xref: /linux-6.15/include/linux/filter.h (revision ff39eefd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark call to interpreter with arguments */
79 #define BPF_CALL_ARGS	0xe0
80 
81 /* unused opcode to mark speculation barrier for mitigating
82  * Speculative Store Bypass
83  */
84 #define BPF_NOSPEC	0xc0
85 
86 /* As per nm, we expose JITed images as text (code) section for
87  * kallsyms. That way, tools like perf can find it to match
88  * addresses.
89  */
90 #define BPF_SYM_ELF_TYPE	't'
91 
92 /* BPF program can access up to 512 bytes of stack space. */
93 #define MAX_BPF_STACK	512
94 
95 /* Helper macros for filter block array initializers. */
96 
97 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
98 
99 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
100 	((struct bpf_insn) {					\
101 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
102 		.dst_reg = DST,					\
103 		.src_reg = SRC,					\
104 		.off   = OFF,					\
105 		.imm   = 0 })
106 
107 #define BPF_ALU64_REG(OP, DST, SRC)				\
108 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
109 
110 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
113 		.dst_reg = DST,					\
114 		.src_reg = SRC,					\
115 		.off   = OFF,					\
116 		.imm   = 0 })
117 
118 #define BPF_ALU32_REG(OP, DST, SRC)				\
119 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
120 
121 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
122 
123 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
124 	((struct bpf_insn) {					\
125 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
126 		.dst_reg = DST,					\
127 		.src_reg = 0,					\
128 		.off   = OFF,					\
129 		.imm   = IMM })
130 #define BPF_ALU64_IMM(OP, DST, IMM)				\
131 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
132 
133 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
134 	((struct bpf_insn) {					\
135 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
136 		.dst_reg = DST,					\
137 		.src_reg = 0,					\
138 		.off   = OFF,					\
139 		.imm   = IMM })
140 #define BPF_ALU32_IMM(OP, DST, IMM)				\
141 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
142 
143 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
144 
145 #define BPF_ENDIAN(TYPE, DST, LEN)				\
146 	((struct bpf_insn) {					\
147 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
148 		.dst_reg = DST,					\
149 		.src_reg = 0,					\
150 		.off   = 0,					\
151 		.imm   = LEN })
152 
153 /* Byte Swap, bswap16/32/64 */
154 
155 #define BPF_BSWAP(DST, LEN)					\
156 	((struct bpf_insn) {					\
157 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
158 		.dst_reg = DST,					\
159 		.src_reg = 0,					\
160 		.off   = 0,					\
161 		.imm   = LEN })
162 
163 /* Short form of mov, dst_reg = src_reg */
164 
165 #define BPF_MOV64_REG(DST, SRC)					\
166 	((struct bpf_insn) {					\
167 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
168 		.dst_reg = DST,					\
169 		.src_reg = SRC,					\
170 		.off   = 0,					\
171 		.imm   = 0 })
172 
173 #define BPF_MOV32_REG(DST, SRC)					\
174 	((struct bpf_insn) {					\
175 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
176 		.dst_reg = DST,					\
177 		.src_reg = SRC,					\
178 		.off   = 0,					\
179 		.imm   = 0 })
180 
181 /* Short form of mov, dst_reg = imm32 */
182 
183 #define BPF_MOV64_IMM(DST, IMM)					\
184 	((struct bpf_insn) {					\
185 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
186 		.dst_reg = DST,					\
187 		.src_reg = 0,					\
188 		.off   = 0,					\
189 		.imm   = IMM })
190 
191 #define BPF_MOV32_IMM(DST, IMM)					\
192 	((struct bpf_insn) {					\
193 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
194 		.dst_reg = DST,					\
195 		.src_reg = 0,					\
196 		.off   = 0,					\
197 		.imm   = IMM })
198 
199 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
200 
201 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
202 	((struct bpf_insn) {					\
203 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
204 		.dst_reg = DST,					\
205 		.src_reg = SRC,					\
206 		.off   = OFF,					\
207 		.imm   = 0 })
208 
209 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
210 	((struct bpf_insn) {					\
211 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
212 		.dst_reg = DST,					\
213 		.src_reg = SRC,					\
214 		.off   = OFF,					\
215 		.imm   = 0 })
216 
217 /* Special form of mov32, used for doing explicit zero extension on dst. */
218 #define BPF_ZEXT_REG(DST)					\
219 	((struct bpf_insn) {					\
220 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
221 		.dst_reg = DST,					\
222 		.src_reg = DST,					\
223 		.off   = 0,					\
224 		.imm   = 1 })
225 
226 static inline bool insn_is_zext(const struct bpf_insn *insn)
227 {
228 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
229 }
230 
231 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
232  * to pointers in user vma.
