xref: /linux-6.15/include/linux/filter.h (revision f6bcbf2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 
23 #include <net/xdp.h>
24 #include <net/sch_generic.h>
25 
26 #include <uapi/linux/filter.h>
27 #include <uapi/linux/bpf.h>
28 
29 struct sk_buff;
30 struct sock;
31 struct seccomp_data;
32 struct bpf_prog_aux;
33 
34 /* ArgX, context and stack frame pointer register positions. Note,
35  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
36  * calls in BPF_CALL instruction.
37  */
38 #define BPF_REG_ARG1	BPF_REG_1
39 #define BPF_REG_ARG2	BPF_REG_2
40 #define BPF_REG_ARG3	BPF_REG_3
41 #define BPF_REG_ARG4	BPF_REG_4
42 #define BPF_REG_ARG5	BPF_REG_5
43 #define BPF_REG_CTX	BPF_REG_6
44 #define BPF_REG_FP	BPF_REG_10
45 
46 /* Additional register mappings for converted user programs. */
47 #define BPF_REG_A	BPF_REG_0
48 #define BPF_REG_X	BPF_REG_7
49 #define BPF_REG_TMP	BPF_REG_8
50 
51 /* Kernel hidden auxiliary/helper register for hardening step.
52  * Only used by eBPF JITs. It's nothing more than a temporary
53  * register that JITs use internally, only that here it's part
54  * of eBPF instructions that have been rewritten for blinding
55  * constants. See JIT pre-step in bpf_jit_blind_constants().
56  */
57 #define BPF_REG_AX		MAX_BPF_REG
58 #define MAX_BPF_JIT_REG		(MAX_BPF_REG + 1)
59 
60 /* unused opcode to mark special call to bpf_tail_call() helper */
61 #define BPF_TAIL_CALL	0xf0
62 
63 /* unused opcode to mark call to interpreter with arguments */
64 #define BPF_CALL_ARGS	0xe0
65 
66 /* As per nm, we expose JITed images as text (code) section for
67  * kallsyms. That way, tools like perf can find it to match
68  * addresses.
69  */
70 #define BPF_SYM_ELF_TYPE	't'
71 
72 /* BPF program can access up to 512 bytes of stack space. */
73 #define MAX_BPF_STACK	512
74 
75 /* Helper macros for filter block array initializers. */
76 
77 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
78 
79 #define BPF_ALU64_REG(OP, DST, SRC)				\
80 	((struct bpf_insn) {					\
81 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
82 		.dst_reg = DST,					\
83 		.src_reg = SRC,					\
84 		.off   = 0,					\
85 		.imm   = 0 })
86 
87 #define BPF_ALU32_REG(OP, DST, SRC)				\
88 	((struct bpf_insn) {					\
89 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
90 		.dst_reg = DST,					\
91 		.src_reg = SRC,					\
92 		.off   = 0,					\
93 		.imm   = 0 })
94 
95 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
96 
97 #define BPF_ALU64_IMM(OP, DST, IMM)				\
98 	((struct bpf_insn) {					\
99 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
100 		.dst_reg = DST,					\
101 		.src_reg = 0,					\
102 		.off   = 0,					\
103 		.imm   = IMM })
104 
105 #define BPF_ALU32_IMM(OP, DST, IMM)				\
106 	((struct bpf_insn) {					\
107 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
108 		.dst_reg = DST,					\
109 		.src_reg = 0,					\
110 		.off   = 0,					\
111 		.imm   = IMM })
112 
113 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
114 
115 #define BPF_ENDIAN(TYPE, DST, LEN)				\
116 	((struct bpf_insn) {					\
117 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
118 		.dst_reg = DST,					\
119 		.src_reg = 0,					\
120 		.off   = 0,					\
121 		.imm   = LEN })
122 
123 /* Short form of mov, dst_reg = src_reg */
124 
125 #define BPF_MOV64_REG(DST, SRC)					\
126 	((struct bpf_insn) {					\
127 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
128 		.dst_reg = DST,					\
129 		.src_reg = SRC,					\
130 		.off   = 0,					\
131 		.imm   = 0 })
132 
133 #define BPF_MOV32_REG(DST, SRC)					\
134 	((struct bpf_insn) {					\
135 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
136 		.dst_reg = DST,					\
137 		.src_reg = SRC,					\
138 		.off   = 0,					\
139 		.imm   = 0 })
140 
141 /* Short form of mov, dst_reg = imm32 */
142 
143 #define BPF_MOV64_IMM(DST, IMM)					\
144 	((struct bpf_insn) {					\
145 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
146 		.dst_reg = DST,					\
147 		.src_reg = 0,					\
148 		.off   = 0,					\
149 		.imm   = IMM })
150 
151 #define BPF_MOV32_IMM(DST, IMM)					\
152 	((struct bpf_insn) {					\
153 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
154 		.dst_reg = DST,					\
155 		.src_reg = 0,					\
156 		.off   = 0,					\
157 		.imm   = IMM })
158 
159 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
160 #define BPF_LD_IMM64(DST, IMM)					\
161 	BPF_LD_IMM64_RAW(DST, 0, IMM)
162 
163 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
164 	((struct bpf_insn) {					\
165 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
166 		.dst_reg = DST,					\
167 		.src_reg = SRC,					\
168 		.off   = 0,					\
169 		.imm   = (__u32) (IMM) }),			\
170 	((struct bpf_insn) {					\
171 		.code  = 0, /* zero is reserved opcode */	\
172 		.dst_reg = 0,					\
173 		.src_reg = 0,					\
174 		.off   = 0,					\
175 		.imm   = ((__u64) (IMM)) >> 32 })
176 
