1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/bpf.h> 10 #include <linux/refcount.h> 11 #include <linux/compat.h> 12 #include <linux/skbuff.h> 13 #include <linux/linkage.h> 14 #include <linux/printk.h> 15 #include <linux/workqueue.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/capability.h> 19 #include <linux/set_memory.h> 20 #include <linux/kallsyms.h> 21 #include <linux/if_vlan.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sockptr.h> 24 #include <crypto/sha1.h> 25 #include <linux/u64_stats_sync.h> 26 27 #include <net/sch_generic.h> 28 29 #include <asm/byteorder.h> 30 #include <uapi/linux/filter.h> 31 32 struct sk_buff; 33 struct sock; 34 struct seccomp_data; 35 struct bpf_prog_aux; 36 struct xdp_rxq_info; 37 struct xdp_buff; 38 struct sock_reuseport; 39 struct ctl_table; 40 struct ctl_table_header; 41 42 /* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46 #define BPF_REG_ARG1 BPF_REG_1 47 #define BPF_REG_ARG2 BPF_REG_2 48 #define BPF_REG_ARG3 BPF_REG_3 49 #define BPF_REG_ARG4 BPF_REG_4 50 #define BPF_REG_ARG5 BPF_REG_5 51 #define BPF_REG_CTX BPF_REG_6 52 #define BPF_REG_FP BPF_REG_10 53 54 /* Additional register mappings for converted user programs. */ 55 #define BPF_REG_A BPF_REG_0 56 #define BPF_REG_X BPF_REG_7 57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61 /* Kernel hidden auxiliary/helper register. */ 62 #define BPF_REG_AX MAX_BPF_REG 63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66 /* unused opcode to mark special call to bpf_tail_call() helper */ 67 #define BPF_TAIL_CALL 0xf0 68 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 70 #define BPF_PROBE_MEM 0x20 71 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73 #define BPF_PROBE_MEMSX 0x40 74 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */ 76 #define BPF_PROBE_MEM32 0xa0 77 78 /* unused opcode to mark call to interpreter with arguments */ 79 #define BPF_CALL_ARGS 0xe0 80 81 /* unused opcode to mark speculation barrier for mitigating 82 * Speculative Store Bypass 83 */ 84 #define BPF_NOSPEC 0xc0 85 86 /* As per nm, we expose JITed images as text (code) section for 87 * kallsyms. That way, tools like perf can find it to match 88 * addresses. 89 */ 90 #define BPF_SYM_ELF_TYPE 't' 91 92 /* BPF program can access up to 512 bytes of stack space. */ 93 #define MAX_BPF_STACK 512 94 95 /* Helper macros for filter block array initializers. */ 96 97 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 98 99 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 100 ((struct bpf_insn) { \ 101 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 102 .dst_reg = DST, \ 103 .src_reg = SRC, \ 104 .off = OFF, \ 105 .imm = 0 }) 106 107 #define BPF_ALU64_REG(OP, DST, SRC) \ 108 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 109 110 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 113 .dst_reg = DST, \ 114 .src_reg = SRC, \ 115 .off = OFF, \ 116 .imm = 0 }) 117 118 #define BPF_ALU32_REG(OP, DST, SRC) \ 119 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 120 121 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 122 123 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 124 ((struct bpf_insn) { \ 125 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 126 .dst_reg = DST, \ 127 .src_reg = 0, \ 128 .off = OFF, \ 129 .imm = IMM }) 130 #define BPF_ALU64_IMM(OP, DST, IMM) \ 131 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 132 133 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 134 ((struct bpf_insn) { \ 135 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 136 .dst_reg = DST, \ 137 .src_reg = 0, \ 138 .off = OFF, \ 139 .imm = IMM }) 140 #define BPF_ALU32_IMM(OP, DST, IMM) \ 141 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 142 143 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 144 145 #define BPF_ENDIAN(TYPE, DST, LEN) \ 146 ((struct bpf_insn) { \ 147 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 148 .dst_reg = DST, \ 149 .src_reg = 0, \ 150 .off = 0, \ 151 .imm = LEN }) 152 153 /* Byte Swap, bswap16/32/64 */ 154 155 #define BPF_BSWAP(DST, LEN) \ 156 ((struct bpf_insn) { \ 157 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 158 .dst_reg = DST, \ 159 .src_reg = 0, \ 160 .off = 0, \ 161 .imm = LEN }) 162 163 /* Short form of mov, dst_reg = src_reg */ 164 165 #define BPF_MOV64_REG(DST, SRC) \ 166 ((struct bpf_insn) { \ 167 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 168 .dst_reg = DST, \ 169 .src_reg = SRC, \ 170 .off = 0, \ 171 .imm = 0 }) 172 173 #define BPF_MOV32_REG(DST, SRC) \ 174 ((struct bpf_insn) { \ 175 .code = BPF_ALU | BPF_MOV | BPF_X, \ 176 .dst_reg = DST, \ 177 .src_reg = SRC, \ 178 .off = 0, \ 179 .imm = 0 }) 180 181 /* Short form of mov, dst_reg = imm32 */ 182 183 #define BPF_MOV64_IMM(DST, IMM) \ 184 ((struct bpf_insn) { \ 185 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 186 .dst_reg = DST, \ 187 .src_reg = 0, \ 188 .off = 0, \ 189 .imm = IMM }) 190 191 #define BPF_MOV32_IMM(DST, IMM) \ 192 ((struct bpf_insn) { \ 193 .code = BPF_ALU | BPF_MOV | BPF_K, \ 194 .dst_reg = DST, \ 195 .src_reg = 0, \ 196 .off = 0, \ 197 .imm = IMM }) 198 199 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 200 201 #define BPF_MOVSX64_REG(DST, SRC, OFF) \ 202 ((struct bpf_insn) { \ 203 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 204 .dst_reg = DST, \ 205 .src_reg = SRC, \ 206 .off = OFF, \ 207 .imm = 0 }) 208 209 #define BPF_MOVSX32_REG(DST, SRC, OFF) \ 210 ((struct bpf_insn) { \ 211 .code = BPF_ALU | BPF_MOV | BPF_X, \ 212 .dst_reg = DST, \ 213 .src_reg = SRC, \ 214 .off = OFF, \ 215 .imm = 0 }) 216 217 /* Special form of mov32, used for doing explicit zero extension on dst. */ 218 #define BPF_ZEXT_REG(DST) \ 219 ((struct bpf_insn) { \ 220 .code = BPF_ALU | BPF_MOV | BPF_X, \ 221 .dst_reg = DST, \ 222 .src_reg = DST, \ 223 .off = 0, \ 224 .imm = 1 }) 225 226 static inline bool insn_is_zext(const