1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* FMODE_* bit 24 */ 177 178 /* File is embedded in backing_file object */ 179 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 180 181 /* File was opened by fanotify and shouldn't generate fanotify events */ 182 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 183 184 /* File is capable of returning -EAGAIN if I/O will block */ 185 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 186 187 /* File represents mount that needs unmounting */ 188 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 189 190 /* File does not contribute to nr_files count */ 191 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 192 193 /* 194 * Attribute flags. These should be or-ed together to figure out what 195 * has been changed! 196 */ 197 #define ATTR_MODE (1 << 0) 198 #define ATTR_UID (1 << 1) 199 #define ATTR_GID (1 << 2) 200 #define ATTR_SIZE (1 << 3) 201 #define ATTR_ATIME (1 << 4) 202 #define ATTR_MTIME (1 << 5) 203 #define ATTR_CTIME (1 << 6) 204 #define ATTR_ATIME_SET (1 << 7) 205 #define ATTR_MTIME_SET (1 << 8) 206 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 207 #define ATTR_KILL_SUID (1 << 11) 208 #define ATTR_KILL_SGID (1 << 12) 209 #define ATTR_FILE (1 << 13) 210 #define ATTR_KILL_PRIV (1 << 14) 211 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 212 #define ATTR_TIMES_SET (1 << 16) 213 #define ATTR_TOUCH (1 << 17) 214 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 215 216 /* 217 * Whiteout is represented by a char device. The following constants define the 218 * mode and device number to use. 219 */ 220 #define WHITEOUT_MODE 0 221 #define WHITEOUT_DEV 0 222 223 /* 224 * This is the Inode Attributes structure, used for notify_change(). It 225 * uses the above definitions as flags, to know which values have changed. 226 * Also, in this manner, a Filesystem can look at only the values it cares 227 * about. Basically, these are the attributes that the VFS layer can 228 * request to change from the FS layer. 229 * 230 * Derek Atkins <[email protected]> 94-10-20 231 */ 232 struct iattr { 233 unsigned int ia_valid; 234 umode_t ia_mode; 235 /* 236 * The two anonymous unions wrap structures with the same member. 237 * 238 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 239 * are a dedicated type requiring the filesystem to use the dedicated 240 * helpers. Other filesystem can continue to use ia_{g,u}id until they 241 * have been ported. 242 * 243 * They always contain the same value. In other words FS_ALLOW_IDMAP 244 * pass down the same value on idmapped mounts as they would on regular 245 * mounts. 246 */ 247 union { 248 kuid_t ia_uid; 249 vfsuid_t ia_vfsuid; 250 }; 251 union { 252 kgid_t ia_gid; 253 vfsgid_t ia_vfsgid; 254 }; 255 loff_t ia_size; 256 struct timespec64 ia_atime; 257 struct timespec64 ia_mtime; 258 struct timespec64 ia_ctime; 259 260 /* 261 * Not an attribute, but an auxiliary info for filesystems wanting to 262 * implement an ftruncate() like method. NOTE: filesystem should 263 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 264 */ 265 struct file *ia_file; 266 }; 267 268 /* 269 * Includes for diskquotas. 270 */ 271 #include <linux/quota.h> 272 273 /* 274 * Maximum number of layers of fs stack. Needs to be limited to 275 * prevent kernel stack overflow 276 */ 277 #define FILESYSTEM_MAX_STACK_DEPTH 2 278 279 /** 280 * enum positive_aop_returns - aop return codes with specific semantics 281 * 282 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 283 * completed, that the page is still locked, and 284 * should be considered active. The VM uses this hint 285 * to return the page to the active list -- it won't 286 * be a candidate for writeback again in the near 287 * future. Other callers must be careful to unlock 288 * the page if they get this return. Returned by 289 * writepage(); 290 * 291 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 292 * unlocked it and the page might have been truncated. 293 * The caller should back up to acquiring a new page and 294 * trying again. The aop will be taking reasonable 295 * precautions not to livelock. If the caller held a page 296 * reference, it should drop it before retrying. Returned 297 * by read_folio(). 298 * 299 * address_space_operation functions return these large constants to indicate 300 * special semantics to the caller. These are much larger than the bytes in a 301 * page to allow for functions that return the number of bytes operated on in a 302 * given page. 303 */ 304 305 enum positive_aop_returns { 306 AOP_WRITEPAGE_ACTIVATE = 0x80000, 307 AOP_TRUNCATED_PAGE = 0x80001, 308 }; 309 310 /* 311 * oh the beauties of C type declarations. 312 */ 313 struct page; 314 struct address_space; 315 struct writeback_control; 316 struct readahead_control; 317 318 /* Match RWF_* bits to IOCB bits */ 319 #define IOCB_HIPRI (__force int) RWF_HIPRI 320 #define IOCB_DSYNC (__force int) RWF_DSYNC 321 #define IOCB_SYNC (__force int) RWF_SYNC 322 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 323 #define IOCB_APPEND (__force int) RWF_APPEND 324 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 325 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 326 327 /* non-RWF related bits - start at 16 */ 328 #define IOCB_EVENTFD (1 << 16) 329 #define IOCB_DIRECT (1 << 17) 330 #define IOCB_WRITE (1 << 18) 331 /* iocb->ki_waitq is valid */ 332 #define IOCB_WAITQ (1 << 19) 333 #define IOCB_NOIO (1 << 20) 334 /* can use bio alloc cache */ 335 #define IOCB_ALLOC_CACHE (1 << 21) 336 /* 337 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 338 * iocb completion can be passed back to the owner for execution from a safe 339 * context rather than needing to be punted through a workqueue. If this 340 * flag is set, the bio completion handling may set iocb->dio_complete to a 341 * handler function and iocb->private to context information for that handler. 342 * The issuer should call the handler with that context information from task 343 * context to complete the processing of the iocb. Note that while this 344 * provides a task context for the dio_complete() callback, it should only be 345 * used on the completion side for non-IO generating completions. It's fine to 346 * call blocking functions from this callback, but they should not wait for 347 * unrelated IO (like cache flushing, new IO generation, etc). 348 */ 349 #define IOCB_DIO_CALLER_COMP (1 << 22) 350 /* kiocb is a read or write operation submitted by fs/aio.c. */ 351 #define IOCB_AIO_RW (1 << 23) 352 #define IOCB_HAS_METADATA (1 << 24) 353 354 /* for use in trace events */ 355 #define TRACE_IOCB_STRINGS \ 356 { IOCB_HIPRI, "HIPRI" }, \ 357 { IOCB_DSYNC, "DSYNC" }, \ 358 { IOCB_SYNC, "SYNC" }, \ 359 { IOCB_NOWAIT, "NOWAIT" }, \ 360 { IOCB_APPEND, "APPEND" }, \ 361 { IOCB_ATOMIC, "ATOMIC" }, \ 362 { IOCB_DONTCACHE, "DONTCACHE" }, \ 363 { IOCB_EVENTFD, "EVENTFD"}, \ 364 { IOCB_DIRECT, "DIRECT" }, \ 365 { IOCB_WRITE, "WRITE" }, \ 366 { IOCB_WAITQ, "WAITQ" }, \ 367 { IOCB_NOIO, "NOIO" }, \ 368 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 369 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 370 371 struct kiocb { 372 struct file *ki_filp; 373 loff_t ki_pos; 374 void (*ki_complete)(struct kiocb *iocb, long ret); 375 void *private; 376 int ki_flags; 377 u16 ki_ioprio; /* See linux/ioprio.h */ 378 union { 379 /* 380 * Only used for async buffered reads, where it denotes the 381 * page waitqueue associated with completing the read. Valid 382 * IFF IOCB_WAITQ is set. 383 */ 384 struct wait_page_queue *ki_waitq; 385 /* 386 * Can be used for O_DIRECT IO, where the completion handling 387 * is punted back to the issuer of the IO. May only be set 388 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 389 * must then check for presence of this handler when ki_complete 390 * is invoked. The data passed in to this handler must be 391 * assigned to ->private when dio_complete is assigned. 392 */ 393 ssize_t (*dio_complete)(void *data); 394 }; 395 }; 396 397 static inline bool is_sync_kiocb(struct kiocb *kiocb) 398 { 399 return kiocb->ki_complete == NULL; 400 } 401 402 struct address_space_operations { 403 int (*writepage)(struct page *page, struct writeback_control *wbc); 404 int (*read_folio)(struct file *, struct folio *); 405 406 /* Write back some dirty pages from this mapping. */ 407 int (*writepages)(struct address_space *, struct writeback_control *); 408 409 /* Mark a folio dirty. Return true if this dirtied it */ 410 bool (*dirty_folio)(struct address_space *, struct folio *); 411 412 void (*readahead)(struct readahead_control *); 413 414 int (*write_begin)(struct file *, struct address_space *mapping, 415 loff_t pos, unsigned len, 416 struct folio **foliop, void **fsdata); 417 int (*write_end)(struct file *, struct address_space *mapping, 418 loff_t pos, unsigned len, unsigned copied, 419 struct folio *folio, void *fsdata); 420 421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 422 sector_t (*bmap)(struct address_space *, sector_t); 423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 424 bool (*release_folio)(struct folio *, gfp_t); 425 void (*free_folio)(struct folio *folio); 426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 427 /* 428 * migrate the contents of a folio to the specified target. If 429 * migrate_mode is MIGRATE_ASYNC, it must not block. 430 */ 431 int (*migrate_folio)(struct address_space *, struct folio *dst, 432 struct folio *src, enum migrate_mode); 433 int (*launder_folio)(struct folio *); 434 bool (*is_partially_uptodate) (struct folio *, size_t from, 435 size_t count); 436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 437 int (*error_remove_folio)(struct address_space *, struct folio *); 438 439 /* swapfile support */ 440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 441 sector_t *span); 442 void (*swap_deactivate)(struct file *file); 443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 444 }; 445 446 extern const struct address_space_operations empty_aops; 447 448 /** 449 * struct address_space - Contents of a cacheable, mappable object. 450 * @host: Owner, either the inode or the block_device. 451 * @i_pages: Cached pages. 452 * @invalidate_lock: Guards coherency between page cache contents and 453 * file offset->disk block mappings in the filesystem during invalidates. 454 * It is also used to block modification of page cache contents through 455 * memory mappings. 456 * @gfp_mask: Memory allocation flags to use for allocating pages. 457 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 458 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 459 * @i_mmap: Tree of private and shared mappings. 460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 461 * @nrpages: Number of page entries, protected by the i_pages lock. 462 * @writeback_index: Writeback starts here. 463 * @a_ops: Methods. 464 * @flags: Error bits and flags (AS_*). 465 * @wb_err: The most recent error which has occurred. 466 * @i_private_lock: For use by the owner of the address_space. 467 * @i_private_list: For use by the owner of the address_space. 468 * @i_private_data: For use by the owner of the address_space. 469 */ 470 struct address_space { 471 struct inode *host; 472 struct xarray i_pages; 473 struct rw_semaphore invalidate_lock; 474 gfp_t gfp_mask; 475 atomic_t i_mmap_writable; 476 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 477 /* number of thp, only for non-shmem files */ 478 atomic_t nr_thps; 479 #endif 480 struct rb_root_cached i_mmap; 481 unsigned long nrpages; 482 pgoff_t writeback_index; 483 const struct address_space_operations *a_ops; 484 unsigned long flags; 485 errseq_t wb_err; 486 spinlock_t i_private_lock; 487 struct list_head i_private_list; 488 struct rw_semaphore i_mmap_rwsem; 489 void * i_private_data; 490 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 491 /* 492 * On most architectures that alignment is already the case; but 493 * must be enforced here for CRIS, to let the least significant bit 494 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 495 */ 496 497 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 498 #define PAGECACHE_TAG_DIRTY XA_MARK_0 499 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 500 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 501 502 /* 503 * Returns true if any of the pages in the mapping are marked with the tag. 504 */ 505 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 506 { 507 return xa_marked(&mapping->i_pages, tag); 508 } 509 510 static inline void i_mmap_lock_write(struct address_space *mapping) 511 { 512 down_write(&mapping->i_mmap_rwsem); 513 } 514 515 static inline int i_mmap_trylock_write(struct address_space *mapping) 516 { 517 return down_write_trylock(&mapping->i_mmap_rwsem); 518 } 519 520 static inline void i_mmap_unlock_write(struct address_space *mapping) 521 { 522 up_write(&mapping->i_mmap_rwsem); 523 } 524 525 static inline int i_mmap_trylock_read(struct address_space *mapping) 526 { 527 return down_read_trylock(&mapping->i_mmap_rwsem); 528 } 529 530 static inline void i_mmap_lock_read(struct address_space *mapping) 531 { 532 down_read(&mapping->i_mmap_rwsem); 533 } 534 535 static inline void i_mmap_unlock_read(struct address_space *mapping) 536 { 537 up_read(&mapping->i_mmap_rwsem); 538 } 539 540 static inline void i_mmap_assert_locked(struct address_space *mapping) 541 { 542 lockdep_assert_held(&mapping->i_mmap_rwsem); 543 } 544 545 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 546 { 547 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 548 } 549 550 /* 551 * Might pages of this file be mapped into userspace? 552 */ 553 static inline int mapping_mapped(struct address_space *mapping) 554 { 555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 556 } 557 558 /* 559 * Might pages of this file have been modified in userspace? 560 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 561 * marks vma as VM_SHARED if it is shared, and the file was opened for 562 * writing i.e. vma may be mprotected writable even if now readonly. 563 * 564 * If i_mmap_writable is negative, no new writable mappings are allowed. You 565 * can only deny writable mappings, if none exists right now. 566 */ 567 static inline int mapping_writably_mapped(struct address_space *mapping) 568 { 569 return atomic_read(&mapping->i_mmap_writable) > 0; 570 } 571 572 static inline int mapping_map_writable(struct address_space *mapping) 573 { 574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 575 0 : -EPERM; 576 } 577 578 static inline void mapping_unmap_writable(struct address_space *mapping) 579 { 580 atomic_dec(&mapping->i_mmap_writable); 581 } 582 583 static inline int mapping_deny_writable(struct address_space *mapping) 584 { 585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 586 0 : -EBUSY; 587 } 588 589 static inline void mapping_allow_writable(struct address_space *mapping) 590 { 591 atomic_inc(&mapping->i_mmap_writable); 592 } 593 594 /* 595 * Use sequence counter to get consistent i_size on 32-bit processors. 