG_FS_VERITY
1283 	const struct fsverity_operations *s_vop;
1284 #endif
1285 #if IS_ENABLED(CONFIG_UNICODE)
1286 	struct unicode_map *s_encoding;
1287 	__u16 s_encoding_flags;
1288 #endif
1289 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1290 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1291 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1292 	struct file		*s_bdev_file;
1293 	struct backing_dev_info *s_bdi;
1294 	struct mtd_info		*s_mtd;
1295 	struct hlist_node	s_instances;
1296 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1297 	struct quota_info	s_dquot;	/* Diskquota specific options */
1298 
1299 	struct sb_writers	s_writers;
1300 
1301 	/*
1302 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1303 	 * s_fsnotify_info together for cache efficiency. They are frequently
1304 	 * accessed and rarely modified.
1305 	 */
1306 	void			*s_fs_info;	/* Filesystem private info */
1307 
1308 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1309 	u32			s_time_gran;
1310 	/* Time limits for c/m/atime in seconds */
1311 	time64_t		   s_time_min;
1312 	time64_t		   s_time_max;
1313 #ifdef CONFIG_FSNOTIFY
1314 	u32			s_fsnotify_mask;
1315 	struct fsnotify_sb_info	*s_fsnotify_info;
1316 #endif
1317 
1318 	/*
1319 	 * q: why are s_id and s_sysfs_name not the same? both are human
1320 	 * readable strings that identify the filesystem
1321 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1322 	 * and we want to when a device starts out as single device (s_id is dev
1323 	 * name) but then a device is hot added and we have to switch to
1324 	 * identifying it by UUID
1325 	 * but s_sysfs_name is a handle for programmatic access, and can't
1326 	 * change at runtime
1327 	 */
1328 	char			s_id[32];	/* Informational name */
1329 	uuid_t			s_uuid;		/* UUID */
1330 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1331 
1332 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1333 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1334 
1335 	unsigned int		s_max_links;
1336 
1337 	/*
1338 	 * The next field is for VFS *only*. No filesystems have any business
1339 	 * even looking at it. You had been warned.
1340 	 */
1341 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1342 
1343 	/*
1344 	 * Filesystem subtype.  If non-empty the filesystem type field
1345 	 * in /proc/mounts will be "type.subtype"
1346 	 */
1347 	const char *s_subtype;
1348 
1349 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1350 
1351 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1352 
1353 	/* Number of inodes with nlink == 0 but still referenced */
1354 	atomic_long_t s_remove_count;
1355 
1356 	/* Read-only state of the superblock is being changed */
1357 	int s_readonly_remount;
1358 
1359 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1360 	errseq_t s_wb_err;
1361 
1362 	/* AIO completions deferred from interrupt context */
1363 	struct workqueue_struct *s_dio_done_wq;
1364 	struct hlist_head s_pins;
1365 
1366 	/*
1367 	 * Owning user namespace and default context in which to
1368 	 * interpret filesystem uids, gids, quotas, device nodes,
1369 	 * xattrs and security labels.
1370 	 */
1371 	struct user_namespace *s_user_ns;
1372 
1373 	/*
1374 	 * The list_lru structure is essentially just a pointer to a table
1375 	 * of per-node lru lists, each of which has its own spinlock.
1376 	 * There is no need to put them into separate cachelines.
1377 	 */
1378 	struct list_lru		s_dentry_lru;
1379 	struct list_lru		s_inode_lru;
1380 	struct rcu_head		rcu;
1381 	struct work_struct	destroy_work;
1382 
1383 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1384 
1385 	/*
1386 	 * Indicates how deep in a filesystem stack this SB is
1387 	 */
1388 	int s_stack_depth;
1389 
1390 	/* s_inode_list_lock protects s_inodes */
1391 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1392 	struct list_head	s_inodes;	/* all inodes */
1393 
1394 	spinlock_t		s_inode_wblist_lock;
1395 	struct list_head	s_inodes_wb;	/* writeback inodes */
1396 } __randomize_layout;
1397 
1398 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1399 {
1400 	return inode->i_sb->s_user_ns;
1401 }
1402 
1403 /* Helper functions so that in most cases filesystems will
1404  * not need to deal directly with kuid_t and kgid_t and can
1405  * instead deal with the raw numeric values that are stored
1406  * in the filesystem.
1407  */
1408 static inline uid_t i_uid_read(const struct inode *inode)
1409 {
1410 	return from_kuid(i_user_ns(inode), inode->i_uid);
1411 }
1412 
1413 static inline gid_t i_gid_read(const struct inode *inode)
1414 {
1415 	return from_kgid(i_user_ns(inode), inode->i_gid);
1416 }
1417 
1418 static inline void i_uid_write(struct inode *inode, uid_t uid)
1419 {
1420 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1421 }
1422 
1423 static inline void i_gid_write(struct inode *inode, gid_t gid)
1424 {
1425 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1426 }
1427 
1428 /**
1429  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1430  * @idmap: idmap of the mount the inode was found from
1431  * @inode: inode to map
1432  *
1433  * Return: whe inode's i_uid mapped down according to @idmap.
1434  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1435  */
1436 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1437 					 const struct inode *inode)
1438 {
1439 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1440 }
1441 
1442 /**
1443  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1444  * @idmap: idmap of the mount the inode was found from
1445  * @attr: the new attributes of @inode
1446  * @inode: the inode to update
1447  *
1448  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1449  * mounts into account if the filesystem supports it.
1450  *
1451  * Return: true if @inode's i_uid field needs to be updated, false if not.
1452  */
1453 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1454 				      const struct iattr *attr,
1455 				      const struct inode *inode)
1456 {
1457 	return ((attr->ia_valid & ATTR_UID) &&
1458 		!vfsuid_eq(attr->ia_vfsuid,
1459 			   i_uid_into_vfsuid(idmap, inode)));
1460 }
1461 
1462 /**
1463  * i_uid_update - update @inode's i_uid field
1464  * @idmap: idmap of the mount the inode was found from
1465  * @attr: the new attributes of @inode
1466  * @inode: the inode to update
1467  *
1468  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1469  * mount into the filesystem kuid.
1470  */
1471 static inline void i_uid_update(struct mnt_idmap *idmap,
1472 				const struct iattr *attr,
1473 				struct inode *inode)
1474 {
1475 	if (attr->ia_valid & ATTR_UID)
1476 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1477 					   attr->ia_vfsuid);
1478 }
1479 
1480 /**
1481  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1482  * @idmap: idmap of the mount the inode was found from
1483  * @inode: inode to map
1484  *
1485  * Return: the inode's i_gid mapped down according to @idmap.
1486  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1487  */
1488 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1489 					 const struct inode *inode)
1490 {
1491 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1492 }
1493 
1494 /**
1495  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1496  * @idmap: idmap of the mount the inode was found from
1497  * @attr: the new attributes of @inode
1498  * @inode: the inode to update
1499  *
1500  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1501  * mounts into account if the filesystem supports it.
1502  *
1503  * Return: true if @inode's i_gid field needs to be updated, false if not.
1504  */
1505 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1506 				      const struct iattr *attr,
1507 				      const struct inode *inode)
1508 {
1509 	return ((attr->ia_valid & ATTR_GID) &&
1510 		!vfsgid_eq(attr->ia_vfsgid,
1511 			   i_gid_into_vfsgid(idmap, inode)));
1512 }
1513 
1514 /**
1515  * i_gid_update - update @inode's i_gid field
1516  * @idmap: idmap of the mount the inode was found from
1517  * @attr: the new attributes of @inode
1518  * @inode: the inode to update
1519  *
1520  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1521  * mount into the filesystem kgid.
1522  */
1523 static inline void i_gid_update(struct mnt_idmap *idmap,
1524 				const struct iattr *attr,
1525 				struct inode *inode)
1526 {
1527 	if (attr->ia_valid & ATTR_GID)
1528 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1529 					   attr->ia_vfsgid);
1530 }
1531 
1532 /**
1533  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1534  * @inode: inode to initialize
1535  * @idmap: idmap of the mount the inode was found from
1536  *
1537  * Initialize the i_uid field of @inode. If the inode was found/created via
1538  * an idmapped mount map the caller's fsuid according to @idmap.
1539  */
1540 static inline void inode_fsuid_set(struct inode *inode,
1541 				   struct mnt_idmap *idmap)
1542 {
1543 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1544 }
1545 
1546 /**
1547  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1548  * @inode: inode to initialize
1549  * @idmap: idmap of the mount the inode was found from
1550  *
1551  * Initialize the i_gid field of @inode. If the inode was found/created via
1552  * an idmapped mount map the caller's fsgid according to @idmap.
1553  */
1554 static inline void inode_fsgid_set(struct inode *inode,
1555 				   struct mnt_idmap *idmap)
1556 {
1557 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1558 }
1559 
1560 /**
1561  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1562  * @sb: the superblock we want a mapping in
1563  * @idmap: idmap of the relevant mount
1564  *
1565  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1566  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1567  * the caller's fsuid and fsgid according to the @idmap first.
1568  *
1569  * Return: true if fsuid and fsgid is mapped, false if not.
