1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* FMODE_* bit 24 */ 177 178 /* File is embedded in backing_file object */ 179 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 180 181 /* File was opened by fanotify and shouldn't generate fanotify events */ 182 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 183 184 /* File is capable of returning -EAGAIN if I/O will block */ 185 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 186 187 /* File represents mount that needs unmounting */ 188 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 189 190 /* File does not contribute to nr_files count */ 191 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 192 193 /* 194 * Attribute flags. These should be or-ed together to figure out what 195 * has been changed! 196 */ 197 #define ATTR_MODE (1 << 0) 198 #define ATTR_UID (1 << 1) 199 #define ATTR_GID (1 << 2) 200 #define ATTR_SIZE (1 << 3) 201 #define ATTR_ATIME (1 << 4) 202 #define ATTR_MTIME (1 << 5) 203 #define ATTR_CTIME (1 << 6) 204 #define ATTR_ATIME_SET (1 << 7) 205 #define ATTR_MTIME_SET (1 << 8) 206 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 207 #define ATTR_KILL_SUID (1 << 11) 208 #define ATTR_KILL_SGID (1 << 12) 209 #define ATTR_FILE (1 << 13) 210 #define ATTR_KILL_PRIV (1 << 14) 211 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 212 #define ATTR_TIMES_SET (1 << 16) 213 #define ATTR_TOUCH (1 << 17) 214 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 215 216 /* 217 * Whiteout is represented by a char device. The following constants define the 218 * mode and device number to use. 219 */ 220 #define WHITEOUT_MODE 0 221 #define WHITEOUT_DEV 0 222 223 /* 224 * This is the Inode Attributes structure, used for notify_change(). It 225 * uses the above definitions as flags, to know which values have changed. 226 * Also, in this manner, a Filesystem can look at only the values it cares 227 * about. Basically, these are the attributes that the VFS layer can 228 * request to change from the FS layer. 229 * 230 * Derek Atkins <[email protected]> 94-10-20 231 */ 232 struct iattr { 233 unsigned int ia_valid; 234 umode_t ia_mode; 235 /* 236 * The two anonymous unions wrap structures with the same member. 237 * 238 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 239 * are a dedicated type requiring the filesystem to use the dedicated 240 * helpers. Other filesystem can continue to use ia_{g,u}id until they 241 * have been ported. 242 * 243 * They always contain the same value. In other words FS_ALLOW_IDMAP 244 * pass down the same value on idmapped mounts as they would on regular 245 * mounts. 246 */ 247 union { 248 kuid_t ia_uid; 249 vfsuid_t ia_vfsuid; 250 }; 251 union { 252 kgid_t ia_gid; 253 vfsgid_t ia_vfsgid; 254 }; 255 loff_t ia_size; 256 struct timespec64 ia_atime; 257 struct timespec64 ia_mtime; 258 struct timespec64 ia_ctime; 259 260 /* 261 * Not an attribute, but an auxiliary info for filesystems wanting to 262 * implement an ftruncate() like method. NOTE: filesystem should 263 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 264 */ 265 struct file *ia_file; 266 }; 267 268 /* 269 * Includes for diskquotas. 270 */ 271 #include <linux/quota.h> 272 273 /* 274 * Maximum number of layers of fs stack. Needs to be limited to 275 * prevent kernel stack overflow 276 */ 277 #define FILESYSTEM_MAX_STACK_DEPTH 2 278 279 /** 280 * enum positive_aop_returns - aop return codes with specific semantics 281 * 282 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 283 * completed, that the page is still locked, and 284 * should be considered active. The VM uses this hint 285 * to return the page to the active list -- it won't 286 * be a candidate for writeback again in the near 287 * future. Other callers must be careful to unlock 288 * the page if they get this return. Returned by 289 * writepage(); 290 * 291 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 292 * unlocked it and the page might have been truncated. 293 * The caller should back up to acquiring a new page and 294 * trying again. The aop will be taking reasonable 295 * precautions not to livelock. If the caller held a page 296 * reference, it should drop it before retrying. Returned 297 * by read_folio(). 298 * 299 * address_space_operation functions return these large constants to indicate 300 * special semantics to the caller. These are much larger than the bytes in a 301 * page to allow for functions that return the number of bytes operated on in a 302 * given page. 303 */ 304 305 enum positive_aop_returns { 306 AOP_WRITEPAGE_ACTIVATE = 0x80000, 307 AOP_TRUNCATED_PAGE = 0x80001, 308 }; 309 310 /* 311 * oh the beauties of C type declarations. 312 */ 313 struct page; 314 struct address_space; 315 struct writeback_control; 316 struct readahead_control; 317 318 /* Match RWF_* bits to IOCB bits */ 319 #define IOCB_HIPRI (__force int) RWF_HIPRI 320 #define IOCB_DSYNC (__force int) RWF_DSYNC 321 #define IOCB_SYNC (__force int) RWF_SYNC 322 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 323 #define IOCB_APPEND (__force int) RWF_APPEND 324 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 325 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 326 327 /* non-RWF related bits - start at 16 */ 328 #define IOCB_EVENTFD (1 << 16) 329 #define IOCB_DIRECT (1 << 17) 330 #define IOCB_WRITE (1 << 18) 331 /* iocb->ki_waitq is valid */ 332 #define IOCB_WAITQ (1 << 19) 333 #define IOCB_NOIO (1 << 20) 334 /* can use bio alloc cache */ 335 #define IOCB_ALLOC_CACHE (1 << 21) 336 /* 337 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 338 * iocb completion can be passed back to the owner for execution from a safe 339 * context rather than needing to be punted through a workqueue. If this 340 * flag is set, the bio completion handling may set iocb->dio_complete to a 341 * handler function and iocb->private to context information for that handler. 342 * The issuer should call the handler with that context information from task 343 * context to complete the processing of the iocb. Note that while this 344 * provides a task context for the dio_complete() callback, it should only be 345 * used on the completion side for non-IO generating completions. It's fine to 346 * call blocking functions from this callback, but they should not wait for 347 * unrelated IO (like cache flushing, new IO generation, etc). 348 */ 349 #define IOCB_DIO_CALLER_COMP (1 << 22) 350 /* kiocb is a read or write operation submitted by fs/aio.c. */ 351 #define IOCB_AIO_RW (1 << 23) 352 353 /* for use in trace events */ 354 #define TRACE_IOCB_STRINGS \ 355 { IOCB_HIPRI, "HIPRI" }, \ 356 { IOCB_DSYNC, "DSYNC" }, \ 357 { IOCB_SYNC, "SYNC" }, \ 358 { IOCB_NOWAIT, "NOWAIT" }, \ 359 { IOCB_APPEND, "APPEND" }, \ 360 { IOCB_ATOMIC, "ATOMIC" }, \ 361 { IOCB_DONTCACHE, "DONTCACHE" }, \ 362 { IOCB_EVENTFD, "EVENTFD"}, \ 363 { IOCB_DIRECT, "DIRECT" }, \ 364 { IOCB_WRITE, "WRITE" }, \ 365 { IOCB_WAITQ, "WAITQ" }, \ 366 { IOCB_NOIO, "NOIO" }, \ 367 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 368 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 369 370 struct kiocb { 371 struct file *ki_filp; 372 loff_t ki_pos; 373 void (*ki_complete)(struct kiocb *iocb, long ret); 374 void *private; 375 int ki_flags; 376 u16 ki_ioprio; /* See linux/ioprio.h */ 377 union { 378 /* 379 * Only used for async buffered reads, where it denotes the 380 * page waitqueue associated with completing the read. Valid 381 * IFF IOCB_WAITQ is set. 382 */ 383 struct wait_page_queue *ki_waitq; 384 /* 385 * Can be used for O_DIRECT IO, where the completion handling 386 * is punted back to the issuer of the IO. May only be set 387 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 388 * must then check for presence of this handler when ki_complete 389 * is invoked. The data passed in to this handler must be 390 * assigned to ->private when dio_complete is assigned. 391 */ 392 ssize_t (*dio_complete)(void *data); 393 }; 394 }; 395 396 static inline bool is_sync_kiocb(struct kiocb *kiocb) 397 { 398 return kiocb->ki_complete == NULL; 399 } 400 401 struct address_space_operations { 402 int (*writepage)(struct page *page, struct writeback_control *wbc); 403 int (*read_folio)(struct file *, struct folio *); 404 405 /* Write back some dirty pages from this mapping. */ 406 int (*writepages)(struct address_space *, struct writeback_control *); 407 408 /* Mark a folio dirty. Return true if this dirtied it */ 409 bool (*dirty_folio)(struct address_space *, struct folio *); 410 411 void (*readahead)(struct readahead_control *); 412 413 int (*write_begin)(struct file *, struct address_space *mapping, 414 loff_t pos, unsigned len, 415 struct folio **foliop, void **fsdata); 416 int (*write_end)(struct file *, struct address_space *mapping, 417 loff_t pos, unsigned len, unsigned copied, 418 struct folio *folio, void *fsdata); 419 420 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 421 sector_t (*bmap)(struct address_space *, sector_t); 422 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 423 bool (*release_folio)(struct folio *, gfp_t); 424 void (*free_folio)(struct folio *folio); 425 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 426 /* 427 * migrate the contents of a folio to the specified target. If 428 * migrate_mode is MIGRATE_ASYNC, it must not block. 429 */ 430 int (*migrate_folio)(struct address_space *, struct folio *dst, 431 struct folio *src, enum migrate_mode); 432 int (*launder_folio)(struct folio *); 433 bool (*is_partially_uptodate) (struct folio *, size_t from, 434 size_t count); 435 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 436 int (*error_remove_folio)(struct address_space *, struct folio *); 437 438 /* swapfile support */ 439 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 440 sector_t *span); 441 void (*swap_deactivate)(struct file *file); 442 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 443 }; 444 445 extern const struct address_space_operations empty_aops; 446 447 /** 448 * struct address_space - Contents of a cacheable, mappable object. 449 * @host: Owner, either the inode or the block_device. 450 * @i_pages: Cached pages. 451 * @invalidate_lock: Guards coherency between page cache contents and 452 * file offset->disk block mappings in the filesystem during invalidates. 453 * It is also used to block modification of page cache contents through 454 * memory mappings. 455 * @gfp_mask: Memory allocation flags to use for allocating pages. 456 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 457 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 458 * @i_mmap: Tree of private and shared mappings. 459 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 460 * @nrpages: Number of page entries, protected by the i_pages lock. 461 * @writeback_index: Writeback starts here. 462 * @a_ops: Methods. 463 * @flags: Error bits and flags (AS_*). 464 * @wb_err: The most recent error which has occurred. 465 * @i_private_lock: For use by the owner of the address_space. 466 * @i_private_list: For use by the owner of the address_space. 467 * @i_private_data: For use by the owner of the address_space. 468 */ 469 struct address_space { 470 struct inode *host; 471 struct xarray i_pages; 472 struct rw_semaphore invalidate_lock; 473 gfp_t gfp_mask; 474 atomic_t i_mmap_writable; 475 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 476 /* number of thp, only for non-shmem files */ 477 atomic_t nr_thps; 478 #endif 479 struct rb_root_cached i_mmap; 480 unsigned long nrpages; 481 pgoff_t writeback_index; 482 const struct address_space_operations *a_ops; 483 unsigned long flags; 484 errseq_t wb_err; 485 spinlock_t i_private_lock; 486 struct list_head i_private_list; 487 struct rw_semaphore i_mmap_rwsem; 488 void * i_private_data; 489 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 490 /* 491 * On most architectures that alignment is already the case; but 492 * must be enforced here for CRIS, to let the least significant bit 493 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 494 */ 495 496 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 497 #define PAGECACHE_TAG_DIRTY XA_MARK_0 498 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 499 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 500 501 /* 502 * Returns true if any of the pages in the mapping are marked with the tag. 503 */ 504 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 505 { 506 return xa_marked(&mapping->i_pages, tag); 507 } 508 509 static inline void i_mmap_lock_write(struct address_space *mapping) 510 { 511 down_write(&mapping->i_mmap_rwsem); 512 } 513 514 static inline int i_mmap_trylock_write(struct address_space *mapping) 515 { 516 return down_write_trylock(&mapping->i_mmap_rwsem); 517 } 518 519 static inline void i_mmap_unlock_write(struct address_space *mapping) 520 { 521 up_write(&mapping->i_mmap_rwsem); 522 } 523 524 static inline int i_mmap_trylock_read(struct address_space *mapping) 525 { 526 return down_read_trylock(&mapping->i_mmap_rwsem); 527 } 528 529 static inline void i_mmap_lock_read(struct address_space *mapping) 530 { 531 down_read(&mapping->i_mmap_rwsem); 532 } 533 534 static inline void i_mmap_unlock_read(struct address_space *mapping) 535 { 536 up_read(&mapping->i_mmap_rwsem); 537 } 538 539 static inline void i_mmap_assert_locked(struct address_space *mapping) 540 { 541 lockdep_assert_held(&mapping->i_mmap_rwsem); 542 } 543 544 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 545 { 546 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 547 } 548 549 /* 550 * Might pages of this file be mapped into userspace? 551 */ 552 static inline int mapping_mapped(struct address_space *mapping) 553 { 554 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 555 } 556 557 /* 558 * Might pages of this file have been modified in userspace? 559 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 560 * marks vma as VM_SHARED if it is shared, and the file was opened for 561 * writing i.e. vma may be mprotected writable even if now readonly. 562 * 563 * If i_mmap_writable is negative, no new writable mappings are allowed. You 564 * can only deny writable mappings, if none exists right now. 565 */ 566 static inline int mapping_writably_mapped(struct address_space *mapping) 567 { 568 return atomic_read(&mapping->i_mmap_writable) > 0; 569 } 570 571 static inline int mapping_map_writable(struct address_space *mapping) 572 { 573 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 574 0 : -EPERM; 575 } 576 577 static inline void mapping_unmap_writable(struct address_space *mapping) 578 { 579 atomic_dec(&mapping->i_mmap_writable); 580 } 581 582 static inline int mapping_deny_writable(struct address_space *mapping) 583 { 584 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 585 0 : -EBUSY; 586 } 587 588 static inline void mapping_allow_writable(struct address_space *mapping) 589 { 590 atomic_inc(&mapping->i_mmap_writable); 591 } 592 593 /* 594 * Use sequence counter to get consistent i_size on 32-bit processors. 