233  */
234 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
235 {
236 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
237 			      insn->off == BPF_ADDR_SPACE_CAST &&
238 			      insn->imm == 1U << 16;
239 }
240 
241 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
242 #define BPF_LD_IMM64(DST, IMM)					\
243 	BPF_LD_IMM64_RAW(DST, 0, IMM)
244 
245 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
246 	((struct bpf_insn) {					\
247 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
248 		.dst_reg = DST,					\
249 		.src_reg = SRC,					\
250 		.off   = 0,					\
251 		.imm   = (__u32) (IMM) }),			\
252 	((struct bpf_insn) {					\
253 		.code  = 0, /* zero is reserved opcode */	\
254 		.dst_reg = 0,					\
255 		.src_reg = 0,					\
256 		.off   = 0,					\
257 		.imm   = ((__u64) (IMM)) >> 32 })
258 
259 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
260 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
261 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
262 
263 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
264 
265 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
266 	((struct bpf_insn) {					\
267 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
268 		.dst_reg = DST,					\
269 		.src_reg = SRC,					\
270 		.off   = 0,					\
271 		.imm   = IMM })
272 
273 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
274 	((struct bpf_insn) {					\
275 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
276 		.dst_reg = DST,					\
277 		.src_reg = SRC,					\
278 		.off   = 0,					\
279 		.imm   = IMM })
280 
281 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
282 
283 #define BPF_LD_ABS(SIZE, IMM)					\
284 	((struct bpf_insn) {					\
285 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
286 		.dst_reg = 0,					\
287 		.src_reg = 0,					\
288 		.off   = 0,					\
289 		.imm   = IMM })
290 
291 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
292 
293 #define BPF_LD_IND(SIZE, SRC, IMM)				\
294 	((struct bpf_insn) {					\
295 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
296 		.dst_reg = 0,					\
297 		.src_reg = SRC,					\
298 		.off   = 0,					\
299 		.imm   = IMM })
300 
301 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
302 
303 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
304 	((struct bpf_insn) {					\
305 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
306 		.dst_reg = DST,					\
307 		.src_reg = SRC,					\
308 		.off   = OFF,					\
309 		.imm   = 0 })
310 
311 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
312 
313 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
314 	((struct bpf_insn) {					\
315 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
316 		.dst_reg = DST,					\
317 		.src_reg = SRC,					\
318 		.off   = OFF,					\
319 		.imm   = 0 })
320 
321 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
322 
323 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
324 	((struct bpf_insn) {					\
325 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
326 		.dst_reg = DST,					\
327 		.src_reg = SRC,					\
328 		.off   = OFF,					\
329 		.imm   = 0 })
330 
331 
332 /*
333  * Atomic operations:
334  *
335  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
336  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
337  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
338  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
339  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
340  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
341  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
342  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
343  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
344  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
345  */
346 
347 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
348 	((struct bpf_insn) {					\
349 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
350 		.dst_reg = DST,					\
351 		.src_reg = SRC,					\
352 		.off   = OFF,					\
353 		.imm   = OP })
354 
355 /* Legacy alias */
356 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
357 
358 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
359 
360 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
361 	((struct bpf_insn) {					\
362 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
363 		.dst_reg = DST,					\
364 		.src_reg = 0,					\
365 		.off   = OFF,					\
366 		.imm   = IMM })
367 
368 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
369 
370 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
371 	((struct bpf_insn) {					\
372 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
373 		.dst_reg = DST,					\
374 		.src_reg = SRC,					\
375 		.off   = OFF,					\
376 		.imm   = 0 })
377 
378 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
379 
380 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
381 	((struct bpf_insn) {					\
382 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
383 		.dst_reg = DST,					\
384 		.src_reg = 0,					\
385 		.off   = OFF,					\
386 		.imm   = IMM })
387 
388 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
389 
390 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
391 	((struct bpf_insn) {					\
392 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
393 		.dst_reg = DST,					\
394 		.src_reg = SRC,					\
395 		.off   = OFF,					\
396 		.imm   = 0 })
397 
398 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
399 
400 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
401 	((struct bpf_insn) {					\
402 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
403 		.dst_reg = DST,					\
404 		.src_reg = 0,					\
405 		.off   = OFF,					\
406 		.imm   = IMM })
407 
408 /* Unconditional jumps, goto pc + off16 */
409 
410 #define BPF_JMP_A(OFF)						\
411 	((struct bpf_insn) {					\
412 		.code  = BPF_JMP | BPF_JA,			\
413 		.dst_reg = 0,					\
414 		.src_reg = 0,					\
415 		.off   = OFF,					\
416 		.imm   = 0 })
417 
418 /* Relative call */
419 
420 #define BPF_CALL_REL(TGT)					\
421 	((struct bpf_insn) {					\
422 		.code  = BPF_JMP | BPF_CALL,			\
423 		.dst_reg = 0,					\
424 		.src_reg = BPF_PSEUDO_CALL,			\
425 		.off   = 0,					\
426 		.imm   = TGT })
427 
428 /* Convert function address to BPF immediate */
429 
430 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
431 
432 #define BPF_EMIT_CALL(FUNC)					\
433 	((struct bpf_insn) {					\
434 		.code  = BPF_JMP | BPF_CALL,			\
435 		.dst_reg = 0,					\
436 		.src_reg = 0,					\
437 		.off   = 0,					\
438 		.imm   = BPF_CALL_IMM(FUNC) })
439 
440 /* Raw code statement block */
441 
442 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
443 	((struct bpf_insn) {					\
444 		.code  = CODE,					\
445 		.dst_reg = DST,					\
446 		.src_reg = SRC,					\
447 		.off   = OFF,					\
448 		.imm   = IMM })
449 
450 /* Program exit */
451 
452 #define BPF_EXIT_INSN()						\
453 	((struct bpf_insn) {					\
454 		.code  = BPF_JMP | BPF_EXIT,			\
455 		.dst_reg = 0,					\
456 		.src_reg = 0,					\
457 		.off   = 0,					\
458 		.imm   = 0 })
459 
460 /* Speculation barrier */
461 
462 #define BPF_ST_NOSPEC()						\
463 	((struct bpf_insn) {					\
464 		.code  = BPF_ST | BPF_NOSPEC,			\
465 		.dst_reg = 0,					\
