xref: /linux-6.15/include/linux/fs.h (revision 2ca7cd80)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48 #include <linux/file_ref.h>
49 #include <linux/unicode.h>
50 
51 #include <asm/byteorder.h>
52 #include <uapi/linux/fs.h>
53 
54 struct backing_dev_info;
55 struct bdi_writeback;
56 struct bio;
57 struct io_comp_batch;
58 struct export_operations;
59 struct fiemap_extent_info;
60 struct hd_geometry;
61 struct iovec;
62 struct kiocb;
63 struct kobject;
64 struct pipe_inode_info;
65 struct poll_table_struct;
66 struct kstatfs;
67 struct vm_area_struct;
68 struct vfsmount;
69 struct cred;
70 struct swap_info_struct;
71 struct seq_file;
72 struct workqueue_struct;
73 struct iov_iter;
74 struct fscrypt_inode_info;
75 struct fscrypt_operations;
76 struct fsverity_info;
77 struct fsverity_operations;
78 struct fsnotify_mark_connector;
79 struct fsnotify_sb_info;
80 struct fs_context;
81 struct fs_parameter_spec;
82 struct fileattr;
83 struct iomap_ops;
84 
85 extern void __init inode_init(void);
86 extern void __init inode_init_early(void);
87 extern void __init files_init(void);
88 extern void __init files_maxfiles_init(void);
89 
90 extern unsigned long get_max_files(void);
91 extern unsigned int sysctl_nr_open;
92 
93 typedef __kernel_rwf_t rwf_t;
94 
95 struct buffer_head;
96 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
97 			struct buffer_head *bh_result, int create);
98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
99 			ssize_t bytes, void *private);
100 
101 #define MAY_EXEC		0x00000001
102 #define MAY_WRITE		0x00000002
103 #define MAY_READ		0x00000004
104 #define MAY_APPEND		0x00000008
105 #define MAY_ACCESS		0x00000010
106 #define MAY_OPEN		0x00000020
107 #define MAY_CHDIR		0x00000040
108 /* called from RCU mode, don't block */
109 #define MAY_NOT_BLOCK		0x00000080
110 
111 /*
112  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
113  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
114  */
115 
116 /* file is open for reading */
117 #define FMODE_READ		((__force fmode_t)(1 << 0))
118 /* file is open for writing */
119 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
120 /* file is seekable */
121 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
122 /* file can be accessed using pread */
123 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
124 /* file can be accessed using pwrite */
125 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
126 /* File is opened for execution with sys_execve / sys_uselib */
127 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
128 /* File writes are restricted (block device specific) */
129 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
130 /* File supports atomic writes */
131 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
132 
133 /* FMODE_* bit 8 */
134 
135 /* 32bit hashes as llseek() offset (for directories) */
136 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
137 /* 64bit hashes as llseek() offset (for directories) */
138 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
139 
140 /*
141  * Don't update ctime and mtime.
142  *
143  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
144  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
145  */
146 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
147 
148 /* Expect random access pattern */
149 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
150 
151 /* FMODE_* bit 13 */
152 
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH		((__force fmode_t)(1 << 14))
155 
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
164 
165 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
167 
168 /* File is stream-like */
169 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
170 
171 /* File supports DIRECT IO */
172 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
173 
174 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
175 
176 /* FMODE_* bit 24 */
177 
178 /* File is embedded in backing_file object */
179 #define FMODE_BACKING		((__force fmode_t)(1 << 25))
180 
181 /* File was opened by fanotify and shouldn't generate fanotify events */
182 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 26))
183 
184 /* File is capable of returning -EAGAIN if I/O will block */
185 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
186 
187 /* File represents mount that needs unmounting */
188 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
189 
190 /* File does not contribute to nr_files count */
191 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
192 
193 /*
194  * Attribute flags.  These should be or-ed together to figure out what
195  * has been changed!
196  */
197 #define ATTR_MODE	(1 << 0)
198 #define ATTR_UID	(1 << 1)
199 #define ATTR_GID	(1 << 2)
200 #define ATTR_SIZE	(1 << 3)
201 #define ATTR_ATIME	(1 << 4)
202 #define ATTR_MTIME	(1 << 5)
203 #define ATTR_CTIME	(1 << 6)
204 #define ATTR_ATIME_SET	(1 << 7)
205 #define ATTR_MTIME_SET	(1 << 8)
206 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
207 #define ATTR_KILL_SUID	(1 << 11)
208 #define ATTR_KILL_SGID	(1 << 12)
209 #define ATTR_FILE	(1 << 13)
210 #define ATTR_KILL_PRIV	(1 << 14)
211 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
212 #define ATTR_TIMES_SET	(1 << 16)
213 #define ATTR_TOUCH	(1 << 17)
214 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
215 
216 /*
217  * Whiteout is represented by a char device.  The following constants define the
218  * mode and device number to use.
219  */
220 #define WHITEOUT_MODE 0
221 #define WHITEOUT_DEV 0
222 
223 /*
224  * This is the Inode Attributes structure, used for notify_change().  It
225  * uses the above definitions as flags, to know which values have changed.
226  * Also, in this manner, a Filesystem can look at only the values it cares
227  * about.  Basically, these are the attributes that the VFS layer can
228  * request to change from the FS layer.
229  *
230  * Derek Atkins <[email protected]> 94-10-20
231  */
232 struct iattr {
233 	unsigned int	ia_valid;
234 	umode_t		ia_mode;
235 	/*
236 	 * The two anonymous unions wrap structures with the same member.
237 	 *
238 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
239 	 * are a dedicated type requiring the filesystem to use the dedicated
240 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
241 	 * have been ported.
242 	 *
243 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
244 	 * pass down the same value on idmapped mounts as they would on regular
245 	 * mounts.
246 	 */
247 	union {
248 		kuid_t		ia_uid;
249 		vfsuid_t	ia_vfsuid;
250 	};
251 	union {
252 		kgid_t		ia_gid;
253 		vfsgid_t	ia_vfsgid;
254 	};
255 	loff_t		ia_size;
256 	struct timespec64 ia_atime;
257 	struct timespec64 ia_mtime;
258 	struct timespec64 ia_ctime;
259 
260 	/*
261 	 * Not an attribute, but an auxiliary info for filesystems wanting to
262 	 * implement an ftruncate() like method.  NOTE: filesystem should
263 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
264 	 */
265 	struct file	*ia_file;
266 };
267 
268 /*
269  * Includes for diskquotas.
270  */
271 #include <linux/quota.h>
272 
273 /*
274  * Maximum number of layers of fs stack.  Needs to be limited to
275  * prevent kernel stack overflow
276  */
277 #define FILESYSTEM_MAX_STACK_DEPTH 2
278 
279 /**
280  * enum positive_aop_returns - aop return codes with specific semantics
281  *
282  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
283  * 			    completed, that the page is still locked, and
284  * 			    should be considered active.  The VM uses this hint
285  * 			    to return the page to the active list -- it won't
286  * 			    be a candidate for writeback again in the near
287  * 			    future.  Other callers must be careful to unlock
288  * 			    the page if they get this return.  Returned by
289  * 			    writepage();
290  *
291  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
292  *  			unlocked it and the page might have been truncated.
293  *  			The caller should back up to acquiring a new page and
294  *  			trying again.  The aop will be taking reasonable
295  *  			precautions not to livelock.  If the caller held a page
296  *  			reference, it should drop it before retrying.  Returned
297  *  			by read_folio().
298  *
299  * address_space_operation functions return these large constants to indicate
300  * special semantics to the caller.  These are much larger than the bytes in a
301  * page to allow for functions that return the number of bytes operated on in a
302  * given page.
303  */
304 
305 enum positive_aop_returns {
306 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
307 	AOP_TRUNCATED_PAGE	= 0x80001,
308 };
309 
310 /*
311  * oh the beauties of C type declarations.
312  */
313 struct page;
314 struct address_space;
315 struct writeback_control;
316 struct readahead_control;
317 
318 /* Match RWF_* bits to IOCB bits */
319 #define IOCB_HIPRI		(__force int) RWF_HIPRI
320 #define IOCB_DSYNC		(__force int) RWF_DSYNC
321 #define IOCB_SYNC		(__force int) RWF_SYNC
322 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
323 #define IOCB_APPEND		(__force int) RWF_APPEND
324 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
325 #define IOCB_DONTCACHE		(__force int) RWF_DONTCACHE
326 
327 /* non-RWF related bits - start at 16 */
328 #define IOCB_EVENTFD		(1 << 16)
329 #define IOCB_DIRECT		(1 << 17)
330 #define IOCB_WRITE		(1 << 18)
331 /* iocb->ki_waitq is valid */
332 #define IOCB_WAITQ		(1 << 19)
333 #define IOCB_NOIO		(1 << 20)
334 /* can use bio alloc cache */
335 #define IOCB_ALLOC_CACHE	(1 << 21)
336 /*
337  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
338  * iocb completion can be passed back to the owner for execution from a safe
339  * context rather than needing to be punted through a workqueue. If this
340  * flag is set, the bio completion handling may set iocb->dio_complete to a
341  * handler function and iocb->private to context information for that handler.
342  * The issuer should call the handler with that context information from task
343  * context to complete the processing of the iocb. Note that while this
344  * provides a task context for the dio_complete() callback, it should only be
345  * used on the completion side for non-IO generating completions. It's fine to
346  * call blocking functions from this callback, but they should not wait for
347  * unrelated IO (like cache flushing, new IO generation, etc).
348  */
349 #define IOCB_DIO_CALLER_COMP	(1 << 22)
350 /* kiocb is a read or write operation submitted by fs/aio.c. */
351 #define IOCB_AIO_RW		(1 << 23)
352 #define IOCB_HAS_METADATA	(1 << 24)
353 
354 /* for use in trace events */
355 #define TRACE_IOCB_STRINGS \
356 	{ IOCB_HIPRI,		"HIPRI" }, \
357 	{ IOCB_DSYNC,		"DSYNC" }, \
358 	{ IOCB_SYNC,		"SYNC" }, \
359 	{ IOCB_NOWAIT,		"NOWAIT" }, \
360 	{ IOCB_APPEND,		"APPEND" }, \
361 	{ IOCB_ATOMIC,		"ATOMIC" }, \
362 	{ IOCB_DONTCACHE,	"DONTCACHE" }, \
363 	{ IOCB_EVENTFD,		"EVENTFD"}, \
364 	{ IOCB_DIRECT,		"DIRECT" }, \
365 	{ IOCB_WRITE,		"WRITE" }, \
366 	{ IOCB_WAITQ,		"WAITQ" }, \
367 	{ IOCB_NOIO,		"NOIO" }, \
368 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
369 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
370 
371 struct kiocb {
372 	struct file		*ki_filp;
373 	loff_t			ki_pos;
374 	void (*ki_complete)(struct kiocb *iocb, long ret);
375 	void			*private;
376 	int			ki_flags;
377 	u16			ki_ioprio; /* See linux/ioprio.h */
378 	union {
379 		/*
380 		 * Only used for async buffered reads, where it denotes the
381 		 * page waitqueue associated with completing the read. Valid
382 		 * IFF IOCB_WAITQ is set.
383 		 */
384 		struct wait_page_queue	*ki_waitq;
385 		/*
386 		 * Can be used for O_DIRECT IO, where the completion handling
387 		 * is punted back to the issuer of the IO. May only be set
388 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
389 		 * must then check for presence of this handler when ki_complete
390 		 * is invoked. The data passed in to this handler must be
391 		 * assigned to ->private when dio_complete is assigned.
392 		 */
393 		ssize_t (*dio_complete)(void *data);
394 	};
395 };
396 
397 static inline bool is_sync_kiocb(struct kiocb *kiocb)
398 {
399 	return kiocb->ki_complete == NULL;
400 }
401 
402 struct address_space_operations {
403 	int (*writepage)(struct page *page, struct writeback_control *wbc);
404 	int (*read_folio)(struct file *, struct folio *);
405 
406 	/* Write back some dirty pages from this mapping. */
407 	int (*writepages)(struct address_space *, struct writeback_control *);
408 
409 	/* Mark a folio dirty.  Return true if this dirtied it */
410 	bool (*dirty_folio)(struct address_space *, struct folio *);
411 
412 	void (*readahead)(struct readahead_control *);
413 
414 	int (*write_begin)(struct file *, struct address_space *mapping,
415 				loff_t pos, unsigned len,
416 				struct folio **foliop, void **fsdata);
417 	int (*write_end)(struct file *, struct address_space *mapping,
418 				loff_t pos, unsigned len, unsigned copied,
419 				struct folio *folio, void *fsdata);
420 
421 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
422 	sector_t (*bmap)(struct address_space *, sector_t);
423 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
424 	bool (*release_folio)(struct folio *, gfp_t);
425 	void (*free_folio)(struct folio *folio);
426 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
427 	/*
428 	 * migrate the contents of a folio to the specified target. If
429 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
430 	 */
431 	int (*migrate_folio)(struct address_space *, struct folio *dst,
432 			struct folio *src, enum migrate_mode);
433 	int (*launder_folio)(struct folio *);
434 	bool (*is_partially_uptodate) (struct folio *, size_t from,
435 			size_t count);
436 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
437 	int (*error_remove_folio)(struct address_space *, struct folio *);
438 
439 	/* swapfile support */
440 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
441 				sector_t *span);
442 	void (*swap_deactivate)(struct file *file);
443 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
444 };
445 
446 extern const struct address_space_operations empty_aops;
447 
448 /**
449  * struct address_space - Contents of a cacheable, mappable object.
450  * @host: Owner, either the inode or the block_device.
451  * @i_pages: Cached pages.
452  * @invalidate_lock: Guards coherency between page cache contents and
453  *   file offset->disk block mappings in the filesystem during invalidates.
454  *   It is also used to block modification of page cache contents through
455  *   memory mappings.
456  * @gfp_mask: Memory allocation flags to use for allocating pages.
457  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
458  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
459  * @i_mmap: Tree of private and shared mappings.
460  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
461  * @nrpages: Number of page entries, protected by the i_pages lock.
462  * @writeback_index: Writeback starts here.
463  * @a_ops: Methods.
464  * @flags: Error bits and flags (AS_*).
465  * @wb_err: The most recent error which has occurred.
466  * @i_private_lock: For use by the owner of the address_space.
467  * @i_private_list: For use by the owner of the address_space.
468  * @i_private_data: For use by the owner of the address_space.
469  */
470 struct address_space {
471 	struct inode		*host;
472 	struct xarray		i_pages;
473 	struct rw_semaphore	invalidate_lock;
474 	gfp_t			gfp_mask;
475 	atomic_t		i_mmap_writable;
476 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
477 	/* number of thp, only for non-shmem files */
478 	atomic_t		nr_thps;
479 #endif
480 	struct rb_root_cached	i_mmap;
481 	unsigned long		nrpages;
482 	pgoff_t			writeback_index;
483 	const struct address_space_operations *a_ops;
484 	unsigned long		flags;
485 	errseq_t		wb_err;
486 	spinlock_t		i_private_lock;
487 	struct list_head	i_private_list;
488 	struct rw_semaphore	i_mmap_rwsem;
489 	void *			i_private_data;
490 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
491 	/*
492 	 * On most architectures that alignment is already the case; but
493 	 * must be enforced here for CRIS, to let the least significant bit
494 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
495 	 */
496 
497 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
498 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
499 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
500 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
501 
502 /*
503  * Returns true if any of the pages in the mapping are marked with the tag.