595 */ 596 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 597 #include <linux/seqlock.h> 598 #define __NEED_I_SIZE_ORDERED 599 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 600 #else 601 #define i_size_ordered_init(inode) do { } while (0) 602 #endif 603 604 struct posix_acl; 605 #define ACL_NOT_CACHED ((void *)(-1)) 606 /* 607 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 608 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 609 * mode with the LOOKUP_RCU flag. 610 */ 611 #define ACL_DONT_CACHE ((void *)(-3)) 612 613 static inline struct posix_acl * 614 uncached_acl_sentinel(struct task_struct *task) 615 { 616 return (void *)task + 1; 617 } 618 619 static inline bool 620 is_uncached_acl(struct posix_acl *acl) 621 { 622 return (long)acl & 1; 623 } 624 625 #define IOP_FASTPERM 0x0001 626 #define IOP_LOOKUP 0x0002 627 #define IOP_NOFOLLOW 0x0004 628 #define IOP_XATTR 0x0008 629 #define IOP_DEFAULT_READLINK 0x0010 630 #define IOP_MGTIME 0x0020 631 #define IOP_CACHED_LINK 0x0040 632 633 /* 634 * Keep mostly read-only and often accessed (especially for 635 * the RCU path lookup and 'stat' data) fields at the beginning 636 * of the 'struct inode' 637 */ 638 struct inode { 639 umode_t i_mode; 640 unsigned short i_opflags; 641 kuid_t i_uid; 642 kgid_t i_gid; 643 unsigned int i_flags; 644 645 #ifdef CONFIG_FS_POSIX_ACL 646 struct posix_acl *i_acl; 647 struct posix_acl *i_default_acl; 648 #endif 649 650 const struct inode_operations *i_op; 651 struct super_block *i_sb; 652 struct address_space *i_mapping; 653 654 #ifdef CONFIG_SECURITY 655 void *i_security; 656 #endif 657 658 /* Stat data, not accessed from path walking */ 659 unsigned long i_ino; 660 /* 661 * Filesystems may only read i_nlink directly. They shall use the 662 * following functions for modification: 663 * 664 * (set|clear|inc|drop)_nlink 665 * inode_(inc|dec)_link_count 666 */ 667 union { 668 const unsigned int i_nlink; 669 unsigned int __i_nlink; 670 }; 671 dev_t i_rdev; 672 loff_t i_size; 673 time64_t i_atime_sec; 674 time64_t i_mtime_sec; 675 time64_t i_ctime_sec; 676 u32 i_atime_nsec; 677 u32 i_mtime_nsec; 678 u32 i_ctime_nsec; 679 u32 i_generation; 680 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 681 unsigned short i_bytes; 682 u8 i_blkbits; 683 enum rw_hint i_write_hint; 684 blkcnt_t i_blocks; 685 686 #ifdef __NEED_I_SIZE_ORDERED 687 seqcount_t i_size_seqcount; 688 #endif 689 690 /* Misc */ 691 u32 i_state; 692 /* 32-bit hole */ 693 struct rw_semaphore i_rwsem; 694 695 unsigned long dirtied_when; /* jiffies of first dirtying */ 696 unsigned long dirtied_time_when; 697 698 struct hlist_node i_hash; 699 struct list_head i_io_list; /* backing dev IO list */ 700 #ifdef CONFIG_CGROUP_WRITEBACK 701 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 702 703 /* foreign inode detection, see wbc_detach_inode() */ 704 int i_wb_frn_winner; 705 u16 i_wb_frn_avg_time; 706 u16 i_wb_frn_history; 707 #endif 708 struct list_head i_lru; /* inode LRU list */ 709 struct list_head i_sb_list; 710 struct list_head i_wb_list; /* backing dev writeback list */ 711 union { 712 struct hlist_head i_dentry; 713 struct rcu_head i_rcu; 714 }; 715 atomic64_t i_version; 716 atomic64_t i_sequence; /* see futex */ 717 atomic_t i_count; 718 atomic_t i_dio_count; 719 atomic_t i_writecount; 720 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 721 atomic_t i_readcount; /* struct files open RO */ 722 #endif 723 union { 724 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 725 void (*free_inode)(struct inode *); 726 }; 727 struct file_lock_context *i_flctx; 728 struct address_space i_data; 729 union { 730 struct list_head i_devices; 731 int i_linklen; 732 }; 733 union { 734 struct pipe_inode_info *i_pipe; 735 struct cdev *i_cdev; 736 char *i_link; 737 unsigned i_dir_seq; 738 }; 739 740 741 #ifdef CONFIG_FSNOTIFY 742 __u32 i_fsnotify_mask; /* all events this inode cares about */ 743 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 744 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 745 #endif 746 747 #ifdef CONFIG_FS_ENCRYPTION 748 struct fscrypt_inode_info *i_crypt_info; 749 #endif 750 751 #ifdef CONFIG_FS_VERITY 752 struct fsverity_info *i_verity_info; 753 #endif 754 755 void *i_private; /* fs or device private pointer */ 756 } __randomize_layout; 757 758 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) 759 { 760 inode->i_link = link; 761 inode->i_linklen = linklen; 762 inode->i_opflags |= IOP_CACHED_LINK; 763 } 764 765 /* 766 * Get bit address from inode->i_state to use with wait_var_event() 767 * infrastructre. 768 */ 769 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 770 771 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 772 struct inode *inode, u32 bit); 773 774 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 775 { 776 /* Caller is responsible for correct memory barriers. */ 777 wake_up_var(inode_state_wait_address(inode, bit)); 778 } 779 780 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 781 782 static inline unsigned int i_blocksize(const struct inode *node) 783 { 784 return (1 << node->i_blkbits); 785 } 786 787 static inline int inode_unhashed(struct inode *inode) 788 { 789 return hlist_unhashed(&inode->i_hash); 790 } 791 792 /* 793 * __mark_inode_dirty expects inodes to be hashed. Since we don't 794 * want special inodes in the fileset inode space, we make them 795 * appear hashed, but do not put on any lists. hlist_del() 796 * will work fine and require no locking. 797 */ 798 static inline void inode_fake_hash(struct inode *inode) 799 { 800 hlist_add_fake(&inode->i_hash); 801 } 802 803 /* 804 * inode->i_mutex nesting subclasses for the lock validator: 805 * 806 * 0: the object of the current VFS operation 807 * 1: parent 808 * 2: child/target 809 * 3: xattr 810 * 4: second non-directory 811 * 5: second parent (when locking independent directories in rename) 812 * 813 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 814 * non-directories at once. 815 * 816 * The locking order between these classes is 817 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 818 */ 819 enum inode_i_mutex_lock_class 820 { 821 I_MUTEX_NORMAL, 822 I_MUTEX_PARENT, 823 I_MUTEX_CHILD, 824 I_MUTEX_XATTR, 825 I_MUTEX_NONDIR2, 826 I_MUTEX_PARENT2, 827 }; 828 829 static inline void inode_lock(struct inode *inode) 830 { 831 down_write(&inode->i_rwsem); 832 } 833 834 static inline void inode_unlock(struct inode *inode) 835 { 836 up_write(&inode->i_rwsem); 837 } 838 839 static inline void inode_lock_shared(struct inode *inode) 840 { 841 down_read(&inode->i_rwsem); 842 } 843 844 static inline void inode_unlock_shared(struct inode *inode) 845 { 846 up_read(&inode->i_rwsem); 847 } 848 849 static inline int inode_trylock(struct inode *inode) 850 { 851 return down_write_trylock(&inode->i_rwsem); 852 } 853 854 static inline int inode_trylock_shared(struct inode *inode) 855 { 856 return down_read_trylock(&inode->i_rwsem); 857 } 858 859 static inline int inode_is_locked(struct inode *inode) 860 { 861 return rwsem_is_locked(&inode->i_rwsem); 862 } 863 864 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 865 { 866 down_write_nested(&inode->i_rwsem, subclass); 867 } 868 869 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 870 { 871 down_read_nested(&inode->i_rwsem, subclass); 872 } 873 874 static inline void filemap_invalidate_lock(struct address_space *mapping) 875 { 876 down_write(&mapping->invalidate_lock); 877 } 878 879 static inline void filemap_invalidate_unlock(struct address_space *mapping) 880 { 881 up_write(&mapping->invalidate_lock); 882 } 883 884 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 885 { 886 down_read(&mapping->invalidate_lock); 887 } 888 889 static inline int filemap_invalidate_trylock_shared( 890 struct address_space *mapping) 891 { 892 return down_read_trylock(&mapping->invalidate_lock); 893 } 894 895 static inline void filemap_invalidate_unlock_shared( 896 struct address_space *mapping) 897 { 898 up_read(&mapping->invalidate_lock); 899 } 900 901 void lock_two_nondirectories(struct inode *, struct inode*); 902 void unlock_two_nondirectories(struct inode *, struct inode*); 903 904 void filemap_invalidate_lock_two(struct address_space *mapping1, 905 struct address_space *mapping2); 906 void filemap_invalidate_unlock_two(struct address_space *mapping1, 907 struct address_space *mapping2); 908 909 910 /* 911 * NOTE: in a 32bit arch with a preemptable kernel and 912 * an UP compile the i_size_read/write must be atomic 913 * with respect to the local cpu (unlike with preempt disabled), 914 * but they don't need to be atomic with respect to other cpus like in 915 * true SMP (so they need either to either locally disable irq around 916 * the read or for example on x86 they can be still implemented as a 917 * cmpxchg8b without the need of the lock prefix). For SMP compiles 918 * and 64bit archs it makes no difference if preempt is enabled or not. 919 */ 920 static inline loff_t i_size_read(const struct inode *inode) 921 { 922 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 923 loff_t i_size; 924 unsigned int seq; 925 926 do { 927 seq = read_seqcount_begin(&inode->i_size_seqcount); 928 i_size = inode->i_size; 929 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 930 return i_size; 931 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 932 loff_t i_size; 933 934 preempt_disable(); 935 i_size = inode->i_size; 936 preempt_enable(); 937 return i_size; 938 #else 939 /* Pairs with smp_store_release() in i_size_write() */ 940 return smp_load_acquire(&inode->i_size); 941 #endif 942 } 943 944 /* 945 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 946 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 947 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 948 */ 949 static inline void i_size_write(struct inode *inode, loff_t i_size) 950 { 951 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 952 preempt_disable(); 953 write_seqcount_begin(&inode->i_size_seqcount); 954 inode->i_size = i_size; 955 write_seqcount_end(&inode->i_size_seqcount); 956 preempt_enable(); 957 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 958 preempt_disable(); 959 inode->i_size = i_size; 960 preempt_enable(); 961 #else 962 /* 963 * Pairs with smp_load_acquire() in i_size_read() to ensure 964 * changes related to inode size (such as page contents) are 965 * visible before we see the changed inode size. 966 */ 967 smp_store_release(&inode->i_size, i_size); 968 #endif 969 } 970 971 static inline unsigned iminor(const struct inode *inode) 972 { 973 return MINOR(inode->i_rdev); 974 } 975 976 static inline unsigned imajor(const struct inode *inode) 977 { 978 return MAJOR(inode->i_rdev); 979 } 980 981 struct fown_struct { 982 struct file *file; /* backpointer for security modules */ 983 rwlock_t lock; /* protects pid, uid, euid fields */ 984 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 985 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 986 kuid_t uid, euid; /* uid/euid of process setting the owner */ 987 int signum; /* posix.1b rt signal to be delivered on IO */ 988 }; 989 990 /** 991 * struct file_ra_state - Track a file's readahead state. 992 * @start: Where the most recent readahead started. 993 * @size: Number of pages read in the most recent readahead. 994 * @async_size: Numer of pages that were/are not needed immediately 995 * and so were/are genuinely "ahead". Start next readahead when 996 * the first of these pages is accessed. 997 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 998 * @mmap_miss: How many mmap accesses missed in the page cache. 999 * @prev_pos: The last byte in the most recent read request. 1000 * 1001 * When this structure is passed to ->readahead(), the "most recent" 1002 * readahead means the current readahead. 1003 */ 1004 struct file_ra_state { 1005 pgoff_t start; 1006 unsigned int size; 1007 unsigned int async_size; 1008 unsigned int ra_pages; 1009 unsigned int mmap_miss; 1010 loff_t prev_pos; 1011 }; 1012 1013 /* 1014 * Check if @index falls in the readahead windows. 1015 */ 1016 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1017 { 1018 return (index >= ra->start && 1019 index < ra->start + ra->size); 1020 } 1021 1022 /** 1023 * struct file - Represents a file 1024 * @f_ref: reference count 1025 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1026 * @f_mode: FMODE_* flags often used in hotpaths 1027 * @f_op: file operations 1028 * @f_mapping: Contents of a cacheable, mappable object. 1029 * @private_data: filesystem or driver specific data 1030 * @f_inode: cached inode 1031 * @f_flags: file flags 1032 * @f_iocb_flags: iocb flags 1033 * @f_cred: stashed credentials of creator/opener 1034 * @f_path: path of the file 1035 * @f_pos_lock: lock protecting file position 1036 * @f_pipe: specific to pipes 1037 * @f_pos: file position 1038 * @f_security: LSM security context of this file 1039 * @f_owner: file owner 1040 * @f_wb_err: writeback error 1041 * @f_sb_err: per sb writeback errors 1042 * @f_ep: link of all epoll hooks for this file 1043 * @f_task_work: task work entry point 1044 * @f_llist: work queue entrypoint 1045 * @f_ra: file's readahead state 1046 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1047 */ 1048 struct file { 1049 file_ref_t f_ref; 1050 spinlock_t f_lock; 1051 fmode_t f_mode; 1052 const struct file_operations *f_op; 1053 struct address_space *f_mapping; 1054 void *private_data; 1055 struct inode *f_inode; 1056 unsigned int f_flags; 1057 unsigned int f_iocb_flags; 1058 const struct cred *f_cred; 1059 /* --- cacheline 1 boundary (64 bytes) --- */ 1060 struct path f_path; 1061 union { 1062 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1063 struct mutex f_pos_lock; 1064 /* pipes */ 1065 u64 f_pipe; 1066 }; 1067 loff_t f_pos; 1068 #ifdef CONFIG_SECURITY 1069 void *f_security; 1070 #endif 1071 /* --- cacheline 2 boundary (128 bytes) --- */ 1072 struct fown_struct *f_owner; 1073 errseq_t f_wb_err; 1074 errseq_t f_sb_err; 1075 #ifdef CONFIG_EPOLL 1076 struct hlist_head *f_ep; 1077 #endif 1078 union { 1079 struct callback_head f_task_work; 1080 struct llist_node f_llist; 1081 struct file_ra_state f_ra; 1082 freeptr_t f_freeptr; 1083 }; 1084 /* --- cacheline 3 boundary (192 bytes) --- */ 1085 } __randomize_layout 1086 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1087 1088 struct file_handle { 1089 __u32 handle_bytes; 1090 int handle_type; 1091 /* file identifier */ 1092 unsigned char f_handle[] __counted_by(handle_bytes); 1093 }; 1094 1095 static inline struct file *get_file(struct file *f) 1096 { 1097 file_ref_inc(&f->f_ref); 1098 return f; 1099 } 1100 1101 struct file *get_file_rcu(struct file __rcu **f); 1102 struct file *get_file_active(struct file **f); 1103 1104 #define file_count(f) file_ref_read(&(f)->f_ref) 1105 1106 #define MAX_NON_LFS ((1UL<<31) - 1) 1107 1108 /* Page cache limit. The filesystems should put that into their s_maxbytes 1109 limits, otherwise bad things can happen in VM. */ 1110 #if BITS_PER_LONG==32 1111 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1112 #elif BITS_PER_LONG==64 1113 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1114 #endif 1115 1116 /* legacy typedef, should eventually be removed */ 1117 typedef void *fl_owner_t; 1118 1119 struct file_lock; 1120 struct file_lease; 1121 1122 /* The following constant reflects the upper bound of the file/locking space */ 1123 #ifndef OFFSET_MAX 1124 #define OFFSET_MAX type_max(loff_t) 1125 #define OFFT_OFFSET_MAX type_max(off_t) 1126 #endif 1127 1128 int file_f_owner_allocate(struct file *file); 1129 static inline struct fown_struct *file_f_owner(const struct file *file) 1130 { 1131 return READ_ONCE(file->f_owner); 1132 } 1133 1134 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1135 1136 static inline struct inode *file_inode(const struct file *f) 1137 { 1138 return f->f_inode; 1139 } 1140 1141 /* 1142 * file_dentry() is a relic from the days that overlayfs was using files with a 1143 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1144 * In those days, file_dentry() was needed to get the underlying fs dentry that 1145 * matches f_inode. 