596 */ 597 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 598 #include <linux/seqlock.h> 599 #define __NEED_I_SIZE_ORDERED 600 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 601 #else 602 #define i_size_ordered_init(inode) do { } while (0) 603 #endif 604 605 struct posix_acl; 606 #define ACL_NOT_CACHED ((void *)(-1)) 607 /* 608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 610 * mode with the LOOKUP_RCU flag. 611 */ 612 #define ACL_DONT_CACHE ((void *)(-3)) 613 614 static inline struct posix_acl * 615 uncached_acl_sentinel(struct task_struct *task) 616 { 617 return (void *)task + 1; 618 } 619 620 static inline bool 621 is_uncached_acl(struct posix_acl *acl) 622 { 623 return (long)acl & 1; 624 } 625 626 #define IOP_FASTPERM 0x0001 627 #define IOP_LOOKUP 0x0002 628 #define IOP_NOFOLLOW 0x0004 629 #define IOP_XATTR 0x0008 630 #define IOP_DEFAULT_READLINK 0x0010 631 #define IOP_MGTIME 0x0020 632 #define IOP_CACHED_LINK 0x0040 633 634 /* 635 * Keep mostly read-only and often accessed (especially for 636 * the RCU path lookup and 'stat' data) fields at the beginning 637 * of the 'struct inode' 638 */ 639 struct inode { 640 umode_t i_mode; 641 unsigned short i_opflags; 642 kuid_t i_uid; 643 kgid_t i_gid; 644 unsigned int i_flags; 645 646 #ifdef CONFIG_FS_POSIX_ACL 647 struct posix_acl *i_acl; 648 struct posix_acl *i_default_acl; 649 #endif 650 651 const struct inode_operations *i_op; 652 struct super_block *i_sb; 653 struct address_space *i_mapping; 654 655 #ifdef CONFIG_SECURITY 656 void *i_security; 657 #endif 658 659 /* Stat data, not accessed from path walking */ 660 unsigned long i_ino; 661 /* 662 * Filesystems may only read i_nlink directly. They shall use the 663 * following functions for modification: 664 * 665 * (set|clear|inc|drop)_nlink 666 * inode_(inc|dec)_link_count 667 */ 668 union { 669 const unsigned int i_nlink; 670 unsigned int __i_nlink; 671 }; 672 dev_t i_rdev; 673 loff_t i_size; 674 time64_t i_atime_sec; 675 time64_t i_mtime_sec; 676 time64_t i_ctime_sec; 677 u32 i_atime_nsec; 678 u32 i_mtime_nsec; 679 u32 i_ctime_nsec; 680 u32 i_generation; 681 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 682 unsigned short i_bytes; 683 u8 i_blkbits; 684 enum rw_hint i_write_hint; 685 blkcnt_t i_blocks; 686 687 #ifdef __NEED_I_SIZE_ORDERED 688 seqcount_t i_size_seqcount; 689 #endif 690 691 /* Misc */ 692 u32 i_state; 693 /* 32-bit hole */ 694 struct rw_semaphore i_rwsem; 695 696 unsigned long dirtied_when; /* jiffies of first dirtying */ 697 unsigned long dirtied_time_when; 698 699 struct hlist_node i_hash; 700 struct list_head i_io_list; /* backing dev IO list */ 701 #ifdef CONFIG_CGROUP_WRITEBACK 702 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 703 704 /* foreign inode detection, see wbc_detach_inode() */ 705 int i_wb_frn_winner; 706 u16 i_wb_frn_avg_time; 707 u16 i_wb_frn_history; 708 #endif 709 struct list_head i_lru; /* inode LRU list */ 710 struct list_head i_sb_list; 711 struct list_head i_wb_list; /* backing dev writeback list */ 712 union { 713 struct hlist_head i_dentry; 714 struct rcu_head i_rcu; 715 }; 716 atomic64_t i_version; 717 atomic64_t i_sequence; /* see futex */ 718 atomic_t i_count; 719 atomic_t i_dio_count; 720 atomic_t i_writecount; 721 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 722 atomic_t i_readcount; /* struct files open RO */ 723 #endif 724 union { 725 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 726 void (*free_inode)(struct inode *); 727 }; 728 struct file_lock_context *i_flctx; 729 struct address_space i_data; 730 union { 731 struct list_head i_devices; 732 int i_linklen; 733 }; 734 union { 735 struct pipe_inode_info *i_pipe; 736 struct cdev *i_cdev; 737 char *i_link; 738 unsigned i_dir_seq; 739 }; 740 741 742 #ifdef CONFIG_FSNOTIFY 743 __u32 i_fsnotify_mask; /* all events this inode cares about */ 744 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 745 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 746 #endif 747 748 #ifdef CONFIG_FS_ENCRYPTION 749 struct fscrypt_inode_info *i_crypt_info; 750 #endif 751 752 #ifdef CONFIG_FS_VERITY 753 struct fsverity_info *i_verity_info; 754 #endif 755 756 void *i_private; /* fs or device private pointer */ 757 } __randomize_layout; 758 759 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) 760 { 761 inode->i_link = link; 762 inode->i_linklen = linklen; 763 inode->i_opflags |= IOP_CACHED_LINK; 764 } 765 766 /* 767 * Get bit address from inode->i_state to use with wait_var_event() 768 * infrastructre. 769 */ 770 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 771 772 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 773 struct inode *inode, u32 bit); 774 775 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 776 { 777 /* Caller is responsible for correct memory barriers. */ 778 wake_up_var(inode_state_wait_address(inode, bit)); 779 } 780 781 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 782 783 static inline unsigned int i_blocksize(const struct inode *node) 784 { 785 return (1 << node->i_blkbits); 786 } 787 788 static inline int inode_unhashed(struct inode *inode) 789 { 790 return hlist_unhashed(&inode->i_hash); 791 } 792 793 /* 794 * __mark_inode_dirty expects inodes to be hashed. Since we don't 795 * want special inodes in the fileset inode space, we make them 796 * appear hashed, but do not put on any lists. hlist_del() 797 * will work fine and require no locking. 798 */ 799 static inline void inode_fake_hash(struct inode *inode) 800 { 801 hlist_add_fake(&inode->i_hash); 802 } 803 804 /* 805 * inode->i_mutex nesting subclasses for the lock validator: 806 * 807 * 0: the object of the current VFS operation 808 * 1: parent 809 * 2: child/target 810 * 3: xattr 811 * 4: second non-directory 812 * 5: second parent (when locking independent directories in rename) 813 * 814 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 815 * non-directories at once. 816 * 817 * The locking order between these classes is 818 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 819 */ 820 enum inode_i_mutex_lock_class 821 { 822 I_MUTEX_NORMAL, 823 I_MUTEX_PARENT, 824 I_MUTEX_CHILD, 825 I_MUTEX_XATTR, 826 I_MUTEX_NONDIR2, 827 I_MUTEX_PARENT2, 828 }; 829 830 static inline void inode_lock(struct inode *inode) 831 { 832 down_write(&inode->i_rwsem); 833 } 834 835 static inline void inode_unlock(struct inode *inode) 836 { 837 up_write(&inode->i_rwsem); 838 } 839 840 static inline void inode_lock_shared(struct inode *inode) 841 { 842 down_read(&inode->i_rwsem); 843 } 844 845 static inline void inode_unlock_shared(struct inode *inode) 846 { 847 up_read(&inode->i_rwsem); 848 } 849 850 static inline int inode_trylock(struct inode *inode) 851 { 852 return down_write_trylock(&inode->i_rwsem); 853 } 854 855 static inline int inode_trylock_shared(struct inode *inode) 856 { 857 return down_read_trylock(&inode->i_rwsem); 858 } 859 860 static inline int inode_is_locked(struct inode *inode) 861 { 862 return rwsem_is_locked(&inode->i_rwsem); 863 } 864 865 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 866 { 867 down_write_nested(&inode->i_rwsem, subclass); 868 } 869 870 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 871 { 872 down_read_nested(&inode->i_rwsem, subclass); 873 } 874 875 static inline void filemap_invalidate_lock(struct address_space *mapping) 876 { 877 down_write(&mapping->invalidate_lock); 878 } 879 880 static inline void filemap_invalidate_unlock(struct address_space *mapping) 881 { 882 up_write(&mapping->invalidate_lock); 883 } 884 885 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 886 { 887 down_read(&mapping->invalidate_lock); 888 } 889 890 static inline int filemap_invalidate_trylock_shared( 891 struct address_space *mapping) 892 { 893 return down_read_trylock(&mapping->invalidate_lock); 894 } 895 896 static inline void filemap_invalidate_unlock_shared( 897 struct address_space *mapping) 898 { 899 up_read(&mapping->invalidate_lock); 900 } 901 902 void lock_two_nondirectories(struct inode *, struct inode*); 903 void unlock_two_nondirectories(struct inode *, struct inode*); 904 905 void filemap_invalidate_lock_two(struct address_space *mapping1, 906 struct address_space *mapping2); 907 void filemap_invalidate_unlock_two(struct address_space *mapping1, 908 struct address_space *mapping2); 909 910 911 /* 912 * NOTE: in a 32bit arch with a preemptable kernel and 913 * an UP compile the i_size_read/write must be atomic 914 * with respect to the local cpu (unlike with preempt disabled), 915 * but they don't need to be atomic with respect to other cpus like in 916 * true SMP (so they need either to either locally disable irq around 917 * the read or for example on x86 they can be still implemented as a 918 * cmpxchg8b without the need of the lock prefix). For SMP compiles 919 * and 64bit archs it makes no difference if preempt is enabled or not. 920 */ 921 static inline loff_t i_size_read(const struct inode *inode) 922 { 923 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 924 loff_t i_size; 925 unsigned int seq; 926 927 do { 928 seq = read_seqcount_begin(&inode->i_size_seqcount); 929 i_size = inode->i_size; 930 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 931 return i_size; 932 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 933 loff_t i_size; 934 935 preempt_disable(); 936 i_size = inode->i_size; 937 preempt_enable(); 938 return i_size; 939 #else 940 /* Pairs with smp_store_release() in i_size_write() */ 941 return smp_load_acquire(&inode->i_size); 942 #endif 943 } 944 945 /* 946 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 947 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 948 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 949 */ 950 static inline void i_size_write(struct inode *inode, loff_t i_size) 951 { 952 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 953 preempt_disable(); 954 write_seqcount_begin(&inode->i_size_seqcount); 955 inode->i_size = i_size; 956 write_seqcount_end(&inode->i_size_seqcount); 957 preempt_enable(); 958 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 959 preempt_disable(); 960 inode->i_size = i_size; 961 preempt_enable(); 962 #else 963 /* 964 * Pairs with smp_load_acquire() in i_size_read() to ensure 965 * changes related to inode size (such as page contents) are 966 * visible before we see the changed inode size. 967 */ 968 smp_store_release(&inode->i_size, i_size); 969 #endif 970 } 971 972 static inline unsigned iminor(const struct inode *inode) 973 { 974 return MINOR(inode->i_rdev); 975 } 976 977 static inline unsigned imajor(const struct inode *inode) 978 { 979 return MAJOR(inode->i_rdev); 980 } 981 982 struct fown_struct { 983 struct file *file; /* backpointer for security modules */ 984 rwlock_t lock; /* protects pid, uid, euid fields */ 985 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 986 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 987 kuid_t uid, euid; /* uid/euid of process setting the owner */ 988 int signum; /* posix.1b rt signal to be delivered on IO */ 989 }; 990 991 /** 992 * struct file_ra_state - Track a file's readahead state. 993 * @start: Where the most recent readahead started. 994 * @size: Number of pages read in the most recent readahead. 995 * @async_size: Numer of pages that were/are not needed immediately 996 * and so were/are genuinely "ahead". Start next readahead when 997 * the first of these pages is accessed. 998 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 999 * @mmap_miss: How many mmap accesses missed in the page cache. 1000 * @prev_pos: The last byte in the most recent read request. 1001 * 1002 * When this structure is passed to ->readahead(), the "most recent" 1003 * readahead means the current readahead. 1004 */ 1005 struct file_ra_state { 1006 pgoff_t start; 1007 unsigned int size; 1008 unsigned int async_size; 1009 unsigned int ra_pages; 1010 unsigned int mmap_miss; 1011 loff_t prev_pos; 1012 }; 1013 1014 /* 1015 * Check if @index falls in the readahead windows. 1016 */ 1017 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1018 { 1019 return (index >= ra->start && 1020 index < ra->start + ra->size); 1021 } 1022 1023 /** 1024 * struct file - Represents a file 1025 * @f_ref: reference count 1026 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1027 * @f_mode: FMODE_* flags often used in hotpaths 1028 * @f_op: file operations 1029 * @f_mapping: Contents of a cacheable, mappable object. 1030 * @private_data: filesystem or driver specific data 1031 * @f_inode: cached inode 1032 * @f_flags: file flags 1033 * @f_iocb_flags: iocb flags 1034 * @f_cred: stashed credentials of creator/opener 1035 * @f_path: path of the file 1036 * @f_pos_lock: lock protecting file position 1037 * @f_pipe: specific to pipes 1038 * @f_pos: file position 1039 * @f_security: LSM security context of this file 1040 * @f_owner: file owner 1041 * @f_wb_err: writeback error 1042 * @f_sb_err: per sb writeback errors 1043 * @f_ep: link of all epoll hooks for this file 1044 * @f_task_work: task work entry point 1045 * @f_llist: work queue entrypoint 1046 * @f_ra: file's readahead state 1047 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1048 */ 1049 struct file { 1050 file_ref_t f_ref; 1051 spinlock_t f_lock; 1052 fmode_t f_mode; 1053 const struct file_operations *f_op; 1054 struct address_space *f_mapping; 1055 void *private_data; 1056 struct inode *f_inode; 1057 unsigned int f_flags; 1058 unsigned int f_iocb_flags; 1059 const struct cred *f_cred; 1060 /* --- cacheline 1 boundary (64 bytes) --- */ 1061 struct path f_path; 1062 union { 1063 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1064 struct mutex f_pos_lock; 1065 /* pipes */ 1066 u64 f_pipe; 1067 }; 1068 loff_t f_pos; 1069 #ifdef CONFIG_SECURITY 1070 void *f_security; 1071 #endif 1072 /* --- cacheline 2 boundary (128 bytes) --- */ 1073 struct fown_struct *f_owner; 1074 errseq_t f_wb_err; 1075 errseq_t f_sb_err; 1076 #ifdef CONFIG_EPOLL 1077 struct hlist_head *f_ep; 1078 #endif 1079 union { 1080 struct callback_head f_task_work; 1081 struct llist_node f_llist; 1082 struct file_ra_state f_ra; 1083 freeptr_t f_freeptr; 1084 }; 1085 /* --- cacheline 3 boundary (192 bytes) --- */ 1086 } __randomize_layout 1087 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1088 1089 struct file_handle { 1090 __u32 handle_bytes; 1091 int handle_type; 1092 /* file identifier */ 1093 unsigned char f_handle[] __counted_by(handle_bytes); 1094 }; 1095 1096 static inline struct file *get_file(struct file *f) 1097 { 1098 file_ref_inc(&f->f_ref); 1099 return f; 1100 } 1101 1102 struct file *get_file_rcu(struct file __rcu **f); 1103 struct file *get_file_active(struct file **f); 1104 1105 #define file_count(f) file_ref_read(&(f)->f_ref) 1106 1107 #define MAX_NON_LFS ((1UL<<31) - 1) 1108 1109 /* Page cache limit. The filesystems should put that into their s_maxbytes 1110 limits, otherwise bad things can happen in VM. */ 1111 #if BITS_PER_LONG==32 1112 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1113 #elif BITS_PER_LONG==64 1114 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1115 #endif 1116 1117 /* legacy typedef, should eventually be removed */ 1118 typedef void *fl_owner_t; 1119 1120 struct file_lock; 1121 struct file_lease; 1122 1123 /* The following constant reflects the upper bound of the file/locking space */ 1124 #ifndef OFFSET_MAX 1125 #define OFFSET_MAX type_max(loff_t) 1126 #define OFFT_OFFSET_MAX type_max(off_t) 1127 #endif 1128 1129 int file_f_owner_allocate(struct file *file); 1130 static inline struct fown_struct *file_f_owner(const struct file *file) 1131 { 1132 return READ_ONCE(file->f_owner); 1133 } 1134 1135 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1136 1137 static inline struct inode *file_inode(const struct file *f) 1138 { 1139 return f->f_inode; 1140 } 1141 1142 /* 1143 * file_dentry() is a relic from the days that overlayfs was using files with a 1144 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1145 * In those days, file_dentry() was needed to get the underlying fs dentry that 1146 * matches f_inode. 