504  */
505 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
506 {
507 	return xa_marked(&mapping->i_pages, tag);
508 }
509 
510 static inline void i_mmap_lock_write(struct address_space *mapping)
511 {
512 	down_write(&mapping->i_mmap_rwsem);
513 }
514 
515 static inline int i_mmap_trylock_write(struct address_space *mapping)
516 {
517 	return down_write_trylock(&mapping->i_mmap_rwsem);
518 }
519 
520 static inline void i_mmap_unlock_write(struct address_space *mapping)
521 {
522 	up_write(&mapping->i_mmap_rwsem);
523 }
524 
525 static inline int i_mmap_trylock_read(struct address_space *mapping)
526 {
527 	return down_read_trylock(&mapping->i_mmap_rwsem);
528 }
529 
530 static inline void i_mmap_lock_read(struct address_space *mapping)
531 {
532 	down_read(&mapping->i_mmap_rwsem);
533 }
534 
535 static inline void i_mmap_unlock_read(struct address_space *mapping)
536 {
537 	up_read(&mapping->i_mmap_rwsem);
538 }
539 
540 static inline void i_mmap_assert_locked(struct address_space *mapping)
541 {
542 	lockdep_assert_held(&mapping->i_mmap_rwsem);
543 }
544 
545 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
546 {
547 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
548 }
549 
550 /*
551  * Might pages of this file be mapped into userspace?
552  */
553 static inline int mapping_mapped(struct address_space *mapping)
554 {
555 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
556 }
557 
558 /*
559  * Might pages of this file have been modified in userspace?
560  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
561  * marks vma as VM_SHARED if it is shared, and the file was opened for
562  * writing i.e. vma may be mprotected writable even if now readonly.
563  *
564  * If i_mmap_writable is negative, no new writable mappings are allowed. You
565  * can only deny writable mappings, if none exists right now.
566  */
567 static inline int mapping_writably_mapped(struct address_space *mapping)
568 {
569 	return atomic_read(&mapping->i_mmap_writable) > 0;
570 }
571 
572 static inline int mapping_map_writable(struct address_space *mapping)
573 {
574 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
575 		0 : -EPERM;
576 }
577 
578 static inline void mapping_unmap_writable(struct address_space *mapping)
579 {
580 	atomic_dec(&mapping->i_mmap_writable);
581 }
582 
583 static inline int mapping_deny_writable(struct address_space *mapping)
584 {
585 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
586 		0 : -EBUSY;
587 }
588 
589 static inline void mapping_allow_writable(struct address_space *mapping)
590 {
591 	atomic_inc(&mapping->i_mmap_writable);
592 }
593 
594 /*
595  * Use sequence counter to get consistent i_size on 32-bit processors.
596  */
597 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
598 #include <linux/seqlock.h>
599 #define __NEED_I_SIZE_ORDERED
600 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
601 #else
602 #define i_size_ordered_init(inode) do { } while (0)
603 #endif
604 
605 struct posix_acl;
606 #define ACL_NOT_CACHED ((void *)(-1))
607 /*
608  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
609  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
610  * mode with the LOOKUP_RCU flag.
611  */
612 #define ACL_DONT_CACHE ((void *)(-3))
613 
614 static inline struct posix_acl *
615 uncached_acl_sentinel(struct task_struct *task)
616 {
617 	return (void *)task + 1;
618 }
619 
620 static inline bool
621 is_uncached_acl(struct posix_acl *acl)
622 {
623 	return (long)acl & 1;
624 }
625 
626 #define IOP_FASTPERM	0x0001
627 #define IOP_LOOKUP	0x0002
628 #define IOP_NOFOLLOW	0x0004
629 #define IOP_XATTR	0x0008
630 #define IOP_DEFAULT_READLINK	0x0010
631 #define IOP_MGTIME	0x0020
632 #define IOP_CACHED_LINK	0x0040
633 
634 /*
635  * Keep mostly read-only and often accessed (especially for
636  * the RCU path lookup and 'stat' data) fields at the beginning
637  * of the 'struct inode'
638  */
639 struct inode {
640 	umode_t			i_mode;
641 	unsigned short		i_opflags;
642 	kuid_t			i_uid;
643 	kgid_t			i_gid;
644 	unsigned int		i_flags;
645 
646 #ifdef CONFIG_FS_POSIX_ACL
647 	struct posix_acl	*i_acl;
648 	struct posix_acl	*i_default_acl;
649 #endif
650 
651 	const struct inode_operations	*i_op;
652 	struct super_block	*i_sb;
653 	struct address_space	*i_mapping;
654 
655 #ifdef CONFIG_SECURITY
656 	void			*i_security;
657 #endif
658 
659 	/* Stat data, not accessed from path walking */
660 	unsigned long		i_ino;
661 	/*
662 	 * Filesystems may only read i_nlink directly.  They shall use the
663 	 * following functions for modification:
664 	 *
665 	 *    (set|clear|inc|drop)_nlink
666 	 *    inode_(inc|dec)_link_count
667 	 */
668 	union {
669 		const unsigned int i_nlink;
670 		unsigned int __i_nlink;
671 	};
672 	dev_t			i_rdev;
673 	loff_t			i_size;
674 	time64_t		i_atime_sec;
675 	time64_t		i_mtime_sec;
676 	time64_t		i_ctime_sec;
677 	u32			i_atime_nsec;
678 	u32			i_mtime_nsec;
679 	u32			i_ctime_nsec;
680 	u32			i_generation;
681 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
682 	unsigned short          i_bytes;
683 	u8			i_blkbits;
684 	enum rw_hint		i_write_hint;
685 	blkcnt_t		i_blocks;
686 
687 #ifdef __NEED_I_SIZE_ORDERED
688 	seqcount_t		i_size_seqcount;
689 #endif
690 
691 	/* Misc */
692 	u32			i_state;
693 	/* 32-bit hole */
694 	struct rw_semaphore	i_rwsem;
695 
696 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
697 	unsigned long		dirtied_time_when;
698 
699 	struct hlist_node	i_hash;
700 	struct list_head	i_io_list;	/* backing dev IO list */
701 #ifdef CONFIG_CGROUP_WRITEBACK
702 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
703 
704 	/* foreign inode detection, see wbc_detach_inode() */
705 	int			i_wb_frn_winner;
706 	u16			i_wb_frn_avg_time;
707 	u16			i_wb_frn_history;
708 #endif
709 	struct list_head	i_lru;		/* inode LRU list */
710 	struct list_head	i_sb_list;
711 	struct list_head	i_wb_list;	/* backing dev writeback list */
712 	union {
713 		struct hlist_head	i_dentry;
714 		struct rcu_head		i_rcu;
715 	};
716 	atomic64_t		i_version;
717 	atomic64_t		i_sequence; /* see futex */
718 	atomic_t		i_count;
719 	atomic_t		i_dio_count;
720 	atomic_t		i_writecount;
721 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
722 	atomic_t		i_readcount; /* struct files open RO */
723 #endif
724 	union {
725 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
726 		void (*free_inode)(struct inode *);
727 	};
728 	struct file_lock_context	*i_flctx;
729 	struct address_space	i_data;
730 	union {
731 		struct list_head	i_devices;
732 		int			i_linklen;
733 	};
734 	union {
735 		struct pipe_inode_info	*i_pipe;
736 		struct cdev		*i_cdev;
737 		char			*i_link;
738 		unsigned		i_dir_seq;
739 	};
740 
741 
742 #ifdef CONFIG_FSNOTIFY
743 	__u32			i_fsnotify_mask; /* all events this inode cares about */
744 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
745 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
746 #endif
747 
748 #ifdef CONFIG_FS_ENCRYPTION
749 	struct fscrypt_inode_info	*i_crypt_info;
750 #endif
751 
752 #ifdef CONFIG_FS_VERITY
753 	struct fsverity_info	*i_verity_info;
754 #endif
755 
756 	void			*i_private; /* fs or device private pointer */
757 } __randomize_layout;
758 
759 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
760 {
761 	inode->i_link = link;
762 	inode->i_linklen = linklen;
763 	inode->i_opflags |= IOP_CACHED_LINK;
764 }
765 
766 /*
767  * Get bit address from inode->i_state to use with wait_var_event()
768  * infrastructre.
769  */
770 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
771 
772 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
773 					    struct inode *inode, u32 bit);
774 
775 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
776 {
777 	/* Caller is responsible for correct memory barriers. */
778 	wake_up_var(inode_state_wait_address(inode, bit));
779 }
780 
781 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
782 
783 static inline unsigned int i_blocksize(const struct inode *node)
784 {
785 	return (1 << node->i_blkbits);
786 }
787 
788 static inline int inode_unhashed(struct inode *inode)
789 {
790 	return hlist_unhashed(&inode->i_hash);
791 }
792 
793 /*
794  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
795  * want special inodes in the fileset inode space, we make them
796  * appear hashed, but do not put on any lists.  hlist_del()
797  * will work fine and require no locking.
798  */
799 static inline void inode_fake_hash(struct inode *inode)
800 {
801 	hlist_add_fake(&inode->i_hash);
802 }
803 
804 /*
805  * inode->i_mutex nesting subclasses for the lock validator:
806  *
807  * 0: the object of the current VFS operation
808  * 1: parent
809  * 2: child/target
810  * 3: xattr
811  * 4: second non-directory
812  * 5: second parent (when locking independent directories in rename)
813  *
814  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
815  * non-directories at once.
816  *
817  * The locking order between these classes is
818  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
819  */
820 enum inode_i_mutex_lock_class
821 {
822 	I_MUTEX_NORMAL,
823 	I_MUTEX_PARENT,
824 	I_MUTEX_CHILD,
825 	I_MUTEX_XATTR,
826 	I_MUTEX_NONDIR2,
827 	I_MUTEX_PARENT2,
828 };
829 
830 static inline void inode_lock(struct inode *inode)
831 {
832 	down_write(&inode->i_rwsem);
833 }
834 
835 static inline void inode_unlock(struct inode *inode)
836 {
837 	up_write(&inode->i_rwsem);
838 }
839 
840 static inline void inode_lock_shared(struct inode *inode)
841 {
842 	down_read(&inode->i_rwsem);
843 }
844 
845 static inline void inode_unlock_shared(struct inode *inode)
846 {
847 	up_read(&inode->i_rwsem);
848 }
849 
850 static inline int inode_trylock(struct inode *inode)
851 {
852 	return down_write_trylock(&inode->i_rwsem);
853 }
854 
855 static inline int inode_trylock_shared(struct inode *inode)
856 {
857 	return down_read_trylock(&inode->i_rwsem);
858 }
859 
860 static inline int inode_is_locked(struct inode *inode)
861 {
862 	return rwsem_is_locked(&inode->i_rwsem);
863 }
864 
865 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
866 {
867 	down_write_nested(&inode->i_rwsem, subclass);
868 }
869 
870 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
871 {
872 	down_read_nested(&inode->i_rwsem, subclass);
873 }
874 
875 static inline void filemap_invalidate_lock(struct address_space *mapping)
876 {
877 	down_write(&mapping->invalidate_lock);
878 }
879 
880 static inline void filemap_invalidate_unlock(struct address_space *mapping)
881 {
882 	up_write(&mapping->invalidate_lock);
883 }
884 
885 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
886 {
887 	down_read(&mapping->invalidate_lock);
888 }
889 
890 static inline int filemap_invalidate_trylock_shared(
891 					struct address_space *mapping)
892 {
893 	return down_read_trylock(&mapping->invalidate_lock);
894 }
895 
896 static inline void filemap_invalidate_unlock_shared(
897 					struct address_space *mapping)
898 {
899 	up_read(&mapping->invalidate_lock);
900 }
901 
902 void lock_two_nondirectories(struct inode *, struct inode*);
903 void unlock_two_nondirectories(struct inode *, struct inode*);
904 
905 void filemap_invalidate_lock_two(struct address_space *mapping1,
906 				 struct address_space *mapping2);
907 void filemap_invalidate_unlock_two(struct address_space *mapping1,
908 				   struct address_space *mapping2);
909 
910 
911 /*
912  * NOTE: in a 32bit arch with a preemptable kernel and
913  * an UP compile the i_size_read/write must be atomic
914  * with respect to the local cpu (unlike with preempt disabled),
915  * but they don't need to be atomic with respect to other cpus like in
916  * true SMP (so they need either to either locally disable irq around
917  * the read or for example on x86 they can be still implemented as a
918  * cmpxchg8b without the need of the lock prefix). For SMP compiles
919  * and 64bit archs it makes no difference if preempt is enabled or not.
920  */
921 static inline loff_t i_size_read(const struct inode *inode)
922 {
923 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
924 	loff_t i_size;
925 	unsigned int seq;
926 
927 	do {
928 		seq = read_seqcount_begin(&inode->i_size_seqcount);
929 		i_size = inode->i_size;
930 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
931 	return i_size;
932 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
933 	loff_t i_size;
934 
935 	preempt_disable();
936 	i_size = inode->i_size;
937 	preempt_enable();
938 	return i_size;
939 #else
940 	/* Pairs with smp_store_release() in i_size_write() */
941 	return smp_load_acquire(&inode->i_size);
942 #endif
943 }
944 
945 /*
946  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
947  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
948  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
949  */
950 static inline void i_size_write(struct inode *inode, loff_t i_size)
951 {
952 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
953 	preempt_disable();
954 	write_seqcount_begin(&inode->i_size_seqcount);
955 	inode->i_size = i_size;
956 	write_seqcount_end(&inode->i_size_seqcount);
957 	preempt_enable();
958 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
959 	preempt_disable();
960 	inode->i_size = i_size;
961 	preempt_enable();
962 #else
963 	/*
964 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
965 	 * changes related to inode size (such as page contents) are
966 	 * visible before we see the changed inode size.
967 	 */
968 	smp_store_release(&inode->i_size, i_size);
969 #endif
970 }
971 
972 static inline unsigned iminor(const struct inode *inode)
973 {
974 	return MINOR(inode->i_rdev);
975 }
976 
977 static inline unsigned imajor(const struct inode *inode)
978 {
979 	return MAJOR(inode->i_rdev);
980 }
981 
982 struct fown_struct {
983 	struct file *file;	/* backpointer for security modules */
984 	rwlock_t lock;          /* protects pid, uid, euid fields */
985 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
986 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
987 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
988 	int signum;		/* posix.1b rt signal to be delivered on IO */
989 };
990 
991 /**
992  * struct file_ra_state - Track a file's readahead state.