1146 * Files with "fake" path should not exist nowadays, so use an assertion to make 1147 * sure that file_dentry() was not papering over filesystem bugs. 1148 */ 1149 static inline struct dentry *file_dentry(const struct file *file) 1150 { 1151 struct dentry *dentry = file->f_path.dentry; 1152 1153 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1154 return dentry; 1155 } 1156 1157 struct fasync_struct { 1158 rwlock_t fa_lock; 1159 int magic; 1160 int fa_fd; 1161 struct fasync_struct *fa_next; /* singly linked list */ 1162 struct file *fa_file; 1163 struct rcu_head fa_rcu; 1164 }; 1165 1166 #define FASYNC_MAGIC 0x4601 1167 1168 /* SMP safe fasync helpers: */ 1169 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1170 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1171 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1172 extern struct fasync_struct *fasync_alloc(void); 1173 extern void fasync_free(struct fasync_struct *); 1174 1175 /* can be called from interrupts */ 1176 extern void kill_fasync(struct fasync_struct **, int, int); 1177 1178 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1179 extern int f_setown(struct file *filp, int who, int force); 1180 extern void f_delown(struct file *filp); 1181 extern pid_t f_getown(struct file *filp); 1182 extern int send_sigurg(struct file *file); 1183 1184 /* 1185 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1186 * represented in both. 1187 */ 1188 #define SB_RDONLY BIT(0) /* Mount read-only */ 1189 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1190 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1191 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1192 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1193 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1194 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1195 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1196 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1197 #define SB_SILENT BIT(15) 1198 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1199 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1200 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1201 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1202 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1203 1204 /* These sb flags are internal to the kernel */ 1205 #define SB_DEAD BIT(21) 1206 #define SB_DYING BIT(24) 1207 #define SB_SUBMOUNT BIT(26) 1208 #define SB_FORCE BIT(27) 1209 #define SB_NOSEC BIT(28) 1210 #define SB_BORN BIT(29) 1211 #define SB_ACTIVE BIT(30) 1212 #define SB_NOUSER BIT(31) 1213 1214 /* These flags relate to encoding and casefolding */ 1215 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1216 1217 #define sb_has_strict_encoding(sb) \ 1218 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1219 1220 /* 1221 * Umount options 1222 */ 1223 1224 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1225 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1226 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1227 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1228 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1229 1230 /* sb->s_iflags */ 1231 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1232 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1233 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1234 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1235 1236 /* sb->s_iflags to limit user namespace mounts */ 1237 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1238 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1239 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1240 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1241 1242 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1243 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1244 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1245 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1246 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1247 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1248 1249 /* Possible states of 'frozen' field */ 1250 enum { 1251 SB_UNFROZEN = 0, /* FS is unfrozen */ 1252 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1253 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1254 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1255 * internal threads if needed) */ 1256 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1257 }; 1258 1259 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1260 1261 struct sb_writers { 1262 unsigned short frozen; /* Is sb frozen? */ 1263 int freeze_kcount; /* How many kernel freeze requests? */ 1264 int freeze_ucount; /* How many userspace freeze requests? */ 1265 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1266 }; 1267 1268 struct super_block { 1269 struct list_head s_list; /* Keep this first */ 1270 dev_t s_dev; /* search index; _not_ kdev_t */ 1271 unsigned char s_blocksize_bits; 1272 unsigned long s_blocksize; 1273 loff_t s_maxbytes; /* Max file size */ 1274 struct file_system_type *s_type; 1275 const struct super_operations *s_op; 1276 const struct dquot_operations *dq_op; 1277 const struct quotactl_ops *s_qcop; 1278 const struct export_operations *s_export_op; 1279 unsigned long s_flags; 1280 unsigned long s_iflags; /* internal SB_I_* flags */ 1281 unsigned long s_magic; 1282 struct dentry *s_root; 1283 struct rw_semaphore s_umount; 1284 int s_count; 1285 atomic_t s_active; 1286 #ifdef CONFIG_SECURITY 1287 void *s_security; 1288 #endif 1289 const struct xattr_handler * const *s_xattr; 1290 #ifdef CONFIG_FS_ENCRYPTION 1291 const struct fscrypt_operations *s_cop; 1292 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1293 #endif 1294 #ifdef CONFIG_FS_VERITY 1295 const struct fsverity_operations *s_vop; 1296 #endif 1297 #if IS_ENABLED(CONFIG_UNICODE) 1298 struct unicode_map *s_encoding; 1299 __u16 s_encoding_flags; 1300 #endif 1301 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1302 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1303 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1304 struct file *s_bdev_file; 1305 struct backing_dev_info *s_bdi; 1306 struct mtd_info *s_mtd; 1307 struct hlist_node s_instances; 1308 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1309 struct quota_info s_dquot; /* Diskquota specific options */ 1310 1311 struct sb_writers s_writers; 1312 1313 /* 1314 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1315 * s_fsnotify_info together for cache efficiency. They are frequently 1316 * accessed and rarely modified. 1317 */ 1318 void *s_fs_info; /* Filesystem private info */ 1319 1320 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1321 u32 s_time_gran; 1322 /* Time limits for c/m/atime in seconds */ 1323 time64_t s_time_min; 1324 time64_t s_time_max; 1325 #ifdef CONFIG_FSNOTIFY 1326 u32 s_fsnotify_mask; 1327 struct fsnotify_sb_info *s_fsnotify_info; 1328 #endif 1329 1330 /* 1331 * q: why are s_id and s_sysfs_name not the same? both are human 1332 * readable strings that identify the filesystem 1333 * a: s_id is allowed to change at runtime; it's used in log messages, 1334 * and we want to when a device starts out as single device (s_id is dev 1335 * name) but then a device is hot added and we have to switch to 1336 * identifying it by UUID 1337 * but s_sysfs_name is a handle for programmatic access, and can't 1338 * change at runtime 1339 */ 1340 char s_id[32]; /* Informational name */ 1341 uuid_t s_uuid; /* UUID */ 1342 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1343 1344 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1345 char s_sysfs_name[UUID_STRING_LEN + 1]; 1346 1347 unsigned int s_max_links; 1348 1349 /* 1350 * The next field is for VFS *only*. No filesystems have any business 1351 * even looking at it. You had been warned. 1352 */ 1353 struct mutex s_vfs_rename_mutex; /* Kludge */ 1354 1355 /* 1356 * Filesystem subtype. If non-empty the filesystem type field 1357 * in /proc/mounts will be "type.subtype" 1358 */ 1359 const char *s_subtype; 1360 1361 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1362 1363 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1364 1365 /* Number of inodes with nlink == 0 but still referenced */ 1366 atomic_long_t s_remove_count; 1367 1368 /* Read-only state of the superblock is being changed */ 1369 int s_readonly_remount; 1370 1371 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1372 errseq_t s_wb_err; 1373 1374 /* AIO completions deferred from interrupt context */ 1375 struct workqueue_struct *s_dio_done_wq; 1376 struct hlist_head s_pins; 1377 1378 /* 1379 * Owning user namespace and default context in which to 1380 * interpret filesystem uids, gids, quotas, device nodes, 1381 * xattrs and security labels. 1382 */ 1383 struct user_namespace *s_user_ns; 1384 1385 /* 1386 * The list_lru structure is essentially just a pointer to a table 1387 * of per-node lru lists, each of which has its own spinlock. 1388 * There is no need to put them into separate cachelines. 1389 */ 1390 struct list_lru s_dentry_lru; 1391 struct list_lru s_inode_lru; 1392 struct rcu_head rcu; 1393 struct work_struct destroy_work; 1394 1395 struct mutex s_sync_lock; /* sync serialisation lock */ 1396 1397 /* 1398 * Indicates how deep in a filesystem stack this SB is 1399 */ 1400 int s_stack_depth; 1401 1402 /* s_inode_list_lock protects s_inodes */ 1403 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1404 struct list_head s_inodes; /* all inodes */ 1405 1406 spinlock_t s_inode_wblist_lock; 1407 struct list_head s_inodes_wb; /* writeback inodes */ 1408 } __randomize_layout; 1409 1410 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1411 { 1412 return inode->i_sb->s_user_ns; 1413 } 1414 1415 /* Helper functions so that in most cases filesystems will 1416 * not need to deal directly with kuid_t and kgid_t and can 1417 * instead deal with the raw numeric values that are stored 1418 * in the filesystem. 1419 */ 1420 static inline uid_t i_uid_read(const struct inode *inode) 1421 { 1422 return from_kuid(i_user_ns(inode), inode->i_uid); 1423 } 1424 1425 static inline gid_t i_gid_read(const struct inode *inode) 1426 { 1427 return from_kgid(i_user_ns(inode), inode->i_gid); 1428 } 1429 1430 static inline void i_uid_write(struct inode *inode, uid_t uid) 1431 { 1432 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1433 } 1434 1435 static inline void i_gid_write(struct inode *inode, gid_t gid) 1436 { 1437 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1438 } 1439 1440 /** 1441 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1442 * @idmap: idmap of the mount the inode was found from 1443 * @inode: inode to map 1444 * 1445 * Return: whe inode's i_uid mapped down according to @idmap. 1446 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1447 */ 1448 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1449 const struct inode *inode) 1450 { 1451 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1452 } 1453 1454 /** 1455 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1456 * @idmap: idmap of the mount the inode was found from 1457 * @attr: the new attributes of @inode 1458 * @inode: the inode to update 1459 * 1460 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1461 * mounts into account if the filesystem supports it. 1462 * 1463 * Return: true if @inode's i_uid field needs to be updated, false if not. 1464 */ 1465 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1466 const struct iattr *attr, 1467 const struct inode *inode) 1468 { 1469 return ((attr->ia_valid & ATTR_UID) && 1470 !vfsuid_eq(attr->ia_vfsuid, 1471 i_uid_into_vfsuid(idmap, inode))); 1472 } 1473 1474 /** 1475 * i_uid_update - update @inode's i_uid field 1476 * @idmap: idmap of the mount the inode was found from 1477 * @attr: the new attributes of @inode 1478 * @inode: the inode to update 1479 * 1480 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1481 * mount into the filesystem kuid. 1482 */ 1483 static inline void i_uid_update(struct mnt_idmap *idmap, 1484 const struct iattr *attr, 1485 struct inode *inode) 1486 { 1487 if (attr->ia_valid & ATTR_UID) 1488 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1489 attr->ia_vfsuid); 1490 } 1491 1492 /** 1493 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1494 * @idmap: idmap of the mount the inode was found from 1495 * @inode: inode to map 1496 * 1497 * Return: the inode's i_gid mapped down according to @idmap. 1498 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1499 */ 1500 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1501 const struct inode *inode) 1502 { 1503 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1504 } 1505 1506 /** 1507 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1508 * @idmap: idmap of the mount the inode was found from 1509 * @attr: the new attributes of @inode 1510 * @inode: the inode to update 1511 * 1512 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1513 * mounts into account if the filesystem supports it. 1514 * 1515 * Return: true if @inode's i_gid field needs to be updated, false if not. 1516 */ 1517 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1518 const struct iattr *attr, 1519 const struct inode *inode) 1520 { 1521 return ((attr->ia_valid & ATTR_GID) && 1522 !vfsgid_eq(attr->ia_vfsgid, 1523 i_gid_into_vfsgid(idmap, inode))); 1524 } 1525 1526 /** 1527 * i_gid_update - update @inode's i_gid field 1528 * @idmap: idmap of the mount the inode was found from 1529 * @attr: the new attributes of @inode 1530 * @inode: the inode to update 1531 * 1532 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1533 * mount into the filesystem kgid. 1534 */ 1535 static inline void i_gid_update(struct mnt_idmap *idmap, 1536 const struct iattr *attr, 1537 struct inode *inode) 1538 { 1539 if (attr->ia_valid & ATTR_GID) 1540 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1541 attr->ia_vfsgid); 1542 } 1543 1544 /** 1545 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1546 * @inode: inode to initialize 1547 * @idmap: idmap of the mount the inode was found from 1548 * 1549 * Initialize the i_uid field of @inode. If the inode was found/created via 1550 * an idmapped mount map the caller's fsuid according to @idmap. 1551 */ 1552 static inline void inode_fsuid_set(struct inode *inode, 1553 struct mnt_idmap *idmap) 1554 { 1555 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1556 } 1557 1558 /** 1559 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1560 * @inode: inode to initialize 1561 * @idmap: idmap of the mount the inode was found from 1562 * 1563 * Initialize the i_gid field of @inode. If the inode was found/created via 1564 * an idmapped mount map the caller's fsgid according to @idmap. 1565 */ 1566 static inline void inode_fsgid_set(struct inode *inode, 1567 struct mnt_idmap *idmap) 1568 { 1569 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1570 } 1571 1572 /** 1573 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1574 * @sb: the superblock we want a mapping in 1575 * @idmap: idmap of the relevant mount 1576 * 1577 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1578 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1579 * the caller's fsuid and fsgid according to the @idmap first. 1580 * 1581 * Return: true if fsuid and fsgid is mapped, false if not. 1582 */ 1583 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1584 struct mnt_idmap *idmap) 1585 { 1586 struct user_namespace *fs_userns = sb->s_user_ns; 1587 kuid_t kuid; 1588 kgid_t kgid; 1589 1590 kuid = mapped_fsuid(idmap, fs_userns); 1591 if (!uid_valid(kuid)) 1592 return false; 1593 kgid = mapped_fsgid(idmap, fs_userns); 1594 if (!gid_valid(kgid)) 1595 return false; 1596 return kuid_has_mapping(fs_userns, kuid) && 1597 kgid_has_mapping(fs_userns, kgid); 1598 } 1599 1600 struct timespec64 current_time(struct inode *inode); 1601 struct timespec64 inode_set_ctime_current(struct inode *inode); 1602 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1603 struct timespec64 update); 1604 1605 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1606 { 1607 return inode->i_atime_sec; 1608 } 1609 1610 static inline long inode_get_atime_nsec(const struct inode *inode) 1611 { 1612 return inode->i_atime_nsec; 1613 } 1614 1615 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1616 { 1617 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1618 .tv_nsec = inode_get_atime_nsec(inode) }; 1619 1620 return ts; 1621 } 1622 1623 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1624 struct timespec64 ts) 1625 { 1626 inode->i_atime_sec = ts.tv_sec; 1627 inode->i_atime_nsec = ts.tv_nsec; 1628 return ts; 1629 } 1630 1631 static inline struct timespec64 inode_set_atime(struct inode *inode, 1632 time64_t sec, long nsec) 1633 { 1634 struct timespec64 ts = { .tv_sec = sec, 1635 .tv_nsec = nsec }; 1636 1637 return inode_set_atime_to_ts(inode, ts); 1638 } 1639 1640 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1641 { 1642 return inode->i_mtime_sec; 1643 } 1644 1645 static inline long inode_get_mtime_nsec(const struct inode *inode) 1646 { 1647 return inode->i_mtime_nsec; 1648 } 1649 1650 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1651 { 1652 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1653 .tv_nsec = inode_get_mtime_nsec(inode) }; 1654 return ts; 1655 } 1656 1657 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1658 struct timespec64 ts) 1659 { 1660 inode->i_mtime_sec = ts.tv_sec; 1661 inode->i_mtime_nsec = ts.tv_nsec; 1662 return ts; 1663 } 1664 1665 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1666 time64_t sec, long nsec) 1667 { 1668 struct timespec64 ts = { .tv_sec = sec, 1669 .tv_nsec = nsec }; 1670 return inode_set_mtime_to_ts(inode, ts); 1671 } 1672 1673 /* 1674 * Multigrain timestamps 1675 * 1676 * Conditionally use fine-grained ctime and mtime timestamps when there 1677 * are users actively observing them via getattr. The primary use-case 1678 * for this is NFS clients that use the ctime to distinguish between 1679 * different states of the file, and that are often fooled by multiple 1680 * operations that occur in the same coarse-grained timer tick. 1681 */ 1682 #define I_CTIME_QUERIED ((u32)BIT(31)) 1683 1684 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1685 { 1686 return inode->i_ctime_sec; 1687 } 1688 1689 static inline long inode_get_ctime_nsec(const struct inode *inode) 1690 { 1691 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1692 } 1693 1694 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1695 { 1696 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1697 .tv_nsec = inode_get_ctime_nsec(inode) }; 1698 1699 return ts; 1700 } 1701 1702 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1703 1704 /** 1705 * inode_set_ctime - set the ctime in the inode 1706 * @inode: inode in which to set the ctime 1707 * @sec: tv_sec value to set 1708 * @nsec: tv_nsec value to set 1709 * 1710 * Set the ctime in @inode to { @sec, @nsec } 1711 */ 1712 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1713 time64_t sec, long nsec) 1714 { 1715 struct timespec64 ts = { .tv_sec = sec, 1716 .tv_nsec = nsec }; 1717 1718 return inode_set_ctime_to_ts(inode, ts); 1719 } 1720 1721 struct timespec64 simple_inode_init_ts(struct inode *inode); 1722 1723 /* 1724 * Snapshotting support. 