466 		.src_reg = 0,					\
467 		.off   = 0,					\
468 		.imm   = 0 })
469 
470 /* Internal classic blocks for direct assignment */
471 
472 #define __BPF_STMT(CODE, K)					\
473 	((struct sock_filter) BPF_STMT(CODE, K))
474 
475 #define __BPF_JUMP(CODE, K, JT, JF)				\
476 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
477 
478 #define bytes_to_bpf_size(bytes)				\
479 ({								\
480 	int bpf_size = -EINVAL;					\
481 								\
482 	if (bytes == sizeof(u8))				\
483 		bpf_size = BPF_B;				\
484 	else if (bytes == sizeof(u16))				\
485 		bpf_size = BPF_H;				\
486 	else if (bytes == sizeof(u32))				\
487 		bpf_size = BPF_W;				\
488 	else if (bytes == sizeof(u64))				\
489 		bpf_size = BPF_DW;				\
490 								\
491 	bpf_size;						\
492 })
493 
494 #define bpf_size_to_bytes(bpf_size)				\
495 ({								\
496 	int bytes = -EINVAL;					\
497 								\
498 	if (bpf_size == BPF_B)					\
499 		bytes = sizeof(u8);				\
500 	else if (bpf_size == BPF_H)				\
501 		bytes = sizeof(u16);				\
502 	else if (bpf_size == BPF_W)				\
503 		bytes = sizeof(u32);				\
504 	else if (bpf_size == BPF_DW)				\
505 		bytes = sizeof(u64);				\
506 								\
507 	bytes;							\
508 })
509 
510 #define BPF_SIZEOF(type)					\
511 	({							\
512 		const int __size = bytes_to_bpf_size(sizeof(type)); \
513 		BUILD_BUG_ON(__size < 0);			\
514 		__size;						\
515 	})
516 
517 #define BPF_FIELD_SIZEOF(type, field)				\
518 	({							\
519 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
520 		BUILD_BUG_ON(__size < 0);			\
521 		__size;						\
522 	})
523 
524 #define BPF_LDST_BYTES(insn)					\
525 	({							\
526 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
527 		WARN_ON(__size < 0);				\
528 		__size;						\
529 	})
530 
531 #define __BPF_MAP_0(m, v, ...) v
532 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
533 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
534 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
535 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
536 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
537 
538 #define __BPF_REG_0(...) __BPF_PAD(5)
539 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
540 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
541 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
542 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
543 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
544 
545 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
546 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
547 
548 #define __BPF_CAST(t, a)						       \
549 	(__force t)							       \
550 	(__force							       \
551 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
552 				      (unsigned long)0, (t)0))) a
553 #define __BPF_V void
554 #define __BPF_N
555 
556 #define __BPF_DECL_ARGS(t, a) t   a
557 #define __BPF_DECL_REGS(t, a) u64 a
558 
559 #define __BPF_PAD(n)							       \
560 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
561 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
562 
563 #define BPF_CALL_x(x, attr, name, ...)					       \
564 	static __always_inline						       \
565 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
566 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
567 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
568 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
569 	{								       \
570 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
571 	}								       \
572 	static __always_inline						       \
573 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
574 
575 #define __NOATTR
576 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
577 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
578 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
579 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
580 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
581 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
582 
583 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
584 
585 #define bpf_ctx_range(TYPE, MEMBER)						\
586 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
587 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
588 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
589 #if BITS_PER_LONG == 64
590 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
591 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
592 #else
593 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
594 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
595 #endif /* BITS_PER_LONG == 64 */
596 
597 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
598 	({									\
599 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
600 		*(PTR_SIZE) = (SIZE);						\
601 		offsetof(TYPE, MEMBER);						\
602 	})
603 
604 /* A struct sock_filter is architecture independent. */
605 struct compat_sock_fprog {
606 	u16		len;
607 	compat_uptr_t	filter;	/* struct sock_filter * */
608 };
609 
610 struct sock_fprog_kern {
611 	u16			len;
612 	struct sock_filter	*filter;
613 };
614 
615 /* Some arches need doubleword alignment for their instructions and/or data */
616 #define BPF_IMAGE_ALIGNMENT 8
617 
618 struct bpf_binary_header {
619 	u32 size;
620 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
621 };
622 
623 struct bpf_prog_stats {
624 	u64_stats_t cnt;
625 	u64_stats_t nsecs;
626 	u64_stats_t misses;
627 	struct u64_stats_sync syncp;
628 } __aligned(2 * sizeof(u64));
629 
630 struct sk_filter {
631 	refcount_t	refcnt;
632 	struct rcu_head	rcu;
633 	struct bpf_prog	*prog;
634 };
635 
636 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
637 
638 extern struct mutex nf_conn_btf_access_lock;
639 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
640 				     const struct bpf_reg_state *reg,
641 				     int off, int size);
642 
643 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
644 					  const struct bpf_insn *insnsi,
645 					  unsigned int (*bpf_func)(const void *,
646 								   const struct bpf_insn *));
647 
648 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
649 					  const void *ctx,
650 					  bpf_dispatcher_fn dfunc)
651 {
652 	u32 ret;
653 
654 	cant_migrate();
655 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
656 		struct bpf_prog_stats *stats;
657 		u64 start = sched_clock();
658 		unsigned long flags;
659 
660 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
661 		stats = this_cpu_ptr(prog->stats);
662 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
663 		u64_stats_inc(&stats->cnt);
664 		u64_stats_add(&stats->nsecs, sched_clock() - start);
665 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
666 	} else {
667 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
668 	}
669 	return ret;
670 }
671 
672 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
673 {
674 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
675 }
676 
677 /*
678  * Use in preemptible and therefore migratable context to make sure that
679  * the execution of the BPF program runs on one CPU.
680  *
681  * This uses migrate_disable/enable() explicitly to document that the
682  * invocation of a BPF program does not require reentrancy protection
683  * against a BPF program which is invoked from a preempting task.