993  * @start: Where the most recent readahead started.
994  * @size: Number of pages read in the most recent readahead.
995  * @async_size: Numer of pages that were/are not needed immediately
996  *      and so were/are genuinely "ahead".  Start next readahead when
997  *      the first of these pages is accessed.
998  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
999  * @mmap_miss: How many mmap accesses missed in the page cache.
1000  * @prev_pos: The last byte in the most recent read request.
1001  *
1002  * When this structure is passed to ->readahead(), the "most recent"
1003  * readahead means the current readahead.
1004  */
1005 struct file_ra_state {
1006 	pgoff_t start;
1007 	unsigned int size;
1008 	unsigned int async_size;
1009 	unsigned int ra_pages;
1010 	unsigned int mmap_miss;
1011 	loff_t prev_pos;
1012 };
1013 
1014 /*
1015  * Check if @index falls in the readahead windows.
1016  */
1017 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1018 {
1019 	return (index >= ra->start &&
1020 		index <  ra->start + ra->size);
1021 }
1022 
1023 /**
1024  * struct file - Represents a file
1025  * @f_ref: reference count
1026  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1027  * @f_mode: FMODE_* flags often used in hotpaths
1028  * @f_op: file operations
1029  * @f_mapping: Contents of a cacheable, mappable object.
1030  * @private_data: filesystem or driver specific data
1031  * @f_inode: cached inode
1032  * @f_flags: file flags
1033  * @f_iocb_flags: iocb flags
1034  * @f_cred: stashed credentials of creator/opener
1035  * @f_path: path of the file
1036  * @f_pos_lock: lock protecting file position
1037  * @f_pipe: specific to pipes
1038  * @f_pos: file position
1039  * @f_security: LSM security context of this file
1040  * @f_owner: file owner
1041  * @f_wb_err: writeback error
1042  * @f_sb_err: per sb writeback errors
1043  * @f_ep: link of all epoll hooks for this file
1044  * @f_task_work: task work entry point
1045  * @f_llist: work queue entrypoint
1046  * @f_ra: file's readahead state
1047  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1048  */
1049 struct file {
1050 	file_ref_t			f_ref;
1051 	spinlock_t			f_lock;
1052 	fmode_t				f_mode;
1053 	const struct file_operations	*f_op;
1054 	struct address_space		*f_mapping;
1055 	void				*private_data;
1056 	struct inode			*f_inode;
1057 	unsigned int			f_flags;
1058 	unsigned int			f_iocb_flags;
1059 	const struct cred		*f_cred;
1060 	/* --- cacheline 1 boundary (64 bytes) --- */
1061 	struct path			f_path;
1062 	union {
1063 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1064 		struct mutex		f_pos_lock;
1065 		/* pipes */
1066 		u64			f_pipe;
1067 	};
1068 	loff_t				f_pos;
1069 #ifdef CONFIG_SECURITY
1070 	void				*f_security;
1071 #endif
1072 	/* --- cacheline 2 boundary (128 bytes) --- */
1073 	struct fown_struct		*f_owner;
1074 	errseq_t			f_wb_err;
1075 	errseq_t			f_sb_err;
1076 #ifdef CONFIG_EPOLL
1077 	struct hlist_head		*f_ep;
1078 #endif
1079 	union {
1080 		struct callback_head	f_task_work;
1081 		struct llist_node	f_llist;
1082 		struct file_ra_state	f_ra;
1083 		freeptr_t		f_freeptr;
1084 	};
1085 	/* --- cacheline 3 boundary (192 bytes) --- */
1086 } __randomize_layout
1087   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1088 
1089 struct file_handle {
1090 	__u32 handle_bytes;
1091 	int handle_type;
1092 	/* file identifier */
1093 	unsigned char f_handle[] __counted_by(handle_bytes);
1094 };
1095 
1096 static inline struct file *get_file(struct file *f)
1097 {
1098 	file_ref_inc(&f->f_ref);
1099 	return f;
1100 }
1101 
1102 struct file *get_file_rcu(struct file __rcu **f);
1103 struct file *get_file_active(struct file **f);
1104 
1105 #define file_count(f)	file_ref_read(&(f)->f_ref)
1106 
1107 #define	MAX_NON_LFS	((1UL<<31) - 1)
1108 
1109 /* Page cache limit. The filesystems should put that into their s_maxbytes
1110    limits, otherwise bad things can happen in VM. */
1111 #if BITS_PER_LONG==32
1112 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1113 #elif BITS_PER_LONG==64
1114 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1115 #endif
1116 
1117 /* legacy typedef, should eventually be removed */
1118 typedef void *fl_owner_t;
1119 
1120 struct file_lock;
1121 struct file_lease;
1122 
1123 /* The following constant reflects the upper bound of the file/locking space */
1124 #ifndef OFFSET_MAX
1125 #define OFFSET_MAX	type_max(loff_t)
1126 #define OFFT_OFFSET_MAX	type_max(off_t)
1127 #endif
1128 
1129 int file_f_owner_allocate(struct file *file);
1130 static inline struct fown_struct *file_f_owner(const struct file *file)
1131 {
1132 	return READ_ONCE(file->f_owner);
1133 }
1134 
1135 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1136 
1137 static inline struct inode *file_inode(const struct file *f)
1138 {
1139 	return f->f_inode;
1140 }
1141 
1142 /*
1143  * file_dentry() is a relic from the days that overlayfs was using files with a
1144  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1145  * In those days, file_dentry() was needed to get the underlying fs dentry that
1146  * matches f_inode.
1147  * Files with "fake" path should not exist nowadays, so use an assertion to make
1148  * sure that file_dentry() was not papering over filesystem bugs.
1149  */
1150 static inline struct dentry *file_dentry(const struct file *file)
1151 {
1152 	struct dentry *dentry = file->f_path.dentry;
1153 
1154 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1155 	return dentry;
1156 }
1157 
1158 struct fasync_struct {
1159 	rwlock_t		fa_lock;
1160 	int			magic;
1161 	int			fa_fd;
1162 	struct fasync_struct	*fa_next; /* singly linked list */
1163 	struct file		*fa_file;
1164 	struct rcu_head		fa_rcu;
1165 };
1166 
1167 #define FASYNC_MAGIC 0x4601
1168 
1169 /* SMP safe fasync helpers: */
1170 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1171 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1172 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1173 extern struct fasync_struct *fasync_alloc(void);
1174 extern void fasync_free(struct fasync_struct *);
1175 
1176 /* can be called from interrupts */
1177 extern void kill_fasync(struct fasync_struct **, int, int);
1178 
1179 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1180 extern int f_setown(struct file *filp, int who, int force);
1181 extern void f_delown(struct file *filp);
1182 extern pid_t f_getown(struct file *filp);
1183 extern int send_sigurg(struct file *file);
1184 
1185 /*
1186  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1187  * represented in both.
1188  */
1189 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1190 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1191 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1192 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1193 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1194 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1195 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1196 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1197 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1198 #define SB_SILENT       BIT(15)
1199 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1200 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1201 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1202 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1203 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1204 
1205 /* These sb flags are internal to the kernel */
1206 #define SB_DEAD         BIT(21)
1207 #define SB_DYING        BIT(24)
1208 #define SB_SUBMOUNT     BIT(26)
1209 #define SB_FORCE        BIT(27)
1210 #define SB_NOSEC        BIT(28)
1211 #define SB_BORN         BIT(29)
1212 #define SB_ACTIVE       BIT(30)
1213 #define SB_NOUSER       BIT(31)
1214 
1215 /* These flags relate to encoding and casefolding */
1216 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1217 
1218 #define sb_has_strict_encoding(sb) \
1219 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1220 
1221 /*
1222  *	Umount options
1223  */
1224 
1225 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1226 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1227 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1228 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1229 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1230 
1231 /* sb->s_iflags */
1232 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1233 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1234 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1235 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1236 
1237 /* sb->s_iflags to limit user namespace mounts */
1238 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1239 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1240 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1241 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1242 
1243 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1244 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1245 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1246 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1247 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1248 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1249 
1250 /* Possible states of 'frozen' field */
1251 enum {
1252 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1253 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1254 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1255 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1256 					 * internal threads if needed) */
1257 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1258 };
1259 
1260 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1261 
1262 struct sb_writers {
1263 	unsigned short			frozen;		/* Is sb frozen? */
1264 	int				freeze_kcount;	/* How many kernel freeze requests? */
1265 	int				freeze_ucount;	/* How many userspace freeze requests? */
1266 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1267 };
1268 
1269 struct super_block {
1270 	struct list_head	s_list;		/* Keep this first */
1271 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1272 	unsigned char		s_blocksize_bits;
1273 	unsigned long		s_blocksize;
1274 	loff_t			s_maxbytes;	/* Max file size */
1275 	struct file_system_type	*s_type;
1276 	const struct super_operations	*s_op;
1277 	const struct dquot_operations	*dq_op;
1278 	const struct quotactl_ops	*s_qcop;
1279 	const struct export_operations *s_export_op;
1280 	unsigned long		s_flags;
1281 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1282 	unsigned long		s_magic;
1283 	struct dentry		*s_root;
1284 	struct rw_semaphore	s_umount;
1285 	int			s_count;
1286 	atomic_t		s_active;
1287 #ifdef CONFIG_SECURITY
1288 	void                    *s_security;
1289 #endif
1290 	const struct xattr_handler * const *s_xattr;
1291 #ifdef CONFIG_FS_ENCRYPTION
1292 	const struct fscrypt_operations	*s_cop;
1293 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1294 #endif
1295 #ifdef CONFIG_FS_VERITY
1296 	const struct fsverity_operations *s_vop;
1297 #endif
1298 #if IS_ENABLED(CONFIG_UNICODE)
1299 	struct unicode_map *s_encoding;
1300 	__u16 s_encoding_flags;
1301 #endif
1302 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1303 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1304 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1305 	struct file		*s_bdev_file;
1306 	struct backing_dev_info *s_bdi;
1307 	struct mtd_info		*s_mtd;
1308 	struct hlist_node	s_instances;
1309 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1310 	struct quota_info	s_dquot;	/* Diskquota specific options */
1311 
1312 	struct sb_writers	s_writers;
1313 
1314 	/*
1315 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1316 	 * s_fsnotify_info together for cache efficiency. They are frequently
1317 	 * accessed and rarely modified.
1318 	 */
1319 	void			*s_fs_info;	/* Filesystem private info */
1320 
1321 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1322 	u32			s_time_gran;
1323 	/* Time limits for c/m/atime in seconds */
1324 	time64_t		   s_time_min;
1325 	time64_t		   s_time_max;
1326 #ifdef CONFIG_FSNOTIFY
1327 	u32			s_fsnotify_mask;
1328 	struct fsnotify_sb_info	*s_fsnotify_info;
1329 #endif
1330 
1331 	/*
1332 	 * q: why are s_id and s_sysfs_name not the same? both are human
1333 	 * readable strings that identify the filesystem
1334 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1335 	 * and we want to when a device starts out as single device (s_id is dev
1336 	 * name) but then a device is hot added and we have to switch to
1337 	 * identifying it by UUID
1338 	 * but s_sysfs_name is a handle for programmatic access, and can't
1339 	 * change at runtime
1340 	 */
1341 	char			s_id[32];	/* Informational name */
1342 	uuid_t			s_uuid;		/* UUID */
1343 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1344 
1345 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1346 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1347 
1348 	unsigned int		s_max_links;
1349 
1350 	/*
1351 	 * The next field is for VFS *only*. No filesystems have any business
1352 	 * even looking at it. You had been warned.
1353 	 */
1354 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1355 
1356 	/*
1357 	 * Filesystem subtype.  If non-empty the filesystem type field
1358 	 * in /proc/mounts will be "type.subtype"
1359 	 */
1360 	const char *s_subtype;
1361 
1362 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1363 
1364 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1365 
1366 	/* Number of inodes with nlink == 0 but still referenced */
1367 	atomic_long_t s_remove_count;
1368 
1369 	/* Read-only state of the superblock is being changed */
1370 	int s_readonly_remount;
1371 
1372 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1373 	errseq_t s_wb_err;
1374 
1375 	/* AIO completions deferred from interrupt context */
1376 	struct workqueue_struct *s_dio_done_wq;
1377 	struct hlist_head s_pins;
1378 
1379 	/*
1380 	 * Owning user namespace and default context in which to
1381 	 * interpret filesystem uids, gids, quotas, device nodes,
1382 	 * xattrs and security labels.
1383 	 */
1384 	struct user_namespace *s_user_ns;
1385 
1386 	/*
1387 	 * The list_lru structure is essentially just a pointer to a table
1388 	 * of per-node lru lists, each of which has its own spinlock.
1389 	 * There is no need to put them into separate cachelines.
1390 	 */
1391 	struct list_lru		s_dentry_lru;
1392 	struct list_lru		s_inode_lru;
1393 	struct rcu_head		rcu;
1394 	struct work_struct	destroy_work;
1395 
1396 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1397 
1398 	/*
1399 	 * Indicates how deep in a filesystem stack this SB is
1400 	 */
1401 	int s_stack_depth;
1402 
1403 	/* s_inode_list_lock protects s_inodes */
1404 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1405 	struct list_head	s_inodes;	/* all inodes */
1406 
1407 	spinlock_t		s_inode_wblist_lock;
1408 	struct list_head	s_inodes_wb;	/* writeback inodes */
1409 } __randomize_layout;
1410 
1411 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1412 {
1413 	return inode->i_sb->s_user_ns;
1414 }
1415 
1416 /* Helper functions so that in most cases filesystems will
1417  * not need to deal directly with kuid_t and kgid_t and can
1418  * instead deal with the raw numeric values that are stored
1419  * in the filesystem.
1420  */
1421 static inline uid_t i_uid_read(const struct inode *inode)
1422 {
1423 	return from_kuid(i_user_ns(inode), inode->i_uid);
1424 }
1425 
1426 static inline gid_t i_gid_read(const struct inode *inode)
1427 {
1428 	return from_kgid(i_user_ns(inode), inode->i_gid);
1429 }
1430 
1431 static inline void i_uid_write(struct inode *inode, uid_t uid)
1432 {
1433 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1434 }
1435 
1436 static inline void i_gid_write(struct inode *inode, gid_t gid)
1437 {
1438 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1439 }
1440 
1441 /**
1442  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1443  * @idmap: idmap of the mount the inode was found from
1444  * @inode: inode to map
1445  *
1446  * Return: whe inode's i_uid mapped down according to @idmap.
1447  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1448  */
1449 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1450 					 const struct inode *inode)
1451 {
1452 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1453 }
1454 
1455 /**
1456  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1457  * @idmap: idmap of the mount the inode was found from
1458  * @attr: the new attributes of @inode
1459  * @inode: the inode to update
1460  *
1461  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1462  * mounts into account if the filesystem supports it.
1463  *
1464  * Return: true if @inode's i_uid field needs to be updated, false if not.