1725 */ 1726 1727 /* 1728 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1729 * instead. 1730 */ 1731 static inline void __sb_end_write(struct super_block *sb, int level) 1732 { 1733 percpu_up_read(sb->s_writers.rw_sem + level-1); 1734 } 1735 1736 static inline void __sb_start_write(struct super_block *sb, int level) 1737 { 1738 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1739 } 1740 1741 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1742 { 1743 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1744 } 1745 1746 #define __sb_writers_acquired(sb, lev) \ 1747 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1748 #define __sb_writers_release(sb, lev) \ 1749 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1750 1751 /** 1752 * __sb_write_started - check if sb freeze level is held 1753 * @sb: the super we write to 1754 * @level: the freeze level 1755 * 1756 * * > 0 - sb freeze level is held 1757 * * 0 - sb freeze level is not held 1758 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1759 */ 1760 static inline int __sb_write_started(const struct super_block *sb, int level) 1761 { 1762 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1763 } 1764 1765 /** 1766 * sb_write_started - check if SB_FREEZE_WRITE is held 1767 * @sb: the super we write to 1768 * 1769 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1770 */ 1771 static inline bool sb_write_started(const struct super_block *sb) 1772 { 1773 return __sb_write_started(sb, SB_FREEZE_WRITE); 1774 } 1775 1776 /** 1777 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1778 * @sb: the super we write to 1779 * 1780 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1781 */ 1782 static inline bool sb_write_not_started(const struct super_block *sb) 1783 { 1784 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1785 } 1786 1787 /** 1788 * file_write_started - check if SB_FREEZE_WRITE is held 1789 * @file: the file we write to 1790 * 1791 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1792 * May be false positive with !S_ISREG, because file_start_write() has 1793 * no effect on !S_ISREG. 1794 */ 1795 static inline bool file_write_started(const struct file *file) 1796 { 1797 if (!S_ISREG(file_inode(file)->i_mode)) 1798 return true; 1799 return sb_write_started(file_inode(file)->i_sb); 1800 } 1801 1802 /** 1803 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1804 * @file: the file we write to 1805 * 1806 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1807 * May be false positive with !S_ISREG, because file_start_write() has 1808 * no effect on !S_ISREG. 1809 */ 1810 static inline bool file_write_not_started(const struct file *file) 1811 { 1812 if (!S_ISREG(file_inode(file)->i_mode)) 1813 return true; 1814 return sb_write_not_started(file_inode(file)->i_sb); 1815 } 1816 1817 /** 1818 * sb_end_write - drop write access to a superblock 1819 * @sb: the super we wrote to 1820 * 1821 * Decrement number of writers to the filesystem. Wake up possible waiters 1822 * wanting to freeze the filesystem. 1823 */ 1824 static inline void sb_end_write(struct super_block *sb) 1825 { 1826 __sb_end_write(sb, SB_FREEZE_WRITE); 1827 } 1828 1829 /** 1830 * sb_end_pagefault - drop write access to a superblock from a page fault 1831 * @sb: the super we wrote to 1832 * 1833 * Decrement number of processes handling write page fault to the filesystem. 1834 * Wake up possible waiters wanting to freeze the filesystem. 1835 */ 1836 static inline void sb_end_pagefault(struct super_block *sb) 1837 { 1838 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1839 } 1840 1841 /** 1842 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1843 * @sb: the super we wrote to 1844 * 1845 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1846 * waiters wanting to freeze the filesystem. 1847 */ 1848 static inline void sb_end_intwrite(struct super_block *sb) 1849 { 1850 __sb_end_write(sb, SB_FREEZE_FS); 1851 } 1852 1853 /** 1854 * sb_start_write - get write access to a superblock 1855 * @sb: the super we write to 1856 * 1857 * When a process wants to write data or metadata to a file system (i.e. dirty 1858 * a page or an inode), it should embed the operation in a sb_start_write() - 1859 * sb_end_write() pair to get exclusion against file system freezing. This 1860 * function increments number of writers preventing freezing. If the file 1861 * system is already frozen, the function waits until the file system is 1862 * thawed. 1863 * 1864 * Since freeze protection behaves as a lock, users have to preserve 1865 * ordering of freeze protection and other filesystem locks. Generally, 1866 * freeze protection should be the outermost lock. In particular, we have: 1867 * 1868 * sb_start_write 1869 * -> i_mutex (write path, truncate, directory ops, ...) 1870 * -> s_umount (freeze_super, thaw_super) 1871 */ 1872 static inline void sb_start_write(struct super_block *sb) 1873 { 1874 __sb_start_write(sb, SB_FREEZE_WRITE); 1875 } 1876 1877 static inline bool sb_start_write_trylock(struct super_block *sb) 1878 { 1879 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1880 } 1881 1882 /** 1883 * sb_start_pagefault - get write access to a superblock from a page fault 1884 * @sb: the super we write to 1885 * 1886 * When a process starts handling write page fault, it should embed the 1887 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1888 * exclusion against file system freezing. This is needed since the page fault 1889 * is going to dirty a page. This function increments number of running page 1890 * faults preventing freezing. If the file system is already frozen, the 1891 * function waits until the file system is thawed. 1892 * 1893 * Since page fault freeze protection behaves as a lock, users have to preserve 1894 * ordering of freeze protection and other filesystem locks. It is advised to 1895 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1896 * handling code implies lock dependency: 1897 * 1898 * mmap_lock 1899 * -> sb_start_pagefault 1900 */ 1901 static inline void sb_start_pagefault(struct super_block *sb) 1902 { 1903 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1904 } 1905 1906 /** 1907 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1908 * @sb: the super we write to 1909 * 1910 * This is the third level of protection against filesystem freezing. It is 1911 * free for use by a filesystem. The only requirement is that it must rank 1912 * below sb_start_pagefault. 1913 * 1914 * For example filesystem can call sb_start_intwrite() when starting a 1915 * transaction which somewhat eases handling of freezing for internal sources 1916 * of filesystem changes (internal fs threads, discarding preallocation on file 1917 * close, etc.). 1918 */ 1919 static inline void sb_start_intwrite(struct super_block *sb) 1920 { 1921 __sb_start_write(sb, SB_FREEZE_FS); 1922 } 1923 1924 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1925 { 1926 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1927 } 1928 1929 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1930 const struct inode *inode); 1931 1932 /* 1933 * VFS helper functions.. 1934 */ 1935 int vfs_create(struct mnt_idmap *, struct inode *, 1936 struct dentry *, umode_t, bool); 1937 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1938 struct dentry *, umode_t); 1939 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1940 umode_t, dev_t); 1941 int vfs_symlink(struct mnt_idmap *, struct inode *, 1942 struct dentry *, const char *); 1943 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1944 struct dentry *, struct inode **); 1945 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1946 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1947 struct inode **); 1948 1949 /** 1950 * struct renamedata - contains all information required for renaming 1951 * @old_mnt_idmap: idmap of the old mount the inode was found from 1952 * @old_dir: parent of source 1953 * @old_dentry: source 1954 * @new_mnt_idmap: idmap of the new mount the inode was found from 1955 * @new_dir: parent of destination 1956 * @new_dentry: destination 1957 * @delegated_inode: returns an inode needing a delegation break 1958 * @flags: rename flags 1959 */ 1960 struct renamedata { 1961 struct mnt_idmap *old_mnt_idmap; 1962 struct inode *old_dir; 1963 struct dentry *old_dentry; 1964 struct mnt_idmap *new_mnt_idmap; 1965 struct inode *new_dir; 1966 struct dentry *new_dentry; 1967 struct inode **delegated_inode; 1968 unsigned int flags; 1969 } __randomize_layout; 1970 1971 int vfs_rename(struct renamedata *); 1972 1973 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1974 struct inode *dir, struct dentry *dentry) 1975 { 1976 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1977 WHITEOUT_DEV); 1978 } 1979 1980 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1981 const struct path *parentpath, 1982 umode_t mode, int open_flag, 1983 const struct cred *cred); 1984 struct file *kernel_file_open(const struct path *path, int flags, 1985 const struct cred *cred); 1986 1987 int vfs_mkobj(struct dentry *, umode_t, 1988 int (*f)(struct dentry *, umode_t, void *), 1989 void *); 1990 1991 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1992 int vfs_fchmod(struct file *file, umode_t mode); 1993 int vfs_utimes(const struct path *path, struct timespec64 *times); 1994 1995 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1996 1997 #ifdef CONFIG_COMPAT 1998 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1999 unsigned long arg); 2000 #else 2001 #define compat_ptr_ioctl NULL 2002 #endif 2003 2004 /* 2005 * VFS file helper functions. 2006 */ 2007 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2008 const struct inode *dir, umode_t mode); 2009 extern bool may_open_dev(const struct path *path); 2010 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2011 const struct inode *dir, umode_t mode); 2012 bool in_group_or_capable(struct mnt_idmap *idmap, 2013 const struct inode *inode, vfsgid_t vfsgid); 2014 2015 /* 2016 * This is the "filldir" function type, used by readdir() to let 2017 * the kernel specify what kind of dirent layout it wants to have. 2018 * This allows the kernel to read directories into kernel space or 2019 * to have different dirent layouts depending on the binary type. 2020 * Return 'true' to keep going and 'false' if there are no more entries. 2021 */ 2022 struct dir_context; 2023 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2024 unsigned); 2025 2026 struct dir_context { 2027 filldir_t actor; 2028 loff_t pos; 2029 }; 2030 2031 /* 2032 * These flags let !MMU mmap() govern direct device mapping vs immediate 2033 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2034 * 2035 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2036 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2037 * NOMMU_MAP_READ: Can be mapped for reading 2038 * NOMMU_MAP_WRITE: Can be mapped for writing 2039 * NOMMU_MAP_EXEC: Can be mapped for execution 2040 */ 2041 #define NOMMU_MAP_COPY 0x00000001 2042 #define NOMMU_MAP_DIRECT 0x00000008 2043 #define NOMMU_MAP_READ VM_MAYREAD 2044 #define NOMMU_MAP_WRITE VM_MAYWRITE 2045 #define NOMMU_MAP_EXEC VM_MAYEXEC 2046 2047 #define NOMMU_VMFLAGS \ 2048 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2049 2050 /* 2051 * These flags control the behavior of the remap_file_range function pointer. 2052 * If it is called with len == 0 that means "remap to end of source file". 2053 * See Documentation/filesystems/vfs.rst for more details about this call. 2054 * 2055 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2056 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2057 */ 2058 #define REMAP_FILE_DEDUP (1 << 0) 2059 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2060 2061 /* 2062 * These flags signal that the caller is ok with altering various aspects of 2063 * the behavior of the remap operation. The changes must be made by the 2064 * implementation; the vfs remap helper functions can take advantage of them. 2065 * Flags in this category exist to preserve the quirky behavior of the hoisted 2066 * btrfs clone/dedupe ioctls. 2067 */ 2068 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2069 2070 /* 2071 * These flags control the behavior of vfs_copy_file_range(). 2072 * They are not available to the user via syscall. 