684  */
685 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
686 					  const void *ctx)
687 {
688 	u32 ret;
689 
690 	migrate_disable();
691 	ret = bpf_prog_run(prog, ctx);
692 	migrate_enable();
693 	return ret;
694 }
695 
696 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
697 
698 struct bpf_skb_data_end {
699 	struct qdisc_skb_cb qdisc_cb;
700 	void *data_meta;
701 	void *data_end;
702 };
703 
704 struct bpf_nh_params {
705 	u32 nh_family;
706 	union {
707 		u32 ipv4_nh;
708 		struct in6_addr ipv6_nh;
709 	};
710 };
711 
712 struct bpf_redirect_info {
713 	u64 tgt_index;
714 	void *tgt_value;
715 	struct bpf_map *map;
716 	u32 flags;
717 	u32 kern_flags;
718 	u32 map_id;
719 	enum bpf_map_type map_type;
720 	struct bpf_nh_params nh;
721 };
722 
723 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
724 
725 /* flags for bpf_redirect_info kern_flags */
726 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
727 
728 /* Compute the linear packet data range [data, data_end) which
729  * will be accessed by various program types (cls_bpf, act_bpf,
730  * lwt, ...). Subsystems allowing direct data access must (!)
731  * ensure that cb[] area can be written to when BPF program is
732  * invoked (otherwise cb[] save/restore is necessary).
733  */
734 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
735 {
736 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
737 
738 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
739 	cb->data_meta = skb->data - skb_metadata_len(skb);
740 	cb->data_end  = skb->data + skb_headlen(skb);
741 }
742 
743 /* Similar to bpf_compute_data_pointers(), except that save orginal
744  * data in cb->data and cb->meta_data for restore.
745  */
746 static inline void bpf_compute_and_save_data_end(
747 	struct sk_buff *skb, void **saved_data_end)
748 {
749 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
750 
751 	*saved_data_end = cb->data_end;
752 	cb->data_end  = skb->data + skb_headlen(skb);
753 }
754 
755 /* Restore data saved by bpf_compute_and_save_data_end(). */
756 static inline void bpf_restore_data_end(
757 	struct sk_buff *skb, void *saved_data_end)
758 {
759 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
760 
761 	cb->data_end = saved_data_end;
762 }
763 
764 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
765 {
766 	/* eBPF programs may read/write skb->cb[] area to transfer meta
767 	 * data between tail calls. Since this also needs to work with
768 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
769 	 *
770 	 * In some socket filter cases, the cb unfortunately needs to be
771 	 * saved/restored so that protocol specific skb->cb[] data won't
772 	 * be lost. In any case, due to unpriviledged eBPF programs
773 	 * attached to sockets, we need to clear the bpf_skb_cb() area
774 	 * to not leak previous contents to user space.
775 	 */
776 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
777 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
778 		     sizeof_field(struct qdisc_skb_cb, data));
779 
780 	return qdisc_skb_cb(skb)->data;
781 }
782 
783 /* Must be invoked with migration disabled */
784 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
785 					 const void *ctx)
786 {
787 	const struct sk_buff *skb = ctx;
788 	u8 *cb_data = bpf_skb_cb(skb);
789 	u8 cb_saved[BPF_SKB_CB_LEN];
790 	u32 res;
791 
792 	if (unlikely(prog->cb_access)) {
793 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
794 		memset(cb_data, 0, sizeof(cb_saved));
795 	}
796 
797 	res = bpf_prog_run(prog, skb);
798 
799 	if (unlikely(prog->cb_access))
800 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
801 
802 	return res;
803 }
804 
805 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
806 				       struct sk_buff *skb)
807 {
808 	u32 res;
809 
810 	migrate_disable();
811 	res = __bpf_prog_run_save_cb(prog, skb);
812 	migrate_enable();
813 	return res;
814 }
815 
816 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
817 					struct sk_buff *skb)
818 {
819 	u8 *cb_data = bpf_skb_cb(skb);
820 	u32 res;
821 
822 	if (unlikely(prog->cb_access))
823 		memset(cb_data, 0, BPF_SKB_CB_LEN);
824 
825 	res = bpf_prog_run_pin_on_cpu(prog, skb);
826 	return res;
827 }
828 
829 DECLARE_BPF_DISPATCHER(xdp)
830 
831 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
832 
833 u32 xdp_master_redirect(struct xdp_buff *xdp);
834 
835 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
836 
837 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
838 {
839 	return prog->len * sizeof(struct bpf_insn);
840 }
841 
842 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
843 {
844 	return round_up(bpf_prog_insn_size(prog) +
845 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
846 }
847 
848 static inline unsigned int bpf_prog_size(unsigned int proglen)
849 {
850 	return max(sizeof(struct bpf_prog),
851 		   offsetof(struct bpf_prog, insns[proglen]));
852 }
853 
854 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
855 {
856 	/* When classic BPF programs have been loaded and the arch
857 	 * does not have a classic BPF JIT (anymore), they have been
858 	 * converted via bpf_migrate_filter() to eBPF and thus always
859 	 * have an unspec program type.