struct bpf_insn *insn) 227 { 228 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 229 } 230 231 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 232 * to pointers in user vma. 233 */ 234 static inline bool insn_is_cast_user(const struct bpf_insn *insn) 235 { 236 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 237 insn->off == BPF_ADDR_SPACE_CAST && 238 insn->imm == 1U << 16; 239 } 240 241 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 242 #define BPF_LD_IMM64(DST, IMM) \ 243 BPF_LD_IMM64_RAW(DST, 0, IMM) 244 245 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 246 ((struct bpf_insn) { \ 247 .code = BPF_LD | BPF_DW | BPF_IMM, \ 248 .dst_reg = DST, \ 249 .src_reg = SRC, \ 250 .off = 0, \ 251 .imm = (__u32) (IMM) }), \ 252 ((struct bpf_insn) { \ 253 .code = 0, /* zero is reserved opcode */ \ 254 .dst_reg = 0, \ 255 .src_reg = 0, \ 256 .off = 0, \ 257 .imm = ((__u64) (IMM)) >> 32 }) 258 259 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 260 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 261 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 262 263 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 264 265 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 266 ((struct bpf_insn) { \ 267 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 268 .dst_reg = DST, \ 269 .src_reg = SRC, \ 270 .off = 0, \ 271 .imm = IMM }) 272 273 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 274 ((struct bpf_insn) { \ 275 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 276 .dst_reg = DST, \ 277 .src_reg = SRC, \ 278 .off = 0, \ 279 .imm = IMM }) 280 281 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 282 283 #define BPF_LD_ABS(SIZE, IMM) \ 284 ((struct bpf_insn) { \ 285 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 286 .dst_reg = 0, \ 287 .src_reg = 0, \ 288 .off = 0, \ 289 .imm = IMM }) 290 291 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 292 293 #define BPF_LD_IND(SIZE, SRC, IMM) \ 294 ((struct bpf_insn) { \ 295 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 296 .dst_reg = 0, \ 297 .src_reg = SRC, \ 298 .off = 0, \ 299 .imm = IMM }) 300 301 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 302 303 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 304 ((struct bpf_insn) { \ 305 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 306 .dst_reg = DST, \ 307 .src_reg = SRC, \ 308 .off = OFF, \ 309 .imm = 0 }) 310 311 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 312 313 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 314 ((struct bpf_insn) { \ 315 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 316 .dst_reg = DST, \ 317 .src_reg = SRC, \ 318 .off = OFF, \ 319 .imm = 0 }) 320 321 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 322 323 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 324 ((struct bpf_insn) { \ 325 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 326 .dst_reg = DST, \ 327 .src_reg = SRC, \ 328 .off = OFF, \ 329 .imm = 0 }) 330 331 332 /* 333 * Atomic operations: 334 * 335 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 336 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 337 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 338 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 339 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 340 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 341 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 342 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 343 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 344 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 345 */ 346 347 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 348 ((struct bpf_insn) { \ 349 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 350 .dst_reg = DST, \ 351 .src_reg = SRC, \ 352 .off = OFF, \ 353 .imm = OP }) 354 355 /* Legacy alias */ 356 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 357 358 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 359 360 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 361 ((struct bpf_insn) { \ 362 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 363 .dst_reg = DST, \ 364 .src_reg = 0, \ 365 .off = OFF, \ 366 .imm = IMM }) 367 368 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 369 370 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 371 ((struct bpf_insn) { \ 372 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 373 .dst_reg = DST, \ 374 .src_reg = SRC, \ 375 .off = OFF, \ 376 .imm = 0 }) 377 378 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 379 380 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 381 ((struct bpf_insn) { \ 382 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 383 .dst_reg = DST, \ 384 .src_reg = 0, \ 385 .off = OFF, \ 386 .imm = IMM }) 387 388 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 389 390 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 391 ((struct bpf_insn) { \ 392 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 393 .dst_reg = DST, \ 394 .src_reg = SRC, \ 395 .off = OFF, \ 396 .imm = 0 }) 397 398 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 399 400 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 401 ((struct bpf_insn) { \ 402 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 403 .dst_reg = DST, \ 404 .src_reg = 0, \ 405 .off = OFF, \ 406 .imm = IMM }) 407 408 /* Unconditional jumps, goto pc + off16 */ 409 410 #define BPF_JMP_A(OFF) \ 411 ((struct bpf_insn) { \ 412 .code = BPF_JMP | BPF_JA, \ 413 .dst_reg = 0, \ 414 .src_reg = 0, \ 415 .off = OFF, \ 416 .imm = 0 }) 417 418 /* Relative call */ 419 420 #define BPF_CALL_REL(TGT) \ 421 ((struct bpf_insn) { \ 422 .code = BPF_JMP | BPF_CALL, \ 423 .dst_reg = 0, \ 424 .src_reg = BPF_PSEUDO_CALL, \ 425 .off = 0, \ 426 .imm = TGT }) 427 428 /* Convert function address to BPF immediate */ 429 430 