2073 * 2074 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2075 */ 2076 #define COPY_FILE_SPLICE (1 << 0) 2077 2078 struct iov_iter; 2079 struct io_uring_cmd; 2080 struct offset_ctx; 2081 2082 typedef unsigned int __bitwise fop_flags_t; 2083 2084 struct file_operations { 2085 struct module *owner; 2086 fop_flags_t fop_flags; 2087 loff_t (*llseek) (struct file *, loff_t, int); 2088 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2089 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2090 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2091 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2092 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2093 unsigned int flags); 2094 int (*iterate_shared) (struct file *, struct dir_context *); 2095 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2096 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2097 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2098 int (*mmap) (struct file *, struct vm_area_struct *); 2099 int (*open) (struct inode *, struct file *); 2100 int (*flush) (struct file *, fl_owner_t id); 2101 int (*release) (struct inode *, struct file *); 2102 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2103 int (*fasync) (int, struct file *, int); 2104 int (*lock) (struct file *, int, struct file_lock *); 2105 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2106 int (*check_flags)(int); 2107 int (*flock) (struct file *, int, struct file_lock *); 2108 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2109 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2110 void (*splice_eof)(struct file *file); 2111 int (*setlease)(struct file *, int, struct file_lease **, void **); 2112 long (*fallocate)(struct file *file, int mode, loff_t offset, 2113 loff_t len); 2114 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2115 #ifndef CONFIG_MMU 2116 unsigned (*mmap_capabilities)(struct file *); 2117 #endif 2118 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2119 loff_t, size_t, unsigned int); 2120 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2121 struct file *file_out, loff_t pos_out, 2122 loff_t len, unsigned int remap_flags); 2123 int (*fadvise)(struct file *, loff_t, loff_t, int); 2124 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2125 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2126 unsigned int poll_flags); 2127 } __randomize_layout; 2128 2129 /* Supports async buffered reads */ 2130 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2131 /* Supports async buffered writes */ 2132 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2133 /* Supports synchronous page faults for mappings */ 2134 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2135 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2136 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2137 /* Contains huge pages */ 2138 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2139 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2140 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2141 /* Supports asynchronous lock callbacks */ 2142 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2143 /* File system supports uncached read/write buffered IO */ 2144 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 2145 2146 /* Wrap a directory iterator that needs exclusive inode access */ 2147 int wrap_directory_iterator(struct file *, struct dir_context *, 2148 int (*) (struct file *, struct dir_context *)); 2149 #define WRAP_DIR_ITER(x) \ 2150 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2151 { return wrap_directory_iterator(file, ctx, x); } 2152 2153 struct inode_operations { 2154 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2155 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2156 int (*permission) (struct mnt_idmap *, struct inode *, int); 2157 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2158 2159 int (*readlink) (struct dentry *, char __user *,int); 2160 2161 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2162 umode_t, bool); 2163 int (*link) (struct dentry *,struct inode *,struct dentry *); 2164 int (*unlink) (struct inode *,struct dentry *); 2165 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2166 const char *); 2167 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2168 umode_t); 2169 int (*rmdir) (struct inode *,struct dentry *); 2170 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2171 umode_t,dev_t); 2172 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2173 struct inode *, struct dentry *, unsigned int); 2174 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2175 int (*getattr) (struct mnt_idmap *, const struct path *, 2176 struct kstat *, u32, unsigned int); 2177 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2178 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2179 u64 len); 2180 int (*update_time)(struct inode *, int); 2181 int (*atomic_open)(struct inode *, struct dentry *, 2182 struct file *, unsigned open_flag, 2183 umode_t create_mode); 2184 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2185 struct file *, umode_t); 2186 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2187 int); 2188 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2189 struct posix_acl *, int); 2190 int (*fileattr_set)(struct mnt_idmap *idmap, 2191 struct dentry *dentry, struct fileattr *fa); 2192 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2193 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2194 } ____cacheline_aligned; 2195 2196 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2197 { 2198 return file->f_op->mmap(file, vma); 2199 } 2200 2201 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2202 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2203 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2204 loff_t, size_t, unsigned int); 2205 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2206 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2207 struct file *file_out, loff_t pos_out, 2208 loff_t *len, unsigned int remap_flags, 2209 const struct iomap_ops *dax_read_ops); 2210 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2211 struct file *file_out, loff_t pos_out, 2212 loff_t *count, unsigned int remap_flags); 2213 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2214 struct file *file_out, loff_t pos_out, 2215 loff_t len, unsigned int remap_flags); 2216 extern int vfs_dedupe_file_range(struct file *file, 2217 struct file_dedupe_range *same); 2218 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2219 struct file *dst_file, loff_t dst_pos, 2220 loff_t len, unsigned int remap_flags); 2221 2222 /** 2223 * enum freeze_holder - holder of the freeze 2224 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2225 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2226 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2227 * 2228 * Indicate who the owner of the freeze or thaw request is and whether 2229 * the freeze needs to be exclusive or can nest. 2230 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2231 * same holder aren't allowed. It is however allowed to hold a single 2232 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2233 * the same time. This is relied upon by some filesystems during online 2234 * repair or similar. 2235 */ 2236 enum freeze_holder { 2237 FREEZE_HOLDER_KERNEL = (1U << 0), 2238 FREEZE_HOLDER_USERSPACE = (1U << 1), 2239 FREEZE_MAY_NEST = (1U << 2), 2240 }; 2241 2242 struct super_operations { 2243 struct inode *(*alloc_inode)(struct super_block *sb); 2244 void (*destroy_inode)(struct inode *); 2245 void (*free_inode)(struct inode *); 2246 2247 void (*dirty_inode) (struct inode *, int flags); 2248 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2249 int (*drop_inode) (struct inode *); 2250 void (*evict_inode) (struct inode *); 2251 void (*put_super) (struct super_block *); 2252 int (*sync_fs)(struct super_block *sb, int wait); 2253 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2254 int (*freeze_fs) (struct super_block *); 2255 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2256 int (*unfreeze_fs) (struct super_block *); 2257 int (*statfs) (struct dentry *, struct kstatfs *); 2258 int (*remount_fs) (struct super_block *, int *, char *); 2259 void (*umount_begin) (struct super_block *); 2260 2261 int (*show_options)(struct seq_file *, struct dentry *); 2262 int (*show_devname)(struct seq_file *, struct dentry *); 2263 int (*show_path)(struct seq_file *, struct dentry *); 2264 int (*show_stats)(struct seq_file *, struct dentry *); 2265 #ifdef CONFIG_QUOTA 2266 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2267 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2268 struct dquot __rcu **(*get_dquots)(struct inode *); 2269 #endif 2270 long (*nr_cached_objects)(struct super_block *, 2271 struct shrink_control *); 2272 long (*free_cached_objects)(struct super_block *, 2273 struct shrink_control *); 2274 void (*shutdown)(struct super_block *sb); 2275 }; 2276 2277 /* 2278 * Inode flags - they have no relation to superblock flags now 2279 */ 2280 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2281 #define S_NOATIME (1 << 1) /* Do not update access times */ 2282 #define S_APPEND (1 << 2) /* Append-only file */ 2283 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2284 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2285 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2286 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2287 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2288 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2289 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2290 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2291 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2292 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2293 #ifdef CONFIG_FS_DAX 2294 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2295 #else 2296 #define S_DAX 0 /* Make all the DAX code disappear */ 2297 #endif 2298 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2299 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2300 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2301 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2302 2303 /* 2304 * Note that nosuid etc flags are inode-specific: setting some file-system 2305 * flags just means all the inodes inherit those flags by default. It might be 2306 * possible to override it selectively if you really wanted to with some 2307 * ioctl() that is not currently implemented. 2308 * 2309 * Exception: SB_RDONLY is always applied to the entire file system. 2310 * 2311 * Unfortunately, it is possible to change a filesystems flags with it mounted 2312 * with files in use. This means that all of the inodes will not have their 2313 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2314 * flags, so these have to be checked separately. -- [email protected] 2315 */ 2316 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2317 2318 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2319 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2320 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2321 ((inode)->i_flags & S_SYNC)) 2322 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2323 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2324 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2325 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2326 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2327 2328 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2329 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2330 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2331 2332 #ifdef CONFIG_FS_POSIX_ACL 2333 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2334 #else 2335 #define IS_POSIXACL(inode) 0 2336 #endif 2337 2338 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2339 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2340 2341 #ifdef CONFIG_SWAP 2342 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2343 #else 2344 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2345 #endif 2346 2347 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2348 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2349 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2350 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2351 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2352 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2353 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2354 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2355 2356 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2357 (inode)->i_rdev == WHITEOUT_DEV) 2358 2359 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2360 struct inode *inode) 2361 { 2362 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2363 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2364 } 2365 2366 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2367 { 2368 *kiocb = (struct kiocb) { 2369 .ki_filp = filp, 2370 .ki_flags = filp->f_iocb_flags, 2371 .ki_ioprio = get_current_ioprio(), 2372 }; 2373 } 2374 2375 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2376 struct file *filp) 2377 { 2378 *kiocb = (struct kiocb) { 2379 .ki_filp = filp, 2380 .ki_flags = kiocb_src->ki_flags, 2381 .ki_ioprio = kiocb_src->ki_ioprio, 2382 .ki_pos = kiocb_src->ki_pos, 2383 }; 2384 } 2385 2386 /* 2387 * Inode state bits. Protected by inode->i_lock 2388 * 2389 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2390 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2391 * 2392 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2393 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2394 * various stages of removing an inode. 2395 * 2396 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2397 * 2398 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2399 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2400 * Timestamp updates are the usual cause. 2401 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2402 * these changes separately from I_DIRTY_SYNC so that we 2403 * don't have to write inode on fdatasync() when only 2404 * e.g. the timestamps have changed. 2405 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2406 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2407 * lazytime mount option is enabled. We keep track of this 2408 * separately from I_DIRTY_SYNC in order to implement 2409 * lazytime. This gets cleared if I_DIRTY_INODE 2410 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2411 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2412 * in place because writeback might already be in progress 2413 * and we don't want to lose the time update 2414 * I_NEW Serves as both a mutex and completion notification. 2415 * New inodes set I_NEW. If two processes both create 2416 * the same inode, one of them will release its inode and 2417 * wait for I_NEW to be released before returning. 2418 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2419 * also cause waiting on I_NEW, without I_NEW actually 2420 * being set. find_inode() uses this to prevent returning 2421 * nearly-dead inodes. 2422 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2423 * is zero. I_FREEING must be set when I_WILL_FREE is 2424 * cleared. 2425 * I_FREEING Set when inode is about to be freed but still has dirty 2426 * pages or buffers attached or the inode itself is still 2427 * dirty. 2428 * I_CLEAR Added by clear_inode(). In this state the inode is 2429 * clean and can be destroyed. Inode keeps I_FREEING. 2430 * 2431 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2432 * prohibited for many purposes. iget() must wait for 2433 * the inode to be completely released, then create it 2434 * anew. Other functions will just ignore such inodes, 2435 * if appropriate. I_NEW is used for waiting. 2436 * 2437 * I_SYNC Writeback of inode is running. The bit is set during 2438 * data writeback, and cleared with a wakeup on the bit 2439 * address once it is done. The bit is also used to pin 2440 * the inode in memory for flusher thread. 2441 * 2442 * I_REFERENCED Marks the inode as recently references on the LRU list. 2443 * 2444 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2445 * synchronize competing switching instances and to tell 2446 * wb stat updates to grab the i_pages lock. See 2447 * inode_switch_wbs_work_fn() for details. 2448 * 2449 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2450 * and work dirs among overlayfs mounts. 2451 * 2452 * I_CREATING New object's inode in the middle of setting up. 2453 * 2454 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2455 * 2456 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2457 * Used to detect that mark_inode_dirty() should not move 2458 * inode between dirty lists. 2459 * 2460 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2461 * 2462 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2463 * i_count. 2464 * 2465 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2466 * 2467 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2468 * upon. There's one free address left. 2469 */ 2470 #define __I_NEW 0 2471 #define I_NEW (1 << __I_NEW) 2472 #define __I_SYNC 1 2473 #define I_SYNC (1 << __I_SYNC) 2474 #define __I_LRU_ISOLATING 2 2475 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2476 2477 #define I_DIRTY_SYNC (1 << 3) 2478 #define I_DIRTY_DATASYNC (1 << 4) 2479 #define I_DIRTY_PAGES (1 << 5) 2480 #define I_WILL_FREE (1 << 6) 2481 #define I_FREEING (1 << 7) 2482 #define I_CLEAR (1 << 8) 2483 #define I_REFERENCED (1 << 9) 2484 #define I_LINKABLE (1 << 10) 2485 #define I_DIRTY_TIME (1 << 11) 2486 #define I_WB_SWITCH (1 << 12) 2487 #define I_OVL_INUSE (1 << 13) 2488 #define I_CREATING (1 << 14) 2489 #define I_DONTCACHE (1 << 15) 2490 #define I_SYNC_QUEUED (1 << 16) 2491 #define I_PINNING_NETFS_WB (1 << 17) 2492 2493 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2494 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2495 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2496 2497 extern void __mark_inode_dirty(struct inode *, int); 2498 static inline void mark_inode_dirty(struct inode *inode) 2499 { 2500 __mark_inode_dirty(inode, I_DIRTY); 2501 } 2502 2503 static inline void mark_inode_dirty_sync(struct inode *inode) 2504 { 2505 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2506 } 2507 2508 /* 2509 * Returns true if the given inode itself only has dirty timestamps (its pages 2510 * may still be dirty) and isn't currently being allocated or freed. 