860 	 */
861 	return prog->type == BPF_PROG_TYPE_UNSPEC;
862 }
863 
864 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
865 {
866 	const u32 size_machine = sizeof(unsigned long);
867 
868 	if (size > size_machine && size % size_machine == 0)
869 		size = size_machine;
870 
871 	return size;
872 }
873 
874 static inline bool
875 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
876 {
877 	return size <= size_default && (size & (size - 1)) == 0;
878 }
879 
880 static inline u8
881 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
882 {
883 	u8 access_off = off & (size_default - 1);
884 
885 #ifdef __LITTLE_ENDIAN
886 	return access_off;
887 #else
888 	return size_default - (access_off + size);
889 #endif
890 }
891 
892 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
893 	(size == sizeof(__u64) &&					\
894 	off >= offsetof(type, field) &&					\
895 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
896 	off % sizeof(__u64) == 0)
897 
898 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
899 
900 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
901 {
902 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
903 	if (!fp->jited) {
904 		set_vm_flush_reset_perms(fp);
905 		return set_memory_ro((unsigned long)fp, fp->pages);
906 	}
907 #endif
908 	return 0;
909 }
910 
911 static inline int __must_check
912 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
913 {
914 	set_vm_flush_reset_perms(hdr);
915 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
916 }
917 
918 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
919 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
920 {
921 	return sk_filter_trim_cap(sk, skb, 1);
922 }
923 
924 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
925 void bpf_prog_free(struct bpf_prog *fp);
926 
927 bool bpf_opcode_in_insntable(u8 code);
928 
929 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
930 			       const u32 *insn_to_jit_off);
931 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
932 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
933 
934 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
935 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
936 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
937 				  gfp_t gfp_extra_flags);
938 void __bpf_prog_free(struct bpf_prog *fp);
939 
940 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
941 {
942 	__bpf_prog_free(fp);
943 }
944 
945 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
946 				       unsigned int flen);
947 
948 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
949 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
950 			      bpf_aux_classic_check_t trans, bool save_orig);
951 void bpf_prog_destroy(struct bpf_prog *fp);
952 
953 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
954 int sk_attach_bpf(u32 ufd, struct sock *sk);
955 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
956 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
957 void sk_reuseport_prog_free(struct bpf_prog *prog);
958 int sk_detach_filter(struct sock *sk);
959 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
960 
961 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
962 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
963 
964 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
965 #define __bpf_call_base_args \
966 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
967 	 (void *)__bpf_call_base)
968 
969 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
970 void bpf_jit_compile(struct bpf_prog *prog);
971 bool bpf_jit_needs_zext(void);
972 bool bpf_jit_supports_subprog_tailcalls(void);
973 bool bpf_jit_supports_kfunc_call(void);
974 bool bpf_jit_supports_far_kfunc_call(void);
975 bool bpf_jit_supports_exceptions(void);
976 bool bpf_jit_supports_ptr_xchg(void);
977 bool bpf_jit_supports_arena(void);
978 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
979 bool bpf_helper_changes_pkt_data(void *func);
980 
981 static inline bool bpf_dump_raw_ok(const struct cred *cred)
982 {
983 	/* Reconstruction of call-sites is dependent on kallsyms,
984 	 * thus make dump the same restriction.
985 	 */
986 	return kallsyms_show_value(cred);
987 }
988 
989 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
990 				       const struct bpf_insn *patch, u32 len);
991 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
992 
993 void bpf_clear_redirect_map(struct bpf_map *map);
994 
995 static inline bool xdp_return_frame_no_direct(void)
996 {
997 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
998 
999 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1000 }
1001 
1002 static inline void xdp_set_return_frame_no_direct(void)
1003 {
1004 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1005 
1006 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1007 }
1008 
1009 static inline void xdp_clear_return_frame_no_direct(void)
1010 {
1011 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1012 
1013 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1014 }
1015 
1016 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1017 				 unsigned int pktlen)
1018 {
1019 	unsigned int len;
1020 
1021 	if (unlikely(!(fwd->flags & IFF_UP)))
1022 		return -ENETDOWN;
1023 
1024 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1025 	if (pktlen > len)
1026 		return -EMSGSIZE;
1027 
1028 	return 0;
1029 }
1030 
1031 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1032  * same cpu context. Further for best results no more than a single map
1033  * for the do_redirect/do_flush pair should be used. This limitation is
1034  * because we only track one map and force a flush when the map changes.
1035  * This does not appear to be a real limitation for existing software.