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 431 432 #define BPF_EMIT_CALL(FUNC) \ 433 ((struct bpf_insn) { \ 434 .code = BPF_JMP | BPF_CALL, \ 435 .dst_reg = 0, \ 436 .src_reg = 0, \ 437 .off = 0, \ 438 .imm = BPF_CALL_IMM(FUNC) }) 439 440 /* Raw code statement block */ 441 442 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 443 ((struct bpf_insn) { \ 444 .code = CODE, \ 445 .dst_reg = DST, \ 446 .src_reg = SRC, \ 447 .off = OFF, \ 448 .imm = IMM }) 449 450 /* Program exit */ 451 452 #define BPF_EXIT_INSN() \ 453 ((struct bpf_insn) { \ 454 .code = BPF_JMP | BPF_EXIT, \ 455 .dst_reg = 0, \ 456 .src_reg = 0, \ 457 .off = 0, \ 458 .imm = 0 }) 459 460 /* Speculation barrier */ 461 462 #define BPF_ST_NOSPEC() \ 463 ((struct bpf_insn) { \ 464 .code = BPF_ST | BPF_NOSPEC, \ 465 .dst_reg = 0, \ 466 .src_reg = 0, \ 467 .off = 0, \ 468 .imm = 0 }) 469 470 /* Internal classic blocks for direct assignment */ 471 472 #define __BPF_STMT(CODE, K) \ 473 ((struct sock_filter) BPF_STMT(CODE, K)) 474 475 #define __BPF_JUMP(CODE, K, JT, JF) \ 476 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 477 478 #define bytes_to_bpf_size(bytes) \ 479 ({ \ 480 int bpf_size = -EINVAL; \ 481 \ 482 if (bytes == sizeof(u8)) \ 483 bpf_size = BPF_B; \ 484 else if (bytes == sizeof(u16)) \ 485 bpf_size = BPF_H; \ 486 else if (bytes == sizeof(u32)) \ 487 bpf_size = BPF_W; \ 488 else if (bytes == sizeof(u64)) \ 489 bpf_size = BPF_DW; \ 490 \ 491 bpf_size; \ 492 }) 493 494 #define bpf_size_to_bytes(bpf_size) \ 495 ({ \ 496 int bytes = -EINVAL; \ 497 \ 498 if (bpf_size == BPF_B) \ 499 bytes = sizeof(u8); \ 500 else if (bpf_size == BPF_H) \ 501 bytes = sizeof(u16); \ 502 else if (bpf_size == BPF_W) \ 503 bytes = sizeof(u32); \ 504 else if (bpf_size == BPF_DW) \ 505 bytes = sizeof(u64); \ 506 \ 507 bytes; \ 508 }) 509 510 #define BPF_SIZEOF(type) \ 511 ({ \ 512 const int __size = bytes_to_bpf_size(sizeof(type)); \ 513 BUILD_BUG_ON(__size < 0); \ 514 __size; \ 515 }) 516 517 #define BPF_FIELD_SIZEOF(type, field) \ 518 ({ \ 519 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 520 BUILD_BUG_ON(__size < 0); \ 521 __size; \ 522 }) 523 524 #define BPF_LDST_BYTES(insn) \ 525 ({ \ 526 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 527 WARN_ON(__size < 0); \ 528 __size; \ 529 }) 530 531 #define __BPF_MAP_0(m, v, ...) v 532 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 533 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 534 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 535 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 536 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 537 538 #define __BPF_REG_0(...) __BPF_PAD(5) 539 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 540 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 541 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 542 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 543 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 544 545 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 546 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 547 548 #define __BPF_CAST(t, a) \ 549 (__force t) \ 550 (__force \ 551 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 552 (unsigned long)0, (t)0))) a 553 #define __BPF_V void 554 #define __BPF_N 555 556 #define __BPF_DECL_ARGS(t, a) t a 557 #define __BPF_DECL_REGS(t, a) u64 a 558 559 #define __BPF_PAD(n) \ 560 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 561 u64, __ur_3, u64, __ur_4, u64, __ur_5) 562 563 #define BPF_CALL_x(x, attr, name, ...) \ 564 static __always_inline \ 565 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 566 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 567 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 568 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 569 { \ 570 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 571 } \ 572 static __always_inline \ 573 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 574 575 #define __NOATTR 576 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 577 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 578 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 579 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 580 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 581 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 582 583 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 584 585 #define bpf_ctx_range(TYPE, MEMBER) \ 586 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 587 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 588 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 589 #if BITS_PER_LONG == 64 590 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 591 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 592 #else 593 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 594 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 595 #endif /* BITS_PER_LONG == 64 */ 596 597 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 598 ({ \ 599 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 600 *(PTR_SIZE) = (SIZE); \ 601 offsetof(TYPE, MEMBER); \ 602 }) 603 604 /* A struct sock_filter is architecture independent. */ 605 struct compat_sock_fprog { 606 u16 len; 607 compat_uptr_t filter; /* struct sock_filter * */ 608 }; 609 610 struct sock_fprog_kern { 611 u16 len; 612 struct sock_filter *filter; 613 }; 614 615 /* Some arches need doubleword alignment for their instructions and/or data */ 616 #define BPF_IMAGE_ALIGNMENT 8 617 618 struct bpf_binary_header { 619 u32 size; 620 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 621 }; 622 623 struct bpf_prog_stats { 624 u64_stats_t cnt; 625 u64_stats_t nsecs; 626 u64_stats_t misses; 627 struct u64_stats_sync syncp; 628 } __aligned(2 * sizeof(u64)); 629 630 struct sk_filter { 631 refcount_t refcnt; 632 struct rcu_head rcu; 633 struct bpf_prog *prog; 634 }; 635 636 