1570  */
1571 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1572 					struct mnt_idmap *idmap)
1573 {
1574 	struct user_namespace *fs_userns = sb->s_user_ns;
1575 	kuid_t kuid;
1576 	kgid_t kgid;
1577 
1578 	kuid = mapped_fsuid(idmap, fs_userns);
1579 	if (!uid_valid(kuid))
1580 		return false;
1581 	kgid = mapped_fsgid(idmap, fs_userns);
1582 	if (!gid_valid(kgid))
1583 		return false;
1584 	return kuid_has_mapping(fs_userns, kuid) &&
1585 	       kgid_has_mapping(fs_userns, kgid);
1586 }
1587 
1588 struct timespec64 current_time(struct inode *inode);
1589 struct timespec64 inode_set_ctime_current(struct inode *inode);
1590 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1591 					struct timespec64 update);
1592 
1593 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1594 {
1595 	return inode->i_atime_sec;
1596 }
1597 
1598 static inline long inode_get_atime_nsec(const struct inode *inode)
1599 {
1600 	return inode->i_atime_nsec;
1601 }
1602 
1603 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1604 {
1605 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1606 				 .tv_nsec = inode_get_atime_nsec(inode) };
1607 
1608 	return ts;
1609 }
1610 
1611 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1612 						      struct timespec64 ts)
1613 {
1614 	inode->i_atime_sec = ts.tv_sec;
1615 	inode->i_atime_nsec = ts.tv_nsec;
1616 	return ts;
1617 }
1618 
1619 static inline struct timespec64 inode_set_atime(struct inode *inode,
1620 						time64_t sec, long nsec)
1621 {
1622 	struct timespec64 ts = { .tv_sec  = sec,
1623 				 .tv_nsec = nsec };
1624 
1625 	return inode_set_atime_to_ts(inode, ts);
1626 }
1627 
1628 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1629 {
1630 	return inode->i_mtime_sec;
1631 }
1632 
1633 static inline long inode_get_mtime_nsec(const struct inode *inode)
1634 {
1635 	return inode->i_mtime_nsec;
1636 }
1637 
1638 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1639 {
1640 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1641 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1642 	return ts;
1643 }
1644 
1645 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1646 						      struct timespec64 ts)
1647 {
1648 	inode->i_mtime_sec = ts.tv_sec;
1649 	inode->i_mtime_nsec = ts.tv_nsec;
1650 	return ts;
1651 }
1652 
1653 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1654 						time64_t sec, long nsec)
1655 {
1656 	struct timespec64 ts = { .tv_sec  = sec,
1657 				 .tv_nsec = nsec };
1658 	return inode_set_mtime_to_ts(inode, ts);
1659 }
1660 
1661 /*
1662  * Multigrain timestamps
1663  *
1664  * Conditionally use fine-grained ctime and mtime timestamps when there
1665  * are users actively observing them via getattr. The primary use-case
1666  * for this is NFS clients that use the ctime to distinguish between
1667  * different states of the file, and that are often fooled by multiple
1668  * operations that occur in the same coarse-grained timer tick.
1669  */
1670 #define I_CTIME_QUERIED		((u32)BIT(31))
1671 
1672 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1673 {
1674 	return inode->i_ctime_sec;
1675 }
1676 
1677 static inline long inode_get_ctime_nsec(const struct inode *inode)
1678 {
1679 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1680 }
1681 
1682 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1683 {
1684 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1685 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1686 
1687 	return ts;
1688 }
1689 
1690 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1691 
1692 /**
1693  * inode_set_ctime - set the ctime in the inode
1694  * @inode: inode in which to set the ctime
1695  * @sec: tv_sec value to set
1696  * @nsec: tv_nsec value to set
1697  *
1698  * Set the ctime in @inode to { @sec, @nsec }
1699  */
1700 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1701 						time64_t sec, long nsec)
1702 {
1703 	struct timespec64 ts = { .tv_sec  = sec,
1704 				 .tv_nsec = nsec };
1705 
1706 	return inode_set_ctime_to_ts(inode, ts);
1707 }
1708 
1709 struct timespec64 simple_inode_init_ts(struct inode *inode);
1710 
1711 /*
1712  * Snapshotting support.
1713  */
1714 
1715 /*
1716  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1717  * instead.
1718  */
1719 static inline void __sb_end_write(struct super_block *sb, int level)
1720 {
1721 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1722 }
1723 
1724 static inline void __sb_start_write(struct super_block *sb, int level)
1725 {
1726 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1727 }
1728 
1729 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1730 {
1731 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1732 }
1733 
1734 #define __sb_writers_acquired(sb, lev)	\
1735 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1736 #define __sb_writers_release(sb, lev)	\
1737 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1738 
1739 /**
1740  * __sb_write_started - check if sb freeze level is held
1741  * @sb: the super we write to
1742  * @level: the freeze level
1743  *
1744  * * > 0 - sb freeze level is held
1745  * *   0 - sb freeze level is not held
1746  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1747  */
1748 static inline int __sb_write_started(const struct super_block *sb, int level)
1749 {
1750 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1751 }
1752 
1753 /**
1754  * sb_write_started - check if SB_FREEZE_WRITE is held
1755  * @sb: the super we write to
1756  *
1757  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1758  */
1759 static inline bool sb_write_started(const struct super_block *sb)
1760 {
1761 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1762 }
1763 
1764 /**
1765  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1766  * @sb: the super we write to
1767  *
1768  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1769  */
1770 static inline bool sb_write_not_started(const struct super_block *sb)
1771 {
1772 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1773 }
1774 
1775 /**
1776  * file_write_started - check if SB_FREEZE_WRITE is held
1777  * @file: the file we write to
1778  *
1779  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1780  * May be false positive with !S_ISREG, because file_start_write() has
1781  * no effect on !S_ISREG.
1782  */
1783 static inline bool file_write_started(const struct file *file)
1784 {
1785 	if (!S_ISREG(file_inode(file)->i_mode))
1786 		return true;
1787 	return sb_write_started(file_inode(file)->i_sb);
1788 }
1789 
1790 /**
1791  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1792  * @file: the file we write to
1793  *
1794  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1795  * May be false positive with !S_ISREG, because file_start_write() has
1796  * no effect on !S_ISREG.
1797  */
1798 static inline bool file_write_not_started(const struct file *file)
1799 {
1800 	if (!S_ISREG(file_inode(file)->i_mode))
1801 		return true;
1802 	return sb_write_not_started(file_inode(file)->i_sb);
1803 }
1804 
1805 /**
1806  * sb_end_write - drop write access to a superblock
1807  * @sb: the super we wrote to
1808  *
1809  * Decrement number of writers to the filesystem. Wake up possible waiters
1810  * wanting to freeze the filesystem.
1811  */
1812 static inline void sb_end_write(struct super_block *sb)
1813 {
1814 	__sb_end_write(sb, SB_FREEZE_WRITE);
1815 }
1816 
1817 /**
1818  * sb_end_pagefault - drop write access to a superblock from a page fault
1819  * @sb: the super we wrote to
1820  *
1821  * Decrement number of processes handling write page fault to the filesystem.
1822  * Wake up possible waiters wanting to freeze the filesystem.
1823  */
1824 static inline void sb_end_pagefault(struct super_block *sb)
1825 {
1826 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1827 }
1828 
1829 /**
1830  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1831  * @sb: the super we wrote to
1832  *
1833  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1834  * waiters wanting to freeze the filesystem.
1835  */
1836 static inline void sb_end_intwrite(struct super_block *sb)
1837 {
1838 	__sb_end_write(sb, SB_FREEZE_FS);
1839 }
1840 
1841 /**
1842  * sb_start_write - get write access to a superblock
1843  * @sb: the super we write to
1844  *
1845  * When a process wants to write data or metadata to a file system (i.e. dirty
1846  * a page or an inode), it should embed the operation in a sb_start_write() -
1847  * sb_end_write() pair to get exclusion against file system freezing. This
1848  * function increments number of writers preventing freezing. If the file
1849  * system is already frozen, the function waits until the file system is
1850  * thawed.
1851  *
1852  * Since freeze protection behaves as a lock, users have to preserve
1853  * ordering of freeze protection and other filesystem locks. Generally,
1854  * freeze protection should be the outermost lock. In particular, we have:
1855  *
1856  * sb_start_write
1857  *   -> i_mutex			(write path, truncate, directory ops, ...)
1858  *   -> s_umount		(freeze_super, thaw_super)
1859  */
1860 static inline void sb_start_write(struct super_block *sb)
1861 {
1862 	__sb_start_write(sb, SB_FREEZE_WRITE);
1863 }
1864 
1865 static inline bool sb_start_write_trylock(struct super_block *sb)
1866 {
1867 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1868 }
1869 
1870 /**
1871  * sb_start_pagefault - get write access to a superblock from a page fault
1872  * @sb: the super we write to
1873  *
1874  * When a process starts handling write page fault, it should embed the
1875  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1876  * exclusion against file system freezing. This is needed since the page fault
1877  * is going to dirty a page. This function increments number of running page
1878  * faults preventing freezing. If the file system is already frozen, the
1879  * function waits until the file system is thawed.
1880  *
1881  * Since page fault freeze protection behaves as a lock, users have to preserve
1882  * ordering of freeze protection and other filesystem locks. It is advised to
1883  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1884  * handling code implies lock dependency:
1885  *
1886  * mmap_lock
1887  *   -> sb_start_pagefault
1888  */
1889 static inline void sb_start_pagefault(struct super_block *sb)
1890 {
1891 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1892 }
1893 
1894 /**
1895  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1896  * @sb: the super we write to
1897  *
1898  * This is the third level of protection against filesystem freezing. It is
1899  * free for use by a filesystem. The only requirement is that it must rank
1900  * below sb_start_pagefault.
1901  *
1902  * For example filesystem can call sb_start_intwrite() when starting a
1903  * transaction which somewhat eases handling of freezing for internal sources
1904  * of filesystem changes (internal fs threads, discarding preallocation on file
1905  * close, etc.).
1906  */
1907 static inline void sb_start_intwrite(struct super_block *sb)
1908 {
1909 	__sb_start_write(sb, SB_FREEZE_FS);
1910 }
1911 
1912 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1913 {
1914 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1915 }
1916 
1917 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1918 			    const struct inode *inode);
1919 
1920 /*
1921  * VFS helper functions..