1147 * Files with "fake" path should not exist nowadays, so use an assertion to make 1148 * sure that file_dentry() was not papering over filesystem bugs. 1149 */ 1150 static inline struct dentry *file_dentry(const struct file *file) 1151 { 1152 struct dentry *dentry = file->f_path.dentry; 1153 1154 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1155 return dentry; 1156 } 1157 1158 struct fasync_struct { 1159 rwlock_t fa_lock; 1160 int magic; 1161 int fa_fd; 1162 struct fasync_struct *fa_next; /* singly linked list */ 1163 struct file *fa_file; 1164 struct rcu_head fa_rcu; 1165 }; 1166 1167 #define FASYNC_MAGIC 0x4601 1168 1169 /* SMP safe fasync helpers: */ 1170 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1171 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1172 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1173 extern struct fasync_struct *fasync_alloc(void); 1174 extern void fasync_free(struct fasync_struct *); 1175 1176 /* can be called from interrupts */ 1177 extern void kill_fasync(struct fasync_struct **, int, int); 1178 1179 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1180 extern int f_setown(struct file *filp, int who, int force); 1181 extern void f_delown(struct file *filp); 1182 extern pid_t f_getown(struct file *filp); 1183 extern int send_sigurg(struct file *file); 1184 1185 /* 1186 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1187 * represented in both. 1188 */ 1189 #define SB_RDONLY BIT(0) /* Mount read-only */ 1190 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1191 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1192 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1193 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1194 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1195 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1196 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1197 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1198 #define SB_SILENT BIT(15) 1199 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1200 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1201 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1202 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1203 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1204 1205 /* These sb flags are internal to the kernel */ 1206 #define SB_DEAD BIT(21) 1207 #define SB_DYING BIT(24) 1208 #define SB_SUBMOUNT BIT(26) 1209 #define SB_FORCE BIT(27) 1210 #define SB_NOSEC BIT(28) 1211 #define SB_BORN BIT(29) 1212 #define SB_ACTIVE BIT(30) 1213 #define SB_NOUSER BIT(31) 1214 1215 /* These flags relate to encoding and casefolding */ 1216 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1217 1218 #define sb_has_strict_encoding(sb) \ 1219 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1220 1221 /* 1222 * Umount options 1223 */ 1224 1225 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1226 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1227 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1228 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1229 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1230 1231 /* sb->s_iflags */ 1232 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1233 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1234 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1235 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1236 1237 /* sb->s_iflags to limit user namespace mounts */ 1238 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1239 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1240 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1241 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1242 1243 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1244 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1245 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1246 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1247 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1248 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1249 1250 /* Possible states of 'frozen' field */ 1251 enum { 1252 SB_UNFROZEN = 0, /* FS is unfrozen */ 1253 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1254 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1255 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1256 * internal threads if needed) */ 1257 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1258 }; 1259 1260 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1261 1262 struct sb_writers { 1263 unsigned short frozen; /* Is sb frozen? */ 1264 int freeze_kcount; /* How many kernel freeze requests? */ 1265 int freeze_ucount; /* How many userspace freeze requests? */ 1266 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1267 }; 1268 1269 struct super_block { 1270 struct list_head s_list; /* Keep this first */ 1271 dev_t s_dev; /* search index; _not_ kdev_t */ 1272 unsigned char s_blocksize_bits; 1273 unsigned long s_blocksize; 1274 loff_t s_maxbytes; /* Max file size */ 1275 struct file_system_type *s_type; 1276 const struct super_operations *s_op; 1277 const struct dquot_operations *dq_op; 1278 const struct quotactl_ops *s_qcop; 1279 const struct export_operations *s_export_op; 1280 unsigned long s_flags; 1281 unsigned long s_iflags; /* internal SB_I_* flags */ 1282 unsigned long s_magic; 1283 struct dentry *s_root; 1284 struct rw_semaphore s_umount; 1285 int s_count; 1286 atomic_t s_active; 1287 #ifdef CONFIG_SECURITY 1288 void *s_security; 1289 #endif 1290 const struct xattr_handler * const *s_xattr; 1291 #ifdef CONFIG_FS_ENCRYPTION 1292 const struct fscrypt_operations *s_cop; 1293 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1294 #endif 1295 #ifdef CONFIG_FS_VERITY 1296 const struct fsverity_operations *s_vop; 1297 #endif 1298 #if IS_ENABLED(CONFIG_UNICODE) 1299 struct unicode_map *s_encoding; 1300 __u16 s_encoding_flags; 1301 #endif 1302 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1303 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1304 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1305 struct file *s_bdev_file; 1306 struct backing_dev_info *s_bdi; 1307 struct mtd_info *s_mtd; 1308 struct hlist_node s_instances; 1309 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1310 struct quota_info s_dquot; /* Diskquota specific options */ 1311 1312 struct sb_writers s_writers; 1313 1314 /* 1315 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1316 * s_fsnotify_info together for cache efficiency. They are frequently 1317 * accessed and rarely modified. 1318 */ 1319 void *s_fs_info; /* Filesystem private info */ 1320 1321 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1322 u32 s_time_gran; 1323 /* Time limits for c/m/atime in seconds */ 1324 time64_t s_time_min; 1325 time64_t s_time_max; 1326 #ifdef CONFIG_FSNOTIFY 1327 u32 s_fsnotify_mask; 1328 struct fsnotify_sb_info *s_fsnotify_info; 1329 #endif 1330 1331 /* 1332 * q: why are s_id and s_sysfs_name not the same? both are human 1333 * readable strings that identify the filesystem 1334 * a: s_id is allowed to change at runtime; it's used in log messages, 1335 * and we want to when a device starts out as single device (s_id is dev 1336 * name) but then a device is hot added and we have to switch to 1337 * identifying it by UUID 1338 * but s_sysfs_name is a handle for programmatic access, and can't 1339 * change at runtime 1340 */ 1341 char s_id[32]; /* Informational name */ 1342 uuid_t s_uuid; /* UUID */ 1343 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1344 1345 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1346 char s_sysfs_name[UUID_STRING_LEN + 1]; 1347 1348 unsigned int s_max_links; 1349 1350 /* 1351 * The next field is for VFS *only*. No filesystems have any business 1352 * even looking at it. You had been warned. 1353 */ 1354 struct mutex s_vfs_rename_mutex; /* Kludge */ 1355 1356 /* 1357 * Filesystem subtype. If non-empty the filesystem type field 1358 * in /proc/mounts will be "type.subtype" 1359 */ 1360 const char *s_subtype; 1361 1362 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1363 1364 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1365 1366 /* Number of inodes with nlink == 0 but still referenced */ 1367 atomic_long_t s_remove_count; 1368 1369 /* Read-only state of the superblock is being changed */ 1370 int s_readonly_remount; 1371 1372 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1373 errseq_t s_wb_err; 1374 1375 /* AIO completions deferred from interrupt context */ 1376 struct workqueue_struct *s_dio_done_wq; 1377 struct hlist_head s_pins; 1378 1379 /* 1380 * Owning user namespace and default context in which to 1381 * interpret filesystem uids, gids, quotas, device nodes, 1382 * xattrs and security labels. 1383 */ 1384 struct user_namespace *s_user_ns; 1385 1386 /* 1387 * The list_lru structure is essentially just a pointer to a table 1388 * of per-node lru lists, each of which has its own spinlock. 1389 * There is no need to put them into separate cachelines. 1390 */ 1391 struct list_lru s_dentry_lru; 1392 struct list_lru s_inode_lru; 1393 struct rcu_head rcu; 1394 struct work_struct destroy_work; 1395 1396 struct mutex s_sync_lock; /* sync serialisation lock */ 1397 1398 /* 1399 * Indicates how deep in a filesystem stack this SB is 1400 */ 1401 int s_stack_depth; 1402 1403 /* s_inode_list_lock protects s_inodes */ 1404 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1405 struct list_head s_inodes; /* all inodes */ 1406 1407 spinlock_t s_inode_wblist_lock; 1408 struct list_head s_inodes_wb; /* writeback inodes */ 1409 } __randomize_layout; 1410 1411 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1412 { 1413 return inode->i_sb->s_user_ns; 1414 } 1415 1416 /* Helper functions so that in most cases filesystems will 1417 * not need to deal directly with kuid_t and kgid_t and can 1418 * instead deal with the raw numeric values that are stored 1419 * in the filesystem. 1420 */ 1421 static inline uid_t i_uid_read(const struct inode *inode) 1422 { 1423 return from_kuid(i_user_ns(inode), inode->i_uid); 1424 } 1425 1426 static inline gid_t i_gid_read(const struct inode *inode) 1427 { 1428 return from_kgid(i_user_ns(inode), inode->i_gid); 1429 } 1430 1431 static inline void i_uid_write(struct inode *inode, uid_t uid) 1432 { 1433 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1434 } 1435 1436 static inline void i_gid_write(struct inode *inode, gid_t gid) 1437 { 1438 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1439 } 1440 1441 /** 1442 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1443 * @idmap: idmap of the mount the inode was found from 1444 * @inode: inode to map 1445 * 1446 * Return: whe inode's i_uid mapped down according to @idmap. 1447 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1448 */ 1449 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1450 const struct inode *inode) 1451 { 1452 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1453 } 1454 1455 /** 1456 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1457 * @idmap: idmap of the mount the inode was found from 1458 * @attr: the new attributes of @inode 1459 * @inode: the inode to update 1460 * 1461 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1462 * mounts into account if the filesystem supports it. 1463 * 1464 * Return: true if @inode's i_uid field needs to be updated, false if not. 1465 */ 1466 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1467 const struct iattr *attr, 1468 const struct inode *inode) 1469 { 1470 return ((attr->ia_valid & ATTR_UID) && 1471 !vfsuid_eq(attr->ia_vfsuid, 1472 i_uid_into_vfsuid(idmap, inode))); 1473 } 1474 1475 /** 1476 * i_uid_update - update @inode's i_uid field 1477 * @idmap: idmap of the mount the inode was found from 1478 * @attr: the new attributes of @inode 1479 * @inode: the inode to update 1480 * 1481 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1482 * mount into the filesystem kuid. 1483 */ 1484 static inline void i_uid_update(struct mnt_idmap *idmap, 1485 const struct iattr *attr, 1486 struct inode *inode) 1487 { 1488 if (attr->ia_valid & ATTR_UID) 1489 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1490 attr->ia_vfsuid); 1491 } 1492 1493 /** 1494 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1495 * @idmap: idmap of the mount the inode was found from 1496 * @inode: inode to map 1497 * 1498 * Return: the inode's i_gid mapped down according to @idmap. 1499 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1500 */ 1501 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1502 const struct inode *inode) 1503 { 1504 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1505 } 1506 1507 /** 1508 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1509 * @idmap: idmap of the mount the inode was found from 1510 * @attr: the new attributes of @inode 1511 * @inode: the inode to update 1512 * 1513 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1514 * mounts into account if the filesystem supports it. 1515 * 1516 * Return: true if @inode's i_gid field needs to be updated, false if not. 1517 */ 1518 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1519 const struct iattr *attr, 1520 const struct inode *inode) 1521 { 1522 return ((attr->ia_valid & ATTR_GID) && 1523 !vfsgid_eq(attr->ia_vfsgid, 1524 i_gid_into_vfsgid(idmap, inode))); 1525 } 1526 1527 /** 1528 * i_gid_update - update @inode's i_gid field 1529 * @idmap: idmap of the mount the inode was found from 1530 * @attr: the new attributes of @inode 1531 * @inode: the inode to update 1532 * 1533 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1534 * mount into the filesystem kgid. 1535 */ 1536 static inline void i_gid_update(struct mnt_idmap *idmap, 1537 const struct iattr *attr, 1538 struct inode *inode) 1539 { 1540 if (attr->ia_valid & ATTR_GID) 1541 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1542 attr->ia_vfsgid); 1543 } 1544 1545 /** 1546 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1547 * @inode: inode to initialize 1548 * @idmap: idmap of the mount the inode was found from 1549 * 1550 * Initialize the i_uid field of @inode. If the inode was found/created via 1551 * an idmapped mount map the caller's fsuid according to @idmap. 1552 */ 1553 static inline void inode_fsuid_set(struct inode *inode, 1554 struct mnt_idmap *idmap) 1555 { 1556 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1557 } 1558 1559 /** 1560 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1561 * @inode: inode to initialize 1562 * @idmap: idmap of the mount the inode was found from 1563 * 1564 * Initialize the i_gid field of @inode. If the inode was found/created via 1565 * an idmapped mount map the caller's fsgid according to @idmap. 1566 */ 1567 static inline void inode_fsgid_set(struct inode *inode, 1568 struct mnt_idmap *idmap) 1569 { 1570 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1571 } 1572 1573 /** 1574 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1575 * @sb: the superblock we want a mapping in 1576 * @idmap: idmap of the relevant mount 1577 * 1578 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1579 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1580 * the caller's fsuid and fsgid according to the @idmap first. 1581 * 1582 * Return: true if fsuid and fsgid is mapped, false if not. 1583 */ 1584 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1585 struct mnt_idmap *idmap) 1586 { 1587 struct user_namespace *fs_userns = sb->s_user_ns; 1588 kuid_t kuid; 1589 kgid_t kgid; 1590 1591 kuid = mapped_fsuid(idmap, fs_userns); 1592 if (!uid_valid(kuid)) 1593 return false; 1594 kgid = mapped_fsgid(idmap, fs_userns); 1595 if (!gid_valid(kgid)) 1596 return false; 1597 return kuid_has_mapping(fs_userns, kuid) && 1598 kgid_has_mapping(fs_userns, kgid); 1599 } 1600 1601 struct timespec64 current_time(struct inode *inode); 1602 struct timespec64 inode_set_ctime_current(struct inode *inode); 1603 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1604 struct timespec64 update); 1605 1606 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1607 { 1608 return inode->i_atime_sec; 1609 } 1610 1611 static inline long inode_get_atime_nsec(const struct inode *inode) 1612 { 1613 return inode->i_atime_nsec; 1614 } 1615 1616 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1617 { 1618 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1619 .tv_nsec = inode_get_atime_nsec(inode) }; 1620 1621 return ts; 1622 } 1623 1624 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1625 struct timespec64 ts) 1626 { 1627 inode->i_atime_sec = ts.tv_sec; 1628 inode->i_atime_nsec = ts.tv_nsec; 1629 return ts; 1630 } 1631 1632 static inline struct timespec64 inode_set_atime(struct inode *inode, 1633 time64_t sec, long nsec) 1634 { 1635 struct timespec64 ts = { .tv_sec = sec, 1636 .tv_nsec = nsec }; 1637 1638 return inode_set_atime_to_ts(inode, ts); 1639 } 1640 1641 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1642 { 1643 return inode->i_mtime_sec; 1644 } 1645 1646 static inline long inode_get_mtime_nsec(const struct inode *inode) 1647 { 1648 return inode->i_mtime_nsec; 1649 } 1650 1651 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1652 { 1653 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1654 .tv_nsec = inode_get_mtime_nsec(inode) }; 1655 return ts; 1656 } 1657 1658 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1659 struct timespec64 ts) 1660 { 1661 inode->i_mtime_sec = ts.tv_sec; 1662 inode->i_mtime_nsec = ts.tv_nsec; 1663 return ts; 1664 } 1665 1666 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1667 time64_t sec, long nsec) 1668 { 1669 struct timespec64 ts = { .tv_sec = sec, 1670 .tv_nsec = nsec }; 1671 return inode_set_mtime_to_ts(inode, ts); 1672 } 1673 1674 /* 1675 * Multigrain timestamps 1676 * 1677 * Conditionally use fine-grained ctime and mtime timestamps when there 1678 * are users actively observing them via getattr. The primary use-case 1679 * for this is NFS clients that use the ctime to distinguish between 1680 * different states of the file, and that are often fooled by multiple 1681 * operations that occur in the same coarse-grained timer tick. 1682 */ 1683 #define I_CTIME_QUERIED ((u32)BIT(31)) 1684 1685 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1686 { 1687 return inode->i_ctime_sec; 1688 } 1689 1690 static inline long inode_get_ctime_nsec(const struct inode *inode) 1691 { 1692 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1693 } 1694 1695 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1696 { 1697 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1698 .tv_nsec = inode_get_ctime_nsec(inode) }; 1699 1700 return ts; 1701 } 1702 1703 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1704 1705 /** 1706 * inode_set_ctime - set the ctime in the inode 1707 * @inode: inode in which to set the ctime 1708 * @sec: tv_sec value to set 1709 * @nsec: tv_nsec value to set 1710 * 1711 * Set the ctime in @inode to { @sec, @nsec } 1712 */ 1713 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1714 time64_t sec, long nsec) 1715 { 1716 struct timespec64 ts = { .tv_sec = sec, 1717 .tv_nsec = nsec }; 1718 1719 return inode_set_ctime_to_ts(inode, ts); 1720 } 1721 1722 struct timespec64 simple_inode_init_ts(struct inode *inode); 1723 1724 /* 1725 * Snapshotting support. 