1465  */
1466 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1467 				      const struct iattr *attr,
1468 				      const struct inode *inode)
1469 {
1470 	return ((attr->ia_valid & ATTR_UID) &&
1471 		!vfsuid_eq(attr->ia_vfsuid,
1472 			   i_uid_into_vfsuid(idmap, inode)));
1473 }
1474 
1475 /**
1476  * i_uid_update - update @inode's i_uid field
1477  * @idmap: idmap of the mount the inode was found from
1478  * @attr: the new attributes of @inode
1479  * @inode: the inode to update
1480  *
1481  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1482  * mount into the filesystem kuid.
1483  */
1484 static inline void i_uid_update(struct mnt_idmap *idmap,
1485 				const struct iattr *attr,
1486 				struct inode *inode)
1487 {
1488 	if (attr->ia_valid & ATTR_UID)
1489 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1490 					   attr->ia_vfsuid);
1491 }
1492 
1493 /**
1494  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1495  * @idmap: idmap of the mount the inode was found from
1496  * @inode: inode to map
1497  *
1498  * Return: the inode's i_gid mapped down according to @idmap.
1499  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1500  */
1501 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1502 					 const struct inode *inode)
1503 {
1504 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1505 }
1506 
1507 /**
1508  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1509  * @idmap: idmap of the mount the inode was found from
1510  * @attr: the new attributes of @inode
1511  * @inode: the inode to update
1512  *
1513  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1514  * mounts into account if the filesystem supports it.
1515  *
1516  * Return: true if @inode's i_gid field needs to be updated, false if not.
1517  */
1518 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1519 				      const struct iattr *attr,
1520 				      const struct inode *inode)
1521 {
1522 	return ((attr->ia_valid & ATTR_GID) &&
1523 		!vfsgid_eq(attr->ia_vfsgid,
1524 			   i_gid_into_vfsgid(idmap, inode)));
1525 }
1526 
1527 /**
1528  * i_gid_update - update @inode's i_gid field
1529  * @idmap: idmap of the mount the inode was found from
1530  * @attr: the new attributes of @inode
1531  * @inode: the inode to update
1532  *
1533  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1534  * mount into the filesystem kgid.
1535  */
1536 static inline void i_gid_update(struct mnt_idmap *idmap,
1537 				const struct iattr *attr,
1538 				struct inode *inode)
1539 {
1540 	if (attr->ia_valid & ATTR_GID)
1541 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1542 					   attr->ia_vfsgid);
1543 }
1544 
1545 /**
1546  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1547  * @inode: inode to initialize
1548  * @idmap: idmap of the mount the inode was found from
1549  *
1550  * Initialize the i_uid field of @inode. If the inode was found/created via
1551  * an idmapped mount map the caller's fsuid according to @idmap.
1552  */
1553 static inline void inode_fsuid_set(struct inode *inode,
1554 				   struct mnt_idmap *idmap)
1555 {
1556 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1557 }
1558 
1559 /**
1560  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1561  * @inode: inode to initialize
1562  * @idmap: idmap of the mount the inode was found from
1563  *
1564  * Initialize the i_gid field of @inode. If the inode was found/created via
1565  * an idmapped mount map the caller's fsgid according to @idmap.
1566  */
1567 static inline void inode_fsgid_set(struct inode *inode,
1568 				   struct mnt_idmap *idmap)
1569 {
1570 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1571 }
1572 
1573 /**
1574  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1575  * @sb: the superblock we want a mapping in
1576  * @idmap: idmap of the relevant mount
1577  *
1578  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1579  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1580  * the caller's fsuid and fsgid according to the @idmap first.
1581  *
1582  * Return: true if fsuid and fsgid is mapped, false if not.
1583  */
1584 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1585 					struct mnt_idmap *idmap)
1586 {
1587 	struct user_namespace *fs_userns = sb->s_user_ns;
1588 	kuid_t kuid;
1589 	kgid_t kgid;
1590 
1591 	kuid = mapped_fsuid(idmap, fs_userns);
1592 	if (!uid_valid(kuid))
1593 		return false;
1594 	kgid = mapped_fsgid(idmap, fs_userns);
1595 	if (!gid_valid(kgid))
1596 		return false;
1597 	return kuid_has_mapping(fs_userns, kuid) &&
1598 	       kgid_has_mapping(fs_userns, kgid);
1599 }
1600 
1601 struct timespec64 current_time(struct inode *inode);
1602 struct timespec64 inode_set_ctime_current(struct inode *inode);
1603 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1604 					struct timespec64 update);
1605 
1606 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1607 {
1608 	return inode->i_atime_sec;
1609 }
1610 
1611 static inline long inode_get_atime_nsec(const struct inode *inode)
1612 {
1613 	return inode->i_atime_nsec;
1614 }
1615 
1616 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1617 {
1618 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1619 				 .tv_nsec = inode_get_atime_nsec(inode) };
1620 
1621 	return ts;
1622 }
1623 
1624 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1625 						      struct timespec64 ts)
1626 {
1627 	inode->i_atime_sec = ts.tv_sec;
1628 	inode->i_atime_nsec = ts.tv_nsec;
1629 	return ts;
1630 }
1631 
1632 static inline struct timespec64 inode_set_atime(struct inode *inode,
1633 						time64_t sec, long nsec)
1634 {
1635 	struct timespec64 ts = { .tv_sec  = sec,
1636 				 .tv_nsec = nsec };
1637 
1638 	return inode_set_atime_to_ts(inode, ts);
1639 }
1640 
1641 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1642 {
1643 	return inode->i_mtime_sec;
1644 }
1645 
1646 static inline long inode_get_mtime_nsec(const struct inode *inode)
1647 {
1648 	return inode->i_mtime_nsec;
1649 }
1650 
1651 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1652 {
1653 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1654 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1655 	return ts;
1656 }
1657 
1658 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1659 						      struct timespec64 ts)
1660 {
1661 	inode->i_mtime_sec = ts.tv_sec;
1662 	inode->i_mtime_nsec = ts.tv_nsec;
1663 	return ts;
1664 }
1665 
1666 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1667 						time64_t sec, long nsec)
1668 {
1669 	struct timespec64 ts = { .tv_sec  = sec,
1670 				 .tv_nsec = nsec };
1671 	return inode_set_mtime_to_ts(inode, ts);
1672 }
1673 
1674 /*
1675  * Multigrain timestamps
1676  *
1677  * Conditionally use fine-grained ctime and mtime timestamps when there
1678  * are users actively observing them via getattr. The primary use-case
1679  * for this is NFS clients that use the ctime to distinguish between
1680  * different states of the file, and that are often fooled by multiple
1681  * operations that occur in the same coarse-grained timer tick.
1682  */
1683 #define I_CTIME_QUERIED		((u32)BIT(31))
1684 
1685 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1686 {
1687 	return inode->i_ctime_sec;
1688 }
1689 
1690 static inline long inode_get_ctime_nsec(const struct inode *inode)
1691 {
1692 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1693 }
1694 
1695 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1696 {
1697 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1698 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1699 
1700 	return ts;
1701 }
1702 
1703 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1704 
1705 /**
1706  * inode_set_ctime - set the ctime in the inode
1707  * @inode: inode in which to set the ctime
1708  * @sec: tv_sec value to set
1709  * @nsec: tv_nsec value to set
1710  *
1711  * Set the ctime in @inode to { @sec, @nsec }
1712  */
1713 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1714 						time64_t sec, long nsec)
1715 {
1716 	struct timespec64 ts = { .tv_sec  = sec,
1717 				 .tv_nsec = nsec };
1718 
1719 	return inode_set_ctime_to_ts(inode, ts);
1720 }
1721 
1722 struct timespec64 simple_inode_init_ts(struct inode *inode);
1723 
1724 /*
1725  * Snapshotting support.
1726  */
1727 
1728 /*
1729  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1730  * instead.
1731  */
1732 static inline void __sb_end_write(struct super_block *sb, int level)
1733 {
1734 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1735 }
1736 
1737 static inline void __sb_start_write(struct super_block *sb, int level)
1738 {
1739 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1740 }
1741 
1742 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1743 {
1744 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1745 }
1746 
1747 #define __sb_writers_acquired(sb, lev)	\
1748 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1749 #define __sb_writers_release(sb, lev)	\
1750 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1751 
1752 /**
1753  * __sb_write_started - check if sb freeze level is held
1754  * @sb: the super we write to
1755  * @level: the freeze level
1756  *
1757  * * > 0 - sb freeze level is held
1758  * *   0 - sb freeze level is not held
1759  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1760  */
1761 static inline int __sb_write_started(const struct super_block *sb, int level)
1762 {
1763 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1764 }
1765 
1766 /**
1767  * sb_write_started - check if SB_FREEZE_WRITE is held
1768  * @sb: the super we write to
1769  *
1770  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1771  */
1772 static inline bool sb_write_started(const struct super_block *sb)
1773 {
1774 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1775 }
1776 
1777 /**
1778  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1779  * @sb: the super we write to
1780  *
1781  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1782  */
1783 static inline bool sb_write_not_started(const struct super_block *sb)
1784 {
1785 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1786 }
1787 
1788 /**
1789  * file_write_started - check if SB_FREEZE_WRITE is held
1790  * @file: the file we write to
1791  *
1792  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1793  * May be false positive with !S_ISREG, because file_start_write() has
1794  * no effect on !S_ISREG.
1795  */
1796 static inline bool file_write_started(const struct file *file)
1797 {
1798 	if (!S_ISREG(file_inode(file)->i_mode))
1799 		return true;
1800 	return sb_write_started(file_inode(file)->i_sb);
1801 }
1802 
1803 /**
1804  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1805  * @file: the file we write to
1806  *
1807  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1808  * May be false positive with !S_ISREG, because file_start_write() has
1809  * no effect on !S_ISREG.
1810  */
1811 static inline bool file_write_not_started(const struct file *file)
1812 {
1813 	if (!S_ISREG(file_inode(file)->i_mode))
1814 		return true;
1815 	return sb_write_not_started(file_inode(file)->i_sb);
1816 }
1817 
1818 /**
1819  * sb_end_write - drop write access to a superblock
1820  * @sb: the super we wrote to
1821  *
1822  * Decrement number of writers to the filesystem. Wake up possible waiters
1823  * wanting to freeze the filesystem.
1824  */
1825 static inline void sb_end_write(struct super_block *sb)
1826 {
1827 	__sb_end_write(sb, SB_FREEZE_WRITE);
1828 }
1829 
1830 /**
1831  * sb_end_pagefault - drop write access to a superblock from a page fault
1832  * @sb: the super we wrote to
1833  *
1834  * Decrement number of processes handling write page fault to the filesystem.
1835  * Wake up possible waiters wanting to freeze the filesystem.
1836  */
1837 static inline void sb_end_pagefault(struct super_block *sb)
1838 {
1839 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1840 }
1841 
1842 /**
1843  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1844  * @sb: the super we wrote to
1845  *
1846  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1847  * waiters wanting to freeze the filesystem.
1848  */
1849 static inline void sb_end_intwrite(struct super_block *sb)
1850 {
1851 	__sb_end_write(sb, SB_FREEZE_FS);
1852 }
1853 
1854 /**
1855  * sb_start_write - get write access to a superblock
1856  * @sb: the super we write to
1857  *
1858  * When a process wants to write data or metadata to a file system (i.e. dirty
1859  * a page or an inode), it should embed the operation in a sb_start_write() -
1860  * sb_end_write() pair to get exclusion against file system freezing. This
1861  * function increments number of writers preventing freezing. If the file
1862  * system is already frozen, the function waits until the file system is
1863  * thawed.
1864  *
1865  * Since freeze protection behaves as a lock, users have to preserve
1866  * ordering of freeze protection and other filesystem locks. Generally,
1867  * freeze protection should be the outermost lock. In particular, we have:
1868  *
1869  * sb_start_write
1870  *   -> i_mutex			(write path, truncate, directory ops, ...)
1871  *   -> s_umount		(freeze_super, thaw_super)
1872  */
1873 static inline void sb_start_write(struct super_block *sb)
1874 {
1875 	__sb_start_write(sb, SB_FREEZE_WRITE);
1876 }
1877 
1878 static inline bool sb_start_write_trylock(struct super_block *sb)
1879 {
1880 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1881 }
1882 
1883 /**
1884  * sb_start_pagefault - get write access to a superblock from a page fault
1885  * @sb: the super we write to
1886  *
1887  * When a process starts handling write page fault, it should embed the
1888  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1889  * exclusion against file system freezing. This is needed since the page fault
1890  * is going to dirty a page. This function increments number of running page
1891  * faults preventing freezing. If the file system is already frozen, the
1892  * function waits until the file system is thawed.
1893  *
1894  * Since page fault freeze protection behaves as a lock, users have to preserve
1895  * ordering of freeze protection and other filesystem locks. It is advised to
1896  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1897  * handling code implies lock dependency:
1898  *
1899  * mmap_lock
1900  *   -> sb_start_pagefault
1901  */
1902 static inline void sb_start_pagefault(struct super_block *sb)
1903 {
1904 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1905 }
1906 
1907 /**
1908  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1909  * @sb: the super we write to
1910  *
1911  * This is the third level of protection against filesystem freezing. It is
1912  * free for use by a filesystem. The only requirement is that it must rank
1913  * below sb_start_pagefault.
1914  *
1915  * For example filesystem can call sb_start_intwrite() when starting a
1916  * transaction which somewhat eases handling of freezing for internal sources
1917  * of filesystem changes (internal fs threads, discarding preallocation on file
1918  * close, etc.).
1919  */
1920 static inline void sb_start_intwrite(struct super_block *sb)
1921 {
1922 	__sb_start_write(sb, SB_FREEZE_FS);
1923 }
1924 
1925 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1926 {
1927 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1928 }
1929 
1930 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1931 			    const struct inode *inode);
1932 
1933 /*
1934  * VFS helper functions..
