1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct backing_dev_info; 55 struct bdi_writeback; 56 struct bio; 57 struct io_comp_batch; 58 struct export_operations; 59 struct fiemap_extent_info; 60 struct hd_geometry; 61 struct iovec; 62 struct kiocb; 63 struct kobject; 64 struct pipe_inode_info; 65 struct poll_table_struct; 66 struct kstatfs; 67 struct vm_area_struct; 68 struct vfsmount; 69 struct cred; 70 struct swap_info_struct; 71 struct seq_file; 72 struct workqueue_struct; 73 struct iov_iter; 74 struct fscrypt_inode_info; 75 struct fscrypt_operations; 76 struct fsverity_info; 77 struct fsverity_operations; 78 struct fsnotify_mark_connector; 79 struct fsnotify_sb_info; 80 struct fs_context; 81 struct fs_parameter_spec; 82 struct fileattr; 83 struct iomap_ops; 84 85 extern void __init inode_init(void); 86 extern void __init inode_init_early(void); 87 extern void __init files_init(void); 88 extern void __init files_maxfiles_init(void); 89 90 extern unsigned long get_max_files(void); 91 extern unsigned int sysctl_nr_open; 92 93 typedef __kernel_rwf_t rwf_t; 94 95 struct buffer_head; 96 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 97 struct buffer_head *bh_result, int create); 98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 99 ssize_t bytes, void *private); 100 101 #define MAY_EXEC 0x00000001 102 #define MAY_WRITE 0x00000002 103 #define MAY_READ 0x00000004 104 #define MAY_APPEND 0x00000008 105 #define MAY_ACCESS 0x00000010 106 #define MAY_OPEN 0x00000020 107 #define MAY_CHDIR 0x00000040 108 /* called from RCU mode, don't block */ 109 #define MAY_NOT_BLOCK 0x00000080 110 111 /* 112 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 113 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 114 */ 115 116 /* file is open for reading */ 117 #define FMODE_READ ((__force fmode_t)(1 << 0)) 118 /* file is open for writing */ 119 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 120 /* file is seekable */ 121 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 122 /* file can be accessed using pread */ 123 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 124 /* file can be accessed using pwrite */ 125 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 126 /* File is opened for execution with sys_execve / sys_uselib */ 127 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 128 /* File writes are restricted (block device specific) */ 129 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 130 /* File supports atomic writes */ 131 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 132 133 /* FMODE_* bit 8 */ 134 135 /* 32bit hashes as llseek() offset (for directories) */ 136 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 137 /* 64bit hashes as llseek() offset (for directories) */ 138 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 139 140 /* 141 * Don't update ctime and mtime. 142 * 143 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 144 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 145 */ 146 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 147 148 /* Expect random access pattern */ 149 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 150 151 /* FMODE_* bit 13 */ 152 153 /* File is opened with O_PATH; almost nothing can be done with it */ 154 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 155 156 /* File needs atomic accesses to f_pos */ 157 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 158 /* Write access to underlying fs */ 159 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 160 /* Has read method(s) */ 161 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 162 /* Has write method(s) */ 163 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 164 165 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 166 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 167 168 /* File is stream-like */ 169 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 170 171 /* File supports DIRECT IO */ 172 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 173 174 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 175 176 /* FMODE_* bit 24 */ 177 178 /* File is embedded in backing_file object */ 179 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 180 181 /* File was opened by fanotify and shouldn't generate fanotify events */ 182 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 183 184 /* File is capable of returning -EAGAIN if I/O will block */ 185 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 186 187 /* File represents mount that needs unmounting */ 188 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 189 190 /* File does not contribute to nr_files count */ 191 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 192 193 /* 194 * Attribute flags. These should be or-ed together to figure out what 195 * has been changed! 196 */ 197 #define ATTR_MODE (1 << 0) 198 #define ATTR_UID (1 << 1) 199 #define ATTR_GID (1 << 2) 200 #define ATTR_SIZE (1 << 3) 201 #define ATTR_ATIME (1 << 4) 202 #define ATTR_MTIME (1 << 5) 203 #define ATTR_CTIME (1 << 6) 204 #define ATTR_ATIME_SET (1 << 7) 205 #define ATTR_MTIME_SET (1 << 8) 206 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 207 #define ATTR_KILL_SUID (1 << 11) 208 #define ATTR_KILL_SGID (1 << 12) 209 #define ATTR_FILE (1 << 13) 210 #define ATTR_KILL_PRIV (1 << 14) 211 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 212 #define ATTR_TIMES_SET (1 << 16) 213 #define ATTR_TOUCH (1 << 17) 214 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 215 216 /* 217 * Whiteout is represented by a char device. The following constants define the 218 * mode and device number to use. 219 */ 220 #define WHITEOUT_MODE 0 221 #define WHITEOUT_DEV 0 222 223 /* 224 * This is the Inode Attributes structure, used for notify_change(). It 225 * uses the above definitions as flags, to know which values have changed. 226 * Also, in this manner, a Filesystem can look at only the values it cares 227 * about. Basically, these are the attributes that the VFS layer can 228 * request to change from the FS layer. 229 * 230 * Derek Atkins <[email protected]> 94-10-20 231 */ 232 struct iattr { 233 unsigned int ia_valid; 234 umode_t ia_mode; 235 /* 236 * The two anonymous unions wrap structures with the same member. 237 * 238 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 239 * are a dedicated type requiring the filesystem to use the dedicated 240 * helpers. Other filesystem can continue to use ia_{g,u}id until they 241 * have been ported. 242 * 243 * They always contain the same value. In other words FS_ALLOW_IDMAP 244 * pass down the same value on idmapped mounts as they would on regular 245 * mounts. 246 */ 247 union { 248 kuid_t ia_uid; 249 vfsuid_t ia_vfsuid; 250 }; 251 union { 252 kgid_t ia_gid; 253 vfsgid_t ia_vfsgid; 254 }; 255 loff_t ia_size; 256 struct timespec64 ia_atime; 257 struct timespec64 ia_mtime; 258 struct timespec64 ia_ctime; 259 260 /* 261 * Not an attribute, but an auxiliary info for filesystems wanting to 262 * implement an ftruncate() like method. NOTE: filesystem should 263 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 264 */ 265 struct file *ia_file; 266 }; 267 268 /* 269 * Includes for diskquotas. 270 */ 271 #include <linux/quota.h> 272 273 /* 274 * Maximum number of layers of fs stack. Needs to be limited to 275 * prevent kernel stack overflow 276 */ 277 #define FILESYSTEM_MAX_STACK_DEPTH 2 278 279 /** 280 * enum positive_aop_returns - aop return codes with specific semantics 281 * 282 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 283 * completed, that the page is still locked, and 284 * should be considered active. The VM uses this hint 285 * to return the page to the active list -- it won't 286 * be a candidate for writeback again in the near 287 * future. Other callers must be careful to unlock 288 * the page if they get this return. Returned by 289 * writepage(); 290 * 291 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 292 * unlocked it and the page might have been truncated. 293 * The caller should back up to acquiring a new page and 294 * trying again. The aop will be taking reasonable 295 * precautions not to livelock. If the caller held a page 296 * reference, it should drop it before retrying. Returned 297 * by read_folio(). 298 * 299 * address_space_operation functions return these large constants to indicate 300 * special semantics to the caller. These are much larger than the bytes in a 301 * page to allow for functions that return the number of bytes operated on in a 302 * given page. 303 */ 304 305 enum positive_aop_returns { 306 AOP_WRITEPAGE_ACTIVATE = 0x80000, 307 AOP_TRUNCATED_PAGE = 0x80001, 308 }; 309 310 /* 311 * oh the beauties of C type declarations. 312 */ 313 struct page; 314 struct address_space; 315 struct writeback_control; 316 struct readahead_control; 317 318 /* Match RWF_* bits to IOCB bits */ 319 #define IOCB_HIPRI (__force int) RWF_HIPRI 320 #define IOCB_DSYNC (__force int) RWF_DSYNC 321 #define IOCB_SYNC (__force int) RWF_SYNC 322 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 323 #define IOCB_APPEND (__force int) RWF_APPEND 324 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 325 326 /* non-RWF related bits - start at 16 */ 327 #define IOCB_EVENTFD (1 << 16) 328 #define IOCB_DIRECT (1 << 17) 329 #define IOCB_WRITE (1 << 18) 330 /* iocb->ki_waitq is valid */ 331 #define IOCB_WAITQ (1 << 19) 332 #define IOCB_NOIO (1 << 20) 333 /* can use bio alloc cache */ 334 #define IOCB_ALLOC_CACHE (1 << 21) 335 /* 336 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 337 * iocb completion can be passed back to the owner for execution from a safe 338 * context rather than needing to be punted through a workqueue. If this 339 * flag is set, the bio completion handling may set iocb->dio_complete to a 340 * handler function and iocb->private to context information for that handler. 341 * The issuer should call the handler with that context information from task 342 * context to complete the processing of the iocb. Note that while this 343 * provides a task context for the dio_complete() callback, it should only be 344 * used on the completion side for non-IO generating completions. It's fine to 345 * call blocking functions from this callback, but they should not wait for 346 * unrelated IO (like cache flushing, new IO generation, etc). 347 */ 348 #define IOCB_DIO_CALLER_COMP (1 << 22) 349 /* kiocb is a read or write operation submitted by fs/aio.c. */ 350 #define IOCB_AIO_RW (1 << 23) 351 352 /* for use in trace events */ 353 #define TRACE_IOCB_STRINGS \ 354 { IOCB_HIPRI, "HIPRI" }, \ 355 { IOCB_DSYNC, "DSYNC" }, \ 356 { IOCB_SYNC, "SYNC" }, \ 357 { IOCB_NOWAIT, "NOWAIT" }, \ 358 { IOCB_APPEND, "APPEND" }, \ 359 { IOCB_ATOMIC, "ATOMIC"}, \ 360 { IOCB_EVENTFD, "EVENTFD"}, \ 361 { IOCB_DIRECT, "DIRECT" }, \ 362 { IOCB_WRITE, "WRITE" }, \ 363 { IOCB_WAITQ, "WAITQ" }, \ 364 { IOCB_NOIO, "NOIO" }, \ 365 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 366 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 367 368 struct kiocb { 369 struct file *ki_filp; 370 loff_t ki_pos; 371 void (*ki_complete)(struct kiocb *iocb, long ret); 372 void *private; 373 int ki_flags; 374 u16 ki_ioprio; /* See linux/ioprio.h */ 375 union { 376 /* 377 * Only used for async buffered reads, where it denotes the 378 * page waitqueue associated with completing the read. Valid 379 * IFF IOCB_WAITQ is set. 380 */ 381 struct wait_page_queue *ki_waitq; 382 /* 383 * Can be used for O_DIRECT IO, where the completion handling 384 * is punted back to the issuer of the IO. May only be set 385 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 386 * must then check for presence of this handler when ki_complete 387 * is invoked. The data passed in to this handler must be 388 * assigned to ->private when dio_complete is assigned. 389 */ 390 ssize_t (*dio_complete)(void *data); 391 }; 392 }; 393 394 static inline bool is_sync_kiocb(struct kiocb *kiocb) 395 { 396 return kiocb->ki_complete == NULL; 397 } 398 399 struct address_space_operations { 400 int (*writepage)(struct page *page, struct writeback_control *wbc); 401 int (*read_folio)(struct file *, struct folio *); 402 403 /* Write back some dirty pages from this mapping. */ 404 int (*writepages)(struct address_space *, struct writeback_control *); 405 406 /* Mark a folio dirty. Return true if this dirtied it */ 407 bool (*dirty_folio)(struct address_space *, struct folio *); 408 409 void (*readahead)(struct readahead_control *); 410 411 int (*write_begin)(struct file *, struct address_space *mapping, 412 loff_t pos, unsigned len, 413 struct folio **foliop, void **fsdata); 414 int (*write_end)(struct file *, struct address_space *mapping, 415 loff_t pos, unsigned len, unsigned copied, 416 struct folio *folio, void *fsdata); 417 418 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 419 sector_t (*bmap)(struct address_space *, sector_t); 420 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 421 bool (*release_folio)(struct folio *, gfp_t); 422 void (*free_folio)(struct folio *folio); 423 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 424 /* 425 * migrate the contents of a folio to the specified target. If 426 * migrate_mode is MIGRATE_ASYNC, it must not block. 427 */ 428 int (*migrate_folio)(struct address_space *, struct folio *dst, 429 struct folio *src, enum migrate_mode); 430 int (*launder_folio)(struct folio *); 431 bool (*is_partially_uptodate) (struct folio *, size_t from, 432 size_t count); 433 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 434 int (*error_remove_folio)(struct address_space *, struct folio *); 435 436 /* swapfile support */ 437 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 438 sector_t *span); 439 void (*swap_deactivate)(struct file *file); 440 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 441 }; 442 443 extern const struct address_space_operations empty_aops; 444 445 /** 446 * struct address_space - Contents of a cacheable, mappable object. 447 * @host: Owner, either the inode or the block_device. 448 * @i_pages: Cached pages. 449 * @invalidate_lock: Guards coherency between page cache contents and 450 * file offset->disk block mappings in the filesystem during invalidates. 451 * It is also used to block modification of page cache contents through 452 * memory mappings. 453 * @gfp_mask: Memory allocation flags to use for allocating pages. 454 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 455 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 456 * @i_mmap: Tree of private and shared mappings. 457 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 458 * @nrpages: Number of page entries, protected by the i_pages lock. 459 * @writeback_index: Writeback starts here. 460 * @a_ops: Methods. 461 * @flags: Error bits and flags (AS_*). 462 * @wb_err: The most recent error which has occurred. 463 * @i_private_lock: For use by the owner of the address_space. 464 * @i_private_list: For use by the owner of the address_space. 465 * @i_private_data: For use by the owner of the address_space. 466 */ 467 struct address_space { 468 struct inode *host; 469 struct xarray i_pages; 470 struct rw_semaphore invalidate_lock; 471 gfp_t gfp_mask; 472 atomic_t i_mmap_writable; 473 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 474 /* number of thp, only for non-shmem files */ 475 atomic_t nr_thps; 476 #endif 477 struct rb_root_cached i_mmap; 478 unsigned long nrpages; 479 pgoff_t writeback_index; 480 const struct address_space_operations *a_ops; 481 unsigned long flags; 482 errseq_t wb_err; 483 spinlock_t i_private_lock; 484 struct list_head i_private_list; 485 struct rw_semaphore i_mmap_rwsem; 486 void * i_private_data; 487 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 488 /* 489 * On most architectures that alignment is already the case; but 490 * must be enforced here for CRIS, to let the least significant bit 491 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 492 */ 493 494 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 495 #define PAGECACHE_TAG_DIRTY XA_MARK_0 496 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 497 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 498 499 /* 500 * Returns true if any of the pages in the mapping are marked with the tag. 501 */ 502 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 503 { 504 return xa_marked(&mapping->i_pages, tag); 505 } 506 507 static inline void i_mmap_lock_write(struct address_space *mapping) 508 { 509 down_write(&mapping->i_mmap_rwsem); 510 } 511 512 static inline int i_mmap_trylock_write(struct address_space *mapping) 513 { 514 return down_write_trylock(&mapping->i_mmap_rwsem); 515 } 516 517 static inline void i_mmap_unlock_write(struct address_space *mapping) 518 { 519 up_write(&mapping->i_mmap_rwsem); 520 } 521 522 static inline int i_mmap_trylock_read(struct address_space *mapping) 523 { 524 return down_read_trylock(&mapping->i_mmap_rwsem); 525 } 526 527 static inline void i_mmap_lock_read(struct address_space *mapping) 528 { 529 down_read(&mapping->i_mmap_rwsem); 530 } 531 532 static inline void i_mmap_unlock_read(struct address_space *mapping) 533 { 534 up_read(&mapping->i_mmap_rwsem); 535 } 536 537 static inline void i_mmap_assert_locked(struct address_space *mapping) 538 { 539 lockdep_assert_held(&mapping->i_mmap_rwsem); 540 } 541 542 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 543 { 544 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 545 } 546 547 /* 548 * Might pages of this file be mapped into userspace? 