2511 * Filesystems should call this if when writing an inode when lazytime is 2512 * enabled, they want to opportunistically write the timestamps of other inodes 2513 * located very nearby on-disk, e.g. in the same inode block. This returns true 2514 * if the given inode is in need of such an opportunistic update. Requires 2515 * i_lock, or at least later re-checking under i_lock. 2516 */ 2517 static inline bool inode_is_dirtytime_only(struct inode *inode) 2518 { 2519 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2520 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2521 } 2522 2523 extern void inc_nlink(struct inode *inode); 2524 extern void drop_nlink(struct inode *inode); 2525 extern void clear_nlink(struct inode *inode); 2526 extern void set_nlink(struct inode *inode, unsigned int nlink); 2527 2528 static inline void inode_inc_link_count(struct inode *inode) 2529 { 2530 inc_nlink(inode); 2531 mark_inode_dirty(inode); 2532 } 2533 2534 static inline void inode_dec_link_count(struct inode *inode) 2535 { 2536 drop_nlink(inode); 2537 mark_inode_dirty(inode); 2538 } 2539 2540 enum file_time_flags { 2541 S_ATIME = 1, 2542 S_MTIME = 2, 2543 S_CTIME = 4, 2544 S_VERSION = 8, 2545 }; 2546 2547 extern bool atime_needs_update(const struct path *, struct inode *); 2548 extern void touch_atime(const struct path *); 2549 int inode_update_time(struct inode *inode, int flags); 2550 2551 static inline void file_accessed(struct file *file) 2552 { 2553 if (!(file->f_flags & O_NOATIME)) 2554 touch_atime(&file->f_path); 2555 } 2556 2557 extern int file_modified(struct file *file); 2558 int kiocb_modified(struct kiocb *iocb); 2559 2560 int sync_inode_metadata(struct inode *inode, int wait); 2561 2562 struct file_system_type { 2563 const char *name; 2564 int fs_flags; 2565 #define FS_REQUIRES_DEV 1 2566 #define FS_BINARY_MOUNTDATA 2 2567 #define FS_HAS_SUBTYPE 4 2568 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2569 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2570 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2571 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2572 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2573 int (*init_fs_context)(struct fs_context *); 2574 const struct fs_parameter_spec *parameters; 2575 struct dentry *(*mount) (struct file_system_type *, int, 2576 const char *, void *); 2577 void (*kill_sb) (struct super_block *); 2578 struct module *owner; 2579 struct file_system_type * next; 2580 struct hlist_head fs_supers; 2581 2582 struct lock_class_key s_lock_key; 2583 struct lock_class_key s_umount_key; 2584 struct lock_class_key s_vfs_rename_key; 2585 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2586 2587 struct lock_class_key i_lock_key; 2588 struct lock_class_key i_mutex_key; 2589 struct lock_class_key invalidate_lock_key; 2590 struct lock_class_key i_mutex_dir_key; 2591 }; 2592 2593 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2594 2595 /** 2596 * is_mgtime: is this inode using multigrain timestamps 2597 * @inode: inode to test for multigrain timestamps 2598 * 2599 * Return true if the inode uses multigrain timestamps, false otherwise. 2600 */ 2601 static inline bool is_mgtime(const struct inode *inode) 2602 { 2603 return inode->i_opflags & IOP_MGTIME; 2604 } 2605 2606 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2607 int flags, const char *dev_name, void *data, 2608 int (*fill_super)(struct super_block *, void *, int)); 2609 extern struct dentry *mount_single(struct file_system_type *fs_type, 2610 int flags, void *data, 2611 int (*fill_super)(struct super_block *, void *, int)); 2612 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2613 int flags, void *data, 2614 int (*fill_super)(struct super_block *, void *, int)); 2615 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2616 void retire_super(struct super_block *sb); 2617 void generic_shutdown_super(struct super_block *sb); 2618 void kill_block_super(struct super_block *sb); 2619 void kill_anon_super(struct super_block *sb); 2620 void kill_litter_super(struct super_block *sb); 2621 void deactivate_super(struct super_block *sb); 2622 void deactivate_locked_super(struct super_block *sb); 2623 int set_anon_super(struct super_block *s, void *data); 2624 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2625 int get_anon_bdev(dev_t *); 2626 void free_anon_bdev(dev_t); 2627 struct super_block *sget_fc(struct fs_context *fc, 2628 int (*test)(struct super_block *, struct fs_context *), 2629 int (*set)(struct super_block *, struct fs_context *)); 2630 struct super_block *sget(struct file_system_type *type, 2631 int (*test)(struct super_block *,void *), 2632 int (*set)(struct super_block *,void *), 2633 int flags, void *data); 2634 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2635 2636 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2637 #define fops_get(fops) ({ \ 2638 const struct file_operations *_fops = (fops); \ 2639 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2640 }) 2641 2642 #define fops_put(fops) ({ \ 2643 const struct file_operations *_fops = (fops); \ 2644 if (_fops) \ 2645 module_put((_fops)->owner); \ 2646 }) 2647 2648 /* 2649 * This one is to be used *ONLY* from ->open() instances. 2650 * fops must be non-NULL, pinned down *and* module dependencies 2651 * should be sufficient to pin the caller down as well. 2652 */ 2653 #define replace_fops(f, fops) \ 2654 do { \ 2655 struct file *__file = (f); \ 2656 fops_put(__file->f_op); \ 2657 BUG_ON(!(__file->f_op = (fops))); \ 2658 } while(0) 2659 2660 extern int register_filesystem(struct file_system_type *); 2661 extern int unregister_filesystem(struct file_system_type *); 2662 extern int vfs_statfs(const struct path *, struct kstatfs *); 2663 extern int user_statfs(const char __user *, struct kstatfs *); 2664 extern int fd_statfs(int, struct kstatfs *); 2665 int freeze_super(struct super_block *super, enum freeze_holder who); 2666 int thaw_super(struct super_block *super, enum freeze_holder who); 2667 extern __printf(2, 3) 2668 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2669 extern int super_setup_bdi(struct super_block *sb); 2670 2671 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2672 { 2673 if (WARN_ON(len > sizeof(sb->s_uuid))) 2674 len = sizeof(sb->s_uuid); 2675 sb->s_uuid_len = len; 2676 memcpy(&sb->s_uuid, uuid, len); 2677 } 2678 2679 /* set sb sysfs name based on sb->s_bdev */ 2680 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2681 { 2682 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2683 } 2684 2685 /* set sb sysfs name based on sb->s_uuid */ 2686 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2687 { 2688 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2689 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2690 } 2691 2692 /* set sb sysfs name based on sb->s_id */ 2693 static inline void super_set_sysfs_name_id(struct super_block *sb) 2694 { 2695 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2696 } 2697 2698 /* try to use something standard before you use this */ 2699 __printf(2, 3) 2700 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2701 { 2702 va_list args; 2703 2704 va_start(args, fmt); 2705 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2706 va_end(args); 2707 } 2708 2709 extern int current_umask(void); 2710 2711 extern void ihold(struct inode * inode); 2712 extern void iput(struct inode *); 2713 int inode_update_timestamps(struct inode *inode, int flags); 2714 int generic_update_time(struct inode *, int); 2715 2716 /* /sys/fs */ 2717 extern struct kobject *fs_kobj; 2718 2719 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2720 2721 /* fs/open.c */ 2722 struct audit_names; 2723 struct filename { 2724 const char *name; /* pointer to actual string */ 2725 const __user char *uptr; /* original userland pointer */ 2726 atomic_t refcnt; 2727 struct audit_names *aname; 2728 const char iname[]; 2729 }; 2730 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2731 2732 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2733 { 2734 return mnt_idmap(file->f_path.mnt); 2735 } 2736 2737 /** 2738 * is_idmapped_mnt - check whether a mount is mapped 2739 * @mnt: the mount to check 2740 * 2741 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2742 * 2743 * Return: true if mount is mapped, false if not. 2744 */ 2745 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2746 { 2747 return mnt_idmap(mnt) != &nop_mnt_idmap; 2748 } 2749 2750 extern long vfs_truncate(const struct path *, loff_t); 2751 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2752 unsigned int time_attrs, struct file *filp); 2753 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2754 loff_t len); 2755 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2756 umode_t mode); 2757 extern struct file *file_open_name(struct filename *, int, umode_t); 2758 extern struct file *filp_open(const char *, int, umode_t); 2759 extern struct file *file_open_root(const struct path *, 2760 const char *, int, umode_t); 2761 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2762 const char *name, int flags, umode_t mode) 2763 { 2764 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2765 name, flags, mode); 2766 } 2767 struct file *dentry_open(const struct path *path, int flags, 2768 const struct cred *creds); 2769 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2770 const struct cred *cred); 2771 struct path *backing_file_user_path(struct file *f); 2772 2773 /* 2774 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2775 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2776 * filesystem. When the mapped file path and inode number are displayed to 2777 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2778 * path and inode number to display to the user, which is the path of the fd 2779 * that user has requested to map and the inode number that would be returned 2780 * by fstat() on that same fd. 2781 */ 2782 /* Get the path to display in /proc/<pid>/maps */ 2783 static inline const struct path *file_user_path(struct file *f) 2784 { 2785 if (unlikely(f->f_mode & FMODE_BACKING)) 2786 return backing_file_user_path(f); 2787 return &f->f_path; 2788 } 2789 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2790 static inline const struct inode *file_user_inode(struct file *f) 2791 { 2792 if (unlikely(f->f_mode & FMODE_BACKING)) 2793 return d_inode(backing_file_user_path(f)->dentry); 2794 return file_inode(f); 2795 } 2796 2797 static inline struct file *file_clone_open(struct file *file) 2798 { 2799 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2800 } 2801 extern int filp_close(struct file *, fl_owner_t id); 2802 2803 extern struct filename *getname_flags(const char __user *, int); 2804 extern struct filename *getname_uflags(const char __user *, int); 2805 extern struct filename *getname(const char __user *); 2806 extern struct filename *getname_kernel(const char *); 2807 extern struct filename *__getname_maybe_null(const char __user *); 2808 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2809 { 2810 if (!(flags & AT_EMPTY_PATH)) 2811 return getname(name); 2812 2813 if (!name) 2814 return NULL; 2815 return __getname_maybe_null(name); 2816 } 2817 extern void putname(struct filename *name); 2818 2819 extern int finish_open(struct file *file, struct dentry *dentry, 2820 int (*open)(struct inode *, struct file *)); 2821 extern int finish_no_open(struct file *file, struct dentry *dentry); 2822 2823 /* Helper for the simple case when original dentry is used */ 2824 static inline int finish_open_simple(struct file *file, int error) 2825 { 2826 if (error) 2827 return error; 2828 2829 return finish_open(file, file->f_path.dentry, NULL); 2830 } 2831 2832 /* fs/dcache.c */ 2833 extern void __init vfs_caches_init_early(void); 2834 extern void __init vfs_caches_init(void); 2835 2836 extern struct kmem_cache *names_cachep; 2837 2838 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2839 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2840 2841 extern struct super_block *blockdev_superblock; 2842 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2843 { 2844 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2845 } 2846 2847 void emergency_thaw_all(void); 2848 extern int sync_filesystem(struct super_block *); 2849 extern const struct file_operations def_blk_fops; 2850 extern const struct file_operations def_chr_fops; 2851 2852 /* fs/char_dev.c */ 2853 #define CHRDEV_MAJOR_MAX 512 2854 /* Marks the bottom of the first segment of free char majors */ 2855 #define CHRDEV_MAJOR_DYN_END 234 2856 /* Marks the top and bottom of the second segment of free char majors */ 2857 #define CHRDEV_MAJOR_DYN_EXT_START 511 2858 #define CHRDEV_MAJOR_DYN_EXT_END 384 2859 2860 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2861 extern int register_chrdev_region(dev_t, unsigned, const char *); 2862 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2863 unsigned int count, const char *name, 2864 const struct file_operations *fops); 2865 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2866 unsigned int count, const char *name); 2867 extern void unregister_chrdev_region(dev_t, unsigned); 2868 extern void chrdev_show(struct seq_file *,off_t); 2869 2870 static inline int register_chrdev(unsigned int major, const char *name, 2871 const struct file_operations *fops) 2872 { 2873 return __register_chrdev(major, 0, 256, name, fops); 2874 } 2875 2876 static inline void unregister_chrdev(unsigned int major, const char *name) 2877 { 2878 __unregister_chrdev(major, 0, 256, name); 2879 } 2880 2881 extern void init_special_inode(struct inode *, umode_t, dev_t); 2882 2883 /* Invalid inode operations -- fs/bad_inode.c */ 2884 extern void make_bad_inode(struct inode *); 2885 extern bool is_bad_inode(struct inode *); 2886 2887 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2888 loff_t lend); 2889 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2890 extern int __must_check file_write_and_wait_range(struct file *file, 2891 loff_t start, loff_t end); 2892 2893 static inline int file_write_and_wait(struct file *file) 2894 { 2895 return file_write_and_wait_range(file, 0, LLONG_MAX); 2896 } 2897 2898 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2899 int datasync); 2900 extern int vfs_fsync(struct file *file, int datasync); 2901 2902 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2903 unsigned int flags); 2904 2905 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2906 { 2907 return (iocb->ki_flags & IOCB_DSYNC) || 2908 IS_SYNC(iocb->ki_filp->f_mapping->host); 2909 } 2910 2911 /* 2912 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2913 * to already be updated for the write, and will return either the amount 2914 * of bytes passed in, or an error if syncing the file failed. 