1726 */ 1727 1728 /* 1729 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1730 * instead. 1731 */ 1732 static inline void __sb_end_write(struct super_block *sb, int level) 1733 { 1734 percpu_up_read(sb->s_writers.rw_sem + level-1); 1735 } 1736 1737 static inline void __sb_start_write(struct super_block *sb, int level) 1738 { 1739 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1740 } 1741 1742 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1743 { 1744 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1745 } 1746 1747 #define __sb_writers_acquired(sb, lev) \ 1748 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1749 #define __sb_writers_release(sb, lev) \ 1750 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1751 1752 /** 1753 * __sb_write_started - check if sb freeze level is held 1754 * @sb: the super we write to 1755 * @level: the freeze level 1756 * 1757 * * > 0 - sb freeze level is held 1758 * * 0 - sb freeze level is not held 1759 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1760 */ 1761 static inline int __sb_write_started(const struct super_block *sb, int level) 1762 { 1763 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1764 } 1765 1766 /** 1767 * sb_write_started - check if SB_FREEZE_WRITE is held 1768 * @sb: the super we write to 1769 * 1770 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1771 */ 1772 static inline bool sb_write_started(const struct super_block *sb) 1773 { 1774 return __sb_write_started(sb, SB_FREEZE_WRITE); 1775 } 1776 1777 /** 1778 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1779 * @sb: the super we write to 1780 * 1781 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1782 */ 1783 static inline bool sb_write_not_started(const struct super_block *sb) 1784 { 1785 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1786 } 1787 1788 /** 1789 * file_write_started - check if SB_FREEZE_WRITE is held 1790 * @file: the file we write to 1791 * 1792 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1793 * May be false positive with !S_ISREG, because file_start_write() has 1794 * no effect on !S_ISREG. 1795 */ 1796 static inline bool file_write_started(const struct file *file) 1797 { 1798 if (!S_ISREG(file_inode(file)->i_mode)) 1799 return true; 1800 return sb_write_started(file_inode(file)->i_sb); 1801 } 1802 1803 /** 1804 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1805 * @file: the file we write to 1806 * 1807 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1808 * May be false positive with !S_ISREG, because file_start_write() has 1809 * no effect on !S_ISREG. 1810 */ 1811 static inline bool file_write_not_started(const struct file *file) 1812 { 1813 if (!S_ISREG(file_inode(file)->i_mode)) 1814 return true; 1815 return sb_write_not_started(file_inode(file)->i_sb); 1816 } 1817 1818 /** 1819 * sb_end_write - drop write access to a superblock 1820 * @sb: the super we wrote to 1821 * 1822 * Decrement number of writers to the filesystem. Wake up possible waiters 1823 * wanting to freeze the filesystem. 1824 */ 1825 static inline void sb_end_write(struct super_block *sb) 1826 { 1827 __sb_end_write(sb, SB_FREEZE_WRITE); 1828 } 1829 1830 /** 1831 * sb_end_pagefault - drop write access to a superblock from a page fault 1832 * @sb: the super we wrote to 1833 * 1834 * Decrement number of processes handling write page fault to the filesystem. 1835 * Wake up possible waiters wanting to freeze the filesystem. 1836 */ 1837 static inline void sb_end_pagefault(struct super_block *sb) 1838 { 1839 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1840 } 1841 1842 /** 1843 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1844 * @sb: the super we wrote to 1845 * 1846 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1847 * waiters wanting to freeze the filesystem. 1848 */ 1849 static inline void sb_end_intwrite(struct super_block *sb) 1850 { 1851 __sb_end_write(sb, SB_FREEZE_FS); 1852 } 1853 1854 /** 1855 * sb_start_write - get write access to a superblock 1856 * @sb: the super we write to 1857 * 1858 * When a process wants to write data or metadata to a file system (i.e. dirty 1859 * a page or an inode), it should embed the operation in a sb_start_write() - 1860 * sb_end_write() pair to get exclusion against file system freezing. This 1861 * function increments number of writers preventing freezing. If the file 1862 * system is already frozen, the function waits until the file system is 1863 * thawed. 1864 * 1865 * Since freeze protection behaves as a lock, users have to preserve 1866 * ordering of freeze protection and other filesystem locks. Generally, 1867 * freeze protection should be the outermost lock. In particular, we have: 1868 * 1869 * sb_start_write 1870 * -> i_mutex (write path, truncate, directory ops, ...) 1871 * -> s_umount (freeze_super, thaw_super) 1872 */ 1873 static inline void sb_start_write(struct super_block *sb) 1874 { 1875 __sb_start_write(sb, SB_FREEZE_WRITE); 1876 } 1877 1878 static inline bool sb_start_write_trylock(struct super_block *sb) 1879 { 1880 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1881 } 1882 1883 /** 1884 * sb_start_pagefault - get write access to a superblock from a page fault 1885 * @sb: the super we write to 1886 * 1887 * When a process starts handling write page fault, it should embed the 1888 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1889 * exclusion against file system freezing. This is needed since the page fault 1890 * is going to dirty a page. This function increments number of running page 1891 * faults preventing freezing. If the file system is already frozen, the 1892 * function waits until the file system is thawed. 1893 * 1894 * Since page fault freeze protection behaves as a lock, users have to preserve 1895 * ordering of freeze protection and other filesystem locks. It is advised to 1896 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1897 * handling code implies lock dependency: 1898 * 1899 * mmap_lock 1900 * -> sb_start_pagefault 1901 */ 1902 static inline void sb_start_pagefault(struct super_block *sb) 1903 { 1904 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1905 } 1906 1907 /** 1908 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1909 * @sb: the super we write to 1910 * 1911 * This is the third level of protection against filesystem freezing. It is 1912 * free for use by a filesystem. The only requirement is that it must rank 1913 * below sb_start_pagefault. 1914 * 1915 * For example filesystem can call sb_start_intwrite() when starting a 1916 * transaction which somewhat eases handling of freezing for internal sources 1917 * of filesystem changes (internal fs threads, discarding preallocation on file 1918 * close, etc.). 1919 */ 1920 static inline void sb_start_intwrite(struct super_block *sb) 1921 { 1922 __sb_start_write(sb, SB_FREEZE_FS); 1923 } 1924 1925 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1926 { 1927 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1928 } 1929 1930 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1931 const struct inode *inode); 1932 1933 /* 1934 * VFS helper functions.. 1935 */ 1936 int vfs_create(struct mnt_idmap *, struct inode *, 1937 struct dentry *, umode_t, bool); 1938 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1939 struct dentry *, umode_t); 1940 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1941 umode_t, dev_t); 1942 int vfs_symlink(struct mnt_idmap *, struct inode *, 1943 struct dentry *, const char *); 1944 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1945 struct dentry *, struct inode **); 1946 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1947 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1948 struct inode **); 1949 1950 /** 1951 * struct renamedata - contains all information required for renaming 1952 * @old_mnt_idmap: idmap of the old mount the inode was found from 1953 * @old_dir: parent of source 1954 * @old_dentry: source 1955 * @new_mnt_idmap: idmap of the new mount the inode was found from 1956 * @new_dir: parent of destination 1957 * @new_dentry: destination 1958 * @delegated_inode: returns an inode needing a delegation break 1959 * @flags: rename flags 1960 */ 1961 struct renamedata { 1962 struct mnt_idmap *old_mnt_idmap; 1963 struct inode *old_dir; 1964 struct dentry *old_dentry; 1965 struct mnt_idmap *new_mnt_idmap; 1966 struct inode *new_dir; 1967 struct dentry *new_dentry; 1968 struct inode **delegated_inode; 1969 unsigned int flags; 1970 } __randomize_layout; 1971 1972 int vfs_rename(struct renamedata *); 1973 1974 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1975 struct inode *dir, struct dentry *dentry) 1976 { 1977 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1978 WHITEOUT_DEV); 1979 } 1980 1981 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1982 const struct path *parentpath, 1983 umode_t mode, int open_flag, 1984 const struct cred *cred); 1985 struct file *kernel_file_open(const struct path *path, int flags, 1986 const struct cred *cred); 1987 1988 int vfs_mkobj(struct dentry *, umode_t, 1989 int (*f)(struct dentry *, umode_t, void *), 1990 void *); 1991 1992 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1993 int vfs_fchmod(struct file *file, umode_t mode); 1994 int vfs_utimes(const struct path *path, struct timespec64 *times); 1995 1996 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1997 1998 #ifdef CONFIG_COMPAT 1999 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 2000 unsigned long arg); 2001 #else 2002 #define compat_ptr_ioctl NULL 2003 #endif 2004 2005 /* 2006 * VFS file helper functions. 2007 */ 2008 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2009 const struct inode *dir, umode_t mode); 2010 extern bool may_open_dev(const struct path *path); 2011 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2012 const struct inode *dir, umode_t mode); 2013 bool in_group_or_capable(struct mnt_idmap *idmap, 2014 const struct inode *inode, vfsgid_t vfsgid); 2015 2016 /* 2017 * This is the "filldir" function type, used by readdir() to let 2018 * the kernel specify what kind of dirent layout it wants to have. 2019 * This allows the kernel to read directories into kernel space or 2020 * to have different dirent layouts depending on the binary type. 2021 * Return 'true' to keep going and 'false' if there are no more entries. 2022 */ 2023 struct dir_context; 2024 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2025 unsigned); 2026 2027 struct dir_context { 2028 filldir_t actor; 2029 loff_t pos; 2030 }; 2031 2032 /* 2033 * These flags let !MMU mmap() govern direct device mapping vs immediate 2034 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2035 * 2036 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2037 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2038 * NOMMU_MAP_READ: Can be mapped for reading 2039 * NOMMU_MAP_WRITE: Can be mapped for writing 2040 * NOMMU_MAP_EXEC: Can be mapped for execution 2041 */ 2042 #define NOMMU_MAP_COPY 0x00000001 2043 #define NOMMU_MAP_DIRECT 0x00000008 2044 #define NOMMU_MAP_READ VM_MAYREAD 2045 #define NOMMU_MAP_WRITE VM_MAYWRITE 2046 #define NOMMU_MAP_EXEC VM_MAYEXEC 2047 2048 #define NOMMU_VMFLAGS \ 2049 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2050 2051 /* 2052 * These flags control the behavior of the remap_file_range function pointer. 2053 * If it is called with len == 0 that means "remap to end of source file". 2054 * See Documentation/filesystems/vfs.rst for more details about this call. 2055 * 2056 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2057 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2058 */ 2059 #define REMAP_FILE_DEDUP (1 << 0) 2060 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2061 2062 /* 2063 * These flags signal that the caller is ok with altering various aspects of 2064 * the behavior of the remap operation. The changes must be made by the 2065 * implementation; the vfs remap helper functions can take advantage of them. 2066 * Flags in this category exist to preserve the quirky behavior of the hoisted 2067 * btrfs clone/dedupe ioctls. 2068 */ 2069 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2070 2071 /* 2072 * These flags control the behavior of vfs_copy_file_range(). 2073 * They are not available to the user via syscall. 