1935  */
1936 int vfs_create(struct mnt_idmap *, struct inode *,
1937 	       struct dentry *, umode_t, bool);
1938 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1939 	      struct dentry *, umode_t);
1940 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1941               umode_t, dev_t);
1942 int vfs_symlink(struct mnt_idmap *, struct inode *,
1943 		struct dentry *, const char *);
1944 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1945 	     struct dentry *, struct inode **);
1946 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1947 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1948 	       struct inode **);
1949 
1950 /**
1951  * struct renamedata - contains all information required for renaming
1952  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1953  * @old_dir:           parent of source
1954  * @old_dentry:                source
1955  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1956  * @new_dir:           parent of destination
1957  * @new_dentry:                destination
1958  * @delegated_inode:   returns an inode needing a delegation break
1959  * @flags:             rename flags
1960  */
1961 struct renamedata {
1962 	struct mnt_idmap *old_mnt_idmap;
1963 	struct inode *old_dir;
1964 	struct dentry *old_dentry;
1965 	struct mnt_idmap *new_mnt_idmap;
1966 	struct inode *new_dir;
1967 	struct dentry *new_dentry;
1968 	struct inode **delegated_inode;
1969 	unsigned int flags;
1970 } __randomize_layout;
1971 
1972 int vfs_rename(struct renamedata *);
1973 
1974 static inline int vfs_whiteout(struct mnt_idmap *idmap,
1975 			       struct inode *dir, struct dentry *dentry)
1976 {
1977 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1978 			 WHITEOUT_DEV);
1979 }
1980 
1981 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1982 				 const struct path *parentpath,
1983 				 umode_t mode, int open_flag,
1984 				 const struct cred *cred);
1985 struct file *kernel_file_open(const struct path *path, int flags,
1986 			      const struct cred *cred);
1987 
1988 int vfs_mkobj(struct dentry *, umode_t,
1989 		int (*f)(struct dentry *, umode_t, void *),
1990 		void *);
1991 
1992 int vfs_fchown(struct file *file, uid_t user, gid_t group);
1993 int vfs_fchmod(struct file *file, umode_t mode);
1994 int vfs_utimes(const struct path *path, struct timespec64 *times);
1995 
1996 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1997 
1998 #ifdef CONFIG_COMPAT
1999 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2000 					unsigned long arg);
2001 #else
2002 #define compat_ptr_ioctl NULL
2003 #endif
2004 
2005 /*
2006  * VFS file helper functions.
2007  */
2008 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2009 		      const struct inode *dir, umode_t mode);
2010 extern bool may_open_dev(const struct path *path);
2011 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2012 			const struct inode *dir, umode_t mode);
2013 bool in_group_or_capable(struct mnt_idmap *idmap,
2014 			 const struct inode *inode, vfsgid_t vfsgid);
2015 
2016 /*
2017  * This is the "filldir" function type, used by readdir() to let
2018  * the kernel specify what kind of dirent layout it wants to have.
2019  * This allows the kernel to read directories into kernel space or
2020  * to have different dirent layouts depending on the binary type.
2021  * Return 'true' to keep going and 'false' if there are no more entries.
2022  */
2023 struct dir_context;
2024 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2025 			 unsigned);
2026 
2027 struct dir_context {
2028 	filldir_t actor;
2029 	loff_t pos;
2030 };
2031 
2032 /*
2033  * These flags let !MMU mmap() govern direct device mapping vs immediate
2034  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2035  *
2036  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2037  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2038  * NOMMU_MAP_READ:	Can be mapped for reading
2039  * NOMMU_MAP_WRITE:	Can be mapped for writing
2040  * NOMMU_MAP_EXEC:	Can be mapped for execution
2041  */
2042 #define NOMMU_MAP_COPY		0x00000001
2043 #define NOMMU_MAP_DIRECT	0x00000008
2044 #define NOMMU_MAP_READ		VM_MAYREAD
2045 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2046 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2047 
2048 #define NOMMU_VMFLAGS \
2049 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2050 
2051 /*
2052  * These flags control the behavior of the remap_file_range function pointer.
2053  * If it is called with len == 0 that means "remap to end of source file".
2054  * See Documentation/filesystems/vfs.rst for more details about this call.
2055  *
2056  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2057  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2058  */
2059 #define REMAP_FILE_DEDUP		(1 << 0)
2060 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2061 
2062 /*
2063  * These flags signal that the caller is ok with altering various aspects of
2064  * the behavior of the remap operation.  The changes must be made by the
2065  * implementation; the vfs remap helper functions can take advantage of them.
2066  * Flags in this category exist to preserve the quirky behavior of the hoisted
2067  * btrfs clone/dedupe ioctls.
2068  */
2069 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2070 
2071 /*
2072  * These flags control the behavior of vfs_copy_file_range().
2073  * They are not available to the user via syscall.
2074  *
2075  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2076  */
2077 #define COPY_FILE_SPLICE		(1 << 0)
2078 
2079 struct iov_iter;
2080 struct io_uring_cmd;
2081 struct offset_ctx;
2082 
2083 typedef unsigned int __bitwise fop_flags_t;
2084 
2085 struct file_operations {
2086 	struct module *owner;
2087 	fop_flags_t fop_flags;
2088 	loff_t (*llseek) (struct file *, loff_t, int);
2089 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2090 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2091 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2092 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2093 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2094 			unsigned int flags);
2095 	int (*iterate_shared) (struct file *, struct dir_context *);
2096 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2097 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2098 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2099 	int (*mmap) (struct file *, struct vm_area_struct *);
2100 	int (*open) (struct inode *, struct file *);
2101 	int (*flush) (struct file *, fl_owner_t id);
2102 	int (*release) (struct inode *, struct file *);
2103 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2104 	int (*fasync) (int, struct file *, int);
2105 	int (*lock) (struct file *, int, struct file_lock *);
2106 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2107 	int (*check_flags)(int);
2108 	int (*flock) (struct file *, int, struct file_lock *);
2109 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2110 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2111 	void (*splice_eof)(struct file *file);
2112 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2113 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2114 			  loff_t len);
2115 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2116 #ifndef CONFIG_MMU
2117 	unsigned (*mmap_capabilities)(struct file *);
2118 #endif
2119 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2120 			loff_t, size_t, unsigned int);
2121 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2122 				   struct file *file_out, loff_t pos_out,
2123 				   loff_t len, unsigned int remap_flags);
2124 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2125 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2126 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2127 				unsigned int poll_flags);
2128 } __randomize_layout;
2129 
2130 /* Supports async buffered reads */
2131 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2132 /* Supports async buffered writes */
2133 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2134 /* Supports synchronous page faults for mappings */
2135 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2136 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2137 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2138 /* Contains huge pages */
2139 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2140 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2141 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2142 /* Supports asynchronous lock callbacks */
2143 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2144 /* File system supports uncached read/write buffered IO */
2145 #define FOP_DONTCACHE		((__force fop_flags_t)(1 << 7))
2146 
2147 /* Wrap a directory iterator that needs exclusive inode access */
2148 int wrap_directory_iterator(struct file *, struct dir_context *,
2149 			    int (*) (struct file *, struct dir_context *));
2150 #define WRAP_DIR_ITER(x) \
2151 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2152 	{ return wrap_directory_iterator(file, ctx, x); }
2153 
2154 struct inode_operations {
2155 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2156 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2157 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2158 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2159 
2160 	int (*readlink) (struct dentry *, char __user *,int);
2161 
2162 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2163 		       umode_t, bool);
2164 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2165 	int (*unlink) (struct inode *,struct dentry *);
2166 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2167 			const char *);
2168 	int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2169 		      umode_t);
2170 	int (*rmdir) (struct inode *,struct dentry *);
2171 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2172 		      umode_t,dev_t);
2173 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2174 			struct inode *, struct dentry *, unsigned int);
2175 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2176 	int (*getattr) (struct mnt_idmap *, const struct path *,
2177 			struct kstat *, u32, unsigned int);
2178 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2179 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2180 		      u64 len);
2181 	int (*update_time)(struct inode *, int);
2182 	int (*atomic_open)(struct inode *, struct dentry *,
2183 			   struct file *, unsigned open_flag,
2184 			   umode_t create_mode);
2185 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2186 			struct file *, umode_t);
2187 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2188 				     int);
2189 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2190 		       struct posix_acl *, int);
2191 	int (*fileattr_set)(struct mnt_idmap *idmap,
2192 			    struct dentry *dentry, struct fileattr *fa);
2193 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2194 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2195 } ____cacheline_aligned;
2196 
2197 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2198 {
2199 	return file->f_op->mmap(file, vma);
2200 }
2201 
2202 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2203 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2204 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2205 				   loff_t, size_t, unsigned int);
2206 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2207 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2208 				    struct file *file_out, loff_t pos_out,
2209 				    loff_t *len, unsigned int remap_flags,
2210 				    const struct iomap_ops *dax_read_ops);
2211 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2212 				  struct file *file_out, loff_t pos_out,
2213 				  loff_t *count, unsigned int remap_flags);
2214 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2215 				   struct file *file_out, loff_t pos_out,
2216 				   loff_t len, unsigned int remap_flags);
2217 extern int vfs_dedupe_file_range(struct file *file,
2218 				 struct file_dedupe_range *same);
2219 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2220 					struct file *dst_file, loff_t dst_pos,
2221 					loff_t len, unsigned int remap_flags);
2222 
2223 /**
2224  * enum freeze_holder - holder of the freeze
2225  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2226  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2227  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2228  *
2229  * Indicate who the owner of the freeze or thaw request is and whether
2230  * the freeze needs to be exclusive or can nest.
2231  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2232  * same holder aren't allowed. It is however allowed to hold a single
2233  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2234  * the same time. This is relied upon by some filesystems during online
2235  * repair or similar.
2236  */
2237 enum freeze_holder {
2238 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2239 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2240 	FREEZE_MAY_NEST		= (1U << 2),
2241 };
2242 
2243 struct super_operations {
2244    	struct inode *(*alloc_inode)(struct super_block *sb);
2245 	void (*destroy_inode)(struct inode *);
2246 	void (*free_inode)(struct inode *);
2247 
2248    	void (*dirty_inode) (struct inode *, int flags);
2249 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2250 	int (*drop_inode) (struct inode *);
2251 	void (*evict_inode) (struct inode *);
2252 	void (*put_super) (struct super_block *);
2253 	int (*sync_fs)(struct super_block *sb, int wait);
2254 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2255 	int (*freeze_fs) (struct super_block *);
2256 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2257 	int (*unfreeze_fs) (struct super_block *);
2258 	int (*statfs) (struct dentry *, struct kstatfs *);
2259 	int (*remount_fs) (struct super_block *, int *, char *);
2260 	void (*umount_begin) (struct super_block *);
2261 
2262 	int (*show_options)(struct seq_file *, struct dentry *);
2263 	int (*show_devname)(struct seq_file *, struct dentry *);
2264 	int (*show_path)(struct seq_file *, struct dentry *);
2265 	int (*show_stats)(struct seq_file *, struct dentry *);
2266 #ifdef CONFIG_QUOTA
2267 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2268 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2269 	struct dquot __rcu **(*get_dquots)(struct inode *);
2270 #endif
2271 	long (*nr_cached_objects)(struct super_block *,
2272 				  struct shrink_control *);
2273 	long (*free_cached_objects)(struct super_block *,
2274 				    struct shrink_control *);
2275 	void (*shutdown)(struct super_block *sb);
2276 };
2277 
2278 /*
2279  * Inode flags - they have no relation to superblock flags now
2280  */
2281 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2282 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2283 #define S_APPEND	(1 << 2)  /* Append-only file */
2284 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2285 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2286 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2287 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2288 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2289 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2290 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2291 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2292 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2293 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2294 #ifdef CONFIG_FS_DAX
2295 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2296 #else
2297 #define S_DAX		0	  /* Make all the DAX code disappear */
2298 #endif
2299 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2300 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2301 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2302 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2303 
2304 /*
2305  * Note that nosuid etc flags are inode-specific: setting some file-system
2306  * flags just means all the inodes inherit those flags by default. It might be
2307  * possible to override it selectively if you really wanted to with some
2308  * ioctl() that is not currently implemented.
2309  *
2310  * Exception: SB_RDONLY is always applied to the entire file system.
2311  *
2312  * Unfortunately, it is possible to change a filesystems flags with it mounted
2313  * with files in use.  This means that all of the inodes will not have their
2314  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2315  * flags, so these have to be checked separately. -- [email protected]
2316  */
2317 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2318 
2319 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2320 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2321 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2322 					((inode)->i_flags & S_SYNC))
2323 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2324 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2325 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2326 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2327 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2328 
2329 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2330 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2331 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2332 
2333 #ifdef CONFIG_FS_POSIX_ACL
2334 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2335 #else
2336 #define IS_POSIXACL(inode)	0
2337 #endif
2338 
2339 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2340 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2341 
2342 #ifdef CONFIG_SWAP
2343 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2344 #else
2345 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2346 #endif
2347 
2348 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2349 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2350 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2351 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2352 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2353 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2354 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2355 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2356 
2357 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2358 				 (inode)->i_rdev == WHITEOUT_DEV)
2359 
2360 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2361 				   struct inode *inode)
2362 {
2363 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2364 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2365 }
2366 
2367 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2368 {
2369 	*kiocb = (struct kiocb) {
2370 		.ki_filp = filp,
2371 		.ki_flags = filp->f_iocb_flags,
2372 		.ki_ioprio = get_current_ioprio(),
2373 	};
2374 }
2375 
2376 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2377 			       struct file *filp)
2378 {
2379 	*kiocb = (struct kiocb) {
2380 		.ki_filp = filp,
2381 		.ki_flags = kiocb_src->ki_flags,
2382 		.ki_ioprio = kiocb_src->ki_ioprio,
2383 		.ki_pos = kiocb_src->ki_pos,
2384 	};
2385 }
2386 
2387 /*
2388  * Inode state bits.  Protected by inode->i_lock
2389  *
2390  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2391  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2392  *
2393  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2394  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2395  * various stages of removing an inode.
2396  *
2397  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2398  *
2399  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2400  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2401  *			Timestamp updates are the usual cause.
2402  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2403  *			these changes separately from I_DIRTY_SYNC so that we
2404  *			don't have to write inode on fdatasync() when only
2405  *			e.g. the timestamps have changed.
2406  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2407  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2408  *			lazytime mount option is enabled.  We keep track of this
2409  *			separately from I_DIRTY_SYNC in order to implement
2410  *			lazytime.  This gets cleared if I_DIRTY_INODE
2411  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2412  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2413  *			in place because writeback might already be in progress
2414  *			and we don't want to lose the time update
2415  * I_NEW		Serves as both a mutex and completion notification.
2416  *			New inodes set I_NEW.  If two processes both create
2417  *			the same inode, one of them will release its inode and
2418  *			wait for I_NEW to be released before returning.
2419  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2420  *			also cause waiting on I_NEW, without I_NEW actually
2421  *			being set.  find_inode() uses this to prevent returning
2422  *			nearly-dead inodes.
2423  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2424  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2425  *			cleared.
2426  * I_FREEING		Set when inode is about to be freed but still has dirty
2427  *			pages or buffers attached or the inode itself is still
2428  *			dirty.
2429  * I_CLEAR		Added by clear_inode().  In this state the inode is
2430  *			clean and can be destroyed.  Inode keeps I_FREEING.
2431  *
2432  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2433  *			prohibited for many purposes.  iget() must wait for
2434  *			the inode to be completely released, then create it
2435  *			anew.  Other functions will just ignore such inodes,
2436  *			if appropriate.  I_NEW is used for waiting.
2437  *
2438  * I_SYNC		Writeback of inode is running. The bit is set during
2439  *			data writeback, and cleared with a wakeup on the bit
2440  *			address once it is done. The bit is also used to pin
2441  *			the inode in memory for flusher thread.
2442  *
2443  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2444  *
2445  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2446  *			synchronize competing switching instances and to tell
2447  *			wb stat updates to grab the i_pages lock.  See
2448  *			inode_switch_wbs_work_fn() for details.