549 */ 550 static inline int mapping_mapped(struct address_space *mapping) 551 { 552 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 553 } 554 555 /* 556 * Might pages of this file have been modified in userspace? 557 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 558 * marks vma as VM_SHARED if it is shared, and the file was opened for 559 * writing i.e. vma may be mprotected writable even if now readonly. 560 * 561 * If i_mmap_writable is negative, no new writable mappings are allowed. You 562 * can only deny writable mappings, if none exists right now. 563 */ 564 static inline int mapping_writably_mapped(struct address_space *mapping) 565 { 566 return atomic_read(&mapping->i_mmap_writable) > 0; 567 } 568 569 static inline int mapping_map_writable(struct address_space *mapping) 570 { 571 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 572 0 : -EPERM; 573 } 574 575 static inline void mapping_unmap_writable(struct address_space *mapping) 576 { 577 atomic_dec(&mapping->i_mmap_writable); 578 } 579 580 static inline int mapping_deny_writable(struct address_space *mapping) 581 { 582 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 583 0 : -EBUSY; 584 } 585 586 static inline void mapping_allow_writable(struct address_space *mapping) 587 { 588 atomic_inc(&mapping->i_mmap_writable); 589 } 590 591 /* 592 * Use sequence counter to get consistent i_size on 32-bit processors. 593 */ 594 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 595 #include <linux/seqlock.h> 596 #define __NEED_I_SIZE_ORDERED 597 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 598 #else 599 #define i_size_ordered_init(inode) do { } while (0) 600 #endif 601 602 struct posix_acl; 603 #define ACL_NOT_CACHED ((void *)(-1)) 604 /* 605 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 606 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 607 * mode with the LOOKUP_RCU flag. 608 */ 609 #define ACL_DONT_CACHE ((void *)(-3)) 610 611 static inline struct posix_acl * 612 uncached_acl_sentinel(struct task_struct *task) 613 { 614 return (void *)task + 1; 615 } 616 617 static inline bool 618 is_uncached_acl(struct posix_acl *acl) 619 { 620 return (long)acl & 1; 621 } 622 623 #define IOP_FASTPERM 0x0001 624 #define IOP_LOOKUP 0x0002 625 #define IOP_NOFOLLOW 0x0004 626 #define IOP_XATTR 0x0008 627 #define IOP_DEFAULT_READLINK 0x0010 628 #define IOP_MGTIME 0x0020 629 630 /* 631 * Keep mostly read-only and often accessed (especially for 632 * the RCU path lookup and 'stat' data) fields at the beginning 633 * of the 'struct inode' 634 */ 635 struct inode { 636 umode_t i_mode; 637 unsigned short i_opflags; 638 kuid_t i_uid; 639 kgid_t i_gid; 640 unsigned int i_flags; 641 642 #ifdef CONFIG_FS_POSIX_ACL 643 struct posix_acl *i_acl; 644 struct posix_acl *i_default_acl; 645 #endif 646 647 const struct inode_operations *i_op; 648 struct super_block *i_sb; 649 struct address_space *i_mapping; 650 651 #ifdef CONFIG_SECURITY 652 void *i_security; 653 #endif 654 655 /* Stat data, not accessed from path walking */ 656 unsigned long i_ino; 657 /* 658 * Filesystems may only read i_nlink directly. They shall use the 659 * following functions for modification: 660 * 661 * (set|clear|inc|drop)_nlink 662 * inode_(inc|dec)_link_count 663 */ 664 union { 665 const unsigned int i_nlink; 666 unsigned int __i_nlink; 667 }; 668 dev_t i_rdev; 669 loff_t i_size; 670 time64_t i_atime_sec; 671 time64_t i_mtime_sec; 672 time64_t i_ctime_sec; 673 u32 i_atime_nsec; 674 u32 i_mtime_nsec; 675 u32 i_ctime_nsec; 676 u32 i_generation; 677 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 678 unsigned short i_bytes; 679 u8 i_blkbits; 680 enum rw_hint i_write_hint; 681 blkcnt_t i_blocks; 682 683 #ifdef __NEED_I_SIZE_ORDERED 684 seqcount_t i_size_seqcount; 685 #endif 686 687 /* Misc */ 688 u32 i_state; 689 /* 32-bit hole */ 690 struct rw_semaphore i_rwsem; 691 692 unsigned long dirtied_when; /* jiffies of first dirtying */ 693 unsigned long dirtied_time_when; 694 695 struct hlist_node i_hash; 696 struct list_head i_io_list; /* backing dev IO list */ 697 #ifdef CONFIG_CGROUP_WRITEBACK 698 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 699 700 /* foreign inode detection, see wbc_detach_inode() */ 701 int i_wb_frn_winner; 702 u16 i_wb_frn_avg_time; 703 u16 i_wb_frn_history; 704 #endif 705 struct list_head i_lru; /* inode LRU list */ 706 struct list_head i_sb_list; 707 struct list_head i_wb_list; /* backing dev writeback list */ 708 union { 709 struct hlist_head i_dentry; 710 struct rcu_head i_rcu; 711 }; 712 atomic64_t i_version; 713 atomic64_t i_sequence; /* see futex */ 714 atomic_t i_count; 715 atomic_t i_dio_count; 716 atomic_t i_writecount; 717 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 718 atomic_t i_readcount; /* struct files open RO */ 719 #endif 720 union { 721 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 722 void (*free_inode)(struct inode *); 723 }; 724 struct file_lock_context *i_flctx; 725 struct address_space i_data; 726 struct list_head i_devices; 727 union { 728 struct pipe_inode_info *i_pipe; 729 struct cdev *i_cdev; 730 char *i_link; 731 unsigned i_dir_seq; 732 }; 733 734 735 #ifdef CONFIG_FSNOTIFY 736 __u32 i_fsnotify_mask; /* all events this inode cares about */ 737 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 738 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 739 #endif 740 741 #ifdef CONFIG_FS_ENCRYPTION 742 struct fscrypt_inode_info *i_crypt_info; 743 #endif 744 745 #ifdef CONFIG_FS_VERITY 746 struct fsverity_info *i_verity_info; 747 #endif 748 749 void *i_private; /* fs or device private pointer */ 750 } __randomize_layout; 751 752 /* 753 * Get bit address from inode->i_state to use with wait_var_event() 754 * infrastructre. 755 */ 756 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 757 758 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 759 struct inode *inode, u32 bit); 760 761 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 762 { 763 /* Caller is responsible for correct memory barriers. */ 764 wake_up_var(inode_state_wait_address(inode, bit)); 765 } 766 767 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 768 769 static inline unsigned int i_blocksize(const struct inode *node) 770 { 771 return (1 << node->i_blkbits); 772 } 773 774 static inline int inode_unhashed(struct inode *inode) 775 { 776 return hlist_unhashed(&inode->i_hash); 777 } 778 779 /* 780 * __mark_inode_dirty expects inodes to be hashed. Since we don't 781 * want special inodes in the fileset inode space, we make them 782 * appear hashed, but do not put on any lists. hlist_del() 783 * will work fine and require no locking. 784 */ 785 static inline void inode_fake_hash(struct inode *inode) 786 { 787 hlist_add_fake(&inode->i_hash); 788 } 789 790 /* 791 * inode->i_mutex nesting subclasses for the lock validator: 792 * 793 * 0: the object of the current VFS operation 794 * 1: parent 795 * 2: child/target 796 * 3: xattr 797 * 4: second non-directory 798 * 5: second parent (when locking independent directories in rename) 799 * 800 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 801 * non-directories at once. 802 * 803 * The locking order between these classes is 804 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 805 */ 806 enum inode_i_mutex_lock_class 807 { 808 I_MUTEX_NORMAL, 809 I_MUTEX_PARENT, 810 I_MUTEX_CHILD, 811 I_MUTEX_XATTR, 812 I_MUTEX_NONDIR2, 813 I_MUTEX_PARENT2, 814 }; 815 816 static inline void inode_lock(struct inode *inode) 817 { 818 down_write(&inode->i_rwsem); 819 } 820 821 static inline void inode_unlock(struct inode *inode) 822 { 823 up_write(&inode->i_rwsem); 824 } 825 826 static inline void inode_lock_shared(struct inode *inode) 827 { 828 down_read(&inode->i_rwsem); 829 } 830 831 static inline void inode_unlock_shared(struct inode *inode) 832 { 833 up_read(&inode->i_rwsem); 834 } 835 836 static inline int inode_trylock(struct inode *inode) 837 { 838 return down_write_trylock(&inode->i_rwsem); 839 } 840 841 static inline int inode_trylock_shared(struct inode *inode) 842 { 843 return down_read_trylock(&inode->i_rwsem); 844 } 845 846 static inline int inode_is_locked(struct inode *inode) 847 { 848 return rwsem_is_locked(&inode->i_rwsem); 849 } 850 851 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 852 { 853 down_write_nested(&inode->i_rwsem, subclass); 854 } 855 856 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 857 { 858 down_read_nested(&inode->i_rwsem, subclass); 859 } 860 861 static inline void filemap_invalidate_lock(struct address_space *mapping) 862 { 863 down_write(&mapping->invalidate_lock); 864 } 865 866 static inline void filemap_invalidate_unlock(struct address_space *mapping) 867 { 868 up_write(&mapping->invalidate_lock); 869 } 870 871 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 872 { 873 down_read(&mapping->invalidate_lock); 874 } 875 876 static inline int filemap_invalidate_trylock_shared( 877 struct address_space *mapping) 878 { 879 return down_read_trylock(&mapping->invalidate_lock); 880 } 881 882 static inline void filemap_invalidate_unlock_shared( 883 struct address_space *mapping) 884 { 885 up_read(&mapping->invalidate_lock); 886 } 887 888 void lock_two_nondirectories(struct inode *, struct inode*); 889 void unlock_two_nondirectories(struct inode *, struct inode*); 890 891 void filemap_invalidate_lock_two(struct address_space *mapping1, 892 struct address_space *mapping2); 893 void filemap_invalidate_unlock_two(struct address_space *mapping1, 894 struct address_space *mapping2); 895 896 897 /* 898 * NOTE: in a 32bit arch with a preemptable kernel and 899 * an UP compile the i_size_read/write must be atomic 900 * with respect to the local cpu (unlike with preempt disabled), 901 * but they don't need to be atomic with respect to other cpus like in 902 * true SMP (so they need either to either locally disable irq around 903 * the read or for example on x86 they can be still implemented as a 904 * cmpxchg8b without the need of the lock prefix). For SMP compiles 905 * and 64bit archs it makes no difference if preempt is enabled or not. 906 */ 907 static inline loff_t i_size_read(const struct inode *inode) 908 { 909 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 910 loff_t i_size; 911 unsigned int seq; 912 913 do { 914 seq = read_seqcount_begin(&inode->i_size_seqcount); 915 i_size = inode->i_size; 916 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 917 return i_size; 918 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 919 loff_t i_size; 920 921 preempt_disable(); 922 i_size = inode->i_size; 923 preempt_enable(); 924 return i_size; 925 #else 926 /* Pairs with smp_store_release() in i_size_write() */ 927 return smp_load_acquire(&inode->i_size); 928 #endif 929 } 930 931 /* 932 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 933 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 934 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 935 */ 936 static inline void i_size_write(struct inode *inode, loff_t i_size) 937 { 938 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 939 preempt_disable(); 940 write_seqcount_begin(&inode->i_size_seqcount); 941 inode->i_size = i_size; 942 write_seqcount_end(&inode->i_size_seqcount); 943 preempt_enable(); 944 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 945 preempt_disable(); 946 inode->i_size = i_size; 947 preempt_enable(); 948 #else 949 /* 950 * Pairs with smp_load_acquire() in i_size_read() to ensure 951 * changes related to inode size (such as page contents) are 952 * visible before we see the changed inode size. 953 */ 954 smp_store_release(&inode->i_size, i_size); 955 #endif 956 } 957 958 static inline unsigned iminor(const struct inode *inode) 959 { 960 return MINOR(inode->i_rdev); 961 } 962 963 static inline unsigned imajor(const struct inode *inode) 964 { 965 return MAJOR(inode->i_rdev); 966 } 967 968 struct fown_struct { 969 struct file *file; /* backpointer for security modules */ 970 rwlock_t lock; /* protects pid, uid, euid fields */ 971 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 972 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 973 kuid_t uid, euid; /* uid/euid of process setting the owner */ 974 int signum; /* posix.1b rt signal to be delivered on IO */ 975 }; 976 977 /** 978 * struct file_ra_state - Track a file's readahead state. 979 * @start: Where the most recent readahead started. 980 * @size: Number of pages read in the most recent readahead. 981 * @async_size: Numer of pages that were/are not needed immediately 982 * and so were/are genuinely "ahead". Start next readahead when 983 * the first of these pages is accessed. 984 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 985 * @mmap_miss: How many mmap accesses missed in the page cache. 986 * @prev_pos: The last byte in the most recent read request. 987 * 988 * When this structure is passed to ->readahead(), the "most recent" 989 * readahead means the current readahead. 990 */ 991 struct file_ra_state { 992 pgoff_t start; 993 unsigned int size; 994 unsigned int async_size; 995 unsigned int ra_pages; 996 unsigned int mmap_miss; 997 loff_t prev_pos; 998 }; 999 1000 /* 1001 * Check if @index falls in the readahead windows. 1002 */ 1003 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1004 { 1005 return (index >= ra->start && 1006 index < ra->start + ra->size); 1007 } 1008 1009 /** 1010 * struct file - Represents a file 1011 * @f_ref: reference count 1012 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1013 * @f_mode: FMODE_* flags often used in hotpaths 1014 * @f_op: file operations 1015 * @f_mapping: Contents of a cacheable, mappable object. 1016 * @private_data: filesystem or driver specific data 1017 * @f_inode: cached inode 1018 * @f_flags: file flags 1019 * @f_iocb_flags: iocb flags 1020 * @f_cred: stashed credentials of creator/opener 1021 * @f_path: path of the file 1022 * @f_pos_lock: lock protecting file position 1023 * @f_pipe: specific to pipes 1024 * @f_pos: file position 1025 * @f_security: LSM security context of this file 1026 * @f_owner: file owner 1027 * @f_wb_err: writeback error 1028 * @f_sb_err: per sb writeback errors 1029 * @f_ep: link of all epoll hooks for this file 1030 * @f_task_work: task work entry point 1031 * @f_llist: work queue entrypoint 1032 * @f_ra: file's readahead state 1033 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1034 */ 1035 struct file { 1036 file_ref_t f_ref; 1037 spinlock_t f_lock; 1038 fmode_t f_mode; 1039 const struct file_operations *f_op; 1040 struct address_space *f_mapping; 1041 void *private_data; 1042 struct inode *f_inode; 1043 unsigned int f_flags; 1044 unsigned int f_iocb_flags; 1045 const struct cred *f_cred; 1046 /* --- cacheline 1 boundary (64 bytes) --- */ 1047 struct path f_path; 1048 union { 1049 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1050 struct mutex f_pos_lock; 1051 /* pipes */ 1052 u64 f_pipe; 1053 }; 1054 loff_t f_pos; 1055 #ifdef CONFIG_SECURITY 1056 void *f_security; 1057 #endif 1058 /* --- cacheline 2 boundary (128 bytes) --- */ 1059 struct fown_struct *f_owner; 1060 errseq_t f_wb_err; 1061 errseq_t f_sb_err; 1062 #ifdef CONFIG_EPOLL 1063 struct hlist_head *f_ep; 1064 #endif 1065 union { 1066 struct callback_head f_task_work; 1067 struct llist_node f_llist; 1068 struct file_ra_state f_ra; 1069 freeptr_t f_freeptr; 1070 }; 1071 /* --- cacheline 3 boundary (192 bytes) --- */ 1072 } __randomize_layout 1073 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1074 1075 struct file_handle { 1076 __u32 handle_bytes; 1077 int handle_type; 1078 /* file identifier */ 1079 unsigned char f_handle[] __counted_by(handle_bytes); 1080 }; 1081 1082 static inline struct file *get_file(struct file *f) 1083 { 1084 file_ref_inc(&f->f_ref); 1085 return f; 1086 } 1087 1088 struct file *get_file_rcu(struct file __rcu **f); 1089 struct file *get_file_active(struct file **f); 1090 1091 #define file_count(f) file_ref_read(&(f)->f_ref) 1092 1093 #define MAX_NON_LFS ((1UL<<31) - 1) 1094 1095 /* Page cache limit. The filesystems should put that into their s_maxbytes 1096 limits, otherwise bad things can happen in VM. */ 1097 #if BITS_PER_LONG==32 1098 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1099 #elif BITS_PER_LONG==64 1100 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1101 #endif 1102 1103 /* legacy typedef, should eventually be removed */ 1104 typedef void *fl_owner_t; 1105 1106 struct file_lock; 1107 struct file_lease; 1108 1109 /* The following constant reflects the upper bound of the file/locking space */ 1110 #ifndef OFFSET_MAX 1111 #define OFFSET_MAX type_max(loff_t) 1112 #define OFFT_OFFSET_MAX type_max(off_t) 1113 #endif 1114 1115 int file_f_owner_allocate(struct file *file); 1116 static inline struct fown_struct *file_f_owner(const struct file *file) 1117 { 1118 return READ_ONCE(file->f_owner); 1119 } 1120 1121 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1122 1123 static inline struct inode *file_inode(const struct file *f) 1124 { 1125 return f->f_inode; 1126 } 1127 1128 /* 1129 * file_dentry() is a relic from the days that overlayfs was using files with a 1130 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1131 * In those days, file_dentry() was needed to get the underlying fs dentry that 1132 * matches f_inode. 