2074 * 2075 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2076 */ 2077 #define COPY_FILE_SPLICE (1 << 0) 2078 2079 struct iov_iter; 2080 struct io_uring_cmd; 2081 struct offset_ctx; 2082 2083 typedef unsigned int __bitwise fop_flags_t; 2084 2085 struct file_operations { 2086 struct module *owner; 2087 fop_flags_t fop_flags; 2088 loff_t (*llseek) (struct file *, loff_t, int); 2089 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2090 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2091 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2092 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2093 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2094 unsigned int flags); 2095 int (*iterate_shared) (struct file *, struct dir_context *); 2096 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2097 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2098 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2099 int (*mmap) (struct file *, struct vm_area_struct *); 2100 int (*open) (struct inode *, struct file *); 2101 int (*flush) (struct file *, fl_owner_t id); 2102 int (*release) (struct inode *, struct file *); 2103 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2104 int (*fasync) (int, struct file *, int); 2105 int (*lock) (struct file *, int, struct file_lock *); 2106 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2107 int (*check_flags)(int); 2108 int (*flock) (struct file *, int, struct file_lock *); 2109 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2110 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2111 void (*splice_eof)(struct file *file); 2112 int (*setlease)(struct file *, int, struct file_lease **, void **); 2113 long (*fallocate)(struct file *file, int mode, loff_t offset, 2114 loff_t len); 2115 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2116 #ifndef CONFIG_MMU 2117 unsigned (*mmap_capabilities)(struct file *); 2118 #endif 2119 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2120 loff_t, size_t, unsigned int); 2121 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2122 struct file *file_out, loff_t pos_out, 2123 loff_t len, unsigned int remap_flags); 2124 int (*fadvise)(struct file *, loff_t, loff_t, int); 2125 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2126 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2127 unsigned int poll_flags); 2128 } __randomize_layout; 2129 2130 /* Supports async buffered reads */ 2131 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2132 /* Supports async buffered writes */ 2133 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2134 /* Supports synchronous page faults for mappings */ 2135 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2136 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2137 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2138 /* Contains huge pages */ 2139 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2140 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2141 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2142 /* Supports asynchronous lock callbacks */ 2143 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2144 /* File system supports uncached read/write buffered IO */ 2145 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 2146 2147 /* Wrap a directory iterator that needs exclusive inode access */ 2148 int wrap_directory_iterator(struct file *, struct dir_context *, 2149 int (*) (struct file *, struct dir_context *)); 2150 #define WRAP_DIR_ITER(x) \ 2151 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2152 { return wrap_directory_iterator(file, ctx, x); } 2153 2154 struct inode_operations { 2155 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2156 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2157 int (*permission) (struct mnt_idmap *, struct inode *, int); 2158 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2159 2160 int (*readlink) (struct dentry *, char __user *,int); 2161 2162 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2163 umode_t, bool); 2164 int (*link) (struct dentry *,struct inode *,struct dentry *); 2165 int (*unlink) (struct inode *,struct dentry *); 2166 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2167 const char *); 2168 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2169 umode_t); 2170 int (*rmdir) (struct inode *,struct dentry *); 2171 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2172 umode_t,dev_t); 2173 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2174 struct inode *, struct dentry *, unsigned int); 2175 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2176 int (*getattr) (struct mnt_idmap *, const struct path *, 2177 struct kstat *, u32, unsigned int); 2178 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2179 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2180 u64 len); 2181 int (*update_time)(struct inode *, int); 2182 int (*atomic_open)(struct inode *, struct dentry *, 2183 struct file *, unsigned open_flag, 2184 umode_t create_mode); 2185 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2186 struct file *, umode_t); 2187 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2188 int); 2189 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2190 struct posix_acl *, int); 2191 int (*fileattr_set)(struct mnt_idmap *idmap, 2192 struct dentry *dentry, struct fileattr *fa); 2193 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2194 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2195 } ____cacheline_aligned; 2196 2197 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2198 { 2199 return file->f_op->mmap(file, vma); 2200 } 2201 2202 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2203 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2204 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2205 loff_t, size_t, unsigned int); 2206 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2207 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2208 struct file *file_out, loff_t pos_out, 2209 loff_t *len, unsigned int remap_flags, 2210 const struct iomap_ops *dax_read_ops); 2211 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2212 struct file *file_out, loff_t pos_out, 2213 loff_t *count, unsigned int remap_flags); 2214 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2215 struct file *file_out, loff_t pos_out, 2216 loff_t len, unsigned int remap_flags); 2217 extern int vfs_dedupe_file_range(struct file *file, 2218 struct file_dedupe_range *same); 2219 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2220 struct file *dst_file, loff_t dst_pos, 2221 loff_t len, unsigned int remap_flags); 2222 2223 /** 2224 * enum freeze_holder - holder of the freeze 2225 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2226 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2227 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2228 * 2229 * Indicate who the owner of the freeze or thaw request is and whether 2230 * the freeze needs to be exclusive or can nest. 2231 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2232 * same holder aren't allowed. It is however allowed to hold a single 2233 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2234 * the same time. This is relied upon by some filesystems during online 2235 * repair or similar. 2236 */ 2237 enum freeze_holder { 2238 FREEZE_HOLDER_KERNEL = (1U << 0), 2239 FREEZE_HOLDER_USERSPACE = (1U << 1), 2240 FREEZE_MAY_NEST = (1U << 2), 2241 }; 2242 2243 struct super_operations { 2244 struct inode *(*alloc_inode)(struct super_block *sb); 2245 void (*destroy_inode)(struct inode *); 2246 void (*free_inode)(struct inode *); 2247 2248 void (*dirty_inode) (struct inode *, int flags); 2249 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2250 int (*drop_inode) (struct inode *); 2251 void (*evict_inode) (struct inode *); 2252 void (*put_super) (struct super_block *); 2253 int (*sync_fs)(struct super_block *sb, int wait); 2254 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2255 int (*freeze_fs) (struct super_block *); 2256 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2257 int (*unfreeze_fs) (struct super_block *); 2258 int (*statfs) (struct dentry *, struct kstatfs *); 2259 int (*remount_fs) (struct super_block *, int *, char *); 2260 void (*umount_begin) (struct super_block *); 2261 2262 int (*show_options)(struct seq_file *, struct dentry *); 2263 int (*show_devname)(struct seq_file *, struct dentry *); 2264 int (*show_path)(struct seq_file *, struct dentry *); 2265 int (*show_stats)(struct seq_file *, struct dentry *); 2266 #ifdef CONFIG_QUOTA 2267 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2268 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2269 struct dquot __rcu **(*get_dquots)(struct inode *); 2270 #endif 2271 long (*nr_cached_objects)(struct super_block *, 2272 struct shrink_control *); 2273 long (*free_cached_objects)(struct super_block *, 2274 struct shrink_control *); 2275 void (*shutdown)(struct super_block *sb); 2276 }; 2277 2278 /* 2279 * Inode flags - they have no relation to superblock flags now 2280 */ 2281 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2282 #define S_NOATIME (1 << 1) /* Do not update access times */ 2283 #define S_APPEND (1 << 2) /* Append-only file */ 2284 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2285 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2286 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2287 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2288 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2289 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2290 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2291 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2292 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2293 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2294 #ifdef CONFIG_FS_DAX 2295 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2296 #else 2297 #define S_DAX 0 /* Make all the DAX code disappear */ 2298 #endif 2299 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2300 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2301 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2302 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2303 2304 /* 2305 * Note that nosuid etc flags are inode-specific: setting some file-system 2306 * flags just means all the inodes inherit those flags by default. It might be 2307 * possible to override it selectively if you really wanted to with some 2308 * ioctl() that is not currently implemented. 2309 * 2310 * Exception: SB_RDONLY is always applied to the entire file system. 2311 * 2312 * Unfortunately, it is possible to change a filesystems flags with it mounted 2313 * with files in use. This means that all of the inodes will not have their 2314 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2315 * flags, so these have to be checked separately. -- [email protected] 2316 */ 2317 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2318 2319 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2320 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2321 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2322 ((inode)->i_flags & S_SYNC)) 2323 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2324 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2325 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2326 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2327 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2328 2329 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2330 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2331 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2332 2333 #ifdef CONFIG_FS_POSIX_ACL 2334 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2335 #else 2336 #define IS_POSIXACL(inode) 0 2337 #endif 2338 2339 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2340 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2341 2342 #ifdef CONFIG_SWAP 2343 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2344 #else 2345 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2346 #endif 2347 2348 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2349 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2350 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2351 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2352 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2353 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2354 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2355 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2356 2357 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2358 (inode)->i_rdev == WHITEOUT_DEV) 2359 2360 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2361 struct inode *inode) 2362 { 2363 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2364 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2365 } 2366 2367 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2368 { 2369 *kiocb = (struct kiocb) { 2370 .ki_filp = filp, 2371 .ki_flags = filp->f_iocb_flags, 2372 .ki_ioprio = get_current_ioprio(), 2373 }; 2374 } 2375 2376 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2377 struct file *filp) 2378 { 2379 *kiocb = (struct kiocb) { 2380 .ki_filp = filp, 2381 .ki_flags = kiocb_src->ki_flags, 2382 .ki_ioprio = kiocb_src->ki_ioprio, 2383 .ki_pos = kiocb_src->ki_pos, 2384 }; 2385 } 2386 2387 /* 2388 * Inode state bits. Protected by inode->i_lock 2389 * 2390 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2391 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2392 * 2393 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2394 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2395 * various stages of removing an inode. 2396 * 2397 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2398 * 2399 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2400 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2401 * Timestamp updates are the usual cause. 2402 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2403 * these changes separately from I_DIRTY_SYNC so that we 2404 * don't have to write inode on fdatasync() when only 2405 * e.g. the timestamps have changed. 2406 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2407 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2408 * lazytime mount option is enabled. We keep track of this 2409 * separately from I_DIRTY_SYNC in order to implement 2410 * lazytime. This gets cleared if I_DIRTY_INODE 2411 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2412 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2413 * in place because writeback might already be in progress 2414 * and we don't want to lose the time update 2415 * I_NEW Serves as both a mutex and completion notification. 2416 * New inodes set I_NEW. If two processes both create 2417 * the same inode, one of them will release its inode and 2418 * wait for I_NEW to be released before returning. 2419 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2420 * also cause waiting on I_NEW, without I_NEW actually 2421 * being set. find_inode() uses this to prevent returning 2422 * nearly-dead inodes. 2423 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2424 * is zero. I_FREEING must be set when I_WILL_FREE is 2425 * cleared. 2426 * I_FREEING Set when inode is about to be freed but still has dirty 2427 * pages or buffers attached or the inode itself is still 2428 * dirty. 2429 * I_CLEAR Added by clear_inode(). In this state the inode is 2430 * clean and can be destroyed. Inode keeps I_FREEING. 2431 * 2432 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2433 * prohibited for many purposes. iget() must wait for 2434 * the inode to be completely released, then create it 2435 * anew. Other functions will just ignore such inodes, 2436 * if appropriate. I_NEW is used for waiting. 2437 * 2438 * I_SYNC Writeback of inode is running. The bit is set during 2439 * data writeback, and cleared with a wakeup on the bit 2440 * address once it is done. The bit is also used to pin 2441 * the inode in memory for flusher thread. 2442 * 2443 * I_REFERENCED Marks the inode as recently references on the LRU list. 2444 * 2445 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2446 * synchronize competing switching instances and to tell 2447 * wb stat updates to grab the i_pages lock. See 2448 * inode_switch_wbs_work_fn() for details. 2449 * 2450 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2451 * and work dirs among overlayfs mounts. 2452 * 2453 * I_CREATING New object's inode in the middle of setting up. 2454 * 2455 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2456 * 2457 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2458 * Used to detect that mark_inode_dirty() should not move 2459 * inode between dirty lists. 2460 * 2461 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2462 * 2463 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2464 * i_count. 2465 * 2466 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2467 * 2468 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2469 * upon. There's one free address left. 2470 */ 2471 #define __I_NEW 0 2472 #define I_NEW (1 << __I_NEW) 2473 #define __I_SYNC 1 2474 #define I_SYNC (1 << __I_SYNC) 2475 #define __I_LRU_ISOLATING 2 2476 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2477 2478 #define I_DIRTY_SYNC (1 << 3) 2479 #define I_DIRTY_DATASYNC (1 << 4) 2480 #define I_DIRTY_PAGES (1 << 5) 2481 #define I_WILL_FREE (1 << 6) 2482 #define I_FREEING (1 << 7) 2483 #define I_CLEAR (1 << 8) 2484 #define I_REFERENCED (1 << 9) 2485 #define I_LINKABLE (1 << 10) 2486 #define I_DIRTY_TIME (1 << 11) 2487 #define I_WB_SWITCH (1 << 12) 2488 #define I_OVL_INUSE (1 << 13) 2489 #define I_CREATING (1 << 14) 2490 #define I_DONTCACHE (1 << 15) 2491 #define I_SYNC_QUEUED (1 << 16) 2492 #define I_PINNING_NETFS_WB (1 << 17) 2493 2494 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2495 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2496 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2497 2498 extern void __mark_inode_dirty(struct inode *, int); 2499 static inline void mark_inode_dirty(struct inode *inode) 2500 { 2501 __mark_inode_dirty(inode, I_DIRTY); 2502 } 2503 2504 static inline void mark_inode_dirty_sync(struct inode *inode) 2505 { 2506 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2507 } 2508 2509 /* 2510 * Returns true if the given inode itself only has dirty timestamps (its pages 2511 * may still be dirty) and isn't currently being allocated or freed. 