1922  */
1923 int vfs_create(struct mnt_idmap *, struct inode *,
1924 	       struct dentry *, umode_t, bool);
1925 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1926 	      struct dentry *, umode_t);
1927 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1928               umode_t, dev_t);
1929 int vfs_symlink(struct mnt_idmap *, struct inode *,
1930 		struct dentry *, const char *);
1931 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1932 	     struct dentry *, struct inode **);
1933 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1934 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1935 	       struct inode **);
1936 
1937 /**
1938  * struct renamedata - contains all information required for renaming
1939  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1940  * @old_dir:           parent of source
1941  * @old_dentry:                source
1942  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1943  * @new_dir:           parent of destination
1944  * @new_dentry:                destination
1945  * @delegated_inode:   returns an inode needing a delegation break
1946  * @flags:             rename flags
1947  */
1948 struct renamedata {
1949 	struct mnt_idmap *old_mnt_idmap;
1950 	struct inode *old_dir;
1951 	struct dentry *old_dentry;
1952 	struct mnt_idmap *new_mnt_idmap;
1953 	struct inode *new_dir;
1954 	struct dentry *new_dentry;
1955 	struct inode **delegated_inode;
1956 	unsigned int flags;
1957 } __randomize_layout;
1958 
1959 int vfs_rename(struct renamedata *);
1960 
1961 static inline int vfs_whiteout(struct mnt_idmap *idmap,
1962 			       struct inode *dir, struct dentry *dentry)
1963 {
1964 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1965 			 WHITEOUT_DEV);
1966 }
1967 
1968 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1969 				 const struct path *parentpath,
1970 				 umode_t mode, int open_flag,
1971 				 const struct cred *cred);
1972 struct file *kernel_file_open(const struct path *path, int flags,
1973 			      const struct cred *cred);
1974 
1975 int vfs_mkobj(struct dentry *, umode_t,
1976 		int (*f)(struct dentry *, umode_t, void *),
1977 		void *);
1978 
1979 int vfs_fchown(struct file *file, uid_t user, gid_t group);
1980 int vfs_fchmod(struct file *file, umode_t mode);
1981 int vfs_utimes(const struct path *path, struct timespec64 *times);
1982 
1983 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1984 
1985 #ifdef CONFIG_COMPAT
1986 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
1987 					unsigned long arg);
1988 #else
1989 #define compat_ptr_ioctl NULL
1990 #endif
1991 
1992 /*
1993  * VFS file helper functions.
1994  */
1995 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
1996 		      const struct inode *dir, umode_t mode);
1997 extern bool may_open_dev(const struct path *path);
1998 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
1999 			const struct inode *dir, umode_t mode);
2000 bool in_group_or_capable(struct mnt_idmap *idmap,
2001 			 const struct inode *inode, vfsgid_t vfsgid);
2002 
2003 /*
2004  * This is the "filldir" function type, used by readdir() to let
2005  * the kernel specify what kind of dirent layout it wants to have.
2006  * This allows the kernel to read directories into kernel space or
2007  * to have different dirent layouts depending on the binary type.
2008  * Return 'true' to keep going and 'false' if there are no more entries.
2009  */
2010 struct dir_context;
2011 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2012 			 unsigned);
2013 
2014 struct dir_context {
2015 	filldir_t actor;
2016 	loff_t pos;
2017 };
2018 
2019 /*
2020  * These flags let !MMU mmap() govern direct device mapping vs immediate
2021  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2022  *
2023  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2024  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2025  * NOMMU_MAP_READ:	Can be mapped for reading
2026  * NOMMU_MAP_WRITE:	Can be mapped for writing
2027  * NOMMU_MAP_EXEC:	Can be mapped for execution
2028  */
2029 #define NOMMU_MAP_COPY		0x00000001
2030 #define NOMMU_MAP_DIRECT	0x00000008
2031 #define NOMMU_MAP_READ		VM_MAYREAD
2032 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2033 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2034 
2035 #define NOMMU_VMFLAGS \
2036 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2037 
2038 /*
2039  * These flags control the behavior of the remap_file_range function pointer.
2040  * If it is called with len == 0 that means "remap to end of source file".
2041  * See Documentation/filesystems/vfs.rst for more details about this call.
2042  *
2043  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2044  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2045  */
2046 #define REMAP_FILE_DEDUP		(1 << 0)
2047 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2048 
2049 /*
2050  * These flags signal that the caller is ok with altering various aspects of
2051  * the behavior of the remap operation.  The changes must be made by the
2052  * implementation; the vfs remap helper functions can take advantage of them.
2053  * Flags in this category exist to preserve the quirky behavior of the hoisted
2054  * btrfs clone/dedupe ioctls.
2055  */
2056 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2057 
2058 /*
2059  * These flags control the behavior of vfs_copy_file_range().
2060  * They are not available to the user via syscall.
2061  *
2062  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2063  */
2064 #define COPY_FILE_SPLICE		(1 << 0)
2065 
2066 struct iov_iter;
2067 struct io_uring_cmd;
2068 struct offset_ctx;
2069 
2070 typedef unsigned int __bitwise fop_flags_t;
2071 
2072 struct file_operations {
2073 	struct module *owner;
2074 	fop_flags_t fop_flags;
2075 	loff_t (*llseek) (struct file *, loff_t, int);
2076 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2077 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2078 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2079 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2080 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2081 			unsigned int flags);
2082 	int (*iterate_shared) (struct file *, struct dir_context *);
2083 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2084 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2085 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2086 	int (*mmap) (struct file *, struct vm_area_struct *);
2087 	int (*open) (struct inode *, struct file *);
2088 	int (*flush) (struct file *, fl_owner_t id);
2089 	int (*release) (struct inode *, struct file *);
2090 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2091 	int (*fasync) (int, struct file *, int);
2092 	int (*lock) (struct file *, int, struct file_lock *);
2093 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2094 	int (*check_flags)(int);
2095 	int (*flock) (struct file *, int, struct file_lock *);
2096 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2097 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2098 	void (*splice_eof)(struct file *file);
2099 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2100 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2101 			  loff_t len);
2102 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2103 #ifndef CONFIG_MMU
2104 	unsigned (*mmap_capabilities)(struct file *);
2105 #endif
2106 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2107 			loff_t, size_t, unsigned int);
2108 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2109 				   struct file *file_out, loff_t pos_out,
2110 				   loff_t len, unsigned int remap_flags);
2111 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2112 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2113 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2114 				unsigned int poll_flags);
2115 } __randomize_layout;
2116 
2117 /* Supports async buffered reads */
2118 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2119 /* Supports async buffered writes */
2120 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2121 /* Supports synchronous page faults for mappings */
2122 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2123 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2124 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2125 /* Contains huge pages */
2126 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2127 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2128 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2129 /* Supports asynchronous lock callbacks */
2130 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2131 
2132 /* Wrap a directory iterator that needs exclusive inode access */
2133 int wrap_directory_iterator(struct file *, struct dir_context *,
2134 			    int (*) (struct file *, struct dir_context *));
2135 #define WRAP_DIR_ITER(x) \
2136 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2137 	{ return wrap_directory_iterator(file, ctx, x); }
2138 
2139 struct inode_operations {
2140 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2141 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2142 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2143 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2144 
2145 	int (*readlink) (struct dentry *, char __user *,int);
2146 
2147 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2148 		       umode_t, bool);
2149 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2150 	int (*unlink) (struct inode *,struct dentry *);
2151 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2152 			const char *);
2153 	int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2154 		      umode_t);
2155 	int (*rmdir) (struct inode *,struct dentry *);
2156 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2157 		      umode_t,dev_t);
2158 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2159 			struct inode *, struct dentry *, unsigned int);
2160 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2161 	int (*getattr) (struct mnt_idmap *, const struct path *,
2162 			struct kstat *, u32, unsigned int);
2163 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2164 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2165 		      u64 len);
2166 	int (*update_time)(struct inode *, int);
2167 	int (*atomic_open)(struct inode *, struct dentry *,
2168 			   struct file *, unsigned open_flag,
2169 			   umode_t create_mode);
2170 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2171 			struct file *, umode_t);
2172 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2173 				     int);
2174 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2175 		       struct posix_acl *, int);
2176 	int (*fileattr_set)(struct mnt_idmap *idmap,
2177 			    struct dentry *dentry, struct fileattr *fa);
2178 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2179 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2180 } ____cacheline_aligned;
2181 
2182 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2183 {
2184 	return file->f_op->mmap(file, vma);
2185 }
2186 
2187 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2188 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2189 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2190 				   loff_t, size_t, unsigned int);
2191 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2192 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2193 				    struct file *file_out, loff_t pos_out,
2194 				    loff_t *len, unsigned int remap_flags,
2195 				    const struct iomap_ops *dax_read_ops);
2196 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2197 				  struct file *file_out, loff_t pos_out,
2198 				  loff_t *count, unsigned int remap_flags);
2199 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2200 				   struct file *file_out, loff_t pos_out,
2201 				   loff_t len, unsigned int remap_flags);
2202 extern int vfs_dedupe_file_range(struct file *file,
2203 				 struct file_dedupe_range *same);
2204 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2205 					struct file *dst_file, loff_t dst_pos,
2206 					loff_t len, unsigned int remap_flags);
2207 
2208 /**
2209  * enum freeze_holder - holder of the freeze
2210  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2211  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2212  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2213  *
2214  * Indicate who the owner of the freeze or thaw request is and whether
2215  * the freeze needs to be exclusive or can nest.
2216  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2217  * same holder aren't allowed. It is however allowed to hold a single
2218  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2219  * the same time. This is relied upon by some filesystems during online
2220  * repair or similar.