1133 * Files with "fake" path should not exist nowadays, so use an assertion to make 1134 * sure that file_dentry() was not papering over filesystem bugs. 1135 */ 1136 static inline struct dentry *file_dentry(const struct file *file) 1137 { 1138 struct dentry *dentry = file->f_path.dentry; 1139 1140 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1141 return dentry; 1142 } 1143 1144 struct fasync_struct { 1145 rwlock_t fa_lock; 1146 int magic; 1147 int fa_fd; 1148 struct fasync_struct *fa_next; /* singly linked list */ 1149 struct file *fa_file; 1150 struct rcu_head fa_rcu; 1151 }; 1152 1153 #define FASYNC_MAGIC 0x4601 1154 1155 /* SMP safe fasync helpers: */ 1156 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1157 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1158 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1159 extern struct fasync_struct *fasync_alloc(void); 1160 extern void fasync_free(struct fasync_struct *); 1161 1162 /* can be called from interrupts */ 1163 extern void kill_fasync(struct fasync_struct **, int, int); 1164 1165 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1166 extern int f_setown(struct file *filp, int who, int force); 1167 extern void f_delown(struct file *filp); 1168 extern pid_t f_getown(struct file *filp); 1169 extern int send_sigurg(struct file *file); 1170 1171 /* 1172 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1173 * represented in both. 1174 */ 1175 #define SB_RDONLY BIT(0) /* Mount read-only */ 1176 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1177 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1178 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1179 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1180 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1181 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1182 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1183 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1184 #define SB_SILENT BIT(15) 1185 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1186 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1187 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1188 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1189 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1190 1191 /* These sb flags are internal to the kernel */ 1192 #define SB_DEAD BIT(21) 1193 #define SB_DYING BIT(24) 1194 #define SB_SUBMOUNT BIT(26) 1195 #define SB_FORCE BIT(27) 1196 #define SB_NOSEC BIT(28) 1197 #define SB_BORN BIT(29) 1198 #define SB_ACTIVE BIT(30) 1199 #define SB_NOUSER BIT(31) 1200 1201 /* These flags relate to encoding and casefolding */ 1202 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1203 1204 #define sb_has_strict_encoding(sb) \ 1205 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1206 1207 /* 1208 * Umount options 1209 */ 1210 1211 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1212 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1213 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1214 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1215 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1216 1217 /* sb->s_iflags */ 1218 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1219 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1220 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1221 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1222 1223 /* sb->s_iflags to limit user namespace mounts */ 1224 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1225 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1226 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1227 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1228 1229 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1230 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1231 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1232 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1233 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1234 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ 1235 1236 /* Possible states of 'frozen' field */ 1237 enum { 1238 SB_UNFROZEN = 0, /* FS is unfrozen */ 1239 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1240 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1241 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1242 * internal threads if needed) */ 1243 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1244 }; 1245 1246 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1247 1248 struct sb_writers { 1249 unsigned short frozen; /* Is sb frozen? */ 1250 int freeze_kcount; /* How many kernel freeze requests? */ 1251 int freeze_ucount; /* How many userspace freeze requests? */ 1252 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1253 }; 1254 1255 struct super_block { 1256 struct list_head s_list; /* Keep this first */ 1257 dev_t s_dev; /* search index; _not_ kdev_t */ 1258 unsigned char s_blocksize_bits; 1259 unsigned long s_blocksize; 1260 loff_t s_maxbytes; /* Max file size */ 1261 struct file_system_type *s_type; 1262 const struct super_operations *s_op; 1263 const struct dquot_operations *dq_op; 1264 const struct quotactl_ops *s_qcop; 1265 const struct export_operations *s_export_op; 1266 unsigned long s_flags; 1267 unsigned long s_iflags; /* internal SB_I_* flags */ 1268 unsigned long s_magic; 1269 struct dentry *s_root; 1270 struct rw_semaphore s_umount; 1271 int s_count; 1272 atomic_t s_active; 1273 #ifdef CONFIG_SECURITY 1274 void *s_security; 1275 #endif 1276 const struct xattr_handler * const *s_xattr; 1277 #ifdef CONFIG_FS_ENCRYPTION 1278 const struct fscrypt_operations *s_cop; 1279 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1280 #endif 1281 #ifdef CONFIG_FS_VERITY 1282 const struct fsverity_operations *s_vop; 1283 #endif 1284 #if IS_ENABLED(CONFIG_UNICODE) 1285 struct unicode_map *s_encoding; 1286 __u16 s_encoding_flags; 1287 #endif 1288 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1289 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1290 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1291 struct file *s_bdev_file; 1292 struct backing_dev_info *s_bdi; 1293 struct mtd_info *s_mtd; 1294 struct hlist_node s_instances; 1295 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1296 struct quota_info s_dquot; /* Diskquota specific options */ 1297 1298 struct sb_writers s_writers; 1299 1300 /* 1301 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1302 * s_fsnotify_info together for cache efficiency. They are frequently 1303 * accessed and rarely modified. 1304 */ 1305 void *s_fs_info; /* Filesystem private info */ 1306 1307 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1308 u32 s_time_gran; 1309 /* Time limits for c/m/atime in seconds */ 1310 time64_t s_time_min; 1311 time64_t s_time_max; 1312 #ifdef CONFIG_FSNOTIFY 1313 u32 s_fsnotify_mask; 1314 struct fsnotify_sb_info *s_fsnotify_info; 1315 #endif 1316 1317 /* 1318 * q: why are s_id and s_sysfs_name not the same? both are human 1319 * readable strings that identify the filesystem 1320 * a: s_id is allowed to change at runtime; it's used in log messages, 1321 * and we want to when a device starts out as single device (s_id is dev 1322 * name) but then a device is hot added and we have to switch to 1323 * identifying it by UUID 1324 * but s_sysfs_name is a handle for programmatic access, and can't 1325 * change at runtime 1326 */ 1327 char s_id[32]; /* Informational name */ 1328 uuid_t s_uuid; /* UUID */ 1329 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1330 1331 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1332 char s_sysfs_name[UUID_STRING_LEN + 1]; 1333 1334 unsigned int s_max_links; 1335 1336 /* 1337 * The next field is for VFS *only*. No filesystems have any business 1338 * even looking at it. You had been warned. 1339 */ 1340 struct mutex s_vfs_rename_mutex; /* Kludge */ 1341 1342 /* 1343 * Filesystem subtype. If non-empty the filesystem type field 1344 * in /proc/mounts will be "type.subtype" 1345 */ 1346 const char *s_subtype; 1347 1348 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1349 1350 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1351 1352 /* Number of inodes with nlink == 0 but still referenced */ 1353 atomic_long_t s_remove_count; 1354 1355 /* Read-only state of the superblock is being changed */ 1356 int s_readonly_remount; 1357 1358 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1359 errseq_t s_wb_err; 1360 1361 /* AIO completions deferred from interrupt context */ 1362 struct workqueue_struct *s_dio_done_wq; 1363 struct hlist_head s_pins; 1364 1365 /* 1366 * Owning user namespace and default context in which to 1367 * interpret filesystem uids, gids, quotas, device nodes, 1368 * xattrs and security labels. 1369 */ 1370 struct user_namespace *s_user_ns; 1371 1372 /* 1373 * The list_lru structure is essentially just a pointer to a table 1374 * of per-node lru lists, each of which has its own spinlock. 1375 * There is no need to put them into separate cachelines. 1376 */ 1377 struct list_lru s_dentry_lru; 1378 struct list_lru s_inode_lru; 1379 struct rcu_head rcu; 1380 struct work_struct destroy_work; 1381 1382 struct mutex s_sync_lock; /* sync serialisation lock */ 1383 1384 /* 1385 * Indicates how deep in a filesystem stack this SB is 1386 */ 1387 int s_stack_depth; 1388 1389 /* s_inode_list_lock protects s_inodes */ 1390 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1391 struct list_head s_inodes; /* all inodes */ 1392 1393 spinlock_t s_inode_wblist_lock; 1394 struct list_head s_inodes_wb; /* writeback inodes */ 1395 } __randomize_layout; 1396 1397 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1398 { 1399 return inode->i_sb->s_user_ns; 1400 } 1401 1402 /* Helper functions so that in most cases filesystems will 1403 * not need to deal directly with kuid_t and kgid_t and can 1404 * instead deal with the raw numeric values that are stored 1405 * in the filesystem. 1406 */ 1407 static inline uid_t i_uid_read(const struct inode *inode) 1408 { 1409 return from_kuid(i_user_ns(inode), inode->i_uid); 1410 } 1411 1412 static inline gid_t i_gid_read(const struct inode *inode) 1413 { 1414 return from_kgid(i_user_ns(inode), inode->i_gid); 1415 } 1416 1417 static inline void i_uid_write(struct inode *inode, uid_t uid) 1418 { 1419 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1420 } 1421 1422 static inline void i_gid_write(struct inode *inode, gid_t gid) 1423 { 1424 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1425 } 1426 1427 /** 1428 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1429 * @idmap: idmap of the mount the inode was found from 1430 * @inode: inode to map 1431 * 1432 * Return: whe inode's i_uid mapped down according to @idmap. 1433 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1434 */ 1435 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1436 const struct inode *inode) 1437 { 1438 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1439 } 1440 1441 /** 1442 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1443 * @idmap: idmap of the mount the inode was found from 1444 * @attr: the new attributes of @inode 1445 * @inode: the inode to update 1446 * 1447 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1448 * mounts into account if the filesystem supports it. 1449 * 1450 * Return: true if @inode's i_uid field needs to be updated, false if not. 1451 */ 1452 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1453 const struct iattr *attr, 1454 const struct inode *inode) 1455 { 1456 return ((attr->ia_valid & ATTR_UID) && 1457 !vfsuid_eq(attr->ia_vfsuid, 1458 i_uid_into_vfsuid(idmap, inode))); 1459 } 1460 1461 /** 1462 * i_uid_update - update @inode's i_uid field 1463 * @idmap: idmap of the mount the inode was found from 1464 * @attr: the new attributes of @inode 1465 * @inode: the inode to update 1466 * 1467 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1468 * mount into the filesystem kuid. 1469 */ 1470 static inline void i_uid_update(struct mnt_idmap *idmap, 1471 const struct iattr *attr, 1472 struct inode *inode) 1473 { 1474 if (attr->ia_valid & ATTR_UID) 1475 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1476 attr->ia_vfsuid); 1477 } 1478 1479 /** 1480 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1481 * @idmap: idmap of the mount the inode was found from 1482 * @inode: inode to map 1483 * 1484 * Return: the inode's i_gid mapped down according to @idmap. 1485 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1486 */ 1487 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1488 const struct inode *inode) 1489 { 1490 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1491 } 1492 1493 /** 1494 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1495 * @idmap: idmap of the mount the inode was found from 1496 * @attr: the new attributes of @inode 1497 * @inode: the inode to update 1498 * 1499 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1500 * mounts into account if the filesystem supports it. 1501 * 1502 * Return: true if @inode's i_gid field needs to be updated, false if not. 1503 */ 1504 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1505 const struct iattr *attr, 1506 const struct inode *inode) 1507 { 1508 return ((attr->ia_valid & ATTR_GID) && 1509 !vfsgid_eq(attr->ia_vfsgid, 1510 i_gid_into_vfsgid(idmap, inode))); 1511 } 1512 1513 /** 1514 * i_gid_update - update @inode's i_gid field 1515 * @idmap: idmap of the mount the inode was found from 1516 * @attr: the new attributes of @inode 1517 * @inode: the inode to update 1518 * 1519 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1520 * mount into the filesystem kgid. 1521 */ 1522 static inline void i_gid_update(struct mnt_idmap *idmap, 1523 const struct iattr *attr, 1524 struct inode *inode) 1525 { 1526 if (attr->ia_valid & ATTR_GID) 1527 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1528 attr->ia_vfsgid); 1529 } 1530 1531 /** 1532 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1533 * @inode: inode to initialize 1534 * @idmap: idmap of the mount the inode was found from 1535 * 1536 * Initialize the i_uid field of @inode. If the inode was found/created via 1537 * an idmapped mount map the caller's fsuid according to @idmap. 1538 */ 1539 static inline void inode_fsuid_set(struct inode *inode, 1540 struct mnt_idmap *idmap) 1541 { 1542 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1543 } 1544 1545 /** 1546 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1547 * @inode: inode to initialize 1548 * @idmap: idmap of the mount the inode was found from 1549 * 1550 * Initialize the i_gid field of @inode. If the inode was found/created via 1551 * an idmapped mount map the caller's fsgid according to @idmap. 