2512 * Filesystems should call this if when writing an inode when lazytime is 2513 * enabled, they want to opportunistically write the timestamps of other inodes 2514 * located very nearby on-disk, e.g. in the same inode block. This returns true 2515 * if the given inode is in need of such an opportunistic update. Requires 2516 * i_lock, or at least later re-checking under i_lock. 2517 */ 2518 static inline bool inode_is_dirtytime_only(struct inode *inode) 2519 { 2520 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2521 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2522 } 2523 2524 extern void inc_nlink(struct inode *inode); 2525 extern void drop_nlink(struct inode *inode); 2526 extern void clear_nlink(struct inode *inode); 2527 extern void set_nlink(struct inode *inode, unsigned int nlink); 2528 2529 static inline void inode_inc_link_count(struct inode *inode) 2530 { 2531 inc_nlink(inode); 2532 mark_inode_dirty(inode); 2533 } 2534 2535 static inline void inode_dec_link_count(struct inode *inode) 2536 { 2537 drop_nlink(inode); 2538 mark_inode_dirty(inode); 2539 } 2540 2541 enum file_time_flags { 2542 S_ATIME = 1, 2543 S_MTIME = 2, 2544 S_CTIME = 4, 2545 S_VERSION = 8, 2546 }; 2547 2548 extern bool atime_needs_update(const struct path *, struct inode *); 2549 extern void touch_atime(const struct path *); 2550 int inode_update_time(struct inode *inode, int flags); 2551 2552 static inline void file_accessed(struct file *file) 2553 { 2554 if (!(file->f_flags & O_NOATIME)) 2555 touch_atime(&file->f_path); 2556 } 2557 2558 extern int file_modified(struct file *file); 2559 int kiocb_modified(struct kiocb *iocb); 2560 2561 int sync_inode_metadata(struct inode *inode, int wait); 2562 2563 struct file_system_type { 2564 const char *name; 2565 int fs_flags; 2566 #define FS_REQUIRES_DEV 1 2567 #define FS_BINARY_MOUNTDATA 2 2568 #define FS_HAS_SUBTYPE 4 2569 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2570 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2571 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2572 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2573 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2574 int (*init_fs_context)(struct fs_context *); 2575 const struct fs_parameter_spec *parameters; 2576 struct dentry *(*mount) (struct file_system_type *, int, 2577 const char *, void *); 2578 void (*kill_sb) (struct super_block *); 2579 struct module *owner; 2580 struct file_system_type * next; 2581 struct hlist_head fs_supers; 2582 2583 struct lock_class_key s_lock_key; 2584 struct lock_class_key s_umount_key; 2585 struct lock_class_key s_vfs_rename_key; 2586 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2587 2588 struct lock_class_key i_lock_key; 2589 struct lock_class_key i_mutex_key; 2590 struct lock_class_key invalidate_lock_key; 2591 struct lock_class_key i_mutex_dir_key; 2592 }; 2593 2594 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2595 2596 /** 2597 * is_mgtime: is this inode using multigrain timestamps 2598 * @inode: inode to test for multigrain timestamps 2599 * 2600 * Return true if the inode uses multigrain timestamps, false otherwise. 2601 */ 2602 static inline bool is_mgtime(const struct inode *inode) 2603 { 2604 return inode->i_opflags & IOP_MGTIME; 2605 } 2606 2607 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2608 int flags, const char *dev_name, void *data, 2609 int (*fill_super)(struct super_block *, void *, int)); 2610 extern struct dentry *mount_single(struct file_system_type *fs_type, 2611 int flags, void *data, 2612 int (*fill_super)(struct super_block *, void *, int)); 2613 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2614 int flags, void *data, 2615 int (*fill_super)(struct super_block *, void *, int)); 2616 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2617 void retire_super(struct super_block *sb); 2618 void generic_shutdown_super(struct super_block *sb); 2619 void kill_block_super(struct super_block *sb); 2620 void kill_anon_super(struct super_block *sb); 2621 void kill_litter_super(struct super_block *sb); 2622 void deactivate_super(struct super_block *sb); 2623 void deactivate_locked_super(struct super_block *sb); 2624 int set_anon_super(struct super_block *s, void *data); 2625 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2626 int get_anon_bdev(dev_t *); 2627 void free_anon_bdev(dev_t); 2628 struct super_block *sget_fc(struct fs_context *fc, 2629 int (*test)(struct super_block *, struct fs_context *), 2630 int (*set)(struct super_block *, struct fs_context *)); 2631 struct super_block *sget(struct file_system_type *type, 2632 int (*test)(struct super_block *,void *), 2633 int (*set)(struct super_block *,void *), 2634 int flags, void *data); 2635 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2636 2637 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2638 #define fops_get(fops) ({ \ 2639 const struct file_operations *_fops = (fops); \ 2640 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2641 }) 2642 2643 #define fops_put(fops) ({ \ 2644 const struct file_operations *_fops = (fops); \ 2645 if (_fops) \ 2646 module_put((_fops)->owner); \ 2647 }) 2648 2649 /* 2650 * This one is to be used *ONLY* from ->open() instances. 2651 * fops must be non-NULL, pinned down *and* module dependencies 2652 * should be sufficient to pin the caller down as well. 2653 */ 2654 #define replace_fops(f, fops) \ 2655 do { \ 2656 struct file *__file = (f); \ 2657 fops_put(__file->f_op); \ 2658 BUG_ON(!(__file->f_op = (fops))); \ 2659 } while(0) 2660 2661 extern int register_filesystem(struct file_system_type *); 2662 extern int unregister_filesystem(struct file_system_type *); 2663 extern int vfs_statfs(const struct path *, struct kstatfs *); 2664 extern int user_statfs(const char __user *, struct kstatfs *); 2665 extern int fd_statfs(int, struct kstatfs *); 2666 int freeze_super(struct super_block *super, enum freeze_holder who); 2667 int thaw_super(struct super_block *super, enum freeze_holder who); 2668 extern __printf(2, 3) 2669 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2670 extern int super_setup_bdi(struct super_block *sb); 2671 2672 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2673 { 2674 if (WARN_ON(len > sizeof(sb->s_uuid))) 2675 len = sizeof(sb->s_uuid); 2676 sb->s_uuid_len = len; 2677 memcpy(&sb->s_uuid, uuid, len); 2678 } 2679 2680 /* set sb sysfs name based on sb->s_bdev */ 2681 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2682 { 2683 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2684 } 2685 2686 /* set sb sysfs name based on sb->s_uuid */ 2687 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2688 { 2689 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2690 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2691 } 2692 2693 /* set sb sysfs name based on sb->s_id */ 2694 static inline void super_set_sysfs_name_id(struct super_block *sb) 2695 { 2696 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2697 } 2698 2699 /* try to use something standard before you use this */ 2700 __printf(2, 3) 2701 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2702 { 2703 va_list args; 2704 2705 va_start(args, fmt); 2706 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2707 va_end(args); 2708 } 2709 2710 extern int current_umask(void); 2711 2712 extern void ihold(struct inode * inode); 2713 extern void iput(struct inode *); 2714 int inode_update_timestamps(struct inode *inode, int flags); 2715 int generic_update_time(struct inode *, int); 2716 2717 /* /sys/fs */ 2718 extern struct kobject *fs_kobj; 2719 2720 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2721 2722 /* fs/open.c */ 2723 struct audit_names; 2724 struct filename { 2725 const char *name; /* pointer to actual string */ 2726 const __user char *uptr; /* original userland pointer */ 2727 atomic_t refcnt; 2728 struct audit_names *aname; 2729 const char iname[]; 2730 }; 2731 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2732 2733 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2734 { 2735 return mnt_idmap(file->f_path.mnt); 2736 } 2737 2738 /** 2739 * is_idmapped_mnt - check whether a mount is mapped 2740 * @mnt: the mount to check 2741 * 2742 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2743 * 2744 * Return: true if mount is mapped, false if not. 2745 */ 2746 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2747 { 2748 return mnt_idmap(mnt) != &nop_mnt_idmap; 2749 } 2750 2751 extern long vfs_truncate(const struct path *, loff_t); 2752 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2753 unsigned int time_attrs, struct file *filp); 2754 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2755 loff_t len); 2756 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2757 umode_t mode); 2758 extern struct file *file_open_name(struct filename *, int, umode_t); 2759 extern struct file *filp_open(const char *, int, umode_t); 2760 extern struct file *file_open_root(const struct path *, 2761 const char *, int, umode_t); 2762 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2763 const char *name, int flags, umode_t mode) 2764 { 2765 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2766 name, flags, mode); 2767 } 2768 struct file *dentry_open(const struct path *path, int flags, 2769 const struct cred *creds); 2770 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2771 const struct cred *cred); 2772 struct path *backing_file_user_path(struct file *f); 2773 2774 /* 2775 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2776 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2777 * filesystem. When the mapped file path and inode number are displayed to 2778 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2779 * path and inode number to display to the user, which is the path of the fd 2780 * that user has requested to map and the inode number that would be returned 2781 * by fstat() on that same fd. 2782 */ 2783 /* Get the path to display in /proc/<pid>/maps */ 2784 static inline const struct path *file_user_path(struct file *f) 2785 { 2786 if (unlikely(f->f_mode & FMODE_BACKING)) 2787 return backing_file_user_path(f); 2788 return &f->f_path; 2789 } 2790 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2791 static inline const struct inode *file_user_inode(struct file *f) 2792 { 2793 if (unlikely(f->f_mode & FMODE_BACKING)) 2794 return d_inode(backing_file_user_path(f)->dentry); 2795 return file_inode(f); 2796 } 2797 2798 static inline struct file *file_clone_open(struct file *file) 2799 { 2800 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2801 } 2802 extern int filp_close(struct file *, fl_owner_t id); 2803 2804 extern struct filename *getname_flags(const char __user *, int); 2805 extern struct filename *getname_uflags(const char __user *, int); 2806 extern struct filename *getname(const char __user *); 2807 extern struct filename *getname_kernel(const char *); 2808 extern struct filename *__getname_maybe_null(const char __user *); 2809 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2810 { 2811 if (!(flags & AT_EMPTY_PATH)) 2812 return getname(name); 2813 2814 if (!name) 2815 return NULL; 2816 return __getname_maybe_null(name); 2817 } 2818 extern void putname(struct filename *name); 2819 2820 extern int finish_open(struct file *file, struct dentry *dentry, 2821 int (*open)(struct inode *, struct file *)); 2822 extern int finish_no_open(struct file *file, struct dentry *dentry); 2823 2824 /* Helper for the simple case when original dentry is used */ 2825 static inline int finish_open_simple(struct file *file, int error) 2826 { 2827 if (error) 2828 return error; 2829 2830 return finish_open(file, file->f_path.dentry, NULL); 2831 } 2832 2833 /* fs/dcache.c */ 2834 extern void __init vfs_caches_init_early(void); 2835 extern void __init vfs_caches_init(void); 2836 2837 extern struct kmem_cache *names_cachep; 2838 2839 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2840 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2841 2842 extern struct super_block *blockdev_superblock; 2843 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2844 { 2845 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2846 } 2847 2848 void emergency_thaw_all(void); 2849 extern int sync_filesystem(struct super_block *); 2850 extern const struct file_operations def_blk_fops; 2851 extern const struct file_operations def_chr_fops; 2852 2853 /* fs/char_dev.c */ 2854 #define CHRDEV_MAJOR_MAX 512 2855 /* Marks the bottom of the first segment of free char majors */ 2856 #define CHRDEV_MAJOR_DYN_END 234 2857 /* Marks the top and bottom of the second segment of free char majors */ 2858 #define CHRDEV_MAJOR_DYN_EXT_START 511 2859 #define CHRDEV_MAJOR_DYN_EXT_END 384 2860 2861 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2862 extern int register_chrdev_region(dev_t, unsigned, const char *); 2863 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2864 unsigned int count, const char *name, 2865 const struct file_operations *fops); 2866 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2867 unsigned int count, const char *name); 2868 extern void unregister_chrdev_region(dev_t, unsigned); 2869 extern void chrdev_show(struct seq_file *,off_t); 2870 2871 static inline int register_chrdev(unsigned int major, const char *name, 2872 const struct file_operations *fops) 2873 { 2874 return __register_chrdev(major, 0, 256, name, fops); 2875 } 2876 2877 static inline void unregister_chrdev(unsigned int major, const char *name) 2878 { 2879 __unregister_chrdev(major, 0, 256, name); 2880 } 2881 2882 extern void init_special_inode(struct inode *, umode_t, dev_t); 2883 2884 /* Invalid inode operations -- fs/bad_inode.c */ 2885 extern void make_bad_inode(struct inode *); 2886 extern bool is_bad_inode(struct inode *); 2887 2888 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2889 loff_t lend); 2890 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2891 extern int __must_check file_write_and_wait_range(struct file *file, 2892 loff_t start, loff_t end); 2893 2894 static inline int file_write_and_wait(struct file *file) 2895 { 2896 return file_write_and_wait_range(file, 0, LLONG_MAX); 2897 } 2898 2899 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2900 int datasync); 2901 extern int vfs_fsync(struct file *file, int datasync); 2902 2903 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2904 unsigned int flags); 2905 2906 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2907 { 2908 return (iocb->ki_flags & IOCB_DSYNC) || 2909 IS_SYNC(iocb->ki_filp->f_mapping->host); 2910 } 2911 2912 /* 2913 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2914 * to already be updated for the write, and will return either the amount 2915 * of bytes passed in, or an error if syncing the file failed. 