2449  *
2450  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2451  *			and work dirs among overlayfs mounts.
2452  *
2453  * I_CREATING		New object's inode in the middle of setting up.
2454  *
2455  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2456  *
2457  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2458  *			Used to detect that mark_inode_dirty() should not move
2459  * 			inode between dirty lists.
2460  *
2461  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2462  *
2463  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2464  *			i_count.
2465  *
2466  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2467  *
2468  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2469  * upon. There's one free address left.
2470  */
2471 #define __I_NEW			0
2472 #define I_NEW			(1 << __I_NEW)
2473 #define __I_SYNC		1
2474 #define I_SYNC			(1 << __I_SYNC)
2475 #define __I_LRU_ISOLATING	2
2476 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2477 
2478 #define I_DIRTY_SYNC		(1 << 3)
2479 #define I_DIRTY_DATASYNC	(1 << 4)
2480 #define I_DIRTY_PAGES		(1 << 5)
2481 #define I_WILL_FREE		(1 << 6)
2482 #define I_FREEING		(1 << 7)
2483 #define I_CLEAR			(1 << 8)
2484 #define I_REFERENCED		(1 << 9)
2485 #define I_LINKABLE		(1 << 10)
2486 #define I_DIRTY_TIME		(1 << 11)
2487 #define I_WB_SWITCH		(1 << 12)
2488 #define I_OVL_INUSE		(1 << 13)
2489 #define I_CREATING		(1 << 14)
2490 #define I_DONTCACHE		(1 << 15)
2491 #define I_SYNC_QUEUED		(1 << 16)
2492 #define I_PINNING_NETFS_WB	(1 << 17)
2493 
2494 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2495 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2496 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2497 
2498 extern void __mark_inode_dirty(struct inode *, int);
2499 static inline void mark_inode_dirty(struct inode *inode)
2500 {
2501 	__mark_inode_dirty(inode, I_DIRTY);
2502 }
2503 
2504 static inline void mark_inode_dirty_sync(struct inode *inode)
2505 {
2506 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2507 }
2508 
2509 /*
2510  * Returns true if the given inode itself only has dirty timestamps (its pages
2511  * may still be dirty) and isn't currently being allocated or freed.
2512  * Filesystems should call this if when writing an inode when lazytime is
2513  * enabled, they want to opportunistically write the timestamps of other inodes
2514  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2515  * if the given inode is in need of such an opportunistic update.  Requires
2516  * i_lock, or at least later re-checking under i_lock.
2517  */
2518 static inline bool inode_is_dirtytime_only(struct inode *inode)
2519 {
2520 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2521 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2522 }
2523 
2524 extern void inc_nlink(struct inode *inode);
2525 extern void drop_nlink(struct inode *inode);
2526 extern void clear_nlink(struct inode *inode);
2527 extern void set_nlink(struct inode *inode, unsigned int nlink);
2528 
2529 static inline void inode_inc_link_count(struct inode *inode)
2530 {
2531 	inc_nlink(inode);
2532 	mark_inode_dirty(inode);
2533 }
2534 
2535 static inline void inode_dec_link_count(struct inode *inode)
2536 {
2537 	drop_nlink(inode);
2538 	mark_inode_dirty(inode);
2539 }
2540 
2541 enum file_time_flags {
2542 	S_ATIME = 1,
2543 	S_MTIME = 2,
2544 	S_CTIME = 4,
2545 	S_VERSION = 8,
2546 };
2547 
2548 extern bool atime_needs_update(const struct path *, struct inode *);
2549 extern void touch_atime(const struct path *);
2550 int inode_update_time(struct inode *inode, int flags);
2551 
2552 static inline void file_accessed(struct file *file)
2553 {
2554 	if (!(file->f_flags & O_NOATIME))
2555 		touch_atime(&file->f_path);
2556 }
2557 
2558 extern int file_modified(struct file *file);
2559 int kiocb_modified(struct kiocb *iocb);
2560 
2561 int sync_inode_metadata(struct inode *inode, int wait);
2562 
2563 struct file_system_type {
2564 	const char *name;
2565 	int fs_flags;
2566 #define FS_REQUIRES_DEV		1
2567 #define FS_BINARY_MOUNTDATA	2
2568 #define FS_HAS_SUBTYPE		4
2569 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2570 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2571 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2572 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2573 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2574 	int (*init_fs_context)(struct fs_context *);
2575 	const struct fs_parameter_spec *parameters;
2576 	struct dentry *(*mount) (struct file_system_type *, int,
2577 		       const char *, void *);
2578 	void (*kill_sb) (struct super_block *);
2579 	struct module *owner;
2580 	struct file_system_type * next;
2581 	struct hlist_head fs_supers;
2582 
2583 	struct lock_class_key s_lock_key;
2584 	struct lock_class_key s_umount_key;
2585 	struct lock_class_key s_vfs_rename_key;
2586 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2587 
2588 	struct lock_class_key i_lock_key;
2589 	struct lock_class_key i_mutex_key;
2590 	struct lock_class_key invalidate_lock_key;
2591 	struct lock_class_key i_mutex_dir_key;
2592 };
2593 
2594 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2595 
2596 /**
2597  * is_mgtime: is this inode using multigrain timestamps
2598  * @inode: inode to test for multigrain timestamps
2599  *
2600  * Return true if the inode uses multigrain timestamps, false otherwise.
2601  */
2602 static inline bool is_mgtime(const struct inode *inode)
2603 {
2604 	return inode->i_opflags & IOP_MGTIME;
2605 }
2606 
2607 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2608 	int flags, const char *dev_name, void *data,
2609 	int (*fill_super)(struct super_block *, void *, int));
2610 extern struct dentry *mount_single(struct file_system_type *fs_type,
2611 	int flags, void *data,
2612 	int (*fill_super)(struct super_block *, void *, int));
2613 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2614 	int flags, void *data,
2615 	int (*fill_super)(struct super_block *, void *, int));
2616 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2617 void retire_super(struct super_block *sb);
2618 void generic_shutdown_super(struct super_block *sb);
2619 void kill_block_super(struct super_block *sb);
2620 void kill_anon_super(struct super_block *sb);
2621 void kill_litter_super(struct super_block *sb);
2622 void deactivate_super(struct super_block *sb);
2623 void deactivate_locked_super(struct super_block *sb);
2624 int set_anon_super(struct super_block *s, void *data);
2625 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2626 int get_anon_bdev(dev_t *);
2627 void free_anon_bdev(dev_t);
2628 struct super_block *sget_fc(struct fs_context *fc,
2629 			    int (*test)(struct super_block *, struct fs_context *),
2630 			    int (*set)(struct super_block *, struct fs_context *));
2631 struct super_block *sget(struct file_system_type *type,
2632 			int (*test)(struct super_block *,void *),
2633 			int (*set)(struct super_block *,void *),
2634 			int flags, void *data);
2635 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2636 
2637 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2638 #define fops_get(fops) ({						\
2639 	const struct file_operations *_fops = (fops);			\
2640 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2641 })
2642 
2643 #define fops_put(fops) ({						\
2644 	const struct file_operations *_fops = (fops);			\
2645 	if (_fops)							\
2646 		module_put((_fops)->owner);				\
2647 })
2648 
2649 /*
2650  * This one is to be used *ONLY* from ->open() instances.
2651  * fops must be non-NULL, pinned down *and* module dependencies
2652  * should be sufficient to pin the caller down as well.
2653  */
2654 #define replace_fops(f, fops) \
2655 	do {	\
2656 		struct file *__file = (f); \
2657 		fops_put(__file->f_op); \
2658 		BUG_ON(!(__file->f_op = (fops))); \
2659 	} while(0)
2660 
2661 extern int register_filesystem(struct file_system_type *);
2662 extern int unregister_filesystem(struct file_system_type *);
2663 extern int vfs_statfs(const struct path *, struct kstatfs *);
2664 extern int user_statfs(const char __user *, struct kstatfs *);
2665 extern int fd_statfs(int, struct kstatfs *);
2666 int freeze_super(struct super_block *super, enum freeze_holder who);
2667 int thaw_super(struct super_block *super, enum freeze_holder who);
2668 extern __printf(2, 3)
2669 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2670 extern int super_setup_bdi(struct super_block *sb);
2671 
2672 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2673 {
2674 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2675 		len = sizeof(sb->s_uuid);
2676 	sb->s_uuid_len = len;
2677 	memcpy(&sb->s_uuid, uuid, len);
2678 }
2679 
2680 /* set sb sysfs name based on sb->s_bdev */
2681 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2682 {
2683 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2684 }
2685 
2686 /* set sb sysfs name based on sb->s_uuid */
2687 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2688 {
2689 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2690 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2691 }
2692 
2693 /* set sb sysfs name based on sb->s_id */
2694 static inline void super_set_sysfs_name_id(struct super_block *sb)
2695 {
2696 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2697 }
2698 
2699 /* try to use something standard before you use this */
2700 __printf(2, 3)
2701 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2702 {
2703 	va_list args;
2704 
2705 	va_start(args, fmt);
2706 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2707 	va_end(args);
2708 }
2709 
2710 extern int current_umask(void);
2711 
2712 extern void ihold(struct inode * inode);
2713 extern void iput(struct inode *);
2714 int inode_update_timestamps(struct inode *inode, int flags);
2715 int generic_update_time(struct inode *, int);
2716 
2717 /* /sys/fs */
2718 extern struct kobject *fs_kobj;
2719 
2720 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2721 
2722 /* fs/open.c */
2723 struct audit_names;
2724 struct filename {
2725 	const char		*name;	/* pointer to actual string */
2726 	const __user char	*uptr;	/* original userland pointer */
2727 	atomic_t		refcnt;
2728 	struct audit_names	*aname;
2729 	const char		iname[];
2730 };
2731 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2732 
2733 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2734 {
2735 	return mnt_idmap(file->f_path.mnt);
2736 }
2737 
2738 /**
2739  * is_idmapped_mnt - check whether a mount is mapped
2740  * @mnt: the mount to check
2741  *
2742  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2743  *
2744  * Return: true if mount is mapped, false if not.
2745  */
2746 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2747 {
2748 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2749 }
2750 
2751 extern long vfs_truncate(const struct path *, loff_t);
2752 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2753 		unsigned int time_attrs, struct file *filp);
2754 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2755 			loff_t len);
2756 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2757 			umode_t mode);
2758 extern struct file *file_open_name(struct filename *, int, umode_t);
2759 extern struct file *filp_open(const char *, int, umode_t);
2760 extern struct file *file_open_root(const struct path *,
2761 				   const char *, int, umode_t);
2762 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2763 				   const char *name, int flags, umode_t mode)
2764 {
2765 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2766 			      name, flags, mode);
2767 }
2768 struct file *dentry_open(const struct path *path, int flags,
2769 			 const struct cred *creds);
2770 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2771 			   const struct cred *cred);
2772 struct path *backing_file_user_path(struct file *f);
2773 
2774 /*
2775  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2776  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2777  * filesystem.  When the mapped file path and inode number are displayed to
2778  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2779  * path and inode number to display to the user, which is the path of the fd
2780  * that user has requested to map and the inode number that would be returned
2781  * by fstat() on that same fd.
2782  */
2783 /* Get the path to display in /proc/<pid>/maps */
2784 static inline const struct path *file_user_path(struct file *f)
2785 {
2786 	if (unlikely(f->f_mode & FMODE_BACKING))
2787 		return backing_file_user_path(f);
2788 	return &f->f_path;
2789 }
2790 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2791 static inline const struct inode *file_user_inode(struct file *f)
2792 {
2793 	if (unlikely(f->f_mode & FMODE_BACKING))
2794 		return d_inode(backing_file_user_path(f)->dentry);
2795 	return file_inode(f);
2796 }
2797 
2798 static inline struct file *file_clone_open(struct file *file)
2799 {
2800 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2801 }
2802 extern int filp_close(struct file *, fl_owner_t id);
2803 
2804 extern struct filename *getname_flags(const char __user *, int);
2805 extern struct filename *getname_uflags(const char __user *, int);
2806 extern struct filename *getname(const char __user *);
2807 extern struct filename *getname_kernel(const char *);
2808 extern struct filename *__getname_maybe_null(const char __user *);
2809 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2810 {
2811 	if (!(flags & AT_EMPTY_PATH))
2812 		return getname(name);
2813 
2814 	if (!name)
2815 		return NULL;
2816 	return __getname_maybe_null(name);
2817 }
2818 extern void putname(struct filename *name);
2819 
2820 extern int finish_open(struct file *file, struct dentry *dentry,
2821 			int (*open)(struct inode *, struct file *));
2822 extern int finish_no_open(struct file *file, struct dentry *dentry);
2823 
2824 /* Helper for the simple case when original dentry is used */
2825 static inline int finish_open_simple(struct file *file, int error)
2826 {
2827 	if (error)
2828 		return error;
2829 
2830 	return finish_open(file, file->f_path.dentry, NULL);
2831 }
2832 
2833 /* fs/dcache.c */
2834 extern void __init vfs_caches_init_early(void);
2835 extern void __init vfs_caches_init(void);
2836 
2837 extern struct kmem_cache *names_cachep;
2838 
2839 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2840 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2841 
2842 extern struct super_block *blockdev_superblock;
2843 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2844 {
2845 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2846 }
2847 
2848 void emergency_thaw_all(void);
2849 extern int sync_filesystem(struct super_block *);
2850 extern const struct file_operations def_blk_fops;
2851 extern const struct file_operations def_chr_fops;
2852 
2853 /* fs/char_dev.c */
2854 #define CHRDEV_MAJOR_MAX 512
2855 /* Marks the bottom of the first segment of free char majors */
2856 #define CHRDEV_MAJOR_DYN_END 234
2857 /* Marks the top and bottom of the second segment of free char majors */
2858 #define CHRDEV_MAJOR_DYN_EXT_START 511
2859 #define CHRDEV_MAJOR_DYN_EXT_END 384
2860 
2861 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2862 extern int register_chrdev_region(dev_t, unsigned, const char *);
2863 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2864 			     unsigned int count, const char *name,
2865 			     const struct file_operations *fops);
2866 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2867 				unsigned int count, const char *name);
2868 extern void unregister_chrdev_region(dev_t, unsigned);
2869 extern void chrdev_show(struct seq_file *,off_t);
2870 
2871 static inline int register_chrdev(unsigned int major, const char *name,
2872 				  const struct file_operations *fops)
2873 {
2874 	return __register_chrdev(major, 0, 256, name, fops);
2875 }
2876 
2877 static inline void unregister_chrdev(unsigned int major, const char *name)
2878 {
2879 	__unregister_chrdev(major, 0, 256, name);
2880 }
2881 
2882 extern void init_special_inode(struct inode *, umode_t, dev_t);
2883 
2884 /* Invalid inode operations -- fs/bad_inode.c */
2885 extern void make_bad_inode(struct inode *);
2886 extern bool is_bad_inode(struct inode *);
2887 
2888 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2889 						loff_t lend);
2890 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2891 extern int __must_check file_write_and_wait_range(struct file *file,
2892 						loff_t start, loff_t end);
2893 
2894 static inline int file_write_and_wait(struct file *file)
2895 {
2896 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2897 }
2898 
2899 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2900 			   int datasync);
2901 extern int vfs_fsync(struct file *file, int datasync);
2902 
2903 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2904 				unsigned int flags);
2905 
2906 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2907 {
2908 	return (iocb->ki_flags & IOCB_DSYNC) ||
2909 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2910 }
2911 
2912 /*
2913  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2914  * to already be updated for the write, and will return either the amount
2915  * of bytes passed in, or an error if syncing the file failed.