1552 */ 1553 static inline void inode_fsgid_set(struct inode *inode, 1554 struct mnt_idmap *idmap) 1555 { 1556 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1557 } 1558 1559 /** 1560 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1561 * @sb: the superblock we want a mapping in 1562 * @idmap: idmap of the relevant mount 1563 * 1564 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1565 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1566 * the caller's fsuid and fsgid according to the @idmap first. 1567 * 1568 * Return: true if fsuid and fsgid is mapped, false if not. 1569 */ 1570 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1571 struct mnt_idmap *idmap) 1572 { 1573 struct user_namespace *fs_userns = sb->s_user_ns; 1574 kuid_t kuid; 1575 kgid_t kgid; 1576 1577 kuid = mapped_fsuid(idmap, fs_userns); 1578 if (!uid_valid(kuid)) 1579 return false; 1580 kgid = mapped_fsgid(idmap, fs_userns); 1581 if (!gid_valid(kgid)) 1582 return false; 1583 return kuid_has_mapping(fs_userns, kuid) && 1584 kgid_has_mapping(fs_userns, kgid); 1585 } 1586 1587 struct timespec64 current_time(struct inode *inode); 1588 struct timespec64 inode_set_ctime_current(struct inode *inode); 1589 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1590 struct timespec64 update); 1591 1592 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1593 { 1594 return inode->i_atime_sec; 1595 } 1596 1597 static inline long inode_get_atime_nsec(const struct inode *inode) 1598 { 1599 return inode->i_atime_nsec; 1600 } 1601 1602 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1603 { 1604 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1605 .tv_nsec = inode_get_atime_nsec(inode) }; 1606 1607 return ts; 1608 } 1609 1610 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1611 struct timespec64 ts) 1612 { 1613 inode->i_atime_sec = ts.tv_sec; 1614 inode->i_atime_nsec = ts.tv_nsec; 1615 return ts; 1616 } 1617 1618 static inline struct timespec64 inode_set_atime(struct inode *inode, 1619 time64_t sec, long nsec) 1620 { 1621 struct timespec64 ts = { .tv_sec = sec, 1622 .tv_nsec = nsec }; 1623 1624 return inode_set_atime_to_ts(inode, ts); 1625 } 1626 1627 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1628 { 1629 return inode->i_mtime_sec; 1630 } 1631 1632 static inline long inode_get_mtime_nsec(const struct inode *inode) 1633 { 1634 return inode->i_mtime_nsec; 1635 } 1636 1637 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1638 { 1639 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1640 .tv_nsec = inode_get_mtime_nsec(inode) }; 1641 return ts; 1642 } 1643 1644 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1645 struct timespec64 ts) 1646 { 1647 inode->i_mtime_sec = ts.tv_sec; 1648 inode->i_mtime_nsec = ts.tv_nsec; 1649 return ts; 1650 } 1651 1652 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1653 time64_t sec, long nsec) 1654 { 1655 struct timespec64 ts = { .tv_sec = sec, 1656 .tv_nsec = nsec }; 1657 return inode_set_mtime_to_ts(inode, ts); 1658 } 1659 1660 /* 1661 * Multigrain timestamps 1662 * 1663 * Conditionally use fine-grained ctime and mtime timestamps when there 1664 * are users actively observing them via getattr. The primary use-case 1665 * for this is NFS clients that use the ctime to distinguish between 1666 * different states of the file, and that are often fooled by multiple 1667 * operations that occur in the same coarse-grained timer tick. 1668 */ 1669 #define I_CTIME_QUERIED ((u32)BIT(31)) 1670 1671 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1672 { 1673 return inode->i_ctime_sec; 1674 } 1675 1676 static inline long inode_get_ctime_nsec(const struct inode *inode) 1677 { 1678 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1679 } 1680 1681 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1682 { 1683 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1684 .tv_nsec = inode_get_ctime_nsec(inode) }; 1685 1686 return ts; 1687 } 1688 1689 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1690 1691 /** 1692 * inode_set_ctime - set the ctime in the inode 1693 * @inode: inode in which to set the ctime 1694 * @sec: tv_sec value to set 1695 * @nsec: tv_nsec value to set 1696 * 1697 * Set the ctime in @inode to { @sec, @nsec } 1698 */ 1699 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1700 time64_t sec, long nsec) 1701 { 1702 struct timespec64 ts = { .tv_sec = sec, 1703 .tv_nsec = nsec }; 1704 1705 return inode_set_ctime_to_ts(inode, ts); 1706 } 1707 1708 struct timespec64 simple_inode_init_ts(struct inode *inode); 1709 1710 /* 1711 * Snapshotting support. 1712 */ 1713 1714 /* 1715 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1716 * instead. 1717 */ 1718 static inline void __sb_end_write(struct super_block *sb, int level) 1719 { 1720 percpu_up_read(sb->s_writers.rw_sem + level-1); 1721 } 1722 1723 static inline void __sb_start_write(struct super_block *sb, int level) 1724 { 1725 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1726 } 1727 1728 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1729 { 1730 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1731 } 1732 1733 #define __sb_writers_acquired(sb, lev) \ 1734 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1735 #define __sb_writers_release(sb, lev) \ 1736 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) 1737 1738 /** 1739 * __sb_write_started - check if sb freeze level is held 1740 * @sb: the super we write to 1741 * @level: the freeze level 1742 * 1743 * * > 0 - sb freeze level is held 1744 * * 0 - sb freeze level is not held 1745 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1746 */ 1747 static inline int __sb_write_started(const struct super_block *sb, int level) 1748 { 1749 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1750 } 1751 1752 /** 1753 * sb_write_started - check if SB_FREEZE_WRITE is held 1754 * @sb: the super we write to 1755 * 1756 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1757 */ 1758 static inline bool sb_write_started(const struct super_block *sb) 1759 { 1760 return __sb_write_started(sb, SB_FREEZE_WRITE); 1761 } 1762 1763 /** 1764 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1765 * @sb: the super we write to 1766 * 1767 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1768 */ 1769 static inline bool sb_write_not_started(const struct super_block *sb) 1770 { 1771 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1772 } 1773 1774 /** 1775 * file_write_started - check if SB_FREEZE_WRITE is held 1776 * @file: the file we write to 1777 * 1778 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1779 * May be false positive with !S_ISREG, because file_start_write() has 1780 * no effect on !S_ISREG. 1781 */ 1782 static inline bool file_write_started(const struct file *file) 1783 { 1784 if (!S_ISREG(file_inode(file)->i_mode)) 1785 return true; 1786 return sb_write_started(file_inode(file)->i_sb); 1787 } 1788 1789 /** 1790 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1791 * @file: the file we write to 1792 * 1793 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1794 * May be false positive with !S_ISREG, because file_start_write() has 1795 * no effect on !S_ISREG. 1796 */ 1797 static inline bool file_write_not_started(const struct file *file) 1798 { 1799 if (!S_ISREG(file_inode(file)->i_mode)) 1800 return true; 1801 return sb_write_not_started(file_inode(file)->i_sb); 1802 } 1803 1804 /** 1805 * sb_end_write - drop write access to a superblock 1806 * @sb: the super we wrote to 1807 * 1808 * Decrement number of writers to the filesystem. Wake up possible waiters 1809 * wanting to freeze the filesystem. 1810 */ 1811 static inline void sb_end_write(struct super_block *sb) 1812 { 1813 __sb_end_write(sb, SB_FREEZE_WRITE); 1814 } 1815 1816 /** 1817 * sb_end_pagefault - drop write access to a superblock from a page fault 1818 * @sb: the super we wrote to 1819 * 1820 * Decrement number of processes handling write page fault to the filesystem. 1821 * Wake up possible waiters wanting to freeze the filesystem. 1822 */ 1823 static inline void sb_end_pagefault(struct super_block *sb) 1824 { 1825 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1826 } 1827 1828 /** 1829 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1830 * @sb: the super we wrote to 1831 * 1832 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1833 * waiters wanting to freeze the filesystem. 1834 */ 1835 static inline void sb_end_intwrite(struct super_block *sb) 1836 { 1837 __sb_end_write(sb, SB_FREEZE_FS); 1838 } 1839 1840 /** 1841 * sb_start_write - get write access to a superblock 1842 * @sb: the super we write to 1843 * 1844 * When a process wants to write data or metadata to a file system (i.e. dirty 1845 * a page or an inode), it should embed the operation in a sb_start_write() - 1846 * sb_end_write() pair to get exclusion against file system freezing. This 1847 * function increments number of writers preventing freezing. If the file 1848 * system is already frozen, the function waits until the file system is 1849 * thawed. 1850 * 1851 * Since freeze protection behaves as a lock, users have to preserve 1852 * ordering of freeze protection and other filesystem locks. Generally, 1853 * freeze protection should be the outermost lock. In particular, we have: 1854 * 1855 * sb_start_write 1856 * -> i_mutex (write path, truncate, directory ops, ...) 1857 * -> s_umount (freeze_super, thaw_super) 1858 */ 1859 static inline void sb_start_write(struct super_block *sb) 1860 { 1861 __sb_start_write(sb, SB_FREEZE_WRITE); 1862 } 1863 1864 static inline bool sb_start_write_trylock(struct super_block *sb) 1865 { 1866 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1867 } 1868 1869 /** 1870 * sb_start_pagefault - get write access to a superblock from a page fault 1871 * @sb: the super we write to 1872 * 1873 * When a process starts handling write page fault, it should embed the 1874 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1875 * exclusion against file system freezing. This is needed since the page fault 1876 * is going to dirty a page. This function increments number of running page 1877 * faults preventing freezing. If the file system is already frozen, the 1878 * function waits until the file system is thawed. 1879 * 1880 * Since page fault freeze protection behaves as a lock, users have to preserve 1881 * ordering of freeze protection and other filesystem locks. It is advised to 1882 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1883 * handling code implies lock dependency: 1884 * 1885 * mmap_lock 1886 * -> sb_start_pagefault 1887 */ 1888 static inline void sb_start_pagefault(struct super_block *sb) 1889 { 1890 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1891 } 1892 1893 /** 1894 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1895 * @sb: the super we write to 1896 * 1897 * This is the third level of protection against filesystem freezing. It is 1898 * free for use by a filesystem. The only requirement is that it must rank 1899 * below sb_start_pagefault. 1900 * 1901 * For example filesystem can call sb_start_intwrite() when starting a 1902 * transaction which somewhat eases handling of freezing for internal sources 1903 * of filesystem changes (internal fs threads, discarding preallocation on file 1904 * close, etc.). 1905 */ 1906 static inline void sb_start_intwrite(struct super_block *sb) 1907 { 1908 __sb_start_write(sb, SB_FREEZE_FS); 1909 } 1910 1911 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1912 { 1913 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1914 } 1915 1916 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1917 const struct inode *inode); 1918 1919 /* 1920 * VFS helper functions.. 1921 */ 1922 int vfs_create(struct mnt_idmap *, struct inode *, 1923 struct dentry *, umode_t, bool); 1924 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1925 struct dentry *, umode_t); 1926 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1927 umode_t, dev_t); 1928 int vfs_symlink(struct mnt_idmap *, struct inode *, 1929 struct dentry *, const char *); 1930 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1931 struct dentry *, struct inode **); 1932 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1933 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1934 struct inode **); 1935 1936 /** 1937 * struct renamedata - contains all information required for renaming 1938 * @old_mnt_idmap: idmap of the old mount the inode was found from 1939 * @old_dir: parent of source 1940 * @old_dentry: source 1941 * @new_mnt_idmap: idmap of the new mount the inode was found from 1942 * @new_dir: parent of destination 1943 * @new_dentry: destination 1944 * @delegated_inode: returns an inode needing a delegation break 1945 * @flags: rename flags 1946 */ 1947 struct renamedata { 1948 struct mnt_idmap *old_mnt_idmap; 1949 struct inode *old_dir; 1950 struct dentry *old_dentry; 1951 struct mnt_idmap *new_mnt_idmap; 1952 struct inode *new_dir; 1953 struct dentry *new_dentry; 1954 struct inode **delegated_inode; 1955 unsigned int flags; 1956 } __randomize_layout; 1957 1958 int vfs_rename(struct renamedata *); 1959 1960 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1961 struct inode *dir, struct dentry *dentry) 1962 { 1963 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1964 WHITEOUT_DEV); 1965 } 1966 1967 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1968 const struct path *parentpath, 1969 umode_t mode, int open_flag, 1970 const struct cred *cred); 1971 struct file *kernel_file_open(const struct path *path, int flags, 1972 const struct cred *cred); 1973 1974 int vfs_mkobj(struct dentry *, umode_t, 1975 int (*f)(struct dentry *, umode_t, void *), 1976 void *); 1977 1978 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1979 int vfs_fchmod(struct file *file, umode_t mode); 1980 int vfs_utimes(const struct path *path, struct timespec64 *times); 1981 1982 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1983 1984 #ifdef CONFIG_COMPAT 1985 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1986 unsigned long arg); 1987 #else 1988 #define compat_ptr_ioctl NULL 1989 #endif 1990 1991 /* 1992 * VFS file helper functions. 1993 */ 1994 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1995 const struct inode *dir, umode_t mode); 1996 extern bool may_open_dev(const struct path *path); 1997 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1998 const struct inode *dir, umode_t mode); 1999 bool in_group_or_capable(struct mnt_idmap *idmap, 2000 const struct inode *inode, vfsgid_t vfsgid); 2001 2002 /* 2003 * This is the "filldir" function type, used by readdir() to let 2004 * the kernel specify what kind of dirent layout it wants to have. 2005 * This allows the kernel to read directories into kernel space or 2006 * to have different dirent layouts depending on the binary type. 2007 * Return 'true' to keep going and 'false' if there are no more entries. 2008 */ 2009 struct dir_context; 2010 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 2011 unsigned); 2012 2013 struct dir_context { 2014 filldir_t actor; 2015 loff_t pos; 2016 }; 2017 2018 /* 2019 * These flags let !MMU mmap() govern direct device mapping vs immediate 2020 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 2021 * 2022 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 2023 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 2024 * NOMMU_MAP_READ: Can be mapped for reading 2025 * NOMMU_MAP_WRITE: Can be mapped for writing 2026 * NOMMU_MAP_EXEC: Can be mapped for execution 2027 */ 2028 #define NOMMU_MAP_COPY 0x00000001 2029 #define NOMMU_MAP_DIRECT 0x00000008 2030 #define NOMMU_MAP_READ VM_MAYREAD 2031 #define NOMMU_MAP_WRITE VM_MAYWRITE 2032 #define NOMMU_MAP_EXEC VM_MAYEXEC 2033 2034 #define NOMMU_VMFLAGS \ 2035 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 2036 2037 /* 2038 * These flags control the behavior of the remap_file_range function pointer. 2039 * If it is called with len == 0 that means "remap to end of source file". 2040 * See Documentation/filesystems/vfs.rst for more details about this call. 2041 * 2042 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 2043 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 2044 */ 2045 #define REMAP_FILE_DEDUP (1 << 0) 2046 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 2047 2048 /* 2049 * These flags signal that the caller is ok with altering various aspects of 2050 * the behavior of the remap operation. The changes must be made by the 2051 * implementation; the vfs remap helper functions can take advantage of them. 2052 * Flags in this category exist to preserve the quirky behavior of the hoisted 2053 * btrfs clone/dedupe ioctls. 