2916 */ 2917 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2918 { 2919 if (iocb_is_dsync(iocb)) { 2920 int ret = vfs_fsync_range(iocb->ki_filp, 2921 iocb->ki_pos - count, iocb->ki_pos - 1, 2922 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2923 if (ret) 2924 return ret; 2925 } 2926 2927 return count; 2928 } 2929 2930 extern void emergency_sync(void); 2931 extern void emergency_remount(void); 2932 2933 #ifdef CONFIG_BLOCK 2934 extern int bmap(struct inode *inode, sector_t *block); 2935 #else 2936 static inline int bmap(struct inode *inode, sector_t *block) 2937 { 2938 return -EINVAL; 2939 } 2940 #endif 2941 2942 int notify_change(struct mnt_idmap *, struct dentry *, 2943 struct iattr *, struct inode **); 2944 int inode_permission(struct mnt_idmap *, struct inode *, int); 2945 int generic_permission(struct mnt_idmap *, struct inode *, int); 2946 static inline int file_permission(struct file *file, int mask) 2947 { 2948 return inode_permission(file_mnt_idmap(file), 2949 file_inode(file), mask); 2950 } 2951 static inline int path_permission(const struct path *path, int mask) 2952 { 2953 return inode_permission(mnt_idmap(path->mnt), 2954 d_inode(path->dentry), mask); 2955 } 2956 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2957 struct inode *inode); 2958 2959 static inline bool execute_ok(struct inode *inode) 2960 { 2961 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2962 } 2963 2964 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2965 { 2966 return (inode->i_mode ^ mode) & S_IFMT; 2967 } 2968 2969 /** 2970 * file_start_write - get write access to a superblock for regular file io 2971 * @file: the file we want to write to 2972 * 2973 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2974 * Should be matched with a call to file_end_write(). 2975 */ 2976 static inline void file_start_write(struct file *file) 2977 { 2978 if (!S_ISREG(file_inode(file)->i_mode)) 2979 return; 2980 sb_start_write(file_inode(file)->i_sb); 2981 } 2982 2983 static inline bool file_start_write_trylock(struct file *file) 2984 { 2985 if (!S_ISREG(file_inode(file)->i_mode)) 2986 return true; 2987 return sb_start_write_trylock(file_inode(file)->i_sb); 2988 } 2989 2990 /** 2991 * file_end_write - drop write access to a superblock of a regular file 2992 * @file: the file we wrote to 2993 * 2994 * Should be matched with a call to file_start_write(). 2995 */ 2996 static inline void file_end_write(struct file *file) 2997 { 2998 if (!S_ISREG(file_inode(file)->i_mode)) 2999 return; 3000 sb_end_write(file_inode(file)->i_sb); 3001 } 3002 3003 /** 3004 * kiocb_start_write - get write access to a superblock for async file io 3005 * @iocb: the io context we want to submit the write with 3006 * 3007 * This is a variant of sb_start_write() for async io submission. 3008 * Should be matched with a call to kiocb_end_write(). 3009 */ 3010 static inline void kiocb_start_write(struct kiocb *iocb) 3011 { 3012 struct inode *inode = file_inode(iocb->ki_filp); 3013 3014 sb_start_write(inode->i_sb); 3015 /* 3016 * Fool lockdep by telling it the lock got released so that it 3017 * doesn't complain about the held lock when we return to userspace. 3018 */ 3019 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3020 } 3021 3022 /** 3023 * kiocb_end_write - drop write access to a superblock after async file io 3024 * @iocb: the io context we sumbitted the write with 3025 * 3026 * Should be matched with a call to kiocb_start_write(). 3027 */ 3028 static inline void kiocb_end_write(struct kiocb *iocb) 3029 { 3030 struct inode *inode = file_inode(iocb->ki_filp); 3031 3032 /* 3033 * Tell lockdep we inherited freeze protection from submission thread. 3034 */ 3035 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3036 sb_end_write(inode->i_sb); 3037 } 3038 3039 /* 3040 * This is used for regular files where some users -- especially the 3041 * currently executed binary in a process, previously handled via 3042 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3043 * read-write shared) accesses. 3044 * 3045 * get_write_access() gets write permission for a file. 3046 * put_write_access() releases this write permission. 3047 * deny_write_access() denies write access to a file. 3048 * allow_write_access() re-enables write access to a file. 3049 * 3050 * The i_writecount field of an inode can have the following values: 3051 * 0: no write access, no denied write access 3052 * < 0: (-i_writecount) users that denied write access to the file. 3053 * > 0: (i_writecount) users that have write access to the file. 3054 * 3055 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3056 * except for the cases where we don't hold i_writecount yet. Then we need to 3057 * use {get,deny}_write_access() - these functions check the sign and refuse 3058 * to do the change if sign is wrong. 3059 */ 3060 static inline int get_write_access(struct inode *inode) 3061 { 3062 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3063 } 3064 static inline int deny_write_access(struct file *file) 3065 { 3066 struct inode *inode = file_inode(file); 3067 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3068 } 3069 static inline void put_write_access(struct inode * inode) 3070 { 3071 atomic_dec(&inode->i_writecount); 3072 } 3073 static inline void allow_write_access(struct file *file) 3074 { 3075 if (file) 3076 atomic_inc(&file_inode(file)->i_writecount); 3077 } 3078 static inline bool inode_is_open_for_write(const struct inode *inode) 3079 { 3080 return atomic_read(&inode->i_writecount) > 0; 3081 } 3082 3083 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3084 static inline void i_readcount_dec(struct inode *inode) 3085 { 3086 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3087 } 3088 static inline void i_readcount_inc(struct inode *inode) 3089 { 3090 atomic_inc(&inode->i_readcount); 3091 } 3092 #else 3093 static inline void i_readcount_dec(struct inode *inode) 3094 { 3095 return; 3096 } 3097 static inline void i_readcount_inc(struct inode *inode) 3098 { 3099 return; 3100 } 3101 #endif 3102 extern int do_pipe_flags(int *, int); 3103 3104 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3105 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3106 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3107 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3108 extern struct file * open_exec(const char *); 3109 3110 /* fs/dcache.c -- generic fs support functions */ 3111 extern bool is_subdir(struct dentry *, struct dentry *); 3112 extern bool path_is_under(const struct path *, const struct path *); 3113 3114 extern char *file_path(struct file *, char *, int); 3115 3116 /** 3117 * is_dot_dotdot - returns true only if @name is "." or ".." 3118 * @name: file name to check 3119 * @len: length of file name, in bytes 3120 */ 3121 static inline bool is_dot_dotdot(const char *name, size_t len) 3122 { 3123 return len && unlikely(name[0] == '.') && 3124 (len == 1 || (len == 2 && name[1] == '.')); 3125 } 3126 3127 #include <linux/err.h> 3128 3129 /* needed for stackable file system support */ 3130 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3131 3132 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3133 3134 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3135 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3136 { 3137 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3138 } 3139 3140 extern void inode_init_once(struct inode *); 3141 extern void address_space_init_once(struct address_space *mapping); 3142 extern struct inode * igrab(struct inode *); 3143 extern ino_t iunique(struct super_block *, ino_t); 3144 extern int inode_needs_sync(struct inode *inode); 3145 extern int generic_delete_inode(struct inode *inode); 3146 static inline int generic_drop_inode(struct inode *inode) 3147 { 3148 return !inode->i_nlink || inode_unhashed(inode); 3149 } 3150 extern void d_mark_dontcache(struct inode *inode); 3151 3152 extern struct inode *ilookup5_nowait(struct super_block *sb, 3153 unsigned long hashval, int (*test)(struct inode *, void *), 3154 void *data); 3155 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3156 int (*test)(struct inode *, void *), void *data); 3157 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3158 3159 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3160 int (*test)(struct inode *, void *), 3161 int (*set)(struct inode *, void *), 3162 void *data); 3163 struct inode *iget5_locked(struct super_block *, unsigned long, 3164 int (*test)(struct inode *, void *), 3165 int (*set)(struct inode *, void *), void *); 3166 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3167 int (*test)(struct inode *, void *), 3168 int (*set)(struct inode *, void *), void *); 3169 extern struct inode * iget_locked(struct super_block *, unsigned long); 3170 extern struct inode *find_inode_nowait(struct super_block *, 3171 unsigned long, 3172 int (*match)(struct inode *, 3173 unsigned long, void *), 3174 void *data); 3175 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3176 int (*)(struct inode *, void *), void *); 3177 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3178 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3179 extern int insert_inode_locked(struct inode *); 3180 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3181 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3182 #else 3183 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3184 #endif 3185 extern void unlock_new_inode(struct inode *); 3186 extern void discard_new_inode(struct inode *); 3187 extern unsigned int get_next_ino(void); 3188 extern void evict_inodes(struct super_block *sb); 3189 void dump_mapping(const struct address_space *); 3190 3191 /* 3192 * Userspace may rely on the inode number being non-zero. For example, glibc 3193 * simply ignores files with zero i_ino in unlink() and other places. 3194 * 3195 * As an additional complication, if userspace was compiled with 3196 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3197 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3198 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3199 * better safe than sorry. 3200 */ 3201 static inline bool is_zero_ino(ino_t ino) 3202 { 3203 return (u32)ino == 0; 3204 } 3205 3206 /* 3207 * inode->i_lock must be held 3208 */ 3209 static inline void __iget(struct inode *inode) 3210 { 3211 atomic_inc(&inode->i_count); 3212 } 3213 3214 extern void iget_failed(struct inode *); 3215 extern void clear_inode(struct inode *); 3216 extern void __destroy_inode(struct inode *); 3217 extern struct inode *new_inode_pseudo(struct super_block *sb); 3218 extern struct inode *new_inode(struct super_block *sb); 3219 extern void free_inode_nonrcu(struct inode *inode); 3220 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3221 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3222 extern int file_remove_privs(struct file *); 3223 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3224 const struct inode *inode); 3225 3226 /* 3227 * This must be used for allocating filesystems specific inodes to set 3228 * up the inode reclaim context correctly. 3229 */ 3230 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3231 3232 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3233 static inline void insert_inode_hash(struct inode *inode) 3234 { 3235 __insert_inode_hash(inode, inode->i_ino); 3236 } 3237 3238 extern void __remove_inode_hash(struct inode *); 3239 static inline void remove_inode_hash(struct inode *inode) 3240 { 3241 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3242 __remove_inode_hash(inode); 3243 } 3244 3245 extern void inode_sb_list_add(struct inode *inode); 3246 extern void inode_add_lru(struct inode *inode); 3247 3248 extern int sb_set_blocksize(struct super_block *, int); 3249 extern int sb_min_blocksize(struct super_block *, int); 3250 3251 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3252 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3253 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3254 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3255 extern int generic_write_check_limits(struct file *file, loff_t pos, 3256 loff_t *count); 3257 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3258 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3259 ssize_t already_read); 3260 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3261 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3262 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3263 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3264 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3265 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3266 ssize_t direct_written, ssize_t buffered_written); 3267 3268 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3269 rwf_t flags); 3270 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3271 rwf_t flags); 3272 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3273 struct iov_iter *iter); 3274 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3275 struct iov_iter *iter); 3276 3277 /* fs/splice.c */ 3278 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3279 struct pipe_inode_info *pipe, 3280 size_t len, unsigned int flags); 3281 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3282 struct pipe_inode_info *pipe, 3283 size_t len, unsigned int flags); 3284 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3285 struct file *, loff_t *, size_t, unsigned int); 3286 3287 3288 extern void 3289 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3290 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3291 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3292 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3293 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3294 int whence, loff_t maxsize, loff_t eof); 3295 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3296 u64 *cookie); 3297 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3298 int whence, loff_t size); 3299 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3300 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3301 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3302 extern int generic_file_open(struct inode * inode, struct file * filp); 3303 extern int nonseekable_open(struct inode * inode, struct file * filp); 3304 extern int stream_open(struct inode * inode, struct file * filp); 3305 3306 #ifdef CONFIG_BLOCK 3307 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3308 loff_t file_offset); 3309 3310 enum { 3311 /* need locking between buffered and direct access */ 3312 DIO_LOCKING = 0x01, 3313 3314 /* filesystem does not support filling holes */ 3315 DIO_SKIP_HOLES = 0x02, 3316 }; 3317 3318 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3319 struct block_device *bdev, struct iov_iter *iter, 3320 get_block_t get_block, 3321 dio_iodone_t end_io, 3322 int flags); 3323 3324 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3325 struct inode *inode, 3326 struct iov_iter *iter, 3327 get_block_t get_block) 3328 { 3329 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3330 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3331 } 3332 #endif 3333 3334 bool inode_dio_finished(const struct inode *inode); 3335 void inode_dio_wait(struct inode *inode); 3336 void inode_dio_wait_interruptible(struct inode *inode); 3337 3338 /** 3339 * inode_dio_begin - signal start of a direct I/O requests 3340 * @inode: inode the direct I/O happens on 3341 * 3342 * This is called once we've finished processing a direct I/O request, 3343 * and is used to wake up callers waiting for direct I/O to be quiesced. 3344 */ 3345 static inline void inode_dio_begin(struct inode *inode) 3346 { 3347 atomic_inc(&inode->i_dio_count); 3348 } 3349 3350 /** 3351 * inode_dio_end - signal finish of a direct I/O requests 3352 * @inode: inode the direct I/O happens on 3353 * 3354 * This is called once we've finished processing a direct I/O request, 3355 * and is used to wake up callers waiting for direct I/O to be quiesced. 