1036  */
1037 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1038 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1039 int xdp_do_redirect(struct net_device *dev,
1040 		    struct xdp_buff *xdp,
1041 		    struct bpf_prog *prog);
1042 int xdp_do_redirect_frame(struct net_device *dev,
1043 			  struct xdp_buff *xdp,
1044 			  struct xdp_frame *xdpf,
1045 			  struct bpf_prog *prog);
1046 void xdp_do_flush(void);
1047 
1048 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1049 
1050 #ifdef CONFIG_INET
1051 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1052 				  struct bpf_prog *prog, struct sk_buff *skb,
1053 				  struct sock *migrating_sk,
1054 				  u32 hash);
1055 #else
1056 static inline struct sock *
1057 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1058 		     struct bpf_prog *prog, struct sk_buff *skb,
1059 		     struct sock *migrating_sk,
1060 		     u32 hash)
1061 {
1062 	return NULL;
1063 }
1064 #endif
1065 
1066 #ifdef CONFIG_BPF_JIT
1067 extern int bpf_jit_enable;
1068 extern int bpf_jit_harden;
1069 extern int bpf_jit_kallsyms;
1070 extern long bpf_jit_limit;
1071 extern long bpf_jit_limit_max;
1072 
1073 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1074 
1075 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1076 
1077 struct bpf_binary_header *
1078 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1079 		     unsigned int alignment,
1080 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1081 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1082 u64 bpf_jit_alloc_exec_limit(void);
1083 void *bpf_jit_alloc_exec(unsigned long size);
1084 void bpf_jit_free_exec(void *addr);
1085 void bpf_jit_free(struct bpf_prog *fp);
1086 struct bpf_binary_header *
1087 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1088 
1089 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1090 void bpf_prog_pack_free(void *ptr, u32 size);
1091 
1092 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1093 {
1094 	return list_empty(&fp->aux->ksym.lnode) ||
1095 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1096 }
1097 
1098 struct bpf_binary_header *
1099 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1100 			  unsigned int alignment,
1101 			  struct bpf_binary_header **rw_hdr,
1102 			  u8 **rw_image,
1103 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1104 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1105 				 struct bpf_binary_header *ro_header,
1106 				 struct bpf_binary_header *rw_header);
1107 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1108 			      struct bpf_binary_header *rw_header);
1109 
1110 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1111 				struct bpf_jit_poke_descriptor *poke);
1112 
1113 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1114 			  const struct bpf_insn *insn, bool extra_pass,
1115 			  u64 *func_addr, bool *func_addr_fixed);
1116 
1117 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1118 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1119 
1120 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1121 				u32 pass, void *image)
1122 {
1123 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1124 	       proglen, pass, image, current->comm, task_pid_nr(current));
1125 
1126 	if (image)
1127 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1128 			       16, 1, image, proglen, false);
1129 }
1130 
1131 static inline bool bpf_jit_is_ebpf(void)
1132 {
1133 # ifdef CONFIG_HAVE_EBPF_JIT
1134 	return true;
1135 # else
1136 	return false;
1137 # endif
1138 }
1139 
1140 static inline bool ebpf_jit_enabled(void)
1141 {
1142 	return bpf_jit_enable && bpf_jit_is_ebpf();
1143 }
1144 
1145 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1146 {
1147 	return fp->jited && bpf_jit_is_ebpf();
1148 }
1149 
1150 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1151 {
1152 	/* These are the prerequisites, should someone ever have the
1153 	 * idea to call blinding outside of them, we make sure to
1154 	 * bail out.
1155 	 */
1156 	if (!bpf_jit_is_ebpf())
1157 		return false;
1158 	if (!prog->jit_requested)
1159 		return false;
1160 	if (!bpf_jit_harden)
1161 		return false;
1162 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1163 		return false;
1164 
1165 	return true;
1166 }
1167 
1168 static inline bool bpf_jit_kallsyms_enabled(void)
1169 {
1170 	/* There are a couple of corner cases where kallsyms should
1171 	 * not be enabled f.e. on hardening.
1172 	 */
1173 	if (bpf_jit_harden)
1174 		return false;
1175 	if (!bpf_jit_kallsyms)
1176 		return false;
1177 	if (bpf_jit_kallsyms == 1)
1178 		return true;
1179 
1180 	return false;
1181 }
1182 
1183 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1184 				 unsigned long *off, char *sym);
1185 bool is_bpf_text_address(unsigned long addr);
1186 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1187 		    char *sym);
1188 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1189 
1190 static inline const char *
1191 bpf_address_lookup(unsigned long addr, unsigned long *size,
1192 		   unsigned long *off, char **modname, char *sym)
1193 {
1194 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1195 
1196 	if (ret && modname)
1197 		*modname = NULL;
1198 	return ret;
1199 }
1200 
1201 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1202 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1203 
1204 #else /* CONFIG_BPF_JIT */
1205 
1206 static inline bool ebpf_jit_enabled(void)
1207 {
1208 	return false;
1209 }
1210 
1211 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1212 {
1213 	return false;
1214 }
1215 
1216 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1217 {
1218 	return false;
1219 }
1220 
1221 static inline int
1222 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1223 			    struct bpf_jit_poke_descriptor *poke)
1224 {
1225 	return -ENOTSUPP;
1226 }
1227 
1228 static inline void bpf_jit_free(struct bpf_prog *fp)
1229 {
1230 	bpf_prog_unlock_free(fp);
1231 }
1232 
1233 static inline bool bpf_jit_kallsyms_enabled(void)
1234 {