2221  */
2222 enum freeze_holder {
2223 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2224 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2225 	FREEZE_MAY_NEST		= (1U << 2),
2226 };
2227 
2228 struct super_operations {
2229    	struct inode *(*alloc_inode)(struct super_block *sb);
2230 	void (*destroy_inode)(struct inode *);
2231 	void (*free_inode)(struct inode *);
2232 
2233    	void (*dirty_inode) (struct inode *, int flags);
2234 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2235 	int (*drop_inode) (struct inode *);
2236 	void (*evict_inode) (struct inode *);
2237 	void (*put_super) (struct super_block *);
2238 	int (*sync_fs)(struct super_block *sb, int wait);
2239 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2240 	int (*freeze_fs) (struct super_block *);
2241 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2242 	int (*unfreeze_fs) (struct super_block *);
2243 	int (*statfs) (struct dentry *, struct kstatfs *);
2244 	int (*remount_fs) (struct super_block *, int *, char *);
2245 	void (*umount_begin) (struct super_block *);
2246 
2247 	int (*show_options)(struct seq_file *, struct dentry *);
2248 	int (*show_devname)(struct seq_file *, struct dentry *);
2249 	int (*show_path)(struct seq_file *, struct dentry *);
2250 	int (*show_stats)(struct seq_file *, struct dentry *);
2251 #ifdef CONFIG_QUOTA
2252 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2253 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2254 	struct dquot __rcu **(*get_dquots)(struct inode *);
2255 #endif
2256 	long (*nr_cached_objects)(struct super_block *,
2257 				  struct shrink_control *);
2258 	long (*free_cached_objects)(struct super_block *,
2259 				    struct shrink_control *);
2260 	void (*shutdown)(struct super_block *sb);
2261 };
2262 
2263 /*
2264  * Inode flags - they have no relation to superblock flags now
2265  */
2266 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2267 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2268 #define S_APPEND	(1 << 2)  /* Append-only file */
2269 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2270 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2271 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2272 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2273 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2274 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2275 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2276 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2277 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2278 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2279 #ifdef CONFIG_FS_DAX
2280 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2281 #else
2282 #define S_DAX		0	  /* Make all the DAX code disappear */
2283 #endif
2284 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2285 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2286 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2287 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2288 
2289 /*
2290  * Note that nosuid etc flags are inode-specific: setting some file-system
2291  * flags just means all the inodes inherit those flags by default. It might be
2292  * possible to override it selectively if you really wanted to with some
2293  * ioctl() that is not currently implemented.
2294  *
2295  * Exception: SB_RDONLY is always applied to the entire file system.
2296  *
2297  * Unfortunately, it is possible to change a filesystems flags with it mounted
2298  * with files in use.  This means that all of the inodes will not have their
2299  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2300  * flags, so these have to be checked separately. -- [email protected]
2301  */
2302 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2303 
2304 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2305 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2306 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2307 					((inode)->i_flags & S_SYNC))
2308 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2309 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2310 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2311 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2312 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2313 
2314 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2315 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2316 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2317 
2318 #ifdef CONFIG_FS_POSIX_ACL
2319 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2320 #else
2321 #define IS_POSIXACL(inode)	0
2322 #endif
2323 
2324 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2325 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2326 
2327 #ifdef CONFIG_SWAP
2328 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2329 #else
2330 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2331 #endif
2332 
2333 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2334 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2335 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2336 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2337 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2338 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2339 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2340 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2341 
2342 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2343 				 (inode)->i_rdev == WHITEOUT_DEV)
2344 
2345 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2346 				   struct inode *inode)
2347 {
2348 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2349 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2350 }
2351 
2352 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2353 {
2354 	*kiocb = (struct kiocb) {
2355 		.ki_filp = filp,
2356 		.ki_flags = filp->f_iocb_flags,
2357 		.ki_ioprio = get_current_ioprio(),
2358 	};
2359 }
2360 
2361 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2362 			       struct file *filp)
2363 {
2364 	*kiocb = (struct kiocb) {
2365 		.ki_filp = filp,
2366 		.ki_flags = kiocb_src->ki_flags,
2367 		.ki_ioprio = kiocb_src->ki_ioprio,
2368 		.ki_pos = kiocb_src->ki_pos,
2369 	};
2370 }
2371 
2372 /*
2373  * Inode state bits.  Protected by inode->i_lock
2374  *
2375  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2376  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2377  *
2378  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2379  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2380  * various stages of removing an inode.
2381  *
2382  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2383  *
2384  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2385  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2386  *			Timestamp updates are the usual cause.
2387  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2388  *			these changes separately from I_DIRTY_SYNC so that we
2389  *			don't have to write inode on fdatasync() when only
2390  *			e.g. the timestamps have changed.
2391  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2392  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2393  *			lazytime mount option is enabled.  We keep track of this
2394  *			separately from I_DIRTY_SYNC in order to implement
2395  *			lazytime.  This gets cleared if I_DIRTY_INODE
2396  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2397  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2398  *			in place because writeback might already be in progress
2399  *			and we don't want to lose the time update
2400  * I_NEW		Serves as both a mutex and completion notification.
2401  *			New inodes set I_NEW.  If two processes both create
2402  *			the same inode, one of them will release its inode and
2403  *			wait for I_NEW to be released before returning.
2404  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2405  *			also cause waiting on I_NEW, without I_NEW actually
2406  *			being set.  find_inode() uses this to prevent returning
2407  *			nearly-dead inodes.
2408  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2409  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2410  *			cleared.
2411  * I_FREEING		Set when inode is about to be freed but still has dirty
2412  *			pages or buffers attached or the inode itself is still
2413  *			dirty.
2414  * I_CLEAR		Added by clear_inode().  In this state the inode is
2415  *			clean and can be destroyed.  Inode keeps I_FREEING.
2416  *
2417  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2418  *			prohibited for many purposes.  iget() must wait for
2419  *			the inode to be completely released, then create it
2420  *			anew.  Other functions will just ignore such inodes,
2421  *			if appropriate.  I_NEW is used for waiting.
2422  *
2423  * I_SYNC		Writeback of inode is running. The bit is set during
2424  *			data writeback, and cleared with a wakeup on the bit
2425  *			address once it is done. The bit is also used to pin
2426  *			the inode in memory for flusher thread.
2427  *
2428  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2429  *
2430  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2431  *			synchronize competing switching instances and to tell
2432  *			wb stat updates to grab the i_pages lock.  See
2433  *			inode_switch_wbs_work_fn() for details.
2434  *
2435  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2436  *			and work dirs among overlayfs mounts.
2437  *
2438  * I_CREATING		New object's inode in the middle of setting up.
2439  *
2440  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2441  *
2442  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2443  *			Used to detect that mark_inode_dirty() should not move
2444  * 			inode between dirty lists.
2445  *
2446  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2447  *
2448  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2449  *			i_count.
2450  *
2451  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2452  *
2453  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2454  * upon. There's one free address left.
2455  */
2456 #define __I_NEW			0
2457 #define I_NEW			(1 << __I_NEW)
2458 #define __I_SYNC		1
2459 #define I_SYNC			(1 << __I_SYNC)
2460 #define __I_LRU_ISOLATING	2
2461 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2462 
2463 #define I_DIRTY_SYNC		(1 << 3)
2464 #define I_DIRTY_DATASYNC	(1 << 4)
2465 #define I_DIRTY_PAGES		(1 << 5)
2466 #define I_WILL_FREE		(1 << 6)
2467 #define I_FREEING		(1 << 7)
2468 #define I_CLEAR			(1 << 8)
2469 #define I_REFERENCED		(1 << 9)
2470 #define I_LINKABLE		(1 << 10)
2471 #define I_DIRTY_TIME		(1 << 11)
2472 #define I_WB_SWITCH		(1 << 12)
2473 #define I_OVL_INUSE		(1 << 13)
2474 #define I_CREATING		(1 << 14)
2475 #define I_DONTCACHE		(1 << 15)
2476 #define I_SYNC_QUEUED		(1 << 16)
2477 #define I_PINNING_NETFS_WB	(1 << 17)
2478 
2479 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2480 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2481 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2482 
2483 extern void __mark_inode_dirty(struct inode *, int);
2484 static inline void mark_inode_dirty(struct inode *inode)
2485 {
2486 	__mark_inode_dirty(inode, I_DIRTY);
2487 }
2488 
2489 static inline void mark_inode_dirty_sync(struct inode *inode)
2490 {
2491 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2492 }
2493 
2494 /*
2495  * Returns true if the given inode itself only has dirty timestamps (its pages
2496  * may still be dirty) and isn't currently being allocated or freed.
2497  * Filesystems should call this if when writing an inode when lazytime is
2498  * enabled, they want to opportunistically write the timestamps of other inodes
2499  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2500  * if the given inode is in need of such an opportunistic update.  Requires
2501  * i_lock, or at least later re-checking under i_lock.
2502  */
2503 static inline bool inode_is_dirtytime_only(struct inode *inode)
2504 {
2505 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2506 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2507 }
2508 
2509 extern void inc_nlink(struct inode *inode);
2510 extern void drop_nlink(struct inode *inode);
2511 extern void clear_nlink(struct inode *inode);
2512 extern void set_nlink(struct inode *inode, unsigned int nlink);
2513 
2514 static inline void inode_inc_link_count(struct inode *inode)
2515 {
2516 	inc_nlink(inode);
2517 	mark_inode_dirty(inode);
2518 }
2519 
2520 static inline void inode_dec_link_count(struct inode *inode)
2521 {
2522 	drop_nlink(inode);
2523 	mark_inode_dirty(inode);
2524 }
2525 
2526 enum file_time_flags {
2527 	S_ATIME = 1,
2528 	S_MTIME = 2,
2529 	S_CTIME = 4,
2530 	S_VERSION = 8,
2531 };
2532 
2533 extern bool atime_needs_update(const struct path *, struct inode *);
2534 extern void touch_atime(const struct path *);
2535 int inode_update_time(struct inode *inode, int flags);
2536 
2537 static inline void file_accessed(struct file *file)
2538 {
2539 	if (!(file->f_flags & O_NOATIME))
2540 		touch_atime(&file->f_path);
2541 }
2542 
2543 extern int file_modified(struct file *file);
2544 int kiocb_modified(struct kiocb *iocb);
2545 
2546 int sync_inode_metadata(struct inode *inode, int wait);
2547 
2548 struct file_system_type {
2549 	const char *name;
2550 	int fs_flags;
2551 #define FS_REQUIRES_DEV		1
2552 #define FS_BINARY_MOUNTDATA	2
2553 #define FS_HAS_SUBTYPE		4
2554 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2555 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2556 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2557 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2558 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2559 	int (*init_fs_context)(struct fs_context *);
2560 	const struct fs_parameter_spec *parameters;
2561 	struct dentry *(*mount) (struct file_system_type *, int,
2562 		       const char *, void *);
2563 	void (*kill_sb) (struct super_block *);
2564 	struct module *owner;
2565 	struct file_system_type * next;
2566 	struct hlist_head fs_supers;
2567 
2568 	struct lock_class_key s_lock_key;
2569 	struct lock_class_key s_umount_key;
2570 	struct lock_class_key s_vfs_rename_key;
2571 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2572 
2573 	struct lock_class_key i_lock_key;
2574 	struct lock_class_key i_mutex_key;
2575 	struct lock_class_key invalidate_lock_key;
2576 	struct lock_class_key i_mutex_dir_key;
2577 };
2578 
2579 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2580 
2581 /**
2582  * is_mgtime: is this inode using multigrain timestamps
2583  * @inode: inode to test for multigrain timestamps
2584  *
2585  * Return true if the inode uses multigrain timestamps, false otherwise.