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 637 638 extern struct mutex nf_conn_btf_access_lock; 639 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 640 const struct bpf_reg_state *reg, 641 int off, int size); 642 643 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 644 const struct bpf_insn *insnsi, 645 unsigned int (*bpf_func)(const void *, 646 const struct bpf_insn *)); 647 648 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 649 const void *ctx, 650 bpf_dispatcher_fn dfunc) 651 { 652 u32 ret; 653 654 cant_migrate(); 655 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 656 struct bpf_prog_stats *stats; 657 u64 start = sched_clock(); 658 unsigned long flags; 659 660 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 661 stats = this_cpu_ptr(prog->stats); 662 flags = u64_stats_update_begin_irqsave(&stats->syncp); 663 u64_stats_inc(&stats->cnt); 664 u64_stats_add(&stats->nsecs, sched_clock() - start); 665 u64_stats_update_end_irqrestore(&stats->syncp, flags); 666 } else { 667 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 668 } 669 return ret; 670 } 671 672 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 673 { 674 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 675 } 676 677 /* 678 * Use in preemptible and therefore migratable context to make sure that 679 * the execution of the BPF program runs on one CPU. 680 * 681 * This uses migrate_disable/enable() explicitly to document that the 682 * invocation of a BPF program does not require reentrancy protection 683 * against a BPF program which is invoked from a preempting task. 684 */ 685 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 686 const void *ctx) 687 { 688 u32 ret; 689 690 migrate_disable(); 691 ret = bpf_prog_run(prog, ctx); 692 migrate_enable(); 693 return ret; 694 } 695 696 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 697 698 struct bpf_skb_data_end { 699 struct qdisc_skb_cb qdisc_cb; 700 void *data_meta; 701 void *data_end; 702 }; 703 704 struct bpf_nh_params { 705 u32 nh_family; 706 union { 707 u32 ipv4_nh; 708 struct in6_addr ipv6_nh; 709 }; 710 }; 711 712 struct bpf_redirect_info { 713 u64 tgt_index; 714 void *tgt_value; 715 struct bpf_map *map; 716 u32 flags; 717 u32 kern_flags; 718 u32 map_id; 719 enum bpf_map_type map_type; 720 struct bpf_nh_params nh; 721 }; 722 723 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 724 725 /* flags for bpf_redirect_info kern_flags */ 726 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 727 728 /* Compute the linear packet data range [data, data_end) which 729 * will be accessed by various program types (cls_bpf, act_bpf, 730 * lwt, ...). Subsystems allowing direct data access must (!) 731 * ensure that cb[] area can be written to when BPF program is 732 * invoked (otherwise cb[] save/restore is necessary). 733 */ 734 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 735 { 736 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 737 738 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 739 cb->data_meta = skb->data - skb_metadata_len(skb); 740 cb->data_end = skb->data + skb_headlen(skb); 741 } 742 743 /* Similar to bpf_compute_data_pointers(), except that save orginal 744 * data in cb->data and cb->meta_data for restore. 745 */ 746 static inline void bpf_compute_and_save_data_end( 747 struct sk_buff *skb, void **saved_data_end) 748 { 749 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 750 751 *saved_data_end = cb->data_end; 752 cb->data_end = skb->data + skb_headlen(skb); 753 } 754 755 /* Restore data saved by bpf_compute_and_save_data_end(). */ 756 static inline void bpf_restore_data_end( 757 struct sk_buff *skb, void *saved_data_end) 758 { 759 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 760 761 cb->data_end = saved_data_end; 762 } 763 764 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 765 { 766 /* eBPF programs may read/write skb->cb[] area to transfer meta 767 * data between tail calls. Since this also needs to work with 768 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 769 * 770 * In some socket filter cases, the cb unfortunately needs to be 771 * saved/restored so that protocol specific skb->cb[] data won't 772 * be lost. In any case, due to unpriviledged eBPF programs 773 * attached to sockets, we need to clear the bpf_skb_cb() area 774 * to not leak previous contents to user space. 775 */ 776 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 777 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 778 sizeof_field(struct qdisc_skb_cb, data)); 779 780 return qdisc_skb_cb(skb)->data; 781 } 782 783 /* Must be invoked with migration disabled */ 784 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 785 const void *ctx) 786 { 787 const struct sk_buff *skb = ctx; 788 u8 *cb_data = bpf_skb_cb(skb); 789 u8 cb_saved[BPF_SKB_CB_LEN]; 790 u32 res; 791 792 if (unlikely(prog->cb_access)) { 793 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 794 memset(cb_data, 0, sizeof(cb_saved)); 795 } 796 797 res = bpf_prog_run(prog, skb); 798 799 if (unlikely(prog->cb_access)) 800 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 801 802 return res; 803 } 804 805 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 806 struct sk_buff *skb) 807 { 808 u32 res; 809 810 migrate_disable(); 811 res = __bpf_prog_run_save_cb(prog, skb); 812 migrate_enable(); 813 return res; 814 } 815 816 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 817 struct sk_buff *skb) 818 { 819 u8 *cb_data = bpf_skb_cb(skb); 820 u32 res; 821 822 if (unlikely(prog->cb_access)) 823 memset(cb_data, 0, BPF_SKB_CB_LEN); 824 825 res = bpf_prog_run_pin_on_cpu(prog, skb); 826 return res; 827 } 828 829 DECLARE_BPF_DISPATCHER(xdp) 830 831 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 832 833 u32 xdp_master_redirect(struct xdp_buff *xdp); 834 835 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 836 837 