1235 	return false;
1236 }
1237 
1238 static inline const char *
1239 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1240 		     unsigned long *off, char *sym)
1241 {
1242 	return NULL;
1243 }
1244 
1245 static inline bool is_bpf_text_address(unsigned long addr)
1246 {
1247 	return false;
1248 }
1249 
1250 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1251 				  char *type, char *sym)
1252 {
1253 	return -ERANGE;
1254 }
1255 
1256 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1257 {
1258 	return NULL;
1259 }
1260 
1261 static inline const char *
1262 bpf_address_lookup(unsigned long addr, unsigned long *size,
1263 		   unsigned long *off, char **modname, char *sym)
1264 {
1265 	return NULL;
1266 }
1267 
1268 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1269 {
1270 }
1271 
1272 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1273 {
1274 }
1275 
1276 #endif /* CONFIG_BPF_JIT */
1277 
1278 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1279 
1280 #define BPF_ANC		BIT(15)
1281 
1282 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1283 {
1284 	switch (first->code) {
1285 	case BPF_RET | BPF_K:
1286 	case BPF_LD | BPF_W | BPF_LEN:
1287 		return false;
1288 
1289 	case BPF_LD | BPF_W | BPF_ABS:
1290 	case BPF_LD | BPF_H | BPF_ABS:
1291 	case BPF_LD | BPF_B | BPF_ABS:
1292 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1293 			return true;
1294 		return false;
1295 
1296 	default:
1297 		return true;
1298 	}
1299 }
1300 
1301 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1302 {
1303 	BUG_ON(ftest->code & BPF_ANC);
1304 
1305 	switch (ftest->code) {
1306 	case BPF_LD | BPF_W | BPF_ABS:
1307 	case BPF_LD | BPF_H | BPF_ABS:
1308 	case BPF_LD | BPF_B | BPF_ABS:
1309 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1310 				return BPF_ANC | SKF_AD_##CODE
1311 		switch (ftest->k) {
1312 		BPF_ANCILLARY(PROTOCOL);
1313 		BPF_ANCILLARY(PKTTYPE);
1314 		BPF_ANCILLARY(IFINDEX);
1315 		BPF_ANCILLARY(NLATTR);
1316 		BPF_ANCILLARY(NLATTR_NEST);
1317 		BPF_ANCILLARY(MARK);
1318 		BPF_ANCILLARY(QUEUE);
1319 		BPF_ANCILLARY(HATYPE);
1320 		BPF_ANCILLARY(RXHASH);
1321 		BPF_ANCILLARY(CPU);
1322 		BPF_ANCILLARY(ALU_XOR_X);
1323 		BPF_ANCILLARY(VLAN_TAG);
1324 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1325 		BPF_ANCILLARY(PAY_OFFSET);
1326 		BPF_ANCILLARY(RANDOM);
1327 		BPF_ANCILLARY(VLAN_TPID);
1328 		}
1329 		fallthrough;
1330 	default:
1331 		return ftest->code;
1332 	}
1333 }
1334 
1335 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1336 					   int k, unsigned int size);
1337 
1338 static inline int bpf_tell_extensions(void)
1339 {
1340 	return SKF_AD_MAX;
1341 }
1342 
1343 struct bpf_sock_addr_kern {
1344 	struct sock *sk;
1345 	struct sockaddr *uaddr;
1346 	/* Temporary "register" to make indirect stores to nested structures
1347 	 * defined above. We need three registers to make such a store, but
1348 	 * only two (src and dst) are available at convert_ctx_access time
1349 	 */
1350 	u64 tmp_reg;
1351 	void *t_ctx;	/* Attach type specific context. */
1352 	u32 uaddrlen;
1353 };
1354 
1355 struct bpf_sock_ops_kern {
1356 	struct	sock *sk;
1357 	union {
1358 		u32 args[4];
1359 		u32 reply;
1360 		u32 replylong[4];
1361 	};
1362 	struct sk_buff	*syn_skb;
1363 	struct sk_buff	*skb;
1364 	void	*skb_data_end;
1365 	u8	op;
1366 	u8	is_fullsock;
1367 	u8	remaining_opt_len;
1368 	u64	temp;			/* temp and everything after is not
1369 					 * initialized to 0 before calling
1370 					 * the BPF program. New fields that
1371 					 * should be initialized to 0 should
1372 					 * be inserted before temp.
1373 					 * temp is scratch storage used by
1374 					 * sock_ops_convert_ctx_access
1375 					 * as temporary storage of a register.
1376 					 */
1377 };
1378 
1379 struct bpf_sysctl_kern {
1380 	struct ctl_table_header *head;
1381 	struct ctl_table *table;
1382 	void *cur_val;
1383 	size_t cur_len;
1384 	void *new_val;
1385 	size_t new_len;
1386 	int new_updated;
1387 	int write;
1388 	loff_t *ppos;
1389 	/* Temporary "register" for indirect stores to ppos. */
1390 	u64 tmp_reg;
1391 };
1392 
1393 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1394 struct bpf_sockopt_buf {
1395 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1396 };
1397 
1398 struct bpf_sockopt_kern {
1399 	struct sock	*sk;
1400 	u8		*optval;
1401 	u8		*optval_end;
1402 	s32		level;
1403 	s32		optname;
1404 	s32		optlen;
1405 	/* for retval in struct bpf_cg_run_ctx */
1406 	struct task_struct *current_task;
1407 	/* Temporary "register" for indirect stores to ppos. */
1408 	u64		tmp_reg;
1409 };
1410 
1411 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1412 
1413 struct bpf_sk_lookup_kern {
1414 	u16		family;
1415 	u16		protocol;
1416 	__be16		sport;
1417 	u16		dport;
1418 	struct {
1419 		__be32 saddr;
1420 		__be32 daddr;
1421 	} v4;
1422 	struct {
1423 		const struct in6_addr *saddr;
1424 		const struct in6_addr *daddr;
1425 	} v6;
1426 	struct sock	*selected_sk;
1427 	u32		ingress_ifindex;
1428 	bool		no_reuseport;
1429 };
1430 
1431 extern struct static_key_false bpf_sk_lookup_enabled;
1432 
1433 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1434  *
1435  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1436  * SK_DROP. Their meaning is as follows:
1437  *
1438  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1439  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1440  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1441  *
1442  * This macro aggregates return values and selected sockets from
1443  * multiple BPF programs according to following rules in order:
1444  *
1445  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1446  *     macro result is SK_PASS and last ctx.selected_sk is used.
1447  *  2. If any program returned SK_DROP return value,
1448  *     macro result is SK_DROP.
1449  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1450  *
1451  * Caller must ensure that the prog array is non-NULL, and that the
1452  * array as well as the programs it contains remain valid.