2586  */
2587 static inline bool is_mgtime(const struct inode *inode)
2588 {
2589 	return inode->i_opflags & IOP_MGTIME;
2590 }
2591 
2592 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2593 	int flags, const char *dev_name, void *data,
2594 	int (*fill_super)(struct super_block *, void *, int));
2595 extern struct dentry *mount_single(struct file_system_type *fs_type,
2596 	int flags, void *data,
2597 	int (*fill_super)(struct super_block *, void *, int));
2598 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2599 	int flags, void *data,
2600 	int (*fill_super)(struct super_block *, void *, int));
2601 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2602 void retire_super(struct super_block *sb);
2603 void generic_shutdown_super(struct super_block *sb);
2604 void kill_block_super(struct super_block *sb);
2605 void kill_anon_super(struct super_block *sb);
2606 void kill_litter_super(struct super_block *sb);
2607 void deactivate_super(struct super_block *sb);
2608 void deactivate_locked_super(struct super_block *sb);
2609 int set_anon_super(struct super_block *s, void *data);
2610 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2611 int get_anon_bdev(dev_t *);
2612 void free_anon_bdev(dev_t);
2613 struct super_block *sget_fc(struct fs_context *fc,
2614 			    int (*test)(struct super_block *, struct fs_context *),
2615 			    int (*set)(struct super_block *, struct fs_context *));
2616 struct super_block *sget(struct file_system_type *type,
2617 			int (*test)(struct super_block *,void *),
2618 			int (*set)(struct super_block *,void *),
2619 			int flags, void *data);
2620 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2621 
2622 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2623 #define fops_get(fops) ({						\
2624 	const struct file_operations *_fops = (fops);			\
2625 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2626 })
2627 
2628 #define fops_put(fops) ({						\
2629 	const struct file_operations *_fops = (fops);			\
2630 	if (_fops)							\
2631 		module_put((_fops)->owner);				\
2632 })
2633 
2634 /*
2635  * This one is to be used *ONLY* from ->open() instances.
2636  * fops must be non-NULL, pinned down *and* module dependencies
2637  * should be sufficient to pin the caller down as well.
2638  */
2639 #define replace_fops(f, fops) \
2640 	do {	\
2641 		struct file *__file = (f); \
2642 		fops_put(__file->f_op); \
2643 		BUG_ON(!(__file->f_op = (fops))); \
2644 	} while(0)
2645 
2646 extern int register_filesystem(struct file_system_type *);
2647 extern int unregister_filesystem(struct file_system_type *);
2648 extern int vfs_statfs(const struct path *, struct kstatfs *);
2649 extern int user_statfs(const char __user *, struct kstatfs *);
2650 extern int fd_statfs(int, struct kstatfs *);
2651 int freeze_super(struct super_block *super, enum freeze_holder who);
2652 int thaw_super(struct super_block *super, enum freeze_holder who);
2653 extern __printf(2, 3)
2654 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2655 extern int super_setup_bdi(struct super_block *sb);
2656 
2657 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2658 {
2659 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2660 		len = sizeof(sb->s_uuid);
2661 	sb->s_uuid_len = len;
2662 	memcpy(&sb->s_uuid, uuid, len);
2663 }
2664 
2665 /* set sb sysfs name based on sb->s_bdev */
2666 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2667 {
2668 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2669 }
2670 
2671 /* set sb sysfs name based on sb->s_uuid */
2672 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2673 {
2674 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2675 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2676 }
2677 
2678 /* set sb sysfs name based on sb->s_id */
2679 static inline void super_set_sysfs_name_id(struct super_block *sb)
2680 {
2681 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2682 }
2683 
2684 /* try to use something standard before you use this */
2685 __printf(2, 3)
2686 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2687 {
2688 	va_list args;
2689 
2690 	va_start(args, fmt);
2691 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2692 	va_end(args);
2693 }
2694 
2695 extern int current_umask(void);
2696 
2697 extern void ihold(struct inode * inode);
2698 extern void iput(struct inode *);
2699 int inode_update_timestamps(struct inode *inode, int flags);
2700 int generic_update_time(struct inode *, int);
2701 
2702 /* /sys/fs */
2703 extern struct kobject *fs_kobj;
2704 
2705 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2706 
2707 /* fs/open.c */
2708 struct audit_names;
2709 struct filename {
2710 	const char		*name;	/* pointer to actual string */
2711 	const __user char	*uptr;	/* original userland pointer */
2712 	atomic_t		refcnt;
2713 	struct audit_names	*aname;
2714 	const char		iname[];
2715 };
2716 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2717 
2718 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2719 {
2720 	return mnt_idmap(file->f_path.mnt);
2721 }
2722 
2723 /**
2724  * is_idmapped_mnt - check whether a mount is mapped
2725  * @mnt: the mount to check
2726  *
2727  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2728  *
2729  * Return: true if mount is mapped, false if not.
2730  */
2731 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2732 {
2733 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2734 }
2735 
2736 extern long vfs_truncate(const struct path *, loff_t);
2737 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2738 		unsigned int time_attrs, struct file *filp);
2739 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2740 			loff_t len);
2741 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2742 			umode_t mode);
2743 extern struct file *file_open_name(struct filename *, int, umode_t);
2744 extern struct file *filp_open(const char *, int, umode_t);
2745 extern struct file *file_open_root(const struct path *,
2746 				   const char *, int, umode_t);
2747 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2748 				   const char *name, int flags, umode_t mode)
2749 {
2750 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2751 			      name, flags, mode);
2752 }
2753 struct file *dentry_open(const struct path *path, int flags,
2754 			 const struct cred *creds);
2755 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2756 			   const struct cred *cred);
2757 struct path *backing_file_user_path(struct file *f);
2758 
2759 /*
2760  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2761  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2762  * filesystem.  When the mapped file path and inode number are displayed to
2763  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2764  * path and inode number to display to the user, which is the path of the fd
2765  * that user has requested to map and the inode number that would be returned
2766  * by fstat() on that same fd.
2767  */
2768 /* Get the path to display in /proc/<pid>/maps */
2769 static inline const struct path *file_user_path(struct file *f)
2770 {
2771 	if (unlikely(f->f_mode & FMODE_BACKING))
2772 		return backing_file_user_path(f);
2773 	return &f->f_path;
2774 }
2775 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2776 static inline const struct inode *file_user_inode(struct file *f)
2777 {
2778 	if (unlikely(f->f_mode & FMODE_BACKING))
2779 		return d_inode(backing_file_user_path(f)->dentry);
2780 	return file_inode(f);
2781 }
2782 
2783 static inline struct file *file_clone_open(struct file *file)
2784 {
2785 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2786 }
2787 extern int filp_close(struct file *, fl_owner_t id);
2788 
2789 extern struct filename *getname_flags(const char __user *, int);
2790 extern struct filename *getname_uflags(const char __user *, int);
2791 extern struct filename *getname(const char __user *);
2792 extern struct filename *getname_kernel(const char *);
2793 extern struct filename *__getname_maybe_null(const char __user *);
2794 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2795 {
2796 	if (!(flags & AT_EMPTY_PATH))
2797 		return getname(name);
2798 
2799 	if (!name)
2800 		return NULL;
2801 	return __getname_maybe_null(name);
2802 }
2803 extern void putname(struct filename *name);
2804 
2805 extern int finish_open(struct file *file, struct dentry *dentry,
2806 			int (*open)(struct inode *, struct file *));
2807 extern int finish_no_open(struct file *file, struct dentry *dentry);
2808 
2809 /* Helper for the simple case when original dentry is used */
2810 static inline int finish_open_simple(struct file *file, int error)
2811 {
2812 	if (error)
2813 		return error;
2814 
2815 	return finish_open(file, file->f_path.dentry, NULL);
2816 }
2817 
2818 /* fs/dcache.c */
2819 extern void __init vfs_caches_init_early(void);
2820 extern void __init vfs_caches_init(void);
2821 
2822 extern struct kmem_cache *names_cachep;
2823 
2824 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2825 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2826 
2827 extern struct super_block *blockdev_superblock;
2828 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2829 {
2830 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2831 }
2832 
2833 void emergency_thaw_all(void);
2834 extern int sync_filesystem(struct super_block *);
2835 extern const struct file_operations def_blk_fops;
2836 extern const struct file_operations def_chr_fops;
2837 
2838 /* fs/char_dev.c */
2839 #define CHRDEV_MAJOR_MAX 512
2840 /* Marks the bottom of the first segment of free char majors */
2841 #define CHRDEV_MAJOR_DYN_END 234
2842 /* Marks the top and bottom of the second segment of free char majors */
2843 #define CHRDEV_MAJOR_DYN_EXT_START 511
2844 #define CHRDEV_MAJOR_DYN_EXT_END 384
2845 
2846 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2847 extern int register_chrdev_region(dev_t, unsigned, const char *);
2848 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2849 			     unsigned int count, const char *name,
2850 			     const struct file_operations *fops);
2851 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2852 				unsigned int count, const char *name);
2853 extern void unregister_chrdev_region(dev_t, unsigned);
2854 extern void chrdev_show(struct seq_file *,off_t);
2855 
2856 static inline int register_chrdev(unsigned int major, const char *name,
2857 				  const struct file_operations *fops)
2858 {
2859 	return __register_chrdev(major, 0, 256, name, fops);
2860 }
2861 
2862 static inline void unregister_chrdev(unsigned int major, const char *name)
2863 {
2864 	__unregister_chrdev(major, 0, 256, name);
2865 }
2866 
2867 extern void init_special_inode(struct inode *, umode_t, dev_t);
2868 
2869 /* Invalid inode operations -- fs/bad_inode.c */
2870 extern void make_bad_inode(struct inode *);
2871 extern bool is_bad_inode(struct inode *);
2872 
2873 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2874 						loff_t lend);
2875 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2876 extern int __must_check file_write_and_wait_range(struct file *file,
2877 						loff_t start, loff_t end);
2878 
2879 static inline int file_write_and_wait(struct file *file)
2880 {
2881 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2882 }
2883 
2884 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2885 			   int datasync);
2886 extern int vfs_fsync(struct file *file, int datasync);
2887 
2888 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2889 				unsigned int flags);
2890 
2891 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2892 {
2893 	return (iocb->ki_flags & IOCB_DSYNC) ||
2894 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2895 }
2896 
2897 /*
2898  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2899  * to already be updated for the write, and will return either the amount
2900  * of bytes passed in, or an error if syncing the file failed.