2916  */
2917 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2918 {
2919 	if (iocb_is_dsync(iocb)) {
2920 		int ret = vfs_fsync_range(iocb->ki_filp,
2921 				iocb->ki_pos - count, iocb->ki_pos - 1,
2922 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2923 		if (ret)
2924 			return ret;
2925 	}
2926 
2927 	return count;
2928 }
2929 
2930 extern void emergency_sync(void);
2931 extern void emergency_remount(void);
2932 
2933 #ifdef CONFIG_BLOCK
2934 extern int bmap(struct inode *inode, sector_t *block);
2935 #else
2936 static inline int bmap(struct inode *inode,  sector_t *block)
2937 {
2938 	return -EINVAL;
2939 }
2940 #endif
2941 
2942 int notify_change(struct mnt_idmap *, struct dentry *,
2943 		  struct iattr *, struct inode **);
2944 int inode_permission(struct mnt_idmap *, struct inode *, int);
2945 int generic_permission(struct mnt_idmap *, struct inode *, int);
2946 static inline int file_permission(struct file *file, int mask)
2947 {
2948 	return inode_permission(file_mnt_idmap(file),
2949 				file_inode(file), mask);
2950 }
2951 static inline int path_permission(const struct path *path, int mask)
2952 {
2953 	return inode_permission(mnt_idmap(path->mnt),
2954 				d_inode(path->dentry), mask);
2955 }
2956 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2957 		   struct inode *inode);
2958 
2959 static inline bool execute_ok(struct inode *inode)
2960 {
2961 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2962 }
2963 
2964 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2965 {
2966 	return (inode->i_mode ^ mode) & S_IFMT;
2967 }
2968 
2969 /**
2970  * file_start_write - get write access to a superblock for regular file io
2971  * @file: the file we want to write to
2972  *
2973  * This is a variant of sb_start_write() which is a noop on non-regualr file.
2974  * Should be matched with a call to file_end_write().
2975  */
2976 static inline void file_start_write(struct file *file)
2977 {
2978 	if (!S_ISREG(file_inode(file)->i_mode))
2979 		return;
2980 	sb_start_write(file_inode(file)->i_sb);
2981 }
2982 
2983 static inline bool file_start_write_trylock(struct file *file)
2984 {
2985 	if (!S_ISREG(file_inode(file)->i_mode))
2986 		return true;
2987 	return sb_start_write_trylock(file_inode(file)->i_sb);
2988 }
2989 
2990 /**
2991  * file_end_write - drop write access to a superblock of a regular file
2992  * @file: the file we wrote to
2993  *
2994  * Should be matched with a call to file_start_write().
2995  */
2996 static inline void file_end_write(struct file *file)
2997 {
2998 	if (!S_ISREG(file_inode(file)->i_mode))
2999 		return;
3000 	sb_end_write(file_inode(file)->i_sb);
3001 }
3002 
3003 /**
3004  * kiocb_start_write - get write access to a superblock for async file io
3005  * @iocb: the io context we want to submit the write with
3006  *
3007  * This is a variant of sb_start_write() for async io submission.
3008  * Should be matched with a call to kiocb_end_write().
3009  */
3010 static inline void kiocb_start_write(struct kiocb *iocb)
3011 {
3012 	struct inode *inode = file_inode(iocb->ki_filp);
3013 
3014 	sb_start_write(inode->i_sb);
3015 	/*
3016 	 * Fool lockdep by telling it the lock got released so that it
3017 	 * doesn't complain about the held lock when we return to userspace.
3018 	 */
3019 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3020 }
3021 
3022 /**
3023  * kiocb_end_write - drop write access to a superblock after async file io
3024  * @iocb: the io context we sumbitted the write with
3025  *
3026  * Should be matched with a call to kiocb_start_write().
3027  */
3028 static inline void kiocb_end_write(struct kiocb *iocb)
3029 {
3030 	struct inode *inode = file_inode(iocb->ki_filp);
3031 
3032 	/*
3033 	 * Tell lockdep we inherited freeze protection from submission thread.
3034 	 */
3035 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3036 	sb_end_write(inode->i_sb);
3037 }
3038 
3039 /*
3040  * This is used for regular files where some users -- especially the
3041  * currently executed binary in a process, previously handled via
3042  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3043  * read-write shared) accesses.
3044  *
3045  * get_write_access() gets write permission for a file.
3046  * put_write_access() releases this write permission.
3047  * deny_write_access() denies write access to a file.
3048  * allow_write_access() re-enables write access to a file.
3049  *
3050  * The i_writecount field of an inode can have the following values:
3051  * 0: no write access, no denied write access
3052  * < 0: (-i_writecount) users that denied write access to the file.
3053  * > 0: (i_writecount) users that have write access to the file.
3054  *
3055  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3056  * except for the cases where we don't hold i_writecount yet. Then we need to
3057  * use {get,deny}_write_access() - these functions check the sign and refuse
3058  * to do the change if sign is wrong.
3059  */
3060 static inline int get_write_access(struct inode *inode)
3061 {
3062 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3063 }
3064 static inline int deny_write_access(struct file *file)
3065 {
3066 	struct inode *inode = file_inode(file);
3067 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3068 }
3069 static inline void put_write_access(struct inode * inode)
3070 {
3071 	atomic_dec(&inode->i_writecount);
3072 }
3073 static inline void allow_write_access(struct file *file)
3074 {
3075 	if (file)
3076 		atomic_inc(&file_inode(file)->i_writecount);
3077 }
3078 static inline bool inode_is_open_for_write(const struct inode *inode)
3079 {
3080 	return atomic_read(&inode->i_writecount) > 0;
3081 }
3082 
3083 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3084 static inline void i_readcount_dec(struct inode *inode)
3085 {
3086 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3087 }
3088 static inline void i_readcount_inc(struct inode *inode)
3089 {
3090 	atomic_inc(&inode->i_readcount);
3091 }
3092 #else
3093 static inline void i_readcount_dec(struct inode *inode)
3094 {
3095 	return;
3096 }
3097 static inline void i_readcount_inc(struct inode *inode)
3098 {
3099 	return;
3100 }
3101 #endif
3102 extern int do_pipe_flags(int *, int);
3103 
3104 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3105 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3106 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3107 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3108 extern struct file * open_exec(const char *);
3109 
3110 /* fs/dcache.c -- generic fs support functions */
3111 extern bool is_subdir(struct dentry *, struct dentry *);
3112 extern bool path_is_under(const struct path *, const struct path *);
3113 
3114 extern char *file_path(struct file *, char *, int);
3115 
3116 /**
3117  * is_dot_dotdot - returns true only if @name is "." or ".."
3118  * @name: file name to check
3119  * @len: length of file name, in bytes
3120  */
3121 static inline bool is_dot_dotdot(const char *name, size_t len)
3122 {
3123 	return len && unlikely(name[0] == '.') &&
3124 		(len == 1 || (len == 2 && name[1] == '.'));
3125 }
3126 
3127 #include <linux/err.h>
3128 
3129 /* needed for stackable file system support */
3130 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3131 
3132 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3133 
3134 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3135 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3136 {
3137 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3138 }
3139 
3140 extern void inode_init_once(struct inode *);
3141 extern void address_space_init_once(struct address_space *mapping);
3142 extern struct inode * igrab(struct inode *);
3143 extern ino_t iunique(struct super_block *, ino_t);
3144 extern int inode_needs_sync(struct inode *inode);
3145 extern int generic_delete_inode(struct inode *inode);
3146 static inline int generic_drop_inode(struct inode *inode)
3147 {
3148 	return !inode->i_nlink || inode_unhashed(inode);
3149 }
3150 extern void d_mark_dontcache(struct inode *inode);
3151 
3152 extern struct inode *ilookup5_nowait(struct super_block *sb,
3153 		unsigned long hashval, int (*test)(struct inode *, void *),
3154 		void *data);
3155 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3156 		int (*test)(struct inode *, void *), void *data);
3157 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3158 
3159 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3160 		int (*test)(struct inode *, void *),
3161 		int (*set)(struct inode *, void *),
3162 		void *data);
3163 struct inode *iget5_locked(struct super_block *, unsigned long,
3164 			   int (*test)(struct inode *, void *),
3165 			   int (*set)(struct inode *, void *), void *);
3166 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3167 			       int (*test)(struct inode *, void *),
3168 			       int (*set)(struct inode *, void *), void *);
3169 extern struct inode * iget_locked(struct super_block *, unsigned long);
3170 extern struct inode *find_inode_nowait(struct super_block *,
3171 				       unsigned long,
3172 				       int (*match)(struct inode *,
3173 						    unsigned long, void *),
3174 				       void *data);
3175 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3176 				    int (*)(struct inode *, void *), void *);
3177 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3178 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3179 extern int insert_inode_locked(struct inode *);
3180 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3181 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3182 #else
3183 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3184 #endif
3185 extern void unlock_new_inode(struct inode *);
3186 extern void discard_new_inode(struct inode *);
3187 extern unsigned int get_next_ino(void);
3188 extern void evict_inodes(struct super_block *sb);
3189 void dump_mapping(const struct address_space *);
3190 
3191 /*
3192  * Userspace may rely on the inode number being non-zero. For example, glibc
3193  * simply ignores files with zero i_ino in unlink() and other places.
3194  *
3195  * As an additional complication, if userspace was compiled with
3196  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3197  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3198  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3199  * better safe than sorry.
3200  */
3201 static inline bool is_zero_ino(ino_t ino)
3202 {
3203 	return (u32)ino == 0;
3204 }
3205 
3206 /*
3207  * inode->i_lock must be held
3208  */
3209 static inline void __iget(struct inode *inode)
3210 {
3211 	atomic_inc(&inode->i_count);
3212 }
3213 
3214 extern void iget_failed(struct inode *);
3215 extern void clear_inode(struct inode *);
3216 extern void __destroy_inode(struct inode *);
3217 extern struct inode *new_inode_pseudo(struct super_block *sb);
3218 extern struct inode *new_inode(struct super_block *sb);
3219 extern void free_inode_nonrcu(struct inode *inode);
3220 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3221 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3222 extern int file_remove_privs(struct file *);
3223 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3224 			     const struct inode *inode);
3225 
3226 /*
3227  * This must be used for allocating filesystems specific inodes to set
3228  * up the inode reclaim context correctly.
3229  */
3230 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3231 
3232 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3233 static inline void insert_inode_hash(struct inode *inode)
3234 {
3235 	__insert_inode_hash(inode, inode->i_ino);
3236 }
3237 
3238 extern void __remove_inode_hash(struct inode *);
3239 static inline void remove_inode_hash(struct inode *inode)
3240 {
3241 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3242 		__remove_inode_hash(inode);
3243 }
3244 
3245 extern void inode_sb_list_add(struct inode *inode);
3246 extern void inode_add_lru(struct inode *inode);
3247 
3248 extern int sb_set_blocksize(struct super_block *, int);
3249 extern int sb_min_blocksize(struct super_block *, int);
3250 
3251 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3252 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3253 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3254 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3255 extern int generic_write_check_limits(struct file *file, loff_t pos,
3256 		loff_t *count);
3257 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3258 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3259 		ssize_t already_read);
3260 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3261 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3262 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3263 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3264 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3265 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3266 		ssize_t direct_written, ssize_t buffered_written);
3267 
3268 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3269 		rwf_t flags);
3270 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3271 		rwf_t flags);
3272 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3273 			   struct iov_iter *iter);
3274 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3275 			    struct iov_iter *iter);
3276 
3277 /* fs/splice.c */
3278 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3279 			    struct pipe_inode_info *pipe,
3280 			    size_t len, unsigned int flags);
3281 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3282 			 struct pipe_inode_info *pipe,
3283 			 size_t len, unsigned int flags);
3284 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3285 		struct file *, loff_t *, size_t, unsigned int);
3286 
3287 
3288 extern void
3289 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3290 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3291 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3292 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3293 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3294 		int whence, loff_t maxsize, loff_t eof);
3295 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3296 			     u64 *cookie);
3297 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3298 		int whence, loff_t size);
3299 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3300 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3301 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3302 extern int generic_file_open(struct inode * inode, struct file * filp);
3303 extern int nonseekable_open(struct inode * inode, struct file * filp);
3304 extern int stream_open(struct inode * inode, struct file * filp);
3305 
3306 #ifdef CONFIG_BLOCK
3307 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3308 			    loff_t file_offset);
3309 
3310 enum {
3311 	/* need locking between buffered and direct access */
3312 	DIO_LOCKING	= 0x01,
3313 
3314 	/* filesystem does not support filling holes */
3315 	DIO_SKIP_HOLES	= 0x02,
3316 };
3317 
3318 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3319 			     struct block_device *bdev, struct iov_iter *iter,
3320 			     get_block_t get_block,
3321 			     dio_iodone_t end_io,
3322 			     int flags);
3323 
3324 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3325 					 struct inode *inode,
3326 					 struct iov_iter *iter,
3327 					 get_block_t get_block)
3328 {
3329 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3330 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3331 }
3332 #endif
3333 
3334 bool inode_dio_finished(const struct inode *inode);
3335 void inode_dio_wait(struct inode *inode);
3336 void inode_dio_wait_interruptible(struct inode *inode);
3337 
3338 /**
3339  * inode_dio_begin - signal start of a direct I/O requests
3340  * @inode: inode the direct I/O happens on
3341  *
3342  * This is called once we've finished processing a direct I/O request,
3343  * and is used to wake up callers waiting for direct I/O to be quiesced.
3344  */
3345 static inline void inode_dio_begin(struct inode *inode)
3346 {
3347 	atomic_inc(&inode->i_dio_count);
3348 }
3349 
3350 /**
3351  * inode_dio_end - signal finish of a direct I/O requests
3352  * @inode: inode the direct I/O happens on
3353  *
3354  * This is called once we've finished processing a direct I/O request,
3355  * and is used to wake up callers waiting for direct I/O to be quiesced.