1453  */
1454 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1455 	({								\
1456 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1457 		struct bpf_prog_array_item *_item;			\
1458 		struct sock *_selected_sk = NULL;			\
1459 		bool _no_reuseport = false;				\
1460 		struct bpf_prog *_prog;					\
1461 		bool _all_pass = true;					\
1462 		u32 _ret;						\
1463 									\
1464 		migrate_disable();					\
1465 		_item = &(array)->items[0];				\
1466 		while ((_prog = READ_ONCE(_item->prog))) {		\
1467 			/* restore most recent selection */		\
1468 			_ctx->selected_sk = _selected_sk;		\
1469 			_ctx->no_reuseport = _no_reuseport;		\
1470 									\
1471 			_ret = func(_prog, _ctx);			\
1472 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1473 				/* remember last non-NULL socket */	\
1474 				_selected_sk = _ctx->selected_sk;	\
1475 				_no_reuseport = _ctx->no_reuseport;	\
1476 			} else if (_ret == SK_DROP && _all_pass) {	\
1477 				_all_pass = false;			\
1478 			}						\
1479 			_item++;					\
1480 		}							\
1481 		_ctx->selected_sk = _selected_sk;			\
1482 		_ctx->no_reuseport = _no_reuseport;			\
1483 		migrate_enable();					\
1484 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1485 	 })
1486 
1487 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1488 					const __be32 saddr, const __be16 sport,
1489 					const __be32 daddr, const u16 dport,
1490 					const int ifindex, struct sock **psk)
1491 {
1492 	struct bpf_prog_array *run_array;
1493 	struct sock *selected_sk = NULL;
1494 	bool no_reuseport = false;
1495 
1496 	rcu_read_lock();
1497 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1498 	if (run_array) {
1499 		struct bpf_sk_lookup_kern ctx = {
1500 			.family		= AF_INET,
1501 			.protocol	= protocol,
1502 			.v4.saddr	= saddr,
1503 			.v4.daddr	= daddr,
1504 			.sport		= sport,
1505 			.dport		= dport,
1506 			.ingress_ifindex	= ifindex,
1507 		};
1508 		u32 act;
1509 
1510 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1511 		if (act == SK_PASS) {
1512 			selected_sk = ctx.selected_sk;
1513 			no_reuseport = ctx.no_reuseport;
1514 		} else {
1515 			selected_sk = ERR_PTR(-ECONNREFUSED);
1516 		}
1517 	}
1518 	rcu_read_unlock();
1519 	*psk = selected_sk;
1520 	return no_reuseport;
1521 }
1522 
1523 #if IS_ENABLED(CONFIG_IPV6)
1524 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1525 					const struct in6_addr *saddr,
1526 					const __be16 sport,
1527 					const struct in6_addr *daddr,
1528 					const u16 dport,
1529 					const int ifindex, struct sock **psk)
1530 {
1531 	struct bpf_prog_array *run_array;
1532 	struct sock *selected_sk = NULL;
1533 	bool no_reuseport = false;
1534 
1535 	rcu_read_lock();
1536 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1537 	if (run_array) {
1538 		struct bpf_sk_lookup_kern ctx = {
1539 			.family		= AF_INET6,
1540 			.protocol	= protocol,
1541 			.v6.saddr	= saddr,
1542 			.v6.daddr	= daddr,
1543 			.sport		= sport,
1544 			.dport		= dport,
1545 			.ingress_ifindex	= ifindex,
1546 		};
1547 		u32 act;
1548 
1549 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1550 		if (act == SK_PASS) {
1551 			selected_sk = ctx.selected_sk;
1552 			no_reuseport = ctx.no_reuseport;
1553 		} else {
1554 			selected_sk = ERR_PTR(-ECONNREFUSED);
1555 		}
1556 	}
1557 	rcu_read_unlock();
1558 	*psk = selected_sk;
1559 	return no_reuseport;
1560 }
1561 #endif /* IS_ENABLED(CONFIG_IPV6) */
1562 
1563 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1564 						   u64 flags, const u64 flag_mask,
1565 						   void *lookup_elem(struct bpf_map *map, u32 key))
1566 {
1567 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1568 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1569 
1570 	/* Lower bits of the flags are used as return code on lookup failure */
1571 	if (unlikely(flags & ~(action_mask | flag_mask)))
1572 		return XDP_ABORTED;
1573 
1574 	ri->tgt_value = lookup_elem(map, index);
1575 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1576 		/* If the lookup fails we want to clear out the state in the
1577 		 * redirect_info struct completely, so that if an eBPF program
1578 		 * performs multiple lookups, the last one always takes
1579 		 * precedence.
1580 		 */
1581 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1582 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1583 		return flags & action_mask;
1584 	}
1585 
1586 	ri->tgt_index = index;
1587 	ri->map_id = map->id;
1588 	ri->map_type = map->map_type;
1589 
1590 	if (flags & BPF_F_BROADCAST) {
1591 		WRITE_ONCE(ri->map, map);
1592 		ri->flags = flags;
1593 	} else {
1594 		WRITE_ONCE(ri->map, NULL);
1595 		ri->flags = 0;
1596 	}
1597 
1598 	return XDP_REDIRECT;
1599 }
1600 
1601 #ifdef CONFIG_NET
1602 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1603 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1604 			  u32 len, u64 flags);
1605 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1606 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1607 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1608 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1609 		      void *buf, unsigned long len, bool flush);
1610 #else /* CONFIG_NET */
1611 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1612 				       void *to, u32 len)
1613 {
1614 	return -EOPNOTSUPP;
1615 }
1616 
1617 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1618 					const void *from, u32 len, u64 flags)
1619 {
1620 	return -EOPNOTSUPP;
1621 }
1622 
1623 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1624 				       void *buf, u32 len)
1625 {
1626 	return -EOPNOTSUPP;
1627 }
1628 
1629 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1630 					void *buf, u32 len)
1631 {
1632 	return -EOPNOTSUPP;
1633 }
1634 
1635 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1636 {
1637 	return NULL;
1638 }
1639 
1640 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1641 				    unsigned long len, bool flush)
1642 {
1643 }
1644 #endif /* CONFIG_NET */
1645 
1646 #endif /* __LINUX_FILTER_H__ */
1647