2901  */
2902 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2903 {
2904 	if (iocb_is_dsync(iocb)) {
2905 		int ret = vfs_fsync_range(iocb->ki_filp,
2906 				iocb->ki_pos - count, iocb->ki_pos - 1,
2907 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2908 		if (ret)
2909 			return ret;
2910 	}
2911 
2912 	return count;
2913 }
2914 
2915 extern void emergency_sync(void);
2916 extern void emergency_remount(void);
2917 
2918 #ifdef CONFIG_BLOCK
2919 extern int bmap(struct inode *inode, sector_t *block);
2920 #else
2921 static inline int bmap(struct inode *inode,  sector_t *block)
2922 {
2923 	return -EINVAL;
2924 }
2925 #endif
2926 
2927 int notify_change(struct mnt_idmap *, struct dentry *,
2928 		  struct iattr *, struct inode **);
2929 int inode_permission(struct mnt_idmap *, struct inode *, int);
2930 int generic_permission(struct mnt_idmap *, struct inode *, int);
2931 static inline int file_permission(struct file *file, int mask)
2932 {
2933 	return inode_permission(file_mnt_idmap(file),
2934 				file_inode(file), mask);
2935 }
2936 static inline int path_permission(const struct path *path, int mask)
2937 {
2938 	return inode_permission(mnt_idmap(path->mnt),
2939 				d_inode(path->dentry), mask);
2940 }
2941 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2942 		   struct inode *inode);
2943 
2944 static inline bool execute_ok(struct inode *inode)
2945 {
2946 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2947 }
2948 
2949 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2950 {
2951 	return (inode->i_mode ^ mode) & S_IFMT;
2952 }
2953 
2954 /**
2955  * file_start_write - get write access to a superblock for regular file io
2956  * @file: the file we want to write to
2957  *
2958  * This is a variant of sb_start_write() which is a noop on non-regualr file.
2959  * Should be matched with a call to file_end_write().
2960  */
2961 static inline void file_start_write(struct file *file)
2962 {
2963 	if (!S_ISREG(file_inode(file)->i_mode))
2964 		return;
2965 	sb_start_write(file_inode(file)->i_sb);
2966 }
2967 
2968 static inline bool file_start_write_trylock(struct file *file)
2969 {
2970 	if (!S_ISREG(file_inode(file)->i_mode))
2971 		return true;
2972 	return sb_start_write_trylock(file_inode(file)->i_sb);
2973 }
2974 
2975 /**
2976  * file_end_write - drop write access to a superblock of a regular file
2977  * @file: the file we wrote to
2978  *
2979  * Should be matched with a call to file_start_write().
2980  */
2981 static inline void file_end_write(struct file *file)
2982 {
2983 	if (!S_ISREG(file_inode(file)->i_mode))
2984 		return;
2985 	sb_end_write(file_inode(file)->i_sb);
2986 }
2987 
2988 /**
2989  * kiocb_start_write - get write access to a superblock for async file io
2990  * @iocb: the io context we want to submit the write with
2991  *
2992  * This is a variant of sb_start_write() for async io submission.
2993  * Should be matched with a call to kiocb_end_write().
2994  */
2995 static inline void kiocb_start_write(struct kiocb *iocb)
2996 {
2997 	struct inode *inode = file_inode(iocb->ki_filp);
2998 
2999 	sb_start_write(inode->i_sb);
3000 	/*
3001 	 * Fool lockdep by telling it the lock got released so that it
3002 	 * doesn't complain about the held lock when we return to userspace.
3003 	 */
3004 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3005 }
3006 
3007 /**
3008  * kiocb_end_write - drop write access to a superblock after async file io
3009  * @iocb: the io context we sumbitted the write with
3010  *
3011  * Should be matched with a call to kiocb_start_write().
3012  */
3013 static inline void kiocb_end_write(struct kiocb *iocb)
3014 {
3015 	struct inode *inode = file_inode(iocb->ki_filp);
3016 
3017 	/*
3018 	 * Tell lockdep we inherited freeze protection from submission thread.
3019 	 */
3020 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3021 	sb_end_write(inode->i_sb);
3022 }
3023 
3024 /*
3025  * This is used for regular files where some users -- especially the
3026  * currently executed binary in a process, previously handled via
3027  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3028  * read-write shared) accesses.
3029  *
3030  * get_write_access() gets write permission for a file.
3031  * put_write_access() releases this write permission.
3032  * deny_write_access() denies write access to a file.
3033  * allow_write_access() re-enables write access to a file.
3034  *
3035  * The i_writecount field of an inode can have the following values:
3036  * 0: no write access, no denied write access
3037  * < 0: (-i_writecount) users that denied write access to the file.
3038  * > 0: (i_writecount) users that have write access to the file.
3039  *
3040  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3041  * except for the cases where we don't hold i_writecount yet. Then we need to
3042  * use {get,deny}_write_access() - these functions check the sign and refuse
3043  * to do the change if sign is wrong.
3044  */
3045 static inline int get_write_access(struct inode *inode)
3046 {
3047 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3048 }
3049 static inline int deny_write_access(struct file *file)
3050 {
3051 	struct inode *inode = file_inode(file);
3052 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3053 }
3054 static inline void put_write_access(struct inode * inode)
3055 {
3056 	atomic_dec(&inode->i_writecount);
3057 }
3058 static inline void allow_write_access(struct file *file)
3059 {
3060 	if (file)
3061 		atomic_inc(&file_inode(file)->i_writecount);
3062 }
3063 static inline bool inode_is_open_for_write(const struct inode *inode)
3064 {
3065 	return atomic_read(&inode->i_writecount) > 0;
3066 }
3067 
3068 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3069 static inline void i_readcount_dec(struct inode *inode)
3070 {
3071 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3072 }
3073 static inline void i_readcount_inc(struct inode *inode)
3074 {
3075 	atomic_inc(&inode->i_readcount);
3076 }
3077 #else
3078 static inline void i_readcount_dec(struct inode *inode)
3079 {
3080 	return;
3081 }
3082 static inline void i_readcount_inc(struct inode *inode)
3083 {
3084 	return;
3085 }
3086 #endif
3087 extern int do_pipe_flags(int *, int);
3088 
3089 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3090 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3091 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3092 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3093 extern struct file * open_exec(const char *);
3094 
3095 /* fs/dcache.c -- generic fs support functions */
3096 extern bool is_subdir(struct dentry *, struct dentry *);
3097 extern bool path_is_under(const struct path *, const struct path *);
3098 
3099 extern char *file_path(struct file *, char *, int);
3100 
3101 /**
3102  * is_dot_dotdot - returns true only if @name is "." or ".."
3103  * @name: file name to check
3104  * @len: length of file name, in bytes
3105  */
3106 static inline bool is_dot_dotdot(const char *name, size_t len)
3107 {
3108 	return len && unlikely(name[0] == '.') &&
3109 		(len == 1 || (len == 2 && name[1] == '.'));
3110 }
3111 
3112 #include <linux/err.h>
3113 
3114 /* needed for stackable file system support */
3115 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3116 
3117 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3118 
3119 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3120 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3121 {
3122 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3123 }
3124 
3125 extern void inode_init_once(struct inode *);
3126 extern void address_space_init_once(struct address_space *mapping);
3127 extern struct inode * igrab(struct inode *);
3128 extern ino_t iunique(struct super_block *, ino_t);
3129 extern int inode_needs_sync(struct inode *inode);
3130 extern int generic_delete_inode(struct inode *inode);
3131 static inline int generic_drop_inode(struct inode *inode)
3132 {
3133 	return !inode->i_nlink || inode_unhashed(inode);
3134 }
3135 extern void d_mark_dontcache(struct inode *inode);
3136 
3137 extern struct inode *ilookup5_nowait(struct super_block *sb,
3138 		unsigned long hashval, int (*test)(struct inode *, void *),
3139 		void *data);
3140 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3141 		int (*test)(struct inode *, void *), void *data);
3142 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3143 
3144 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3145 		int (*test)(struct inode *, void *),
3146 		int (*set)(struct inode *, void *),
3147 		void *data);
3148 struct inode *iget5_locked(struct super_block *, unsigned long,
3149 			   int (*test)(struct inode *, void *),
3150 			   int (*set)(struct inode *, void *), void *);
3151 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3152 			       int (*test)(struct inode *, void *),
3153 			       int (*set)(struct inode *, void *), void *);
3154 extern struct inode * iget_locked(struct super_block *, unsigned long);
3155 extern struct inode *find_inode_nowait(struct super_block *,
3156 				       unsigned long,
3157 				       int (*match)(struct inode *,
3158 						    unsigned long, void *),
3159 				       void *data);
3160 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3161 				    int (*)(struct inode *, void *), void *);
3162 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3163 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3164 extern int insert_inode_locked(struct inode *);
3165 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3166 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3167 #else
3168 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3169 #endif
3170 extern void unlock_new_inode(struct inode *);
3171 extern void discard_new_inode(struct inode *);
3172 extern unsigned int get_next_ino(void);
3173 extern void evict_inodes(struct super_block *sb);
3174 void dump_mapping(const struct address_space *);
3175 
3176 /*
3177  * Userspace may rely on the inode number being non-zero. For example, glibc
3178  * simply ignores files with zero i_ino in unlink() and other places.