2915 */ 2916 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2917 { 2918 if (iocb_is_dsync(iocb)) { 2919 int ret = vfs_fsync_range(iocb->ki_filp, 2920 iocb->ki_pos - count, iocb->ki_pos - 1, 2921 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2922 if (ret) 2923 return ret; 2924 } 2925 2926 return count; 2927 } 2928 2929 extern void emergency_sync(void); 2930 extern void emergency_remount(void); 2931 2932 #ifdef CONFIG_BLOCK 2933 extern int bmap(struct inode *inode, sector_t *block); 2934 #else 2935 static inline int bmap(struct inode *inode, sector_t *block) 2936 { 2937 return -EINVAL; 2938 } 2939 #endif 2940 2941 int notify_change(struct mnt_idmap *, struct dentry *, 2942 struct iattr *, struct inode **); 2943 int inode_permission(struct mnt_idmap *, struct inode *, int); 2944 int generic_permission(struct mnt_idmap *, struct inode *, int); 2945 static inline int file_permission(struct file *file, int mask) 2946 { 2947 return inode_permission(file_mnt_idmap(file), 2948 file_inode(file), mask); 2949 } 2950 static inline int path_permission(const struct path *path, int mask) 2951 { 2952 return inode_permission(mnt_idmap(path->mnt), 2953 d_inode(path->dentry), mask); 2954 } 2955 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2956 struct inode *inode); 2957 2958 static inline bool execute_ok(struct inode *inode) 2959 { 2960 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2961 } 2962 2963 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2964 { 2965 return (inode->i_mode ^ mode) & S_IFMT; 2966 } 2967 2968 /** 2969 * file_start_write - get write access to a superblock for regular file io 2970 * @file: the file we want to write to 2971 * 2972 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2973 * Should be matched with a call to file_end_write(). 2974 */ 2975 static inline void file_start_write(struct file *file) 2976 { 2977 if (!S_ISREG(file_inode(file)->i_mode)) 2978 return; 2979 sb_start_write(file_inode(file)->i_sb); 2980 } 2981 2982 static inline bool file_start_write_trylock(struct file *file) 2983 { 2984 if (!S_ISREG(file_inode(file)->i_mode)) 2985 return true; 2986 return sb_start_write_trylock(file_inode(file)->i_sb); 2987 } 2988 2989 /** 2990 * file_end_write - drop write access to a superblock of a regular file 2991 * @file: the file we wrote to 2992 * 2993 * Should be matched with a call to file_start_write(). 2994 */ 2995 static inline void file_end_write(struct file *file) 2996 { 2997 if (!S_ISREG(file_inode(file)->i_mode)) 2998 return; 2999 sb_end_write(file_inode(file)->i_sb); 3000 } 3001 3002 /** 3003 * kiocb_start_write - get write access to a superblock for async file io 3004 * @iocb: the io context we want to submit the write with 3005 * 3006 * This is a variant of sb_start_write() for async io submission. 3007 * Should be matched with a call to kiocb_end_write(). 3008 */ 3009 static inline void kiocb_start_write(struct kiocb *iocb) 3010 { 3011 struct inode *inode = file_inode(iocb->ki_filp); 3012 3013 sb_start_write(inode->i_sb); 3014 /* 3015 * Fool lockdep by telling it the lock got released so that it 3016 * doesn't complain about the held lock when we return to userspace. 3017 */ 3018 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3019 } 3020 3021 /** 3022 * kiocb_end_write - drop write access to a superblock after async file io 3023 * @iocb: the io context we sumbitted the write with 3024 * 3025 * Should be matched with a call to kiocb_start_write(). 3026 */ 3027 static inline void kiocb_end_write(struct kiocb *iocb) 3028 { 3029 struct inode *inode = file_inode(iocb->ki_filp); 3030 3031 /* 3032 * Tell lockdep we inherited freeze protection from submission thread. 3033 */ 3034 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3035 sb_end_write(inode->i_sb); 3036 } 3037 3038 /* 3039 * This is used for regular files where some users -- especially the 3040 * currently executed binary in a process, previously handled via 3041 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3042 * read-write shared) accesses. 3043 * 3044 * get_write_access() gets write permission for a file. 3045 * put_write_access() releases this write permission. 3046 * deny_write_access() denies write access to a file. 3047 * allow_write_access() re-enables write access to a file. 3048 * 3049 * The i_writecount field of an inode can have the following values: 3050 * 0: no write access, no denied write access 3051 * < 0: (-i_writecount) users that denied write access to the file. 3052 * > 0: (i_writecount) users that have write access to the file. 3053 * 3054 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3055 * except for the cases where we don't hold i_writecount yet. Then we need to 3056 * use {get,deny}_write_access() - these functions check the sign and refuse 3057 * to do the change if sign is wrong. 3058 */ 3059 static inline int get_write_access(struct inode *inode) 3060 { 3061 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3062 } 3063 static inline int deny_write_access(struct file *file) 3064 { 3065 struct inode *inode = file_inode(file); 3066 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3067 } 3068 static inline void put_write_access(struct inode * inode) 3069 { 3070 atomic_dec(&inode->i_writecount); 3071 } 3072 static inline void allow_write_access(struct file *file) 3073 { 3074 if (file) 3075 atomic_inc(&file_inode(file)->i_writecount); 3076 } 3077 static inline bool inode_is_open_for_write(const struct inode *inode) 3078 { 3079 return atomic_read(&inode->i_writecount) > 0; 3080 } 3081 3082 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3083 static inline void i_readcount_dec(struct inode *inode) 3084 { 3085 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3086 } 3087 static inline void i_readcount_inc(struct inode *inode) 3088 { 3089 atomic_inc(&inode->i_readcount); 3090 } 3091 #else 3092 static inline void i_readcount_dec(struct inode *inode) 3093 { 3094 return; 3095 } 3096 static inline void i_readcount_inc(struct inode *inode) 3097 { 3098 return; 3099 } 3100 #endif 3101 extern int do_pipe_flags(int *, int); 3102 3103 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3104 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3105 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3106 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3107 extern struct file * open_exec(const char *); 3108 3109 /* fs/dcache.c -- generic fs support functions */ 3110 extern bool is_subdir(struct dentry *, struct dentry *); 3111 extern bool path_is_under(const struct path *, const struct path *); 3112 3113 extern char *file_path(struct file *, char *, int); 3114 3115 /** 3116 * is_dot_dotdot - returns true only if @name is "." or ".." 3117 * @name: file name to check 3118 * @len: length of file name, in bytes 3119 */ 3120 static inline bool is_dot_dotdot(const char *name, size_t len) 3121 { 3122 return len && unlikely(name[0] == '.') && 3123 (len == 1 || (len == 2 && name[1] == '.')); 3124 } 3125 3126 #include <linux/err.h> 3127 3128 /* needed for stackable file system support */ 3129 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3130 3131 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3132 3133 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3134 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3135 { 3136 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3137 } 3138 3139 extern void inode_init_once(struct inode *); 3140 extern void address_space_init_once(struct address_space *mapping); 3141 extern struct inode * igrab(struct inode *); 3142 extern ino_t iunique(struct super_block *, ino_t); 3143 extern int inode_needs_sync(struct inode *inode); 3144 extern int generic_delete_inode(struct inode *inode); 3145 static inline int generic_drop_inode(struct inode *inode) 3146 { 3147 return !inode->i_nlink || inode_unhashed(inode); 3148 } 3149 extern void d_mark_dontcache(struct inode *inode); 3150 3151 extern struct inode *ilookup5_nowait(struct super_block *sb, 3152 unsigned long hashval, int (*test)(struct inode *, void *), 3153 void *data); 3154 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3155 int (*test)(struct inode *, void *), void *data); 3156 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3157 3158 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3159 int (*test)(struct inode *, void *), 3160 int (*set)(struct inode *, void *), 3161 void *data); 3162 struct inode *iget5_locked(struct super_block *, unsigned long, 3163 int (*test)(struct inode *, void *), 3164 int (*set)(struct inode *, void *), void *); 3165 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3166 int (*test)(struct inode *, void *), 3167 int (*set)(struct inode *, void *), void *); 3168 extern struct inode * iget_locked(struct super_block *, unsigned long); 3169 extern struct inode *find_inode_nowait(struct super_block *, 3170 unsigned long, 3171 int (*match)(struct inode *, 3172 unsigned long, void *), 3173 void *data); 3174 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3175 int (*)(struct inode *, void *), void *); 3176 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3177 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3178 extern int insert_inode_locked(struct inode *); 3179 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3180 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3181 #else 3182 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3183 #endif 3184 extern void unlock_new_inode(struct inode *); 3185 extern void discard_new_inode(struct inode *); 3186 extern unsigned int get_next_ino(void); 3187 extern void evict_inodes(struct super_block *sb); 3188 void dump_mapping(const struct address_space *); 3189 3190 /* 3191 * Userspace may rely on the inode number being non-zero. For example, glibc 3192 * simply ignores files with zero i_ino in unlink() and other places. 3193 * 3194 * As an additional complication, if userspace was compiled with 3195 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3196 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3197 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3198 * better safe than sorry. 3199 */ 3200 static inline bool is_zero_ino(ino_t ino) 3201 { 3202 return (u32)ino == 0; 3203 } 3204 3205 /* 3206 * inode->i_lock must be held 3207 */ 3208 static inline void __iget(struct inode *inode) 3209 { 3210 atomic_inc(&inode->i_count); 3211 } 3212 3213 extern void iget_failed(struct inode *); 3214 extern void clear_inode(struct inode *); 3215 extern void __destroy_inode(struct inode *); 3216 extern struct inode *new_inode_pseudo(struct super_block *sb); 3217 extern struct inode *new_inode(struct super_block *sb); 3218 extern void free_inode_nonrcu(struct inode *inode); 3219 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3220 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3221 extern int file_remove_privs(struct file *); 3222 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3223 const struct inode *inode); 3224 3225 /* 3226 * This must be used for allocating filesystems specific inodes to set 3227 * up the inode reclaim context correctly. 3228 */ 3229 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3230 3231 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3232 static inline void insert_inode_hash(struct inode *inode) 3233 { 3234 __insert_inode_hash(inode, inode->i_ino); 3235 } 3236 3237 extern void __remove_inode_hash(struct inode *); 3238 static inline void remove_inode_hash(struct inode *inode) 3239 { 3240 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3241 __remove_inode_hash(inode); 3242 } 3243 3244 extern void inode_sb_list_add(struct inode *inode); 3245 extern void inode_add_lru(struct inode *inode); 3246 3247 extern int sb_set_blocksize(struct super_block *, int); 3248 extern int sb_min_blocksize(struct super_block *, int); 3249 3250 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3251 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3252 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3253 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3254 extern int generic_write_check_limits(struct file *file, loff_t pos, 3255 loff_t *count); 3256 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3257 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3258 ssize_t already_read); 3259 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3260 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3261 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3262 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3263 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3264 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3265 ssize_t direct_written, ssize_t buffered_written); 3266 3267 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3268 rwf_t flags); 3269 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3270 rwf_t flags); 3271 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3272 struct iov_iter *iter); 3273 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3274 struct iov_iter *iter); 3275 3276 /* fs/splice.c */ 3277 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3278 struct pipe_inode_info *pipe, 3279 size_t len, unsigned int flags); 3280 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3281 struct pipe_inode_info *pipe, 3282 size_t len, unsigned int flags); 3283 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3284 struct file *, loff_t *, size_t, unsigned int); 3285 3286 3287 extern void 3288 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3289 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3290 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3291 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3292 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3293 int whence, loff_t maxsize, loff_t eof); 3294 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3295 u64 *cookie); 3296 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3297 int whence, loff_t size); 3298 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3299 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3300 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3301 extern int generic_file_open(struct inode * inode, struct file * filp); 3302 extern int nonseekable_open(struct inode * inode, struct file * filp); 3303 extern int stream_open(struct inode * inode, struct file * filp); 3304 3305 #ifdef CONFIG_BLOCK 3306 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3307 loff_t file_offset); 3308 3309 enum { 3310 /* need locking between buffered and direct access */ 3311 DIO_LOCKING = 0x01, 3312 3313 /* filesystem does not support filling holes */ 3314 DIO_SKIP_HOLES = 0x02, 3315 }; 3316 3317 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3318 struct block_device *bdev, struct iov_iter *iter, 3319 get_block_t get_block, 3320 dio_iodone_t end_io, 3321 int flags); 3322 3323 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3324 struct inode *inode, 3325 struct iov_iter *iter, 3326 get_block_t get_block) 3327 { 3328 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3329 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3330 } 3331 #endif 3332 3333 bool inode_dio_finished(const struct inode *inode); 3334 void inode_dio_wait(struct inode *inode); 3335 void inode_dio_wait_interruptible(struct inode *inode); 3336 3337 /** 3338 * inode_dio_begin - signal start of a direct I/O requests 3339 * @inode: inode the direct I/O happens on 3340 * 3341 * This is called once we've finished processing a direct I/O request, 3342 * and is used to wake up callers waiting for direct I/O to be quiesced. 3343 */ 3344 static inline void inode_dio_begin(struct inode *inode) 3345 { 3346 atomic_inc(&inode->i_dio_count); 3347 } 3348 3349 /** 3350 * inode_dio_end - signal finish of a direct I/O requests 3351 * @inode: inode the direct I/O happens on 3352 * 3353 * This is called once we've finished processing a direct I/O request, 3354 * and is used to wake up callers waiting for direct I/O to be quiesced. 