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 838 { 839 return prog->len * sizeof(struct bpf_insn); 840 } 841 842 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 843 { 844 return round_up(bpf_prog_insn_size(prog) + 845 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 846 } 847 848 static inline unsigned int bpf_prog_size(unsigned int proglen) 849 { 850 return max(sizeof(struct bpf_prog), 851 offsetof(struct bpf_prog, insns[proglen])); 852 } 853 854 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 855 { 856 /* When classic BPF programs have been loaded and the arch 857 * does not have a classic BPF JIT (anymore), they have been 858 * converted via bpf_migrate_filter() to eBPF and thus always 859 * have an unspec program type. 860 */ 861 return prog->type == BPF_PROG_TYPE_UNSPEC; 862 } 863 864 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 865 { 866 const u32 size_machine = sizeof(unsigned long); 867 868 if (size > size_machine && size % size_machine == 0) 869 size = size_machine; 870 871 return size; 872 } 873 874 static inline bool 875 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 876 { 877 return size <= size_default && (size & (size - 1)) == 0; 878 } 879 880 static inline u8 881 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 882 { 883 u8 access_off = off & (size_default - 1); 884 885 #ifdef __LITTLE_ENDIAN 886 return access_off; 887 #else 888 return size_default - (access_off + size); 889 #endif 890 } 891 892 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 893 (size == sizeof(__u64) && \ 894 off >= offsetof(type, field) && \ 895 off + sizeof(__u64) <= offsetofend(type, field) && \ 896 off % sizeof(__u64) == 0) 897 898 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 899 900 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 901 { 902 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 903 if (!fp->jited) { 904 set_vm_flush_reset_perms(fp); 905 return set_memory_ro((unsigned long)fp, fp->pages); 906 } 907 #endif 908 return 0; 909 } 910 911 static inline int __must_check 912 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 913 { 914 set_vm_flush_reset_perms(hdr); 915 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 916 } 917 918 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 919 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 920 { 921 return sk_filter_trim_cap(sk, skb, 1); 922 } 923 924 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 925 void bpf_prog_free(struct bpf_prog *fp); 926 927 bool bpf_opcode_in_insntable(u8 code); 928 929 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 930 const u32 *insn_to_jit_off); 931 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 932 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 933 934 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 935 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 936 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 937 gfp_t gfp_extra_flags); 938 void __bpf_prog_free(struct bpf_prog *fp); 939 940 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 941 { 942 __bpf_prog_free(fp); 943 } 944 945 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 946 unsigned int flen); 947 948 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 949 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 950 bpf_aux_classic_check_t trans, bool save_orig); 951 void bpf_prog_destroy(struct bpf_prog *fp); 952 953 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 954 int sk_attach_bpf(u32 ufd, struct sock *sk); 955 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 956 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 957 void sk_reuseport_prog_free(struct bpf_prog *prog); 958 int sk_detach_filter(struct sock *sk); 959 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 960 961 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 962 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 963 964 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 965 #define __bpf_call_base_args \ 966 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 967 (void *)__bpf_call_base) 968 969 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 970 void bpf_jit_compile(struct bpf_prog *prog); 971 bool bpf_jit_needs_zext(void); 972 bool bpf_jit_supports_subprog_tailcalls(void); 973 bool bpf_jit_supports_kfunc_call(void); 974 bool bpf_jit_supports_far_kfunc_call(void); 975 bool bpf_jit_supports_exceptions(void); 976 bool bpf_jit_supports_ptr_xchg(void); 977 bool bpf_jit_supports_arena(void); 978 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 979 bool bpf_helper_changes_pkt_data(void *func); 980 981 static inline bool bpf_dump_raw_ok(const struct cred *cred) 982 { 983 /* Reconstruction of call-sites is dependent on kallsyms, 984 * thus make dump the same restriction. 985 */ 986 return kallsyms_show_value(cred); 987 } 988 989 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 990 const struct bpf_insn *patch, u32 len); 991 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 992 993 void bpf_clear_redirect_map(struct bpf_map *map); 994 995 static inline bool xdp_return_frame_no_direct(void) 996 { 997 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 998 999 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1000 } 1001 1002 static inline void xdp_set_return_frame_no_direct(void) 1003 { 1004 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1005 1006 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1007 } 1008 1009 static inline void xdp_clear_return_frame_no_direct(void) 1010 { 1011 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1012 1013 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1014 } 1015 1016 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1017 unsigned int pktlen) 1018 { 1019 unsigned int len; 1020 1021 if (unlikely(!