3179  *
3180  * As an additional complication, if userspace was compiled with
3181  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3182  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3183  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3184  * better safe than sorry.
3185  */
3186 static inline bool is_zero_ino(ino_t ino)
3187 {
3188 	return (u32)ino == 0;
3189 }
3190 
3191 /*
3192  * inode->i_lock must be held
3193  */
3194 static inline void __iget(struct inode *inode)
3195 {
3196 	atomic_inc(&inode->i_count);
3197 }
3198 
3199 extern void iget_failed(struct inode *);
3200 extern void clear_inode(struct inode *);
3201 extern void __destroy_inode(struct inode *);
3202 extern struct inode *new_inode_pseudo(struct super_block *sb);
3203 extern struct inode *new_inode(struct super_block *sb);
3204 extern void free_inode_nonrcu(struct inode *inode);
3205 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3206 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3207 extern int file_remove_privs(struct file *);
3208 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3209 			     const struct inode *inode);
3210 
3211 /*
3212  * This must be used for allocating filesystems specific inodes to set
3213  * up the inode reclaim context correctly.
3214  */
3215 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3216 
3217 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3218 static inline void insert_inode_hash(struct inode *inode)
3219 {
3220 	__insert_inode_hash(inode, inode->i_ino);
3221 }
3222 
3223 extern void __remove_inode_hash(struct inode *);
3224 static inline void remove_inode_hash(struct inode *inode)
3225 {
3226 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3227 		__remove_inode_hash(inode);
3228 }
3229 
3230 extern void inode_sb_list_add(struct inode *inode);
3231 extern void inode_add_lru(struct inode *inode);
3232 
3233 extern int sb_set_blocksize(struct super_block *, int);
3234 extern int sb_min_blocksize(struct super_block *, int);
3235 
3236 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3237 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3238 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3239 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3240 extern int generic_write_check_limits(struct file *file, loff_t pos,
3241 		loff_t *count);
3242 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3243 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3244 		ssize_t already_read);
3245 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3246 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3247 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3248 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3249 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3250 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3251 		ssize_t direct_written, ssize_t buffered_written);
3252 
3253 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3254 		rwf_t flags);
3255 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3256 		rwf_t flags);
3257 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3258 			   struct iov_iter *iter);
3259 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3260 			    struct iov_iter *iter);
3261 
3262 /* fs/splice.c */
3263 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3264 			    struct pipe_inode_info *pipe,
3265 			    size_t len, unsigned int flags);
3266 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3267 			 struct pipe_inode_info *pipe,
3268 			 size_t len, unsigned int flags);
3269 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3270 		struct file *, loff_t *, size_t, unsigned int);
3271 
3272 
3273 extern void
3274 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3275 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3276 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3277 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3278 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3279 		int whence, loff_t maxsize, loff_t eof);
3280 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3281 			     u64 *cookie);
3282 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3283 		int whence, loff_t size);
3284 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3285 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3286 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3287 extern int generic_file_open(struct inode * inode, struct file * filp);
3288 extern int nonseekable_open(struct inode * inode, struct file * filp);
3289 extern int stream_open(struct inode * inode, struct file * filp);
3290 
3291 #ifdef CONFIG_BLOCK
3292 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3293 			    loff_t file_offset);
3294 
3295 enum {
3296 	/* need locking between buffered and direct access */
3297 	DIO_LOCKING	= 0x01,
3298 
3299 	/* filesystem does not support filling holes */
3300 	DIO_SKIP_HOLES	= 0x02,
3301 };
3302 
3303 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3304 			     struct block_device *bdev, struct iov_iter *iter,
3305 			     get_block_t get_block,
3306 			     dio_iodone_t end_io,
3307 			     int flags);
3308 
3309 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3310 					 struct inode *inode,
3311 					 struct iov_iter *iter,
3312 					 get_block_t get_block)
3313 {
3314 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3315 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3316 }
3317 #endif
3318 
3319 bool inode_dio_finished(const struct inode *inode);
3320 void inode_dio_wait(struct inode *inode);
3321 void inode_dio_wait_interruptible(struct inode *inode);
3322 
3323 /**
3324  * inode_dio_begin - signal start of a direct I/O requests
3325  * @inode: inode the direct I/O happens on
3326  *
3327  * This is called once we've finished processing a direct I/O request,
3328  * and is used to wake up callers waiting for direct I/O to be quiesced.
3329  */
3330 static inline void inode_dio_begin(struct inode *inode)
3331 {
3332 	atomic_inc(&inode->i_dio_count);
3333 }
3334 
3335 /**
3336  * inode_dio_end - signal finish of a direct I/O requests
3337  * @inode: inode the direct I/O happens on
3338  *
3339  * This is called once we've finished processing a direct I/O request,
3340  * and is used to wake up callers waiting for direct I/O to be quiesced.
3341  */
3342 static inline void inode_dio_end(struct inode *inode)
3343 {
3344 	if (atomic_dec_and_test(&inode->i_dio_count))
3345 		wake_up_var(&inode->i_dio_count);
3346 }
3347 
3348 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3349 			    unsigned int mask);
3350 
3351 extern const struct file_operations generic_ro_fops;
3352 
3353 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3354 
3355 extern int readlink_copy(char __user *, int, const char *);
3356 extern int page_readlink(struct dentry *, char __user *, int);
3357 extern const char *page_get_link(struct dentry *, struct inode *,
3358 				 struct delayed_call *);
3359 extern void page_put_link(void *);
3360 extern int page_symlink(struct inode *inode, const char *symname, int len);
3361 extern const struct inode_operations page_symlink_inode_operations;
3362 extern void kfree_link(void *);
3363 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3364 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3365 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3366 void generic_fill_statx_atomic_writes(struct kstat *stat,
3367 				      unsigned int unit_min,
3368 				      unsigned int unit_max);
3369 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3370 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3371 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3372 void inode_add_bytes(struct inode *inode, loff_t bytes);
3373 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3374 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3375 static inline loff_t __inode_get_bytes(struct inode *inode)
3376 {
3377 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3378 }
3379 loff_t inode_get_bytes(struct inode *inode);
3380 void inode_set_bytes(struct inode *inode, loff_t bytes);
3381 const char *simple_get_link(struct dentry *, struct inode *,
3382 			    struct delayed_call *);
3383 extern const struct inode_operations simple_symlink_inode_operations;
3384 
3385 extern int iterate_dir(struct file *, struct dir_context *);
3386 
3387 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3388 		int flags);
3389 int vfs_fstat(int fd, struct kstat *stat);
3390 
3391 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3392 {
3393 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3394 }
3395 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3396 {
3397 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3398 }
3399 
3400 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3401 extern int vfs_readlink(struct dentry *, char __user *, int);
3402 
3403 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3404 extern void put_filesystem(struct file_system_type *fs);
3405 extern struct file_system_type *get_fs_type(const char *name);
3406 extern void drop_super(struct super_block *sb);
3407 extern void drop_super_exclusive(struct super_block *sb);
3408 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3409 extern void iterate_supers_type(struct file_system_type *,
3410 			        void (*)(struct super_block *, void *), void *);
3411 
3412 extern int dcache_dir_open(struct inode *, struct file *);
3413 extern int dcache_dir_close(struct inode *, struct file *);
3414 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3415 extern int dcache_readdir(struct file *, struct dir_context *);
3416 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3417 			  struct iattr *);
3418 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3419 			  struct kstat *, u32, unsigned int);
3420 extern int simple_statfs(struct dentry *, struct kstatfs *);
3421 extern int simple_open(struct inode *inode, struct file *file);
3422 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3423 extern int simple_unlink(struct inode *, struct dentry *);
3424 extern int simple_rmdir(struct inode *, struct dentry *);
3425 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3426 			     struct inode *new_dir, struct dentry *new_dentry);
3427 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3428 				  struct inode *new_dir, struct dentry *new_dentry);
3429 extern int simple_rename(struct mnt_idmap *, struct inode *,
3430 			 struct dentry *, struct inode *, struct dentry *,
3431 			 unsigned int);
3432 extern void simple_recursive_removal(struct dentry *,
3433                               void (*callback)(struct dentry *));
3434 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3435 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3436 extern int simple_empty(struct dentry *);
3437 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3438 			loff_t pos, unsigned len,
3439 			struct folio **foliop, void **fsdata);
3440 extern const struct address_space_operations ram_aops;
3441 extern int always_delete_dentry(const struct dentry *);
3442 extern struct inode *alloc_anon_inode(struct super_block *);
3443 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3444 extern const struct dentry_operations simple_dentry_operations;
3445 
3446 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3447 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3448 extern const struct file_operations simple_dir_operations;
3449 extern const struct inode_operations simple_dir_inode_operations;
3450 extern void make_empty_dir_inode(struct inode *inode);
3451 extern bool is_empty_dir_inode(struct inode *inode);
3452 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3453 struct dentry *d_alloc_name(struct dentry *, const char *);
3454 extern int simple_fill_super(struct super_block *, unsigned long,
3455 			     const struct tree_descr *);
3456 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3457 extern void simple_release_fs(struct vfsmount **mount, int *count);
3458 
3459 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3460 			loff_t *ppos, const void *from, size_t available);
3461 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3462 		const void __user *from, size_t count);
3463 
3464 struct offset_ctx {
3465 	struct maple_tree	mt;
3466 	unsigned long		next_offset;
3467 };
3468 
3469 void simple_offset_init(struct offset_ctx *octx);
3470 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3471 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3472 int simple_offset_empty(struct dentry *dentry);
3473 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3474 			 struct inode *new_dir, struct dentry *new_dentry);
3475 int simple_offset_rename_exchange(struct inode *old_dir,
3476 				  struct dentry *old_dentry,
3477 				  struct inode *new_dir,
3478 				  struct dentry *new_dentry);
3479 void simple_offset_destroy(struct offset_ctx *octx);
3480 
3481 extern const struct file_operations simple_offset_dir_operations;
3482 
3483 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3484 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3485 
3486 extern int generic_check_addressable(unsigned, u64);
3487 
3488 extern void generic_set_sb_d_ops(struct super_block *sb);
3489 extern int generic_ci_match(const struct inode *parent,
3490 			    const struct qstr *name,
3491 			    const struct qstr *folded_name,
3492 			    const u8 *de_name, u32 de_name_len);
3493 
3494 #if IS_ENABLED(CONFIG_UNICODE)
3495 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3496 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3497 			 const char *str, const struct qstr *name);
3498 
3499 /**
3500  * generic_ci_validate_strict_name - Check if a given name is suitable
3501  * for a directory
3502  *
3503  * This functions checks if the proposed filename is valid for the
3504  * parent directory. That means that only valid UTF-8 filenames will be
3505  * accepted for casefold directories from filesystems created with the
3506  * strict encoding flag.  That also means that any name will be
3507  * accepted for directories that doesn't have casefold enabled, or
3508  * aren't being strict with the encoding.