3355 */ 3356 static inline void inode_dio_end(struct inode *inode) 3357 { 3358 if (atomic_dec_and_test(&inode->i_dio_count)) 3359 wake_up_var(&inode->i_dio_count); 3360 } 3361 3362 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3363 unsigned int mask); 3364 3365 extern const struct file_operations generic_ro_fops; 3366 3367 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3368 3369 extern int readlink_copy(char __user *, int, const char *, int); 3370 extern int page_readlink(struct dentry *, char __user *, int); 3371 extern const char *page_get_link(struct dentry *, struct inode *, 3372 struct delayed_call *); 3373 extern void page_put_link(void *); 3374 extern int page_symlink(struct inode *inode, const char *symname, int len); 3375 extern const struct inode_operations page_symlink_inode_operations; 3376 extern void kfree_link(void *); 3377 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3378 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3379 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3380 void generic_fill_statx_atomic_writes(struct kstat *stat, 3381 unsigned int unit_min, 3382 unsigned int unit_max); 3383 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3384 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3385 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3386 void inode_add_bytes(struct inode *inode, loff_t bytes); 3387 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3388 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3389 static inline loff_t __inode_get_bytes(struct inode *inode) 3390 { 3391 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3392 } 3393 loff_t inode_get_bytes(struct inode *inode); 3394 void inode_set_bytes(struct inode *inode, loff_t bytes); 3395 const char *simple_get_link(struct dentry *, struct inode *, 3396 struct delayed_call *); 3397 extern const struct inode_operations simple_symlink_inode_operations; 3398 3399 extern int iterate_dir(struct file *, struct dir_context *); 3400 3401 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3402 int flags); 3403 int vfs_fstat(int fd, struct kstat *stat); 3404 3405 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3406 { 3407 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3408 } 3409 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3410 { 3411 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3412 } 3413 3414 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3415 extern int vfs_readlink(struct dentry *, char __user *, int); 3416 3417 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3418 extern void put_filesystem(struct file_system_type *fs); 3419 extern struct file_system_type *get_fs_type(const char *name); 3420 extern void drop_super(struct super_block *sb); 3421 extern void drop_super_exclusive(struct super_block *sb); 3422 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3423 extern void iterate_supers_type(struct file_system_type *, 3424 void (*)(struct super_block *, void *), void *); 3425 3426 extern int dcache_dir_open(struct inode *, struct file *); 3427 extern int dcache_dir_close(struct inode *, struct file *); 3428 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3429 extern int dcache_readdir(struct file *, struct dir_context *); 3430 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3431 struct iattr *); 3432 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3433 struct kstat *, u32, unsigned int); 3434 extern int simple_statfs(struct dentry *, struct kstatfs *); 3435 extern int simple_open(struct inode *inode, struct file *file); 3436 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3437 extern int simple_unlink(struct inode *, struct dentry *); 3438 extern int simple_rmdir(struct inode *, struct dentry *); 3439 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3440 struct inode *new_dir, struct dentry *new_dentry); 3441 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3442 struct inode *new_dir, struct dentry *new_dentry); 3443 extern int simple_rename(struct mnt_idmap *, struct inode *, 3444 struct dentry *, struct inode *, struct dentry *, 3445 unsigned int); 3446 extern void simple_recursive_removal(struct dentry *, 3447 void (*callback)(struct dentry *)); 3448 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3449 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3450 extern int simple_empty(struct dentry *); 3451 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3452 loff_t pos, unsigned len, 3453 struct folio **foliop, void **fsdata); 3454 extern const struct address_space_operations ram_aops; 3455 extern int always_delete_dentry(const struct dentry *); 3456 extern struct inode *alloc_anon_inode(struct super_block *); 3457 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3458 extern const struct dentry_operations simple_dentry_operations; 3459 3460 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3461 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3462 extern const struct file_operations simple_dir_operations; 3463 extern const struct inode_operations simple_dir_inode_operations; 3464 extern void make_empty_dir_inode(struct inode *inode); 3465 extern bool is_empty_dir_inode(struct inode *inode); 3466 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3467 struct dentry *d_alloc_name(struct dentry *, const char *); 3468 extern int simple_fill_super(struct super_block *, unsigned long, 3469 const struct tree_descr *); 3470 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3471 extern void simple_release_fs(struct vfsmount **mount, int *count); 3472 3473 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3474 loff_t *ppos, const void *from, size_t available); 3475 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3476 const void __user *from, size_t count); 3477 3478 struct offset_ctx { 3479 struct maple_tree mt; 3480 unsigned long next_offset; 3481 }; 3482 3483 void simple_offset_init(struct offset_ctx *octx); 3484 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3485 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3486 int simple_offset_empty(struct dentry *dentry); 3487 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3488 struct inode *new_dir, struct dentry *new_dentry); 3489 int simple_offset_rename_exchange(struct inode *old_dir, 3490 struct dentry *old_dentry, 3491 struct inode *new_dir, 3492 struct dentry *new_dentry); 3493 void simple_offset_destroy(struct offset_ctx *octx); 3494 3495 extern const struct file_operations simple_offset_dir_operations; 3496 3497 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3498 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3499 3500 extern int generic_check_addressable(unsigned, u64); 3501 3502 extern void generic_set_sb_d_ops(struct super_block *sb); 3503 extern int generic_ci_match(const struct inode *parent, 3504 const struct qstr *name, 3505 const struct qstr *folded_name, 3506 const u8 *de_name, u32 de_name_len); 3507 3508 #if IS_ENABLED(CONFIG_UNICODE) 3509 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3510 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3511 const char *str, const struct qstr *name); 3512 3513 /** 3514 * generic_ci_validate_strict_name - Check if a given name is suitable 3515 * for a directory 3516 * 3517 * This functions checks if the proposed filename is valid for the 3518 * parent directory. That means that only valid UTF-8 filenames will be 3519 * accepted for casefold directories from filesystems created with the 3520 * strict encoding flag. That also means that any name will be 3521 * accepted for directories that doesn't have casefold enabled, or 3522 * aren't being strict with the encoding. 3523 * 3524 * @dir: inode of the directory where the new file will be created 3525 * @name: name of the new file 3526 * 3527 * Return: 3528 * * True: if the filename is suitable for this directory. It can be 3529 * true if a given name is not suitable for a strict encoding 3530 * directory, but the directory being used isn't strict 3531 * * False if the filename isn't suitable for this directory. This only 3532 * happens when a directory is casefolded and the filesystem is strict 3533 * about its encoding. 3534 */ 3535 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3536 { 3537 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3538 return true; 3539 3540 /* 3541 * A casefold dir must have a encoding set, unless the filesystem 3542 * is corrupted 3543 */ 3544 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3545 return true; 3546 3547 return !utf8_validate(dir->i_sb->s_encoding, name); 3548 } 3549 #else 3550 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3551 { 3552 return true; 3553 } 3554 #endif 3555 3556 static inline bool sb_has_encoding(const struct super_block *sb) 3557 { 3558 #if IS_ENABLED(CONFIG_UNICODE) 3559 return !!sb->s_encoding; 3560 #else 3561 return false; 3562 #endif 3563 } 3564 3565 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3566 unsigned int ia_valid); 3567 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3568 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3569 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3570 const struct iattr *attr); 3571 3572 extern int file_update_time(struct file *file); 3573 3574 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3575 { 3576 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3577 } 3578 3579 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3580 { 3581 struct inode *inode; 3582 3583 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3584 return false; 3585 if (!vma_is_dax(vma)) 3586 return false; 3587 inode = file_inode(vma->vm_file); 3588 if (S_ISCHR(inode->i_mode)) 3589 return false; /* device-dax */ 3590 return true; 3591 } 3592 3593 static inline int iocb_flags(struct file *file) 3594 { 3595 int res = 0; 3596 if (file->f_flags & O_APPEND) 3597 res |= IOCB_APPEND; 3598 if (file->f_flags & O_DIRECT) 3599 res |= IOCB_DIRECT; 3600 if (file->f_flags & O_DSYNC) 3601 res |= IOCB_DSYNC; 3602 if (file->f_flags & __O_SYNC) 3603 res |= IOCB_SYNC; 3604 return res; 3605 } 3606 3607 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3608 int rw_type) 3609 { 3610 int kiocb_flags = 0; 3611 3612 /* make sure there's no overlap between RWF and private IOCB flags */ 3613 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3614 3615 if (!flags) 3616 return 0; 3617 if (unlikely(flags & ~RWF_SUPPORTED)) 3618 return -EOPNOTSUPP; 3619 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3620 return -EINVAL; 3621 3622 if (flags & RWF_NOWAIT) { 3623 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3624 return -EOPNOTSUPP; 3625 } 3626 if (flags & RWF_ATOMIC) { 3627 if (rw_type != WRITE) 3628 return -EOPNOTSUPP; 3629 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3630 return -EOPNOTSUPP; 3631 } 3632 if (flags & RWF_DONTCACHE) { 3633 /* file system must support it */ 3634 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3635 return -EOPNOTSUPP; 3636 /* DAX mappings not supported */ 3637 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3638 return -EOPNOTSUPP; 3639 } 3640 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3641 if (flags & RWF_SYNC) 3642 kiocb_flags |= IOCB_DSYNC; 3643 3644 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3645 if (IS_APPEND(file_inode(ki->ki_filp))) 3646 return -EPERM; 3647 ki->ki_flags &= ~IOCB_APPEND; 3648 } 3649 3650 ki->ki_flags |= kiocb_flags; 3651 return 0; 3652 } 3653 3654 /* Transaction based IO helpers */ 3655 3656 /* 3657 * An argresp is stored in an allocated page and holds the 3658 * size of the argument or response, along with its content 3659 */ 3660 struct simple_transaction_argresp { 3661 ssize_t size; 3662 char data[]; 3663 }; 3664 3665 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3666 3667 char *simple_transaction_get(struct file *file, const char __user *buf, 3668 size_t size); 3669 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3670 size_t size, loff_t *pos); 3671 int simple_transaction_release(struct inode *inode, struct file *file); 3672 3673 void simple_transaction_set(struct file *file, size_t n); 3674 3675 /* 3676 * simple attribute files 3677 * 3678 * These attributes behave similar to those in sysfs: 3679 * 3680 * Writing to an attribute immediately sets a value, an open file can be 3681 * written to multiple times. 3682 * 3683 * Reading from an attribute creates a buffer from the value that might get 3684 * read with multiple read calls. When the attribute has been read 3685 * completely, no further read calls are possible until the file is opened 3686 * again. 3687 * 3688 * All attributes contain a text representation of a numeric value 3689 * that are accessed with the get() and set() functions. 3690 */ 3691 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3692 static int __fops ## _open(struct inode *inode, struct file *file) \ 3693 { \ 3694 __simple_attr_check_format(__fmt, 0ull); \ 3695 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3696 } \ 3697 static const struct file_operations __fops = { \ 3698 .owner = THIS_MODULE, \ 3699 .open = __fops ## _open, \ 3700 .release = simple_attr_release, \ 3701 .read = simple_attr_read, \ 3702 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3703 .llseek = generic_file_llseek, \ 3704 } 3705 3706 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3707 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3708 3709 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3710 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3711 3712 static inline __printf(1, 2) 3713 void __simple_attr_check_format(const char *fmt, ...) 3714 { 3715 /* don't do anything, just let the compiler check the arguments; */ 3716 } 3717 3718 int simple_attr_open(struct inode *inode, struct file *file, 3719 int (*get)(void *, u64 *), int (*set)(void *, u64), 3720 const char *fmt); 3721 int simple_attr_release(struct inode *inode, struct file *file); 3722 ssize_t simple_attr_read(struct file *file, char __user *buf, 3723 size_t len, loff_t *ppos); 3724 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3725 size_t len, loff_t *ppos); 3726 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3727 size_t len, loff_t *ppos); 3728 3729 struct ctl_table; 3730 int __init list_bdev_fs_names(char *buf, size_t size); 3731 3732 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3733 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3734 3735 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3736 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3737 (flag & __FMODE_NONOTIFY))) 3738 3739 static inline bool is_sxid(umode_t mode) 3740 { 3741 return mode & (S_ISUID | S_ISGID); 3742 } 3743 3744 static inline int check_sticky(struct mnt_idmap *idmap, 3745 struct inode *dir, struct inode *inode) 3746 { 3747 if (!(dir->i_mode & S_ISVTX)) 3748 return 0; 3749 3750 return __check_sticky(idmap, dir, inode); 3751 } 3752 3753 static inline void inode_has_no_xattr(struct inode *inode) 3754 { 3755 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3756 inode->i_flags |= S_NOSEC; 3757 } 3758 3759 static inline bool is_root_inode(struct inode *inode) 3760 { 3761 return inode == inode->i_sb->s_root->d_inode; 3762 } 3763 3764 static inline bool dir_emit(struct dir_context *ctx, 3765 const char *name, int namelen, 3766 u64 ino, unsigned type) 3767 { 3768 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3769 } 3770 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3771 { 3772 return ctx->actor(ctx, ".", 1, ctx->pos, 3773 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3774 } 3775 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3776 { 3777 return ctx->actor(ctx, "..", 2, ctx->pos, 3778 d_parent_ino(file->f_path.dentry), DT_DIR); 3779 } 3780 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3781 { 3782 if (ctx->pos == 0) { 3783 if (!dir_emit_dot(file, ctx)) 3784 return false; 3785 ctx->pos = 1; 3786 } 3787 if (ctx->pos == 1) { 3788 if (!dir_emit_dotdot(file, ctx)) 3789 return false; 3790 ctx->pos = 2; 3791 } 3792 return true; 3793 } 3794 static inline bool dir_relax(struct inode *inode) 3795 { 3796 inode_unlock(inode); 3797 inode_lock(inode); 3798 return !IS_DEADDIR(inode); 3799 } 3800 3801 static inline bool dir_relax_shared(struct inode *inode) 3802 { 3803 inode_unlock_shared(inode); 3804 inode_lock_shared(inode); 3805 return !IS_DEADDIR(inode); 3806 } 3807 3808 extern bool path_noexec(const struct path *path); 3809 extern void inode_nohighmem(struct inode *inode); 3810 3811 /* mm/fadvise.c */ 3812 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3813 int advice); 3814 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3815 int advice); 3816 3817 static inline bool vfs_empty_path(int dfd, const char __user *path) 3818 { 3819 char c; 3820 3821 if (dfd < 0) 3822 return false; 3823 3824 /* We now allow NULL to be used for empty path. */ 3825 if (!path) 3826 return true; 3827 3828 if (unlikely(get_user(c, path))) 3829 return false; 3830 3831 return !c; 3832 } 3833 3834 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3835 3836 #endif /* _LINUX_FS_H */ 3837