2054 */ 2055 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2056 2057 /* 2058 * These flags control the behavior of vfs_copy_file_range(). 2059 * They are not available to the user via syscall. 2060 * 2061 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2062 */ 2063 #define COPY_FILE_SPLICE (1 << 0) 2064 2065 struct iov_iter; 2066 struct io_uring_cmd; 2067 struct offset_ctx; 2068 2069 typedef unsigned int __bitwise fop_flags_t; 2070 2071 struct file_operations { 2072 struct module *owner; 2073 fop_flags_t fop_flags; 2074 loff_t (*llseek) (struct file *, loff_t, int); 2075 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2076 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2077 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2078 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2079 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2080 unsigned int flags); 2081 int (*iterate_shared) (struct file *, struct dir_context *); 2082 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2083 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2084 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2085 int (*mmap) (struct file *, struct vm_area_struct *); 2086 int (*open) (struct inode *, struct file *); 2087 int (*flush) (struct file *, fl_owner_t id); 2088 int (*release) (struct inode *, struct file *); 2089 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2090 int (*fasync) (int, struct file *, int); 2091 int (*lock) (struct file *, int, struct file_lock *); 2092 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2093 int (*check_flags)(int); 2094 int (*flock) (struct file *, int, struct file_lock *); 2095 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2096 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2097 void (*splice_eof)(struct file *file); 2098 int (*setlease)(struct file *, int, struct file_lease **, void **); 2099 long (*fallocate)(struct file *file, int mode, loff_t offset, 2100 loff_t len); 2101 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2102 #ifndef CONFIG_MMU 2103 unsigned (*mmap_capabilities)(struct file *); 2104 #endif 2105 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2106 loff_t, size_t, unsigned int); 2107 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2108 struct file *file_out, loff_t pos_out, 2109 loff_t len, unsigned int remap_flags); 2110 int (*fadvise)(struct file *, loff_t, loff_t, int); 2111 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2112 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2113 unsigned int poll_flags); 2114 } __randomize_layout; 2115 2116 /* Supports async buffered reads */ 2117 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2118 /* Supports async buffered writes */ 2119 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2120 /* Supports synchronous page faults for mappings */ 2121 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2122 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2123 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2124 /* Contains huge pages */ 2125 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2126 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 2127 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 2128 /* Supports asynchronous lock callbacks */ 2129 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 2130 2131 /* Wrap a directory iterator that needs exclusive inode access */ 2132 int wrap_directory_iterator(struct file *, struct dir_context *, 2133 int (*) (struct file *, struct dir_context *)); 2134 #define WRAP_DIR_ITER(x) \ 2135 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2136 { return wrap_directory_iterator(file, ctx, x); } 2137 2138 struct inode_operations { 2139 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2140 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2141 int (*permission) (struct mnt_idmap *, struct inode *, int); 2142 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2143 2144 int (*readlink) (struct dentry *, char __user *,int); 2145 2146 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2147 umode_t, bool); 2148 int (*link) (struct dentry *,struct inode *,struct dentry *); 2149 int (*unlink) (struct inode *,struct dentry *); 2150 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2151 const char *); 2152 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2153 umode_t); 2154 int (*rmdir) (struct inode *,struct dentry *); 2155 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2156 umode_t,dev_t); 2157 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2158 struct inode *, struct dentry *, unsigned int); 2159 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2160 int (*getattr) (struct mnt_idmap *, const struct path *, 2161 struct kstat *, u32, unsigned int); 2162 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2163 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2164 u64 len); 2165 int (*update_time)(struct inode *, int); 2166 int (*atomic_open)(struct inode *, struct dentry *, 2167 struct file *, unsigned open_flag, 2168 umode_t create_mode); 2169 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2170 struct file *, umode_t); 2171 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2172 int); 2173 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2174 struct posix_acl *, int); 2175 int (*fileattr_set)(struct mnt_idmap *idmap, 2176 struct dentry *dentry, struct fileattr *fa); 2177 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2178 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2179 } ____cacheline_aligned; 2180 2181 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2182 { 2183 return file->f_op->mmap(file, vma); 2184 } 2185 2186 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2187 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2188 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2189 loff_t, size_t, unsigned int); 2190 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2191 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2192 struct file *file_out, loff_t pos_out, 2193 loff_t *len, unsigned int remap_flags, 2194 const struct iomap_ops *dax_read_ops); 2195 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2196 struct file *file_out, loff_t pos_out, 2197 loff_t *count, unsigned int remap_flags); 2198 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2199 struct file *file_out, loff_t pos_out, 2200 loff_t len, unsigned int remap_flags); 2201 extern int vfs_dedupe_file_range(struct file *file, 2202 struct file_dedupe_range *same); 2203 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2204 struct file *dst_file, loff_t dst_pos, 2205 loff_t len, unsigned int remap_flags); 2206 2207 /** 2208 * enum freeze_holder - holder of the freeze 2209 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2210 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2211 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2212 * 2213 * Indicate who the owner of the freeze or thaw request is and whether 2214 * the freeze needs to be exclusive or can nest. 2215 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2216 * same holder aren't allowed. It is however allowed to hold a single 2217 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2218 * the same time. This is relied upon by some filesystems during online 2219 * repair or similar. 2220 */ 2221 enum freeze_holder { 2222 FREEZE_HOLDER_KERNEL = (1U << 0), 2223 FREEZE_HOLDER_USERSPACE = (1U << 1), 2224 FREEZE_MAY_NEST = (1U << 2), 2225 }; 2226 2227 struct super_operations { 2228 struct inode *(*alloc_inode)(struct super_block *sb); 2229 void (*destroy_inode)(struct inode *); 2230 void (*free_inode)(struct inode *); 2231 2232 void (*dirty_inode) (struct inode *, int flags); 2233 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2234 int (*drop_inode) (struct inode *); 2235 void (*evict_inode) (struct inode *); 2236 void (*put_super) (struct super_block *); 2237 int (*sync_fs)(struct super_block *sb, int wait); 2238 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2239 int (*freeze_fs) (struct super_block *); 2240 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2241 int (*unfreeze_fs) (struct super_block *); 2242 int (*statfs) (struct dentry *, struct kstatfs *); 2243 int (*remount_fs) (struct super_block *, int *, char *); 2244 void (*umount_begin) (struct super_block *); 2245 2246 int (*show_options)(struct seq_file *, struct dentry *); 2247 int (*show_devname)(struct seq_file *, struct dentry *); 2248 int (*show_path)(struct seq_file *, struct dentry *); 2249 int (*show_stats)(struct seq_file *, struct dentry *); 2250 #ifdef CONFIG_QUOTA 2251 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2252 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2253 struct dquot __rcu **(*get_dquots)(struct inode *); 2254 #endif 2255 long (*nr_cached_objects)(struct super_block *, 2256 struct shrink_control *); 2257 long (*free_cached_objects)(struct super_block *, 2258 struct shrink_control *); 2259 void (*shutdown)(struct super_block *sb); 2260 }; 2261 2262 /* 2263 * Inode flags - they have no relation to superblock flags now 2264 */ 2265 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2266 #define S_NOATIME (1 << 1) /* Do not update access times */ 2267 #define S_APPEND (1 << 2) /* Append-only file */ 2268 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2269 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2270 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2271 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2272 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2273 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2274 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2275 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2276 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2277 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2278 #ifdef CONFIG_FS_DAX 2279 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2280 #else 2281 #define S_DAX 0 /* Make all the DAX code disappear */ 2282 #endif 2283 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2284 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2285 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2286 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2287 2288 /* 2289 * Note that nosuid etc flags are inode-specific: setting some file-system 2290 * flags just means all the inodes inherit those flags by default. It might be 2291 * possible to override it selectively if you really wanted to with some 2292 * ioctl() that is not currently implemented. 2293 * 2294 * Exception: SB_RDONLY is always applied to the entire file system. 2295 * 2296 * Unfortunately, it is possible to change a filesystems flags with it mounted 2297 * with files in use. This means that all of the inodes will not have their 2298 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2299 * flags, so these have to be checked separately. -- [email protected] 2300 */ 2301 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2302 2303 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2304 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2305 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2306 ((inode)->i_flags & S_SYNC)) 2307 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2308 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2309 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2310 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2311 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2312 2313 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2314 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2315 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2316 2317 #ifdef CONFIG_FS_POSIX_ACL 2318 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2319 #else 2320 #define IS_POSIXACL(inode) 0 2321 #endif 2322 2323 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2324 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2325 2326 #ifdef CONFIG_SWAP 2327 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2328 #else 2329 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2330 #endif 2331 2332 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2333 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2334 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2335 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2336 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2337 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2338 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2339 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2340 2341 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2342 (inode)->i_rdev == WHITEOUT_DEV) 2343 2344 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2345 struct inode *inode) 2346 { 2347 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2348 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2349 } 2350 2351 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2352 { 2353 *kiocb = (struct kiocb) { 2354 .ki_filp = filp, 2355 .ki_flags = filp->f_iocb_flags, 2356 .ki_ioprio = get_current_ioprio(), 2357 }; 2358 } 2359 2360 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2361 struct file *filp) 2362 { 2363 *kiocb = (struct kiocb) { 2364 .ki_filp = filp, 2365 .ki_flags = kiocb_src->ki_flags, 2366 .ki_ioprio = kiocb_src->ki_ioprio, 2367 .ki_pos = kiocb_src->ki_pos, 2368 }; 2369 } 2370 2371 /* 2372 * Inode state bits. Protected by inode->i_lock 2373 * 2374 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2375 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2376 * 2377 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2378 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2379 * various stages of removing an inode. 2380 * 2381 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2382 * 2383 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2384 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2385 * Timestamp updates are the usual cause. 2386 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2387 * these changes separately from I_DIRTY_SYNC so that we 2388 * don't have to write inode on fdatasync() when only 2389 * e.g. the timestamps have changed. 2390 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2391 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2392 * lazytime mount option is enabled. We keep track of this 2393 * separately from I_DIRTY_SYNC in order to implement 2394 * lazytime. This gets cleared if I_DIRTY_INODE 2395 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2396 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2397 * in place because writeback might already be in progress 2398 * and we don't want to lose the time update 2399 * I_NEW Serves as both a mutex and completion notification. 2400 * New inodes set I_NEW. If two processes both create 2401 * the same inode, one of them will release its inode and 2402 * wait for I_NEW to be released before returning. 2403 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2404 * also cause waiting on I_NEW, without I_NEW actually 2405 * being set. find_inode() uses this to prevent returning 2406 * nearly-dead inodes. 2407 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2408 * is zero. I_FREEING must be set when I_WILL_FREE is 2409 * cleared. 2410 * I_FREEING Set when inode is about to be freed but still has dirty 2411 * pages or buffers attached or the inode itself is still 2412 * dirty. 2413 * I_CLEAR Added by clear_inode(). In this state the inode is 2414 * clean and can be destroyed. Inode keeps I_FREEING. 2415 * 2416 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2417 * prohibited for many purposes. iget() must wait for 2418 * the inode to be completely released, then create it 2419 * anew. Other functions will just ignore such inodes, 2420 * if appropriate. I_NEW is used for waiting. 2421 * 2422 * I_SYNC Writeback of inode is running. The bit is set during 2423 * data writeback, and cleared with a wakeup on the bit 2424 * address once it is done. The bit is also used to pin 2425 * the inode in memory for flusher thread. 2426 * 2427 * I_REFERENCED Marks the inode as recently references on the LRU list. 2428 * 2429 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2430 * synchronize competing switching instances and to tell 2431 * wb stat updates to grab the i_pages lock. See 2432 * inode_switch_wbs_work_fn() for details. 2433 * 2434 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2435 * and work dirs among overlayfs mounts. 