3356 */ 3357 static inline void inode_dio_end(struct inode *inode) 3358 { 3359 if (atomic_dec_and_test(&inode->i_dio_count)) 3360 wake_up_var(&inode->i_dio_count); 3361 } 3362 3363 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3364 unsigned int mask); 3365 3366 extern const struct file_operations generic_ro_fops; 3367 3368 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3369 3370 extern int readlink_copy(char __user *, int, const char *, int); 3371 extern int page_readlink(struct dentry *, char __user *, int); 3372 extern const char *page_get_link(struct dentry *, struct inode *, 3373 struct delayed_call *); 3374 extern void page_put_link(void *); 3375 extern int page_symlink(struct inode *inode, const char *symname, int len); 3376 extern const struct inode_operations page_symlink_inode_operations; 3377 extern void kfree_link(void *); 3378 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3379 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3380 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3381 void generic_fill_statx_atomic_writes(struct kstat *stat, 3382 unsigned int unit_min, 3383 unsigned int unit_max); 3384 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3385 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3386 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3387 void inode_add_bytes(struct inode *inode, loff_t bytes); 3388 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3389 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3390 static inline loff_t __inode_get_bytes(struct inode *inode) 3391 { 3392 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3393 } 3394 loff_t inode_get_bytes(struct inode *inode); 3395 void inode_set_bytes(struct inode *inode, loff_t bytes); 3396 const char *simple_get_link(struct dentry *, struct inode *, 3397 struct delayed_call *); 3398 extern const struct inode_operations simple_symlink_inode_operations; 3399 3400 extern int iterate_dir(struct file *, struct dir_context *); 3401 3402 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3403 int flags); 3404 int vfs_fstat(int fd, struct kstat *stat); 3405 3406 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3407 { 3408 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3409 } 3410 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3411 { 3412 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3413 } 3414 3415 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3416 extern int vfs_readlink(struct dentry *, char __user *, int); 3417 3418 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3419 extern void put_filesystem(struct file_system_type *fs); 3420 extern struct file_system_type *get_fs_type(const char *name); 3421 extern void drop_super(struct super_block *sb); 3422 extern void drop_super_exclusive(struct super_block *sb); 3423 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3424 extern void iterate_supers_type(struct file_system_type *, 3425 void (*)(struct super_block *, void *), void *); 3426 3427 extern int dcache_dir_open(struct inode *, struct file *); 3428 extern int dcache_dir_close(struct inode *, struct file *); 3429 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3430 extern int dcache_readdir(struct file *, struct dir_context *); 3431 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3432 struct iattr *); 3433 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3434 struct kstat *, u32, unsigned int); 3435 extern int simple_statfs(struct dentry *, struct kstatfs *); 3436 extern int simple_open(struct inode *inode, struct file *file); 3437 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3438 extern int simple_unlink(struct inode *, struct dentry *); 3439 extern int simple_rmdir(struct inode *, struct dentry *); 3440 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3441 struct inode *new_dir, struct dentry *new_dentry); 3442 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3443 struct inode *new_dir, struct dentry *new_dentry); 3444 extern int simple_rename(struct mnt_idmap *, struct inode *, 3445 struct dentry *, struct inode *, struct dentry *, 3446 unsigned int); 3447 extern void simple_recursive_removal(struct dentry *, 3448 void (*callback)(struct dentry *)); 3449 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3450 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3451 extern int simple_empty(struct dentry *); 3452 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3453 loff_t pos, unsigned len, 3454 struct folio **foliop, void **fsdata); 3455 extern const struct address_space_operations ram_aops; 3456 extern int always_delete_dentry(const struct dentry *); 3457 extern struct inode *alloc_anon_inode(struct super_block *); 3458 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3459 extern const struct dentry_operations simple_dentry_operations; 3460 3461 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3462 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3463 extern const struct file_operations simple_dir_operations; 3464 extern const struct inode_operations simple_dir_inode_operations; 3465 extern void make_empty_dir_inode(struct inode *inode); 3466 extern bool is_empty_dir_inode(struct inode *inode); 3467 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3468 struct dentry *d_alloc_name(struct dentry *, const char *); 3469 extern int simple_fill_super(struct super_block *, unsigned long, 3470 const struct tree_descr *); 3471 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3472 extern void simple_release_fs(struct vfsmount **mount, int *count); 3473 3474 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3475 loff_t *ppos, const void *from, size_t available); 3476 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3477 const void __user *from, size_t count); 3478 3479 struct offset_ctx { 3480 struct maple_tree mt; 3481 unsigned long next_offset; 3482 }; 3483 3484 void simple_offset_init(struct offset_ctx *octx); 3485 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3486 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3487 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3488 struct inode *new_dir, struct dentry *new_dentry); 3489 int simple_offset_rename_exchange(struct inode *old_dir, 3490 struct dentry *old_dentry, 3491 struct inode *new_dir, 3492 struct dentry *new_dentry); 3493 void simple_offset_destroy(struct offset_ctx *octx); 3494 3495 extern const struct file_operations simple_offset_dir_operations; 3496 3497 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3498 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3499 3500 extern int generic_check_addressable(unsigned, u64); 3501 3502 extern void generic_set_sb_d_ops(struct super_block *sb); 3503 extern int generic_ci_match(const struct inode *parent, 3504 const struct qstr *name, 3505 const struct qstr *folded_name, 3506 const u8 *de_name, u32 de_name_len); 3507 3508 #if IS_ENABLED(CONFIG_UNICODE) 3509 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3510 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3511 const char *str, const struct qstr *name); 3512 3513 /** 3514 * generic_ci_validate_strict_name - Check if a given name is suitable 3515 * for a directory 3516 * 3517 * This functions checks if the proposed filename is valid for the 3518 * parent directory. That means that only valid UTF-8 filenames will be 3519 * accepted for casefold directories from filesystems created with the 3520 * strict encoding flag. That also means that any name will be 3521 * accepted for directories that doesn't have casefold enabled, or 3522 * aren't being strict with the encoding. 3523 * 3524 * @dir: inode of the directory where the new file will be created 3525 * @name: name of the new file 3526 * 3527 * Return: 3528 * * True: if the filename is suitable for this directory. It can be 3529 * true if a given name is not suitable for a strict encoding 3530 * directory, but the directory being used isn't strict 3531 * * False if the filename isn't suitable for this directory. This only 3532 * happens when a directory is casefolded and the filesystem is strict 3533 * about its encoding. 3534 */ 3535 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3536 { 3537 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3538 return true; 3539 3540 /* 3541 * A casefold dir must have a encoding set, unless the filesystem 3542 * is corrupted 3543 */ 3544 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3545 return true; 3546 3547 return !utf8_validate(dir->i_sb->s_encoding, name); 3548 } 3549 #else 3550 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3551 { 3552 return true; 3553 } 3554 #endif 3555 3556 static inline bool sb_has_encoding(const struct super_block *sb) 3557 { 3558 #if IS_ENABLED(CONFIG_UNICODE) 3559 return !!sb->s_encoding; 3560 #else 3561 return false; 3562 #endif 3563 } 3564 3565 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3566 unsigned int ia_valid); 3567 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3568 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3569 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3570 const struct iattr *attr); 3571 3572 extern int file_update_time(struct file *file); 3573 3574 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3575 { 3576 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3577 } 3578 3579 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3580 { 3581 struct inode *inode; 3582 3583 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3584 return false; 3585 if (!vma_is_dax(vma)) 3586 return false; 3587 inode = file_inode(vma->vm_file); 3588 if (S_ISCHR(inode->i_mode)) 3589 return false; /* device-dax */ 3590 return true; 3591 } 3592 3593 static inline int iocb_flags(struct file *file) 3594 { 3595 int res = 0; 3596 if (file->f_flags & O_APPEND) 3597 res |= IOCB_APPEND; 3598 if (file->f_flags & O_DIRECT) 3599 res |= IOCB_DIRECT; 3600 if (file->f_flags & O_DSYNC) 3601 res |= IOCB_DSYNC; 3602 if (file->f_flags & __O_SYNC) 3603 res |= IOCB_SYNC; 3604 return res; 3605 } 3606 3607 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3608 int rw_type) 3609 { 3610 int kiocb_flags = 0; 3611 3612 /* make sure there's no overlap between RWF and private IOCB flags */ 3613 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3614 3615 if (!flags) 3616 return 0; 3617 if (unlikely(flags & ~RWF_SUPPORTED)) 3618 return -EOPNOTSUPP; 3619 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3620 return -EINVAL; 3621 3622 if (flags & RWF_NOWAIT) { 3623 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3624 return -EOPNOTSUPP; 3625 } 3626 if (flags & RWF_ATOMIC) { 3627 if (rw_type != WRITE) 3628 return -EOPNOTSUPP; 3629 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3630 return -EOPNOTSUPP; 3631 } 3632 if (flags & RWF_DONTCACHE) { 3633 /* file system must support it */ 3634 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3635 return -EOPNOTSUPP; 3636 /* DAX mappings not supported */ 3637 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3638 return -EOPNOTSUPP; 3639 } 3640 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3641 if (flags & RWF_SYNC) 3642 kiocb_flags |= IOCB_DSYNC; 3643 3644 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3645 if (IS_APPEND(file_inode(ki->ki_filp))) 3646 return -EPERM; 3647 ki->ki_flags &= ~IOCB_APPEND; 3648 } 3649 3650 ki->ki_flags |= kiocb_flags; 3651 return 0; 3652 } 3653 3654 /* Transaction based IO helpers */ 3655 3656 /* 3657 * An argresp is stored in an allocated page and holds the 3658 * size of the argument or response, along with its content 3659 */ 3660 struct simple_transaction_argresp { 3661 ssize_t size; 3662 char data[]; 3663 }; 3664 3665 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3666 3667 char *simple_transaction_get(struct file *file, const char __user *buf, 3668 size_t size); 3669 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3670 size_t size, loff_t *pos); 3671 int simple_transaction_release(struct inode *inode, struct file *file); 3672 3673 void simple_transaction_set(struct file *file, size_t n); 3674 3675 /* 3676 * simple attribute files 3677 * 3678 * These attributes behave similar to those in sysfs: 3679 * 3680 * Writing to an attribute immediately sets a value, an open file can be 3681 * written to multiple times. 3682 * 3683 * Reading from an attribute creates a buffer from the value that might get 3684 * read with multiple read calls. When the attribute has been read 3685 * completely, no further read calls are possible until the file is opened 3686 * again. 3687 * 3688 * All attributes contain a text representation of a numeric value 3689 * that are accessed with the get() and set() functions. 3690 */ 3691 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3692 static int __fops ## _open(struct inode *inode, struct file *file) \ 3693 { \ 3694 __simple_attr_check_format(__fmt, 0ull); \ 3695 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3696 } \ 3697 static const struct file_operations __fops = { \ 3698 .owner = THIS_MODULE, \ 3699 .open = __fops ## _open, \ 3700 .release = simple_attr_release, \ 3701 .read = simple_attr_read, \ 3702 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3703 .llseek = generic_file_llseek, \ 3704 } 3705 3706 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3707 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3708 3709 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3710 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3711 3712 static inline __printf(1, 2) 3713 void __simple_attr_check_format(const char *fmt, ...) 3714 { 3715 /* don't do anything, just let the compiler check the arguments; */ 3716 } 3717 3718 int simple_attr_open(struct inode *inode, struct file *file, 3719 int (*get)(void *, u64 *), int (*set)(void *, u64), 3720 const char *fmt); 3721 int simple_attr_release(struct inode *inode, struct file *file); 3722 ssize_t simple_attr_read(struct file *file, char __user *buf, 3723 size_t len, loff_t *ppos); 3724 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3725 size_t len, loff_t *ppos); 3726 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3727 size_t len, loff_t *ppos); 3728 3729 struct ctl_table; 3730 int __init list_bdev_fs_names(char *buf, size_t size); 3731 3732 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3733 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3734 3735 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3736 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3737 (flag & __FMODE_NONOTIFY))) 3738 3739 static inline bool is_sxid(umode_t mode) 3740 { 3741 return mode & (S_ISUID | S_ISGID); 3742 } 3743 3744 static inline int check_sticky(struct mnt_idmap *idmap, 3745 struct inode *dir, struct inode *inode) 3746 { 3747 if (!(dir->i_mode & S_ISVTX)) 3748 return 0; 3749 3750 return __check_sticky(idmap, dir, inode); 3751 } 3752 3753 static inline void inode_has_no_xattr(struct inode *inode) 3754 { 3755 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3756 inode->i_flags |= S_NOSEC; 3757 } 3758 3759 static inline bool is_root_inode(struct inode *inode) 3760 { 3761 return inode == inode->i_sb->s_root->d_inode; 3762 } 3763 3764 static inline bool dir_emit(struct dir_context *ctx, 3765 const char *name, int namelen, 3766 u64 ino, unsigned type) 3767 { 3768 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3769 } 3770 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3771 { 3772 return ctx->actor(ctx, ".", 1, ctx->pos, 3773 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3774 } 3775 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3776 { 3777 return ctx->actor(ctx, "..", 2, ctx->pos, 3778 d_parent_ino(file->f_path.dentry), DT_DIR); 3779 } 3780 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3781 { 3782 if (ctx->pos == 0) { 3783 if (!dir_emit_dot(file, ctx)) 3784 return false; 3785 ctx->pos = 1; 3786 } 3787 if (ctx->pos == 1) { 3788 if (!dir_emit_dotdot(file, ctx)) 3789 return false; 3790 ctx->pos = 2; 3791 } 3792 return true; 3793 } 3794 static inline bool dir_relax(struct inode *inode) 3795 { 3796 inode_unlock(inode); 3797 inode_lock(inode); 3798 return !IS_DEADDIR(inode); 3799 } 3800 3801 static inline bool dir_relax_shared(struct inode *inode) 3802 { 3803 inode_unlock_shared(inode); 3804 inode_lock_shared(inode); 3805 return !IS_DEADDIR(inode); 3806 } 3807 3808 extern bool path_noexec(const struct path *path); 3809 extern void inode_nohighmem(struct inode *inode); 3810 3811 /* mm/fadvise.c */ 3812 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3813 int advice); 3814 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3815 int advice); 3816 3817 static inline bool vfs_empty_path(int dfd, const char __user *path) 3818 { 3819 char c; 3820 3821 if (dfd < 0) 3822 return false; 3823 3824 /* We now allow NULL to be used for empty path. */ 3825 if (!path) 3826 return true; 3827 3828 if (unlikely(get_user(c, path))) 3829 return false; 3830 3831 return !c; 3832 } 3833 3834 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3835 3836 #endif /* _LINUX_FS_H */ 3837