(fwd->flags & IFF_UP))) 1022 return -ENETDOWN; 1023 1024 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1025 if (pktlen > len) 1026 return -EMSGSIZE; 1027 1028 return 0; 1029 } 1030 1031 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1032 * same cpu context. Further for best results no more than a single map 1033 * for the do_redirect/do_flush pair should be used. This limitation is 1034 * because we only track one map and force a flush when the map changes. 1035 * This does not appear to be a real limitation for existing software. 1036 */ 1037 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1038 struct xdp_buff *xdp, struct bpf_prog *prog); 1039 int xdp_do_redirect(struct net_device *dev, 1040 struct xdp_buff *xdp, 1041 struct bpf_prog *prog); 1042 int xdp_do_redirect_frame(struct net_device *dev, 1043 struct xdp_buff *xdp, 1044 struct xdp_frame *xdpf, 1045 struct bpf_prog *prog); 1046 void xdp_do_flush(void); 1047 1048 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1049 1050 #ifdef CONFIG_INET 1051 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1052 struct bpf_prog *prog, struct sk_buff *skb, 1053 struct sock *migrating_sk, 1054 u32 hash); 1055 #else 1056 static inline struct sock * 1057 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1058 struct bpf_prog *prog, struct sk_buff *skb, 1059 struct sock *migrating_sk, 1060 u32 hash) 1061 { 1062 return NULL; 1063 } 1064 #endif 1065 1066 #ifdef CONFIG_BPF_JIT 1067 extern int bpf_jit_enable; 1068 extern int bpf_jit_harden; 1069 extern int bpf_jit_kallsyms; 1070 extern long bpf_jit_limit; 1071 extern long bpf_jit_limit_max; 1072 1073 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1074 1075 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1076 1077 struct bpf_binary_header * 1078 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1079 unsigned int alignment, 1080 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1081 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1082 u64 bpf_jit_alloc_exec_limit(void); 1083 void *bpf_jit_alloc_exec(unsigned long size); 1084 void bpf_jit_free_exec(void *addr); 1085 void bpf_jit_free(struct bpf_prog *fp); 1086 struct bpf_binary_header * 1087 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1088 1089 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1090 void bpf_prog_pack_free(void *ptr, u32 size); 1091 1092 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1093 { 1094 return list_empty(&fp->aux->ksym.lnode) || 1095 fp->aux->ksym.lnode.prev == LIST_POISON2; 1096 } 1097 1098 struct bpf_binary_header * 1099 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1100 unsigned int alignment, 1101 struct bpf_binary_header **rw_hdr, 1102 u8 **rw_image, 1103 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1104 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1105 struct bpf_binary_header *ro_header, 1106 struct bpf_binary_header *rw_header); 1107 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1108 struct bpf_binary_header *rw_header); 1109 1110 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1111 struct bpf_jit_poke_descriptor *poke); 1112 1113 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1114 const struct bpf_insn *insn, bool extra_pass, 1115 u64 *func_addr, bool *func_addr_fixed); 1116 1117 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1118 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1119 1120 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1121 u32 pass, void *image) 1122 { 1123 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1124 proglen, pass, image, current->comm, task_pid_nr(current)); 1125 1126 if (image) 1127 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1128 16, 1, image, proglen, false); 1129 } 1130 1131 static inline bool bpf_jit_is_ebpf(void) 1132 { 1133 # ifdef CONFIG_HAVE_EBPF_JIT 1134 return true; 1135 # else 1136 return false; 1137 # endif 1138 } 1139 1140 static inline bool ebpf_jit_enabled(void) 1141 { 1142 return bpf_jit_enable && bpf_jit_is_ebpf(); 1143 } 1144 1145 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1146 { 1147 return fp->jited && bpf_jit_is_ebpf(); 1148 } 1149 1150 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1151 { 1152 /* These are the prerequisites, should someone ever have the 1153 * idea to call blinding outside of them, we make sure to 1154 * bail out. 1155 */ 1156 if (!bpf_jit_is_ebpf()) 1157 return false; 1158 if (!prog->jit_requested) 1159 return false; 1160 if (!bpf_jit_harden) 1161 return false; 1162 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1163 return false; 1164 1165 return true; 1166 } 1167 1168 static inline bool bpf_jit_kallsyms_enabled(void) 1169 { 1170 /* There are a couple of corner cases where kallsyms should 1171 * not be enabled f.e. on hardening. 1172 */ 1173 if (bpf_jit_harden) 1174 return false; 1175 if (!bpf_jit_kallsyms) 1176 return false; 1177 if (bpf_jit_kallsyms == 1) 1178 return true; 1179 1180 return false; 1181 } 1182 1183 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1184 unsigned long *off, char *sym); 1185 bool is_bpf_text_address(unsigned long addr); 1186 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1187 char *sym); 1188 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1189 1190 static inline const char * 1191 bpf_address_lookup(unsigned long addr, unsigned long *size, 1192 unsigned long *off, char **modname, char *sym) 1193 { 1194 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1195 1196 if (ret && modname) 1197 *modname = NULL; 1198 return ret; 1199 } 1200 1201 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1202 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1203 1204 #else /* CONFIG_BPF_JIT */ 1205 1206 static inline bool ebpf_jit_enabled(void) 1207 { 1208 return false; 1209 } 1210 1211 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1212 { 1213 return false; 1214 } 1215 1216 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1217 { 