2436 * 2437 * I_CREATING New object's inode in the middle of setting up. 2438 * 2439 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2440 * 2441 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2442 * Used to detect that mark_inode_dirty() should not move 2443 * inode between dirty lists. 2444 * 2445 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2446 * 2447 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2448 * i_count. 2449 * 2450 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2451 * 2452 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 2453 * upon. There's one free address left. 2454 */ 2455 #define __I_NEW 0 2456 #define I_NEW (1 << __I_NEW) 2457 #define __I_SYNC 1 2458 #define I_SYNC (1 << __I_SYNC) 2459 #define __I_LRU_ISOLATING 2 2460 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2461 2462 #define I_DIRTY_SYNC (1 << 3) 2463 #define I_DIRTY_DATASYNC (1 << 4) 2464 #define I_DIRTY_PAGES (1 << 5) 2465 #define I_WILL_FREE (1 << 6) 2466 #define I_FREEING (1 << 7) 2467 #define I_CLEAR (1 << 8) 2468 #define I_REFERENCED (1 << 9) 2469 #define I_LINKABLE (1 << 10) 2470 #define I_DIRTY_TIME (1 << 11) 2471 #define I_WB_SWITCH (1 << 12) 2472 #define I_OVL_INUSE (1 << 13) 2473 #define I_CREATING (1 << 14) 2474 #define I_DONTCACHE (1 << 15) 2475 #define I_SYNC_QUEUED (1 << 16) 2476 #define I_PINNING_NETFS_WB (1 << 17) 2477 2478 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2479 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2480 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2481 2482 extern void __mark_inode_dirty(struct inode *, int); 2483 static inline void mark_inode_dirty(struct inode *inode) 2484 { 2485 __mark_inode_dirty(inode, I_DIRTY); 2486 } 2487 2488 static inline void mark_inode_dirty_sync(struct inode *inode) 2489 { 2490 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2491 } 2492 2493 /* 2494 * Returns true if the given inode itself only has dirty timestamps (its pages 2495 * may still be dirty) and isn't currently being allocated or freed. 2496 * Filesystems should call this if when writing an inode when lazytime is 2497 * enabled, they want to opportunistically write the timestamps of other inodes 2498 * located very nearby on-disk, e.g. in the same inode block. This returns true 2499 * if the given inode is in need of such an opportunistic update. Requires 2500 * i_lock, or at least later re-checking under i_lock. 2501 */ 2502 static inline bool inode_is_dirtytime_only(struct inode *inode) 2503 { 2504 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2505 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2506 } 2507 2508 extern void inc_nlink(struct inode *inode); 2509 extern void drop_nlink(struct inode *inode); 2510 extern void clear_nlink(struct inode *inode); 2511 extern void set_nlink(struct inode *inode, unsigned int nlink); 2512 2513 static inline void inode_inc_link_count(struct inode *inode) 2514 { 2515 inc_nlink(inode); 2516 mark_inode_dirty(inode); 2517 } 2518 2519 static inline void inode_dec_link_count(struct inode *inode) 2520 { 2521 drop_nlink(inode); 2522 mark_inode_dirty(inode); 2523 } 2524 2525 enum file_time_flags { 2526 S_ATIME = 1, 2527 S_MTIME = 2, 2528 S_CTIME = 4, 2529 S_VERSION = 8, 2530 }; 2531 2532 extern bool atime_needs_update(const struct path *, struct inode *); 2533 extern void touch_atime(const struct path *); 2534 int inode_update_time(struct inode *inode, int flags); 2535 2536 static inline void file_accessed(struct file *file) 2537 { 2538 if (!(file->f_flags & O_NOATIME)) 2539 touch_atime(&file->f_path); 2540 } 2541 2542 extern int file_modified(struct file *file); 2543 int kiocb_modified(struct kiocb *iocb); 2544 2545 int sync_inode_metadata(struct inode *inode, int wait); 2546 2547 struct file_system_type { 2548 const char *name; 2549 int fs_flags; 2550 #define FS_REQUIRES_DEV 1 2551 #define FS_BINARY_MOUNTDATA 2 2552 #define FS_HAS_SUBTYPE 4 2553 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2554 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2555 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2556 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2557 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2558 int (*init_fs_context)(struct fs_context *); 2559 const struct fs_parameter_spec *parameters; 2560 struct dentry *(*mount) (struct file_system_type *, int, 2561 const char *, void *); 2562 void (*kill_sb) (struct super_block *); 2563 struct module *owner; 2564 struct file_system_type * next; 2565 struct hlist_head fs_supers; 2566 2567 struct lock_class_key s_lock_key; 2568 struct lock_class_key s_umount_key; 2569 struct lock_class_key s_vfs_rename_key; 2570 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2571 2572 struct lock_class_key i_lock_key; 2573 struct lock_class_key i_mutex_key; 2574 struct lock_class_key invalidate_lock_key; 2575 struct lock_class_key i_mutex_dir_key; 2576 }; 2577 2578 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2579 2580 /** 2581 * is_mgtime: is this inode using multigrain timestamps 2582 * @inode: inode to test for multigrain timestamps 2583 * 2584 * Return true if the inode uses multigrain timestamps, false otherwise. 2585 */ 2586 static inline bool is_mgtime(const struct inode *inode) 2587 { 2588 return inode->i_opflags & IOP_MGTIME; 2589 } 2590 2591 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2592 int flags, const char *dev_name, void *data, 2593 int (*fill_super)(struct super_block *, void *, int)); 2594 extern struct dentry *mount_single(struct file_system_type *fs_type, 2595 int flags, void *data, 2596 int (*fill_super)(struct super_block *, void *, int)); 2597 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2598 int flags, void *data, 2599 int (*fill_super)(struct super_block *, void *, int)); 2600 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2601 void retire_super(struct super_block *sb); 2602 void generic_shutdown_super(struct super_block *sb); 2603 void kill_block_super(struct super_block *sb); 2604 void kill_anon_super(struct super_block *sb); 2605 void kill_litter_super(struct super_block *sb); 2606 void deactivate_super(struct super_block *sb); 2607 void deactivate_locked_super(struct super_block *sb); 2608 int set_anon_super(struct super_block *s, void *data); 2609 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2610 int get_anon_bdev(dev_t *); 2611 void free_anon_bdev(dev_t); 2612 struct super_block *sget_fc(struct fs_context *fc, 2613 int (*test)(struct super_block *, struct fs_context *), 2614 int (*set)(struct super_block *, struct fs_context *)); 2615 struct super_block *sget(struct file_system_type *type, 2616 int (*test)(struct super_block *,void *), 2617 int (*set)(struct super_block *,void *), 2618 int flags, void *data); 2619 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2620 2621 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2622 #define fops_get(fops) ({ \ 2623 const struct file_operations *_fops = (fops); \ 2624 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2625 }) 2626 2627 #define fops_put(fops) ({ \ 2628 const struct file_operations *_fops = (fops); \ 2629 if (_fops) \ 2630 module_put((_fops)->owner); \ 2631 }) 2632 2633 /* 2634 * This one is to be used *ONLY* from ->open() instances. 2635 * fops must be non-NULL, pinned down *and* module dependencies 2636 * should be sufficient to pin the caller down as well. 2637 */ 2638 #define replace_fops(f, fops) \ 2639 do { \ 2640 struct file *__file = (f); \ 2641 fops_put(__file->f_op); \ 2642 BUG_ON(!(__file->f_op = (fops))); \ 2643 } while(0) 2644 2645 extern int register_filesystem(struct file_system_type *); 2646 extern int unregister_filesystem(struct file_system_type *); 2647 extern int vfs_statfs(const struct path *, struct kstatfs *); 2648 extern int user_statfs(const char __user *, struct kstatfs *); 2649 extern int fd_statfs(int, struct kstatfs *); 2650 int freeze_super(struct super_block *super, enum freeze_holder who); 2651 int thaw_super(struct super_block *super, enum freeze_holder who); 2652 extern __printf(2, 3) 2653 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2654 extern int super_setup_bdi(struct super_block *sb); 2655 2656 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2657 { 2658 if (WARN_ON(len > sizeof(sb->s_uuid))) 2659 len = sizeof(sb->s_uuid); 2660 sb->s_uuid_len = len; 2661 memcpy(&sb->s_uuid, uuid, len); 2662 } 2663 2664 /* set sb sysfs name based on sb->s_bdev */ 2665 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2666 { 2667 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2668 } 2669 2670 /* set sb sysfs name based on sb->s_uuid */ 2671 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2672 { 2673 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2674 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2675 } 2676 2677 /* set sb sysfs name based on sb->s_id */ 2678 static inline void super_set_sysfs_name_id(struct super_block *sb) 2679 { 2680 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2681 } 2682 2683 /* try to use something standard before you use this */ 2684 __printf(2, 3) 2685 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2686 { 2687 va_list args; 2688 2689 va_start(args, fmt); 2690 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2691 va_end(args); 2692 } 2693 2694 extern int current_umask(void); 2695 2696 extern void ihold(struct inode * inode); 2697 extern void iput(struct inode *); 2698 int inode_update_timestamps(struct inode *inode, int flags); 2699 int generic_update_time(struct inode *, int); 2700 2701 /* /sys/fs */ 2702 extern struct kobject *fs_kobj; 2703 2704 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2705 2706 /* fs/open.c */ 2707 struct audit_names; 2708 struct filename { 2709 const char *name; /* pointer to actual string */ 2710 const __user char *uptr; /* original userland pointer */ 2711 atomic_t refcnt; 2712 struct audit_names *aname; 2713 const char iname[]; 2714 }; 2715 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2716 2717 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2718 { 2719 return mnt_idmap(file->f_path.mnt); 2720 } 2721 2722 /** 2723 * is_idmapped_mnt - check whether a mount is mapped 2724 * @mnt: the mount to check 2725 * 2726 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2727 * 2728 * Return: true if mount is mapped, false if not. 2729 */ 2730 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2731 { 2732 return mnt_idmap(mnt) != &nop_mnt_idmap; 2733 } 2734 2735 extern long vfs_truncate(const struct path *, loff_t); 2736 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2737 unsigned int time_attrs, struct file *filp); 2738 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2739 loff_t len); 2740 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2741 umode_t mode); 2742 extern struct file *file_open_name(struct filename *, int, umode_t); 2743 extern struct file *filp_open(const char *, int, umode_t); 2744 extern struct file *file_open_root(const struct path *, 2745 const char *, int, umode_t); 2746 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2747 const char *name, int flags, umode_t mode) 2748 { 2749 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2750 name, flags, mode); 2751 } 2752 struct file *dentry_open(const struct path *path, int flags, 2753 const struct cred *creds); 2754 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2755 const struct cred *cred); 2756 struct path *backing_file_user_path(struct file *f); 2757 2758 /* 2759 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2760 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2761 * filesystem. When the mapped file path and inode number are displayed to 2762 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2763 * path and inode number to display to the user, which is the path of the fd 2764 * that user has requested to map and the inode number that would be returned 2765 * by fstat() on that same fd. 2766 */ 2767 /* Get the path to display in /proc/<pid>/maps */ 2768 static inline const struct path *file_user_path(struct file *f) 2769 { 2770 if (unlikely(f->f_mode & FMODE_BACKING)) 2771 return backing_file_user_path(f); 2772 return &f->f_path; 2773 } 2774 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2775 static inline const struct inode *file_user_inode(struct file *f) 2776 { 2777 if (unlikely(f->f_mode & FMODE_BACKING)) 2778 return d_inode(backing_file_user_path(f)->dentry); 2779 return file_inode(f); 2780 } 2781 2782 static inline struct file *file_clone_open(struct file *file) 2783 { 2784 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2785 } 2786 extern int filp_close(struct file *, fl_owner_t id); 2787 2788 extern struct filename *getname_flags(const char __user *, int); 2789 extern struct filename *getname_uflags(const char __user *, int); 2790 extern struct filename *getname(const char __user *); 2791 extern struct filename *getname_kernel(const char *); 2792 extern struct filename *__getname_maybe_null(const char __user *); 2793 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2794 { 2795 if (!(flags & AT_EMPTY_PATH)) 2796 return getname(name); 2797 2798 if (!name) 2799 return NULL; 2800 return __getname_maybe_null(name); 2801 } 2802 extern void putname(struct filename *name); 2803 2804 extern int finish_open(struct file *file, struct dentry *dentry, 2805 int (*open)(struct inode *, struct file *)); 2806 extern int finish_no_open(struct file *file, struct dentry *dentry); 2807 2808 /* Helper for the simple case when original dentry is used */ 2809 static inline int finish_open_simple(struct file *file, int error) 2810 { 2811 if (error) 2812 return error; 2813 2814 return finish_open(file, file->f_path.dentry, NULL); 2815 } 2816 2817 /* fs/dcache.c */ 2818 extern void __init vfs_caches_init_early(void); 2819 extern void __init vfs_caches_init(void); 2820 2821 extern struct kmem_cache *names_cachep; 2822 2823 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2824 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2825 2826 extern struct super_block *blockdev_superblock; 2827 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2828 { 2829 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2830 } 2831 2832 void emergency_thaw_all(void); 2833 extern int sync_filesystem(struct super_block *); 2834 extern const struct file_operations def_blk_fops; 2835 extern const struct file_operations def_chr_fops; 2836 2837 /* fs/char_dev.c */ 2838 #define CHRDEV_MAJOR_MAX 512 2839 /* Marks the bottom of the first segment of free char majors */ 2840 #define CHRDEV_MAJOR_DYN_END 234 2841 /* Marks the top and bottom of the second segment of free char majors */ 2842 #define CHRDEV_MAJOR_DYN_EXT_START 511 2843 #define CHRDEV_MAJOR_DYN_EXT_END 384 2844 2845 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2846 extern int register_chrdev_region(dev_t, unsigned, const char *); 2847 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2848 unsigned int count, const char *name, 2849 const struct file_operations *fops); 2850 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2851 unsigned int count, const char *name); 2852 extern void unregister_chrdev_region(dev_t, unsigned); 2853 extern void chrdev_show(struct seq_file *,off_t); 2854 2855 static inline int register_chrdev(unsigned int major, const char *name, 2856 const struct file_operations *fops) 2857 { 2858 return __register_chrdev(major, 0, 256, name, fops); 2859 } 2860 2861 static inline void unregister_chrdev(unsigned int major, const char *name) 2862 { 2863 __unregister_chrdev(major, 0, 256, name); 2864 } 2865 2866 extern void init_special_inode(struct inode *, umode_t, dev_t); 2867 2868 /* Invalid inode operations -- fs/bad_inode.c */ 2869 extern void make_bad_inode(struct inode *); 2870 extern bool is_bad_inode(struct inode *); 2871 2872 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2873 loff_t lend); 2874 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2875 extern int __must_check file_write_and_wait_range(struct file *file, 2876 loff_t start, loff_t end); 2877 2878 static inline int file_write_and_wait(struct file *file) 2879 { 2880 return file_write_and_wait_range(file, 0, LLONG_MAX); 2881 } 2882 2883 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2884 int datasync); 2885 extern int vfs_fsync(struct file *file, int datasync); 2886 2887 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2888 unsigned int flags); 2889 2890 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2891 { 2892 return (iocb->ki_flags & IOCB_DSYNC) || 2893 IS_SYNC(iocb->ki_filp->f_mapping->host); 2894 } 2895 2896 /* 2897 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2898 * to already be updated for the write, and will return either the amount 2899 * of bytes passed in, or an error if syncing the file failed. 