3356  */
3357 static inline void inode_dio_end(struct inode *inode)
3358 {
3359 	if (atomic_dec_and_test(&inode->i_dio_count))
3360 		wake_up_var(&inode->i_dio_count);
3361 }
3362 
3363 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3364 			    unsigned int mask);
3365 
3366 extern const struct file_operations generic_ro_fops;
3367 
3368 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3369 
3370 extern int readlink_copy(char __user *, int, const char *, int);
3371 extern int page_readlink(struct dentry *, char __user *, int);
3372 extern const char *page_get_link(struct dentry *, struct inode *,
3373 				 struct delayed_call *);
3374 extern void page_put_link(void *);
3375 extern int page_symlink(struct inode *inode, const char *symname, int len);
3376 extern const struct inode_operations page_symlink_inode_operations;
3377 extern void kfree_link(void *);
3378 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3379 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3380 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3381 void generic_fill_statx_atomic_writes(struct kstat *stat,
3382 				      unsigned int unit_min,
3383 				      unsigned int unit_max);
3384 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3385 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3386 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3387 void inode_add_bytes(struct inode *inode, loff_t bytes);
3388 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3389 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3390 static inline loff_t __inode_get_bytes(struct inode *inode)
3391 {
3392 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3393 }
3394 loff_t inode_get_bytes(struct inode *inode);
3395 void inode_set_bytes(struct inode *inode, loff_t bytes);
3396 const char *simple_get_link(struct dentry *, struct inode *,
3397 			    struct delayed_call *);
3398 extern const struct inode_operations simple_symlink_inode_operations;
3399 
3400 extern int iterate_dir(struct file *, struct dir_context *);
3401 
3402 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3403 		int flags);
3404 int vfs_fstat(int fd, struct kstat *stat);
3405 
3406 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3407 {
3408 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3409 }
3410 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3411 {
3412 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3413 }
3414 
3415 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3416 extern int vfs_readlink(struct dentry *, char __user *, int);
3417 
3418 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3419 extern void put_filesystem(struct file_system_type *fs);
3420 extern struct file_system_type *get_fs_type(const char *name);
3421 extern void drop_super(struct super_block *sb);
3422 extern void drop_super_exclusive(struct super_block *sb);
3423 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3424 extern void iterate_supers_type(struct file_system_type *,
3425 			        void (*)(struct super_block *, void *), void *);
3426 
3427 extern int dcache_dir_open(struct inode *, struct file *);
3428 extern int dcache_dir_close(struct inode *, struct file *);
3429 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3430 extern int dcache_readdir(struct file *, struct dir_context *);
3431 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3432 			  struct iattr *);
3433 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3434 			  struct kstat *, u32, unsigned int);
3435 extern int simple_statfs(struct dentry *, struct kstatfs *);
3436 extern int simple_open(struct inode *inode, struct file *file);
3437 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3438 extern int simple_unlink(struct inode *, struct dentry *);
3439 extern int simple_rmdir(struct inode *, struct dentry *);
3440 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3441 			     struct inode *new_dir, struct dentry *new_dentry);
3442 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3443 				  struct inode *new_dir, struct dentry *new_dentry);
3444 extern int simple_rename(struct mnt_idmap *, struct inode *,
3445 			 struct dentry *, struct inode *, struct dentry *,
3446 			 unsigned int);
3447 extern void simple_recursive_removal(struct dentry *,
3448                               void (*callback)(struct dentry *));
3449 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3450 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3451 extern int simple_empty(struct dentry *);
3452 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3453 			loff_t pos, unsigned len,
3454 			struct folio **foliop, void **fsdata);
3455 extern const struct address_space_operations ram_aops;
3456 extern int always_delete_dentry(const struct dentry *);
3457 extern struct inode *alloc_anon_inode(struct super_block *);
3458 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3459 extern const struct dentry_operations simple_dentry_operations;
3460 
3461 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3462 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3463 extern const struct file_operations simple_dir_operations;
3464 extern const struct inode_operations simple_dir_inode_operations;
3465 extern void make_empty_dir_inode(struct inode *inode);
3466 extern bool is_empty_dir_inode(struct inode *inode);
3467 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3468 struct dentry *d_alloc_name(struct dentry *, const char *);
3469 extern int simple_fill_super(struct super_block *, unsigned long,
3470 			     const struct tree_descr *);
3471 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3472 extern void simple_release_fs(struct vfsmount **mount, int *count);
3473 
3474 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3475 			loff_t *ppos, const void *from, size_t available);
3476 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3477 		const void __user *from, size_t count);
3478 
3479 struct offset_ctx {
3480 	struct maple_tree	mt;
3481 	unsigned long		next_offset;
3482 };
3483 
3484 void simple_offset_init(struct offset_ctx *octx);
3485 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3486 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3487 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3488 			 struct inode *new_dir, struct dentry *new_dentry);
3489 int simple_offset_rename_exchange(struct inode *old_dir,
3490 				  struct dentry *old_dentry,
3491 				  struct inode *new_dir,
3492 				  struct dentry *new_dentry);
3493 void simple_offset_destroy(struct offset_ctx *octx);
3494 
3495 extern const struct file_operations simple_offset_dir_operations;
3496 
3497 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3498 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3499 
3500 extern int generic_check_addressable(unsigned, u64);
3501 
3502 extern void generic_set_sb_d_ops(struct super_block *sb);
3503 extern int generic_ci_match(const struct inode *parent,
3504 			    const struct qstr *name,
3505 			    const struct qstr *folded_name,
3506 			    const u8 *de_name, u32 de_name_len);
3507 
3508 #if IS_ENABLED(CONFIG_UNICODE)
3509 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3510 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3511 			 const char *str, const struct qstr *name);
3512 
3513 /**
3514  * generic_ci_validate_strict_name - Check if a given name is suitable
3515  * for a directory
3516  *
3517  * This functions checks if the proposed filename is valid for the
3518  * parent directory. That means that only valid UTF-8 filenames will be
3519  * accepted for casefold directories from filesystems created with the
3520  * strict encoding flag.  That also means that any name will be
3521  * accepted for directories that doesn't have casefold enabled, or
3522  * aren't being strict with the encoding.
3523  *
3524  * @dir: inode of the directory where the new file will be created
3525  * @name: name of the new file
3526  *
3527  * Return:
3528  * * True: if the filename is suitable for this directory. It can be
3529  *   true if a given name is not suitable for a strict encoding
3530  *   directory, but the directory being used isn't strict
3531  * * False if the filename isn't suitable for this directory. This only
3532  *   happens when a directory is casefolded and the filesystem is strict
3533  *   about its encoding.
3534  */
3535 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3536 {
3537 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3538 		return true;
3539 
3540 	/*
3541 	 * A casefold dir must have a encoding set, unless the filesystem
3542 	 * is corrupted
3543 	 */
3544 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3545 		return true;
3546 
3547 	return !utf8_validate(dir->i_sb->s_encoding, name);
3548 }
3549 #else
3550 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3551 {
3552 	return true;
3553 }
3554 #endif
3555 
3556 static inline bool sb_has_encoding(const struct super_block *sb)
3557 {
3558 #if IS_ENABLED(CONFIG_UNICODE)
3559 	return !!sb->s_encoding;
3560 #else
3561 	return false;
3562 #endif
3563 }
3564 
3565 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3566 		unsigned int ia_valid);
3567 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3568 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3569 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3570 		  const struct iattr *attr);
3571 
3572 extern int file_update_time(struct file *file);
3573 
3574 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3575 {
3576 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3577 }
3578 
3579 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3580 {
3581 	struct inode *inode;
3582 
3583 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3584 		return false;
3585 	if (!vma_is_dax(vma))
3586 		return false;
3587 	inode = file_inode(vma->vm_file);
3588 	if (S_ISCHR(inode->i_mode))
3589 		return false; /* device-dax */
3590 	return true;
3591 }
3592 
3593 static inline int iocb_flags(struct file *file)
3594 {
3595 	int res = 0;
3596 	if (file->f_flags & O_APPEND)
3597 		res |= IOCB_APPEND;
3598 	if (file->f_flags & O_DIRECT)
3599 		res |= IOCB_DIRECT;
3600 	if (file->f_flags & O_DSYNC)
3601 		res |= IOCB_DSYNC;
3602 	if (file->f_flags & __O_SYNC)
3603 		res |= IOCB_SYNC;
3604 	return res;
3605 }
3606 
3607 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3608 				     int rw_type)
3609 {
3610 	int kiocb_flags = 0;
3611 
3612 	/* make sure there's no overlap between RWF and private IOCB flags */
3613 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3614 
3615 	if (!flags)
3616 		return 0;
3617 	if (unlikely(flags & ~RWF_SUPPORTED))
3618 		return -EOPNOTSUPP;
3619 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3620 		return -EINVAL;
3621 
3622 	if (flags & RWF_NOWAIT) {
3623 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3624 			return -EOPNOTSUPP;
3625 	}
3626 	if (flags & RWF_ATOMIC) {
3627 		if (rw_type != WRITE)
3628 			return -EOPNOTSUPP;
3629 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3630 			return -EOPNOTSUPP;
3631 	}
3632 	if (flags & RWF_DONTCACHE) {
3633 		/* file system must support it */
3634 		if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3635 			return -EOPNOTSUPP;
3636 		/* DAX mappings not supported */
3637 		if (IS_DAX(ki->ki_filp->f_mapping->host))
3638 			return -EOPNOTSUPP;
3639 	}
3640 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3641 	if (flags & RWF_SYNC)
3642 		kiocb_flags |= IOCB_DSYNC;
3643 
3644 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3645 		if (IS_APPEND(file_inode(ki->ki_filp)))
3646 			return -EPERM;
3647 		ki->ki_flags &= ~IOCB_APPEND;
3648 	}
3649 
3650 	ki->ki_flags |= kiocb_flags;
3651 	return 0;
3652 }
3653 
3654 /* Transaction based IO helpers */
3655 
3656 /*
3657  * An argresp is stored in an allocated page and holds the
3658  * size of the argument or response, along with its content
3659  */
3660 struct simple_transaction_argresp {
3661 	ssize_t size;
3662 	char data[];
3663 };
3664 
3665 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3666 
3667 char *simple_transaction_get(struct file *file, const char __user *buf,
3668 				size_t size);
3669 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3670 				size_t size, loff_t *pos);
3671 int simple_transaction_release(struct inode *inode, struct file *file);
3672 
3673 void simple_transaction_set(struct file *file, size_t n);
3674 
3675 /*
3676  * simple attribute files
3677  *
3678  * These attributes behave similar to those in sysfs:
3679  *
3680  * Writing to an attribute immediately sets a value, an open file can be
3681  * written to multiple times.
3682  *
3683  * Reading from an attribute creates a buffer from the value that might get
3684  * read with multiple read calls. When the attribute has been read
3685  * completely, no further read calls are possible until the file is opened
3686  * again.
3687  *
3688  * All attributes contain a text representation of a numeric value
3689  * that are accessed with the get() and set() functions.
3690  */
3691 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3692 static int __fops ## _open(struct inode *inode, struct file *file)	\
3693 {									\
3694 	__simple_attr_check_format(__fmt, 0ull);			\
3695 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3696 }									\
3697 static const struct file_operations __fops = {				\
3698 	.owner	 = THIS_MODULE,						\
3699 	.open	 = __fops ## _open,					\
3700 	.release = simple_attr_release,					\
3701 	.read	 = simple_attr_read,					\
3702 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3703 	.llseek	 = generic_file_llseek,					\
3704 }
3705 
3706 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3707 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3708 
3709 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3710 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3711 
3712 static inline __printf(1, 2)
3713 void __simple_attr_check_format(const char *fmt, ...)
3714 {
3715 	/* don't do anything, just let the compiler check the arguments; */
3716 }
3717 
3718 int simple_attr_open(struct inode *inode, struct file *file,
3719 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3720 		     const char *fmt);
3721 int simple_attr_release(struct inode *inode, struct file *file);
3722 ssize_t simple_attr_read(struct file *file, char __user *buf,
3723 			 size_t len, loff_t *ppos);
3724 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3725 			  size_t len, loff_t *ppos);
3726 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3727 				 size_t len, loff_t *ppos);
3728 
3729 struct ctl_table;
3730 int __init list_bdev_fs_names(char *buf, size_t size);
3731 
3732 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3733 #define __FMODE_NONOTIFY	((__force int) FMODE_NONOTIFY)
3734 
3735 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3736 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3737 					    (flag & __FMODE_NONOTIFY)))
3738 
3739 static inline bool is_sxid(umode_t mode)
3740 {
3741 	return mode & (S_ISUID | S_ISGID);
3742 }
3743 
3744 static inline int check_sticky(struct mnt_idmap *idmap,
3745 			       struct inode *dir, struct inode *inode)
3746 {
3747 	if (!(dir->i_mode & S_ISVTX))
3748 		return 0;
3749 
3750 	return __check_sticky(idmap, dir, inode);
3751 }
3752 
3753 static inline void inode_has_no_xattr(struct inode *inode)
3754 {
3755 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3756 		inode->i_flags |= S_NOSEC;
3757 }
3758 
3759 static inline bool is_root_inode(struct inode *inode)
3760 {
3761 	return inode == inode->i_sb->s_root->d_inode;
3762 }
3763 
3764 static inline bool dir_emit(struct dir_context *ctx,
3765 			    const char *name, int namelen,
3766 			    u64 ino, unsigned type)
3767 {
3768 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3769 }
3770 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3771 {
3772 	return ctx->actor(ctx, ".", 1, ctx->pos,
3773 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3774 }
3775 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3776 {
3777 	return ctx->actor(ctx, "..", 2, ctx->pos,
3778 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3779 }
3780 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3781 {
3782 	if (ctx->pos == 0) {
3783 		if (!dir_emit_dot(file, ctx))
3784 			return false;
3785 		ctx->pos = 1;
3786 	}
3787 	if (ctx->pos == 1) {
3788 		if (!dir_emit_dotdot(file, ctx))
3789 			return false;
3790 		ctx->pos = 2;
3791 	}
3792 	return true;
3793 }
3794 static inline bool dir_relax(struct inode *inode)
3795 {
3796 	inode_unlock(inode);
3797 	inode_lock(inode);
3798 	return !IS_DEADDIR(inode);
3799 }
3800 
3801 static inline bool dir_relax_shared(struct inode *inode)
3802 {
3803 	inode_unlock_shared(inode);
3804 	inode_lock_shared(inode);
3805 	return !IS_DEADDIR(inode);
3806 }
3807 
3808 extern bool path_noexec(const struct path *path);
3809 extern void inode_nohighmem(struct inode *inode);
3810 
3811 /* mm/fadvise.c */
3812 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3813 		       int advice);
3814 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3815 			   int advice);
3816 
3817 static inline bool vfs_empty_path(int dfd, const char __user *path)
3818 {
3819 	char c;
3820 
3821 	if (dfd < 0)
3822 		return false;
3823 
3824 	/* We now allow NULL to be used for empty path. */
3825 	if (!path)
3826 		return true;
3827 
3828 	if (unlikely(get_user(c, path)))
3829 		return false;
3830 
3831 	return !c;
3832 }
3833 
3834 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3835 
3836 #endif /* _LINUX_FS_H */
3837