1218 return false; 1219 } 1220 1221 static inline int 1222 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1223 struct bpf_jit_poke_descriptor *poke) 1224 { 1225 return -ENOTSUPP; 1226 } 1227 1228 static inline void bpf_jit_free(struct bpf_prog *fp) 1229 { 1230 bpf_prog_unlock_free(fp); 1231 } 1232 1233 static inline bool bpf_jit_kallsyms_enabled(void) 1234 { 1235 return false; 1236 } 1237 1238 static inline const char * 1239 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1240 unsigned long *off, char *sym) 1241 { 1242 return NULL; 1243 } 1244 1245 static inline bool is_bpf_text_address(unsigned long addr) 1246 { 1247 return false; 1248 } 1249 1250 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1251 char *type, char *sym) 1252 { 1253 return -ERANGE; 1254 } 1255 1256 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1257 { 1258 return NULL; 1259 } 1260 1261 static inline const char * 1262 bpf_address_lookup(unsigned long addr, unsigned long *size, 1263 unsigned long *off, char **modname, char *sym) 1264 { 1265 return NULL; 1266 } 1267 1268 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1269 { 1270 } 1271 1272 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1273 { 1274 } 1275 1276 #endif /* CONFIG_BPF_JIT */ 1277 1278 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1279 1280 #define BPF_ANC BIT(15) 1281 1282 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1283 { 1284 switch (first->code) { 1285 case BPF_RET | BPF_K: 1286 case BPF_LD | BPF_W | BPF_LEN: 1287 return false; 1288 1289 case BPF_LD | BPF_W | BPF_ABS: 1290 case BPF_LD | BPF_H | BPF_ABS: 1291 case BPF_LD | BPF_B | BPF_ABS: 1292 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1293 return true; 1294 return false; 1295 1296 default: 1297 return true; 1298 } 1299 } 1300 1301 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1302 { 1303 BUG_ON(ftest->code & BPF_ANC); 1304 1305 switch (ftest->code) { 1306 case BPF_LD | BPF_W | BPF_ABS: 1307 case BPF_LD | BPF_H | BPF_ABS: 1308 case BPF_LD | BPF_B | BPF_ABS: 1309 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1310 return BPF_ANC | SKF_AD_##CODE 1311 switch (ftest->k) { 1312 BPF_ANCILLARY(PROTOCOL); 1313 BPF_ANCILLARY(PKTTYPE); 1314 BPF_ANCILLARY(IFINDEX); 1315 BPF_ANCILLARY(NLATTR); 1316 BPF_ANCILLARY(NLATTR_NEST); 1317 BPF_ANCILLARY(MARK); 1318 BPF_ANCILLARY(QUEUE); 1319 BPF_ANCILLARY(HATYPE); 1320 BPF_ANCILLARY(RXHASH); 1321 BPF_ANCILLARY(CPU); 1322 BPF_ANCILLARY(ALU_XOR_X); 1323 BPF_ANCILLARY(VLAN_TAG); 1324 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1325 BPF_ANCILLARY(PAY_OFFSET); 1326 BPF_ANCILLARY(RANDOM); 1327 BPF_ANCILLARY(VLAN_TPID); 1328 } 1329 fallthrough; 1330 default: 1331 return ftest->code; 1332 } 1333 } 1334 1335 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1336 int k, unsigned int size); 1337 1338 static inline int bpf_tell_extensions(void) 1339 { 1340 return SKF_AD_MAX; 1341 } 1342 1343 struct bpf_sock_addr_kern { 1344 struct sock *sk; 1345 struct sockaddr *uaddr; 1346 /* Temporary "register" to make indirect stores to nested structures 1347 * defined above. We need three registers to make such a store, but 1348 * only two (src and dst) are available at convert_ctx_access time 1349 */ 1350 u64 tmp_reg; 1351 void *t_ctx; /* Attach type specific context. */ 1352 u32 uaddrlen; 1353 }; 1354 1355 struct bpf_sock_ops_kern { 1356 struct sock *sk; 1357 union { 1358 u32 args[4]; 1359 u32 reply; 1360 u32 replylong[4]; 1361 }; 1362 struct sk_buff *syn_skb; 1363 struct sk_buff *skb; 1364 void *skb_data_end; 1365 u8 op; 1366 u8 is_fullsock; 1367 u8 remaining_opt_len; 1368 u64 temp; /* temp and everything after is not 1369 * initialized to 0 before calling 1370 * the BPF program. New fields that 1371 * should be initialized to 0 should 1372 * be inserted before temp. 1373 * temp is scratch storage used by 1374 * sock_ops_convert_ctx_access 1375 * as temporary storage of a register. 1376 */ 1377 }; 1378 1379 struct bpf_sysctl_kern { 1380 struct ctl_table_header *head; 1381 struct ctl_table *table; 1382 void *cur_val; 1383 size_t cur_len; 1384 void *new_val; 1385 size_t new_len; 1386 int new_updated; 1387 int write; 1388 loff_t *ppos; 1389 /* Temporary "register" for indirect stores to ppos. */ 1390 u64 tmp_reg; 1391 }; 1392 1393 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1394 struct bpf_sockopt_buf { 1395 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1396 }; 1397 1398 struct bpf_sockopt_kern { 1399 struct sock *sk; 1400 u8 *optval; 1401 u8 *optval_end; 1402 s32 level; 1403 s32 optname; 1404 s32 optlen; 1405 /* for retval in struct bpf_cg_run_ctx */ 1406 struct task_struct *current_task; 1407 /* Temporary "register" for indirect stores to ppos. */ 1408 u64 tmp_reg; 1409 }; 1410 1411 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1412 1413 struct bpf_sk_lookup_kern { 1414 u16 family; 1415 u16 protocol; 1416 __be16 sport; 1417 u16 dport; 1418 struct { 1419 __be32 saddr; 1420 __be32 daddr; 1421 } v4; 1422 struct { 1423 const struct in6_addr *saddr; 1424 const struct in6_addr *daddr; 1425 } v6; 1426 struct sock *selected_sk; 1427 u32 ingress_ifindex; 1428 bool no_reuseport; 1429 }; 1430 1431 extern struct static_key_false bpf_sk_lookup_enabled; 1432 1433 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1434 * 1435 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1436 * SK_DROP. Their meaning is as follows: 1437 * 1438 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1439 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1440 * SK_DROP : terminate lookup with -ECONNREFUSED 1441 * 1442 * This macro aggregates return values and selected sockets from 1443 * multiple BPF programs according to following rules in order: 1444 * 1445 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1446 * macro result is SK_PASS and last ctx.selected_sk is used. 1447 * 2. If any program returned SK_DROP return value, 1448 * macro result is SK_DROP. 1449 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1450 * 1451 * Caller must ensure that the prog array is non-NULL, and that the 1452 * array as well as the programs it contains remain valid. 