2900 */ 2901 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2902 { 2903 if (iocb_is_dsync(iocb)) { 2904 int ret = vfs_fsync_range(iocb->ki_filp, 2905 iocb->ki_pos - count, iocb->ki_pos - 1, 2906 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2907 if (ret) 2908 return ret; 2909 } 2910 2911 return count; 2912 } 2913 2914 extern void emergency_sync(void); 2915 extern void emergency_remount(void); 2916 2917 #ifdef CONFIG_BLOCK 2918 extern int bmap(struct inode *inode, sector_t *block); 2919 #else 2920 static inline int bmap(struct inode *inode, sector_t *block) 2921 { 2922 return -EINVAL; 2923 } 2924 #endif 2925 2926 int notify_change(struct mnt_idmap *, struct dentry *, 2927 struct iattr *, struct inode **); 2928 int inode_permission(struct mnt_idmap *, struct inode *, int); 2929 int generic_permission(struct mnt_idmap *, struct inode *, int); 2930 static inline int file_permission(struct file *file, int mask) 2931 { 2932 return inode_permission(file_mnt_idmap(file), 2933 file_inode(file), mask); 2934 } 2935 static inline int path_permission(const struct path *path, int mask) 2936 { 2937 return inode_permission(mnt_idmap(path->mnt), 2938 d_inode(path->dentry), mask); 2939 } 2940 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2941 struct inode *inode); 2942 2943 static inline bool execute_ok(struct inode *inode) 2944 { 2945 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2946 } 2947 2948 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2949 { 2950 return (inode->i_mode ^ mode) & S_IFMT; 2951 } 2952 2953 /** 2954 * file_start_write - get write access to a superblock for regular file io 2955 * @file: the file we want to write to 2956 * 2957 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2958 * Should be matched with a call to file_end_write(). 2959 */ 2960 static inline void file_start_write(struct file *file) 2961 { 2962 if (!S_ISREG(file_inode(file)->i_mode)) 2963 return; 2964 sb_start_write(file_inode(file)->i_sb); 2965 } 2966 2967 static inline bool file_start_write_trylock(struct file *file) 2968 { 2969 if (!S_ISREG(file_inode(file)->i_mode)) 2970 return true; 2971 return sb_start_write_trylock(file_inode(file)->i_sb); 2972 } 2973 2974 /** 2975 * file_end_write - drop write access to a superblock of a regular file 2976 * @file: the file we wrote to 2977 * 2978 * Should be matched with a call to file_start_write(). 2979 */ 2980 static inline void file_end_write(struct file *file) 2981 { 2982 if (!S_ISREG(file_inode(file)->i_mode)) 2983 return; 2984 sb_end_write(file_inode(file)->i_sb); 2985 } 2986 2987 /** 2988 * kiocb_start_write - get write access to a superblock for async file io 2989 * @iocb: the io context we want to submit the write with 2990 * 2991 * This is a variant of sb_start_write() for async io submission. 2992 * Should be matched with a call to kiocb_end_write(). 2993 */ 2994 static inline void kiocb_start_write(struct kiocb *iocb) 2995 { 2996 struct inode *inode = file_inode(iocb->ki_filp); 2997 2998 sb_start_write(inode->i_sb); 2999 /* 3000 * Fool lockdep by telling it the lock got released so that it 3001 * doesn't complain about the held lock when we return to userspace. 3002 */ 3003 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 3004 } 3005 3006 /** 3007 * kiocb_end_write - drop write access to a superblock after async file io 3008 * @iocb: the io context we sumbitted the write with 3009 * 3010 * Should be matched with a call to kiocb_start_write(). 3011 */ 3012 static inline void kiocb_end_write(struct kiocb *iocb) 3013 { 3014 struct inode *inode = file_inode(iocb->ki_filp); 3015 3016 /* 3017 * Tell lockdep we inherited freeze protection from submission thread. 3018 */ 3019 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 3020 sb_end_write(inode->i_sb); 3021 } 3022 3023 /* 3024 * This is used for regular files where some users -- especially the 3025 * currently executed binary in a process, previously handled via 3026 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 3027 * read-write shared) accesses. 3028 * 3029 * get_write_access() gets write permission for a file. 3030 * put_write_access() releases this write permission. 3031 * deny_write_access() denies write access to a file. 3032 * allow_write_access() re-enables write access to a file. 3033 * 3034 * The i_writecount field of an inode can have the following values: 3035 * 0: no write access, no denied write access 3036 * < 0: (-i_writecount) users that denied write access to the file. 3037 * > 0: (i_writecount) users that have write access to the file. 3038 * 3039 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 3040 * except for the cases where we don't hold i_writecount yet. Then we need to 3041 * use {get,deny}_write_access() - these functions check the sign and refuse 3042 * to do the change if sign is wrong. 3043 */ 3044 static inline int get_write_access(struct inode *inode) 3045 { 3046 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 3047 } 3048 static inline int deny_write_access(struct file *file) 3049 { 3050 struct inode *inode = file_inode(file); 3051 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 3052 } 3053 static inline void put_write_access(struct inode * inode) 3054 { 3055 atomic_dec(&inode->i_writecount); 3056 } 3057 static inline void allow_write_access(struct file *file) 3058 { 3059 if (file) 3060 atomic_inc(&file_inode(file)->i_writecount); 3061 } 3062 static inline bool inode_is_open_for_write(const struct inode *inode) 3063 { 3064 return atomic_read(&inode->i_writecount) > 0; 3065 } 3066 3067 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 3068 static inline void i_readcount_dec(struct inode *inode) 3069 { 3070 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 3071 } 3072 static inline void i_readcount_inc(struct inode *inode) 3073 { 3074 atomic_inc(&inode->i_readcount); 3075 } 3076 #else 3077 static inline void i_readcount_dec(struct inode *inode) 3078 { 3079 return; 3080 } 3081 static inline void i_readcount_inc(struct inode *inode) 3082 { 3083 return; 3084 } 3085 #endif 3086 extern int do_pipe_flags(int *, int); 3087 3088 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3089 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3090 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3091 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3092 extern struct file * open_exec(const char *); 3093 3094 /* fs/dcache.c -- generic fs support functions */ 3095 extern bool is_subdir(struct dentry *, struct dentry *); 3096 extern bool path_is_under(const struct path *, const struct path *); 3097 3098 extern char *file_path(struct file *, char *, int); 3099 3100 /** 3101 * is_dot_dotdot - returns true only if @name is "." or ".." 3102 * @name: file name to check 3103 * @len: length of file name, in bytes 3104 */ 3105 static inline bool is_dot_dotdot(const char *name, size_t len) 3106 { 3107 return len && unlikely(name[0] == '.') && 3108 (len == 1 || (len == 2 && name[1] == '.')); 3109 } 3110 3111 #include <linux/err.h> 3112 3113 /* needed for stackable file system support */ 3114 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3115 3116 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3117 3118 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 3119 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 3120 { 3121 return inode_init_always_gfp(sb, inode, GFP_NOFS); 3122 } 3123 3124 extern void inode_init_once(struct inode *); 3125 extern void address_space_init_once(struct address_space *mapping); 3126 extern struct inode * igrab(struct inode *); 3127 extern ino_t iunique(struct super_block *, ino_t); 3128 extern int inode_needs_sync(struct inode *inode); 3129 extern int generic_delete_inode(struct inode *inode); 3130 static inline int generic_drop_inode(struct inode *inode) 3131 { 3132 return !inode->i_nlink || inode_unhashed(inode); 3133 } 3134 extern void d_mark_dontcache(struct inode *inode); 3135 3136 extern struct inode *ilookup5_nowait(struct super_block *sb, 3137 unsigned long hashval, int (*test)(struct inode *, void *), 3138 void *data); 3139 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3140 int (*test)(struct inode *, void *), void *data); 3141 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3142 3143 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3144 int (*test)(struct inode *, void *), 3145 int (*set)(struct inode *, void *), 3146 void *data); 3147 struct inode *iget5_locked(struct super_block *, unsigned long, 3148 int (*test)(struct inode *, void *), 3149 int (*set)(struct inode *, void *), void *); 3150 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3151 int (*test)(struct inode *, void *), 3152 int (*set)(struct inode *, void *), void *); 3153 extern struct inode * iget_locked(struct super_block *, unsigned long); 3154 extern struct inode *find_inode_nowait(struct super_block *, 3155 unsigned long, 3156 int (*match)(struct inode *, 3157 unsigned long, void *), 3158 void *data); 3159 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3160 int (*)(struct inode *, void *), void *); 3161 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3162 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3163 extern int insert_inode_locked(struct inode *); 3164 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3165 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3166 #else 3167 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3168 #endif 3169 extern void unlock_new_inode(struct inode *); 3170 extern void discard_new_inode(struct inode *); 3171 extern unsigned int get_next_ino(void); 3172 extern void evict_inodes(struct super_block *sb); 3173 void dump_mapping(const struct address_space *); 3174 3175 /* 3176 * Userspace may rely on the inode number being non-zero. For example, glibc 3177 * simply ignores files with zero i_ino in unlink() and other places. 3178 * 3179 * As an additional complication, if userspace was compiled with 3180 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3181 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3182 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3183 * better safe than sorry. 3184 */ 3185 static inline bool is_zero_ino(ino_t ino) 3186 { 3187 return (u32)ino == 0; 3188 } 3189 3190 /* 3191 * inode->i_lock must be held 3192 */ 3193 static inline void __iget(struct inode *inode) 3194 { 3195 atomic_inc(&inode->i_count); 3196 } 3197 3198 extern void iget_failed(struct inode *); 3199 extern void clear_inode(struct inode *); 3200 extern void __destroy_inode(struct inode *); 3201 extern struct inode *new_inode_pseudo(struct super_block *sb); 3202 extern struct inode *new_inode(struct super_block *sb); 3203 extern void free_inode_nonrcu(struct inode *inode); 3204 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3205 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3206 extern int file_remove_privs(struct file *); 3207 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3208 const struct inode *inode); 3209 3210 /* 3211 * This must be used for allocating filesystems specific inodes to set 3212 * up the inode reclaim context correctly. 3213 */ 3214 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3215 3216 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3217 static inline void insert_inode_hash(struct inode *inode) 3218 { 3219 __insert_inode_hash(inode, inode->i_ino); 3220 } 3221 3222 extern void __remove_inode_hash(struct inode *); 3223 static inline void remove_inode_hash(struct inode *inode) 3224 { 3225 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3226 __remove_inode_hash(inode); 3227 } 3228 3229 extern void inode_sb_list_add(struct inode *inode); 3230 extern void inode_add_lru(struct inode *inode); 3231 3232 extern int sb_set_blocksize(struct super_block *, int); 3233 extern int sb_min_blocksize(struct super_block *, int); 3234 3235 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3236 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3237 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3238 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3239 extern int generic_write_check_limits(struct file *file, loff_t pos, 3240 loff_t *count); 3241 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3242 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3243 ssize_t already_read); 3244 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3245 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3246 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3247 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3248 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3249 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3250 ssize_t direct_written, ssize_t buffered_written); 3251 3252 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3253 rwf_t flags); 3254 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3255 rwf_t flags); 3256 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3257 struct iov_iter *iter); 3258 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3259 struct iov_iter *iter); 3260 3261 /* fs/splice.c */ 3262 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3263 struct pipe_inode_info *pipe, 3264 size_t len, unsigned int flags); 3265 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3266 struct pipe_inode_info *pipe, 3267 size_t len, unsigned int flags); 3268 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3269 struct file *, loff_t *, size_t, unsigned int); 3270 3271 3272 extern void 3273 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3274 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3275 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3276 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3277 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3278 int whence, loff_t maxsize, loff_t eof); 3279 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3280 u64 *cookie); 3281 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3282 int whence, loff_t size); 3283 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3284 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3285 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3286 extern int generic_file_open(struct inode * inode, struct file * filp); 3287 extern int nonseekable_open(struct inode * inode, struct file * filp); 3288 extern int stream_open(struct inode * inode, struct file * filp); 3289 3290 #ifdef CONFIG_BLOCK 3291 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3292 loff_t file_offset); 3293 3294 enum { 3295 /* need locking between buffered and direct access */ 3296 DIO_LOCKING = 0x01, 3297 3298 /* filesystem does not support filling holes */ 3299 DIO_SKIP_HOLES = 0x02, 3300 }; 3301 3302 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3303 struct block_device *bdev, struct iov_iter *iter, 3304 get_block_t get_block, 3305 dio_iodone_t end_io, 3306 int flags); 3307 3308 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3309 struct inode *inode, 3310 struct iov_iter *iter, 3311 get_block_t get_block) 3312 { 3313 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3314 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3315 } 3316 #endif 3317 3318 bool inode_dio_finished(const struct inode *inode); 3319 void inode_dio_wait(struct inode *inode); 3320 void inode_dio_wait_interruptible(struct inode *inode); 3321 3322 /** 3323 * inode_dio_begin - signal start of a direct I/O requests 3324 * @inode: inode the direct I/O happens on 3325 * 3326 * This is called once we've finished processing a direct I/O request, 3327 * and is used to wake up callers waiting for direct I/O to be quiesced. 3328 */ 3329 static inline void inode_dio_begin(struct inode *inode) 3330 { 3331 atomic_inc(&inode->i_dio_count); 3332 } 3333 3334 /** 3335 * inode_dio_end - signal finish of a direct I/O requests 3336 * @inode: inode the direct I/O happens on 3337 * 3338 * This is called once we've finished processing a direct I/O request, 3339 * and is used to wake up callers waiting for direct I/O to be quiesced. 