3509  *
3510  * @dir: inode of the directory where the new file will be created
3511  * @name: name of the new file
3512  *
3513  * Return:
3514  * * True: if the filename is suitable for this directory. It can be
3515  *   true if a given name is not suitable for a strict encoding
3516  *   directory, but the directory being used isn't strict
3517  * * False if the filename isn't suitable for this directory. This only
3518  *   happens when a directory is casefolded and the filesystem is strict
3519  *   about its encoding.
3520  */
3521 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3522 {
3523 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3524 		return true;
3525 
3526 	/*
3527 	 * A casefold dir must have a encoding set, unless the filesystem
3528 	 * is corrupted
3529 	 */
3530 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3531 		return true;
3532 
3533 	return !utf8_validate(dir->i_sb->s_encoding, name);
3534 }
3535 #else
3536 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3537 {
3538 	return true;
3539 }
3540 #endif
3541 
3542 static inline bool sb_has_encoding(const struct super_block *sb)
3543 {
3544 #if IS_ENABLED(CONFIG_UNICODE)
3545 	return !!sb->s_encoding;
3546 #else
3547 	return false;
3548 #endif
3549 }
3550 
3551 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3552 		unsigned int ia_valid);
3553 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3554 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3555 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3556 		  const struct iattr *attr);
3557 
3558 extern int file_update_time(struct file *file);
3559 
3560 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3561 {
3562 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3563 }
3564 
3565 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3566 {
3567 	struct inode *inode;
3568 
3569 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3570 		return false;
3571 	if (!vma_is_dax(vma))
3572 		return false;
3573 	inode = file_inode(vma->vm_file);
3574 	if (S_ISCHR(inode->i_mode))
3575 		return false; /* device-dax */
3576 	return true;
3577 }
3578 
3579 static inline int iocb_flags(struct file *file)
3580 {
3581 	int res = 0;
3582 	if (file->f_flags & O_APPEND)
3583 		res |= IOCB_APPEND;
3584 	if (file->f_flags & O_DIRECT)
3585 		res |= IOCB_DIRECT;
3586 	if (file->f_flags & O_DSYNC)
3587 		res |= IOCB_DSYNC;
3588 	if (file->f_flags & __O_SYNC)
3589 		res |= IOCB_SYNC;
3590 	return res;
3591 }
3592 
3593 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3594 				     int rw_type)
3595 {
3596 	int kiocb_flags = 0;
3597 
3598 	/* make sure there's no overlap between RWF and private IOCB flags */
3599 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3600 
3601 	if (!flags)
3602 		return 0;
3603 	if (unlikely(flags & ~RWF_SUPPORTED))
3604 		return -EOPNOTSUPP;
3605 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3606 		return -EINVAL;
3607 
3608 	if (flags & RWF_NOWAIT) {
3609 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3610 			return -EOPNOTSUPP;
3611 	}
3612 	if (flags & RWF_ATOMIC) {
3613 		if (rw_type != WRITE)
3614 			return -EOPNOTSUPP;
3615 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3616 			return -EOPNOTSUPP;
3617 	}
3618 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3619 	if (flags & RWF_SYNC)
3620 		kiocb_flags |= IOCB_DSYNC;
3621 
3622 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3623 		if (IS_APPEND(file_inode(ki->ki_filp)))
3624 			return -EPERM;
3625 		ki->ki_flags &= ~IOCB_APPEND;
3626 	}
3627 
3628 	ki->ki_flags |= kiocb_flags;
3629 	return 0;
3630 }
3631 
3632 /* Transaction based IO helpers */
3633 
3634 /*
3635  * An argresp is stored in an allocated page and holds the
3636  * size of the argument or response, along with its content
3637  */
3638 struct simple_transaction_argresp {
3639 	ssize_t size;
3640 	char data[];
3641 };
3642 
3643 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3644 
3645 char *simple_transaction_get(struct file *file, const char __user *buf,
3646 				size_t size);
3647 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3648 				size_t size, loff_t *pos);
3649 int simple_transaction_release(struct inode *inode, struct file *file);
3650 
3651 void simple_transaction_set(struct file *file, size_t n);
3652 
3653 /*
3654  * simple attribute files
3655  *
3656  * These attributes behave similar to those in sysfs:
3657  *
3658  * Writing to an attribute immediately sets a value, an open file can be
3659  * written to multiple times.
3660  *
3661  * Reading from an attribute creates a buffer from the value that might get
3662  * read with multiple read calls. When the attribute has been read
3663  * completely, no further read calls are possible until the file is opened
3664  * again.
3665  *
3666  * All attributes contain a text representation of a numeric value
3667  * that are accessed with the get() and set() functions.
3668  */
3669 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3670 static int __fops ## _open(struct inode *inode, struct file *file)	\
3671 {									\
3672 	__simple_attr_check_format(__fmt, 0ull);			\
3673 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3674 }									\
3675 static const struct file_operations __fops = {				\
3676 	.owner	 = THIS_MODULE,						\
3677 	.open	 = __fops ## _open,					\
3678 	.release = simple_attr_release,					\
3679 	.read	 = simple_attr_read,					\
3680 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3681 	.llseek	 = generic_file_llseek,					\
3682 }
3683 
3684 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3685 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3686 
3687 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3688 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3689 
3690 static inline __printf(1, 2)
3691 void __simple_attr_check_format(const char *fmt, ...)
3692 {
3693 	/* don't do anything, just let the compiler check the arguments; */
3694 }
3695 
3696 int simple_attr_open(struct inode *inode, struct file *file,
3697 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3698 		     const char *fmt);
3699 int simple_attr_release(struct inode *inode, struct file *file);
3700 ssize_t simple_attr_read(struct file *file, char __user *buf,
3701 			 size_t len, loff_t *ppos);
3702 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3703 			  size_t len, loff_t *ppos);
3704 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3705 				 size_t len, loff_t *ppos);
3706 
3707 struct ctl_table;
3708 int __init list_bdev_fs_names(char *buf, size_t size);
3709 
3710 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3711 #define __FMODE_NONOTIFY	((__force int) FMODE_NONOTIFY)
3712 
3713 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3714 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3715 					    (flag & __FMODE_NONOTIFY)))
3716 
3717 static inline bool is_sxid(umode_t mode)
3718 {
3719 	return mode & (S_ISUID | S_ISGID);
3720 }
3721 
3722 static inline int check_sticky(struct mnt_idmap *idmap,
3723 			       struct inode *dir, struct inode *inode)
3724 {
3725 	if (!(dir->i_mode & S_ISVTX))
3726 		return 0;
3727 
3728 	return __check_sticky(idmap, dir, inode);
3729 }
3730 
3731 static inline void inode_has_no_xattr(struct inode *inode)
3732 {
3733 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3734 		inode->i_flags |= S_NOSEC;
3735 }
3736 
3737 static inline bool is_root_inode(struct inode *inode)
3738 {
3739 	return inode == inode->i_sb->s_root->d_inode;
3740 }
3741 
3742 static inline bool dir_emit(struct dir_context *ctx,
3743 			    const char *name, int namelen,
3744 			    u64 ino, unsigned type)
3745 {
3746 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3747 }
3748 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3749 {
3750 	return ctx->actor(ctx, ".", 1, ctx->pos,
3751 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3752 }
3753 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3754 {
3755 	return ctx->actor(ctx, "..", 2, ctx->pos,
3756 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3757 }
3758 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3759 {
3760 	if (ctx->pos == 0) {
3761 		if (!dir_emit_dot(file, ctx))
3762 			return false;
3763 		ctx->pos = 1;
3764 	}
3765 	if (ctx->pos == 1) {
3766 		if (!dir_emit_dotdot(file, ctx))
3767 			return false;
3768 		ctx->pos = 2;
3769 	}
3770 	return true;
3771 }
3772 static inline bool dir_relax(struct inode *inode)
3773 {
3774 	inode_unlock(inode);
3775 	inode_lock(inode);
3776 	return !IS_DEADDIR(inode);
3777 }
3778 
3779 static inline bool dir_relax_shared(struct inode *inode)
3780 {
3781 	inode_unlock_shared(inode);
3782 	inode_lock_shared(inode);
3783 	return !IS_DEADDIR(inode);
3784 }
3785 
3786 extern bool path_noexec(const struct path *path);
3787 extern void inode_nohighmem(struct inode *inode);
3788 
3789 /* mm/fadvise.c */
3790 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3791 		       int advice);
3792 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3793 			   int advice);
3794 
3795 static inline bool vfs_empty_path(int dfd, const char __user *path)
3796 {
3797 	char c;
3798 
3799 	if (dfd < 0)
3800 		return false;
3801 
3802 	/* We now allow NULL to be used for empty path. */
3803 	if (!path)
3804 		return true;
3805 
3806 	if (unlikely(get_user(c, path)))
3807 		return false;
3808 
3809 	return !c;
3810 }
3811 
3812 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3813 
3814 #endif /* _LINUX_FS_H */
3815