1453 */ 1454 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1455 ({ \ 1456 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1457 struct bpf_prog_array_item *_item; \ 1458 struct sock *_selected_sk = NULL; \ 1459 bool _no_reuseport = false; \ 1460 struct bpf_prog *_prog; \ 1461 bool _all_pass = true; \ 1462 u32 _ret; \ 1463 \ 1464 migrate_disable(); \ 1465 _item = &(array)->items[0]; \ 1466 while ((_prog = READ_ONCE(_item->prog))) { \ 1467 /* restore most recent selection */ \ 1468 _ctx->selected_sk = _selected_sk; \ 1469 _ctx->no_reuseport = _no_reuseport; \ 1470 \ 1471 _ret = func(_prog, _ctx); \ 1472 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1473 /* remember last non-NULL socket */ \ 1474 _selected_sk = _ctx->selected_sk; \ 1475 _no_reuseport = _ctx->no_reuseport; \ 1476 } else if (_ret == SK_DROP && _all_pass) { \ 1477 _all_pass = false; \ 1478 } \ 1479 _item++; \ 1480 } \ 1481 _ctx->selected_sk = _selected_sk; \ 1482 _ctx->no_reuseport = _no_reuseport; \ 1483 migrate_enable(); \ 1484 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1485 }) 1486 1487 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1488 const __be32 saddr, const __be16 sport, 1489 const __be32 daddr, const u16 dport, 1490 const int ifindex, struct sock **psk) 1491 { 1492 struct bpf_prog_array *run_array; 1493 struct sock *selected_sk = NULL; 1494 bool no_reuseport = false; 1495 1496 rcu_read_lock(); 1497 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1498 if (run_array) { 1499 struct bpf_sk_lookup_kern ctx = { 1500 .family = AF_INET, 1501 .protocol = protocol, 1502 .v4.saddr = saddr, 1503 .v4.daddr = daddr, 1504 .sport = sport, 1505 .dport = dport, 1506 .ingress_ifindex = ifindex, 1507 }; 1508 u32 act; 1509 1510 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1511 if (act == SK_PASS) { 1512 selected_sk = ctx.selected_sk; 1513 no_reuseport = ctx.no_reuseport; 1514 } else { 1515 selected_sk = ERR_PTR(-ECONNREFUSED); 1516 } 1517 } 1518 rcu_read_unlock(); 1519 *psk = selected_sk; 1520 return no_reuseport; 1521 } 1522 1523 #if IS_ENABLED(CONFIG_IPV6) 1524 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1525 const struct in6_addr *saddr, 1526 const __be16 sport, 1527 const struct in6_addr *daddr, 1528 const u16 dport, 1529 const int ifindex, struct sock **psk) 1530 { 1531 struct bpf_prog_array *run_array; 1532 struct sock *selected_sk = NULL; 1533 bool no_reuseport = false; 1534 1535 rcu_read_lock(); 1536 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1537 if (run_array) { 1538 struct bpf_sk_lookup_kern ctx = { 1539 .family = AF_INET6, 1540 .protocol = protocol, 1541 .v6.saddr = saddr, 1542 .v6.daddr = daddr, 1543 .sport = sport, 1544 .dport = dport, 1545 .ingress_ifindex = ifindex, 1546 }; 1547 u32 act; 1548 1549 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1550 if (act == SK_PASS) { 1551 selected_sk = ctx.selected_sk; 1552 no_reuseport = ctx.no_reuseport; 1553 } else { 1554 selected_sk = ERR_PTR(-ECONNREFUSED); 1555 } 1556 } 1557 rcu_read_unlock(); 1558 *psk = selected_sk; 1559 return no_reuseport; 1560 } 1561 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1562 1563 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1564 u64 flags, const u64 flag_mask, 1565 void *lookup_elem(struct bpf_map *map, u32 key)) 1566 { 1567 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1568 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1569 1570 /* Lower bits of the flags are used as return code on lookup failure */ 1571 if (unlikely(flags & ~(action_mask | flag_mask))) 1572 return XDP_ABORTED; 1573 1574 ri->tgt_value = lookup_elem(map, index); 1575 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1576 /* If the lookup fails we want to clear out the state in the 1577 * redirect_info struct completely, so that if an eBPF program 1578 * performs multiple lookups, the last one always takes 1579 * precedence. 1580 */ 1581 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1582 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1583 return flags & action_mask; 1584 } 1585 1586 ri->tgt_index = index; 1587 ri->map_id = map->id; 1588 ri->map_type = map->map_type; 1589 1590 if (flags & BPF_F_BROADCAST) { 1591 WRITE_ONCE(ri->map, map); 1592 ri->flags = flags; 1593 } else { 1594 WRITE_ONCE(ri->map, NULL); 1595 ri->flags = 0; 1596 } 1597 1598 return XDP_REDIRECT; 1599 } 1600 1601 #ifdef CONFIG_NET 1602 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1603 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1604 u32 len, u64 flags); 1605 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1606 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1607 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1608 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1609 void *buf, unsigned long len, bool flush); 1610 #else /* CONFIG_NET */ 1611 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1612 void *to, u32 len) 1613 { 1614 return -EOPNOTSUPP; 1615 } 1616 1617 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1618 const void *from, u32 len, u64 flags) 1619 { 1620 return -EOPNOTSUPP; 1621 } 1622 1623 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1624 void *buf, u32 len) 1625 { 1626 return -EOPNOTSUPP; 1627 } 1628 1629 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1630 void *buf, u32 len) 1631 { 1632 return -EOPNOTSUPP; 1633 } 1634 1635 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1636 { 1637 return NULL; 1638 } 1639 1640 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1641 unsigned long len, bool flush) 1642 { 1643 } 1644 #endif /* CONFIG_NET */ 1645 1646 #endif /* __LINUX_FILTER_H__ */ 1647