3340 */ 3341 static inline void inode_dio_end(struct inode *inode) 3342 { 3343 if (atomic_dec_and_test(&inode->i_dio_count)) 3344 wake_up_var(&inode->i_dio_count); 3345 } 3346 3347 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3348 unsigned int mask); 3349 3350 extern const struct file_operations generic_ro_fops; 3351 3352 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3353 3354 extern int readlink_copy(char __user *, int, const char *); 3355 extern int page_readlink(struct dentry *, char __user *, int); 3356 extern const char *page_get_link(struct dentry *, struct inode *, 3357 struct delayed_call *); 3358 extern void page_put_link(void *); 3359 extern int page_symlink(struct inode *inode, const char *symname, int len); 3360 extern const struct inode_operations page_symlink_inode_operations; 3361 extern void kfree_link(void *); 3362 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3363 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3364 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3365 void generic_fill_statx_atomic_writes(struct kstat *stat, 3366 unsigned int unit_min, 3367 unsigned int unit_max); 3368 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3369 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3370 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3371 void inode_add_bytes(struct inode *inode, loff_t bytes); 3372 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3373 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3374 static inline loff_t __inode_get_bytes(struct inode *inode) 3375 { 3376 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3377 } 3378 loff_t inode_get_bytes(struct inode *inode); 3379 void inode_set_bytes(struct inode *inode, loff_t bytes); 3380 const char *simple_get_link(struct dentry *, struct inode *, 3381 struct delayed_call *); 3382 extern const struct inode_operations simple_symlink_inode_operations; 3383 3384 extern int iterate_dir(struct file *, struct dir_context *); 3385 3386 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3387 int flags); 3388 int vfs_fstat(int fd, struct kstat *stat); 3389 3390 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3391 { 3392 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3393 } 3394 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3395 { 3396 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3397 } 3398 3399 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3400 extern int vfs_readlink(struct dentry *, char __user *, int); 3401 3402 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3403 extern void put_filesystem(struct file_system_type *fs); 3404 extern struct file_system_type *get_fs_type(const char *name); 3405 extern void drop_super(struct super_block *sb); 3406 extern void drop_super_exclusive(struct super_block *sb); 3407 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3408 extern void iterate_supers_type(struct file_system_type *, 3409 void (*)(struct super_block *, void *), void *); 3410 3411 extern int dcache_dir_open(struct inode *, struct file *); 3412 extern int dcache_dir_close(struct inode *, struct file *); 3413 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3414 extern int dcache_readdir(struct file *, struct dir_context *); 3415 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3416 struct iattr *); 3417 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3418 struct kstat *, u32, unsigned int); 3419 extern int simple_statfs(struct dentry *, struct kstatfs *); 3420 extern int simple_open(struct inode *inode, struct file *file); 3421 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3422 extern int simple_unlink(struct inode *, struct dentry *); 3423 extern int simple_rmdir(struct inode *, struct dentry *); 3424 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3425 struct inode *new_dir, struct dentry *new_dentry); 3426 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3427 struct inode *new_dir, struct dentry *new_dentry); 3428 extern int simple_rename(struct mnt_idmap *, struct inode *, 3429 struct dentry *, struct inode *, struct dentry *, 3430 unsigned int); 3431 extern void simple_recursive_removal(struct dentry *, 3432 void (*callback)(struct dentry *)); 3433 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3434 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3435 extern int simple_empty(struct dentry *); 3436 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3437 loff_t pos, unsigned len, 3438 struct folio **foliop, void **fsdata); 3439 extern const struct address_space_operations ram_aops; 3440 extern int always_delete_dentry(const struct dentry *); 3441 extern struct inode *alloc_anon_inode(struct super_block *); 3442 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3443 extern const struct dentry_operations simple_dentry_operations; 3444 3445 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3446 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3447 extern const struct file_operations simple_dir_operations; 3448 extern const struct inode_operations simple_dir_inode_operations; 3449 extern void make_empty_dir_inode(struct inode *inode); 3450 extern bool is_empty_dir_inode(struct inode *inode); 3451 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3452 struct dentry *d_alloc_name(struct dentry *, const char *); 3453 extern int simple_fill_super(struct super_block *, unsigned long, 3454 const struct tree_descr *); 3455 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3456 extern void simple_release_fs(struct vfsmount **mount, int *count); 3457 3458 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3459 loff_t *ppos, const void *from, size_t available); 3460 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3461 const void __user *from, size_t count); 3462 3463 struct offset_ctx { 3464 struct maple_tree mt; 3465 unsigned long next_offset; 3466 }; 3467 3468 void simple_offset_init(struct offset_ctx *octx); 3469 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3470 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3471 int simple_offset_empty(struct dentry *dentry); 3472 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3473 struct inode *new_dir, struct dentry *new_dentry); 3474 int simple_offset_rename_exchange(struct inode *old_dir, 3475 struct dentry *old_dentry, 3476 struct inode *new_dir, 3477 struct dentry *new_dentry); 3478 void simple_offset_destroy(struct offset_ctx *octx); 3479 3480 extern const struct file_operations simple_offset_dir_operations; 3481 3482 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3483 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3484 3485 extern int generic_check_addressable(unsigned, u64); 3486 3487 extern void generic_set_sb_d_ops(struct super_block *sb); 3488 extern int generic_ci_match(const struct inode *parent, 3489 const struct qstr *name, 3490 const struct qstr *folded_name, 3491 const u8 *de_name, u32 de_name_len); 3492 3493 #if IS_ENABLED(CONFIG_UNICODE) 3494 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3495 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3496 const char *str, const struct qstr *name); 3497 3498 /** 3499 * generic_ci_validate_strict_name - Check if a given name is suitable 3500 * for a directory 3501 * 3502 * This functions checks if the proposed filename is valid for the 3503 * parent directory. That means that only valid UTF-8 filenames will be 3504 * accepted for casefold directories from filesystems created with the 3505 * strict encoding flag. That also means that any name will be 3506 * accepted for directories that doesn't have casefold enabled, or 3507 * aren't being strict with the encoding. 3508 * 3509 * @dir: inode of the directory where the new file will be created 3510 * @name: name of the new file 3511 * 3512 * Return: 3513 * * True: if the filename is suitable for this directory. It can be 3514 * true if a given name is not suitable for a strict encoding 3515 * directory, but the directory being used isn't strict 3516 * * False if the filename isn't suitable for this directory. This only 3517 * happens when a directory is casefolded and the filesystem is strict 3518 * about its encoding. 3519 */ 3520 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3521 { 3522 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3523 return true; 3524 3525 /* 3526 * A casefold dir must have a encoding set, unless the filesystem 3527 * is corrupted 3528 */ 3529 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3530 return true; 3531 3532 return !utf8_validate(dir->i_sb->s_encoding, name); 3533 } 3534 #else 3535 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) 3536 { 3537 return true; 3538 } 3539 #endif 3540 3541 static inline bool sb_has_encoding(const struct super_block *sb) 3542 { 3543 #if IS_ENABLED(CONFIG_UNICODE) 3544 return !!sb->s_encoding; 3545 #else 3546 return false; 3547 #endif 3548 } 3549 3550 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3551 unsigned int ia_valid); 3552 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3553 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3554 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3555 const struct iattr *attr); 3556 3557 extern int file_update_time(struct file *file); 3558 3559 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3560 { 3561 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3562 } 3563 3564 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3565 { 3566 struct inode *inode; 3567 3568 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3569 return false; 3570 if (!vma_is_dax(vma)) 3571 return false; 3572 inode = file_inode(vma->vm_file); 3573 if (S_ISCHR(inode->i_mode)) 3574 return false; /* device-dax */ 3575 return true; 3576 } 3577 3578 static inline int iocb_flags(struct file *file) 3579 { 3580 int res = 0; 3581 if (file->f_flags & O_APPEND) 3582 res |= IOCB_APPEND; 3583 if (file->f_flags & O_DIRECT) 3584 res |= IOCB_DIRECT; 3585 if (file->f_flags & O_DSYNC) 3586 res |= IOCB_DSYNC; 3587 if (file->f_flags & __O_SYNC) 3588 res |= IOCB_SYNC; 3589 return res; 3590 } 3591 3592 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3593 int rw_type) 3594 { 3595 int kiocb_flags = 0; 3596 3597 /* make sure there's no overlap between RWF and private IOCB flags */ 3598 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3599 3600 if (!flags) 3601 return 0; 3602 if (unlikely(flags & ~RWF_SUPPORTED)) 3603 return -EOPNOTSUPP; 3604 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3605 return -EINVAL; 3606 3607 if (flags & RWF_NOWAIT) { 3608 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3609 return -EOPNOTSUPP; 3610 } 3611 if (flags & RWF_ATOMIC) { 3612 if (rw_type != WRITE) 3613 return -EOPNOTSUPP; 3614 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3615 return -EOPNOTSUPP; 3616 } 3617 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3618 if (flags & RWF_SYNC) 3619 kiocb_flags |= IOCB_DSYNC; 3620 3621 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3622 if (IS_APPEND(file_inode(ki->ki_filp))) 3623 return -EPERM; 3624 ki->ki_flags &= ~IOCB_APPEND; 3625 } 3626 3627 ki->ki_flags |= kiocb_flags; 3628 return 0; 3629 } 3630 3631 /* Transaction based IO helpers */ 3632 3633 /* 3634 * An argresp is stored in an allocated page and holds the 3635 * size of the argument or response, along with its content 3636 */ 3637 struct simple_transaction_argresp { 3638 ssize_t size; 3639 char data[]; 3640 }; 3641 3642 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3643 3644 char *simple_transaction_get(struct file *file, const char __user *buf, 3645 size_t size); 3646 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3647 size_t size, loff_t *pos); 3648 int simple_transaction_release(struct inode *inode, struct file *file); 3649 3650 void simple_transaction_set(struct file *file, size_t n); 3651 3652 /* 3653 * simple attribute files 3654 * 3655 * These attributes behave similar to those in sysfs: 3656 * 3657 * Writing to an attribute immediately sets a value, an open file can be 3658 * written to multiple times. 3659 * 3660 * Reading from an attribute creates a buffer from the value that might get 3661 * read with multiple read calls. When the attribute has been read 3662 * completely, no further read calls are possible until the file is opened 3663 * again. 3664 * 3665 * All attributes contain a text representation of a numeric value 3666 * that are accessed with the get() and set() functions. 3667 */ 3668 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3669 static int __fops ## _open(struct inode *inode, struct file *file) \ 3670 { \ 3671 __simple_attr_check_format(__fmt, 0ull); \ 3672 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3673 } \ 3674 static const struct file_operations __fops = { \ 3675 .owner = THIS_MODULE, \ 3676 .open = __fops ## _open, \ 3677 .release = simple_attr_release, \ 3678 .read = simple_attr_read, \ 3679 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3680 .llseek = generic_file_llseek, \ 3681 } 3682 3683 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3684 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3685 3686 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3687 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3688 3689 static inline __printf(1, 2) 3690 void __simple_attr_check_format(const char *fmt, ...) 3691 { 3692 /* don't do anything, just let the compiler check the arguments; */ 3693 } 3694 3695 int simple_attr_open(struct inode *inode, struct file *file, 3696 int (*get)(void *, u64 *), int (*set)(void *, u64), 3697 const char *fmt); 3698 int simple_attr_release(struct inode *inode, struct file *file); 3699 ssize_t simple_attr_read(struct file *file, char __user *buf, 3700 size_t len, loff_t *ppos); 3701 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3702 size_t len, loff_t *ppos); 3703 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3704 size_t len, loff_t *ppos); 3705 3706 struct ctl_table; 3707 int __init list_bdev_fs_names(char *buf, size_t size); 3708 3709 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3710 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3711 3712 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3713 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3714 (flag & __FMODE_NONOTIFY))) 3715 3716 static inline bool is_sxid(umode_t mode) 3717 { 3718 return mode & (S_ISUID | S_ISGID); 3719 } 3720 3721 static inline int check_sticky(struct mnt_idmap *idmap, 3722 struct inode *dir, struct inode *inode) 3723 { 3724 if (!(dir->i_mode & S_ISVTX)) 3725 return 0; 3726 3727 return __check_sticky(idmap, dir, inode); 3728 } 3729 3730 static inline void inode_has_no_xattr(struct inode *inode) 3731 { 3732 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3733 inode->i_flags |= S_NOSEC; 3734 } 3735 3736 static inline bool is_root_inode(struct inode *inode) 3737 { 3738 return inode == inode->i_sb->s_root->d_inode; 3739 } 3740 3741 static inline bool dir_emit(struct dir_context *ctx, 3742 const char *name, int namelen, 3743 u64 ino, unsigned type) 3744 { 3745 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3746 } 3747 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3748 { 3749 return ctx->actor(ctx, ".", 1, ctx->pos, 3750 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3751 } 3752 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3753 { 3754 return ctx->actor(ctx, "..", 2, ctx->pos, 3755 d_parent_ino(file->f_path.dentry), DT_DIR); 3756 } 3757 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3758 { 3759 if (ctx->pos == 0) { 3760 if (!dir_emit_dot(file, ctx)) 3761 return false; 3762 ctx->pos = 1; 3763 } 3764 if (ctx->pos == 1) { 3765 if (!dir_emit_dotdot(file, ctx)) 3766 return false; 3767 ctx->pos = 2; 3768 } 3769 return true; 3770 } 3771 static inline bool dir_relax(struct inode *inode) 3772 { 3773 inode_unlock(inode); 3774 inode_lock(inode); 3775 return !IS_DEADDIR(inode); 3776 } 3777 3778 static inline bool dir_relax_shared(struct inode *inode) 3779 { 3780 inode_unlock_shared(inode); 3781 inode_lock_shared(inode); 3782 return !IS_DEADDIR(inode); 3783 } 3784 3785 extern bool path_noexec(const struct path *path); 3786 extern void inode_nohighmem(struct inode *inode); 3787 3788 /* mm/fadvise.c */ 3789 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3790 int advice); 3791 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3792 int advice); 3793 3794 static inline bool vfs_empty_path(int dfd, const char __user *path) 3795 { 3796 char c; 3797 3798 if (dfd < 0) 3799 return false; 3800 3801 /* We now allow NULL to be used for empty path. */ 3802 if (!path) 3803 return true; 3804 3805 if (unlikely(get_user(c, path))) 3806 return false; 3807 3808 return !c; 3809 } 3810 3811 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3812 3813 #endif /* _LINUX_FS_H */ 3814