177 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
178 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
179 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
180 
181 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
182 
183 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
184 	((struct bpf_insn) {					\
185 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
186 		.dst_reg = DST,					\
187 		.src_reg = SRC,					\
188 		.off   = 0,					\
189 		.imm   = IMM })
190 
191 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
192 	((struct bpf_insn) {					\
193 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
194 		.dst_reg = DST,					\
195 		.src_reg = SRC,					\
196 		.off   = 0,					\
197 		.imm   = IMM })
198 
199 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
200 
201 #define BPF_LD_ABS(SIZE, IMM)					\
202 	((struct bpf_insn) {					\
203 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
204 		.dst_reg = 0,					\
205 		.src_reg = 0,					\
206 		.off   = 0,					\
207 		.imm   = IMM })
208 
209 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
210 
211 #define BPF_LD_IND(SIZE, SRC, IMM)				\
212 	((struct bpf_insn) {					\
213 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
214 		.dst_reg = 0,					\
215 		.src_reg = SRC,					\
216 		.off   = 0,					\
217 		.imm   = IMM })
218 
219 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
220 
221 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
222 	((struct bpf_insn) {					\
223 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
224 		.dst_reg = DST,					\
225 		.src_reg = SRC,					\
226 		.off   = OFF,					\
227 		.imm   = 0 })
228 
229 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
230 
231 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
232 	((struct bpf_insn) {					\
233 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
234 		.dst_reg = DST,					\
235 		.src_reg = SRC,					\
236 		.off   = OFF,					\
237 		.imm   = 0 })
238 
239 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
240 
241 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
242 	((struct bpf_insn) {					\
243 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
244 		.dst_reg = DST,					\
245 		.src_reg = SRC,					\
246 		.off   = OFF,					\
247 		.imm   = 0 })
248 
249 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
250 
251 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
252 	((struct bpf_insn) {					\
253 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
254 		.dst_reg = DST,					\
255 		.src_reg = 0,					\
256 		.off   = OFF,					\
257 		.imm   = IMM })
258 
259 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
260 
261 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
262 	((struct bpf_insn) {					\
263 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
264 		.dst_reg = DST,					\
265 		.src_reg = SRC,					\
266 		.off   = OFF,					\
267 		.imm   = 0 })
268 
269 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
270 
271 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
272 	((struct bpf_insn) {					\
273 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
274 		.dst_reg = DST,					\
275 		.src_reg = 0,					\
276 		.off   = OFF,					\
277 		.imm   = IMM })
278 
279 /* Unconditional jumps, goto pc + off16 */
280 
281 #define BPF_JMP_A(OFF)						\
282 	((struct bpf_insn) {					\
283 		.code  = BPF_JMP | BPF_JA,			\
284 		.dst_reg = 0,					\
285 		.src_reg = 0,					\
286 		.off   = OFF,					\
287 		.imm   = 0 })
288 
289 /* Function call */
290 
291 #define BPF_EMIT_CALL(FUNC)					\
292 	((struct bpf_insn) {					\
293 		.code  = BPF_JMP | BPF_CALL,			\
294 		.dst_reg = 0,					\
295 		.src_reg = 0,					\
296 		.off   = 0,					\
297 		.imm   = ((FUNC) - __bpf_call_base) })
298 
299 /* Raw code statement block */
300 
301 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
302 	((struct bpf_insn) {					\
303 		.code  = CODE,					\
304 		.dst_reg = DST,					\
305 		.src_reg = SRC,					\
306 		.off   = OFF,					\
307 		.imm   = IMM })
308 
309 /* Program exit */
310 
311 #define BPF_EXIT_INSN()						\
312 	((struct bpf_insn) {					\
313 		.code  = BPF_JMP | BPF_EXIT,			\
314 		.dst_reg = 0,					\
315 		.src_reg = 0,					\
316 		.off   = 0,					\
317 		.imm   = 0 })
318 
319 /* Internal classic blocks for direct assignment */
320 
321 #define __BPF_STMT(CODE, K)					\
322 	((struct sock_filter) BPF_STMT(CODE, K))
323 
324 #define __BPF_JUMP(CODE, K, JT, JF)				\
325 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
326 
327 #define bytes_to_bpf_size(bytes)				\
328 ({								\
329 	int bpf_size = -EINVAL;					\
330 								\
331 	if (bytes == sizeof(u8))				\
332 		bpf_size = BPF_B;				\
333 	else if (bytes == sizeof(u16))				\
334 		bpf_size = BPF_H;				\
335 	else if (bytes == sizeof(u32))				\
336 		bpf_size = BPF_W;				\
337 	else if (bytes == sizeof(u64))				\
338 		bpf_size = BPF_DW;				\
339 								\
340 	bpf_size;						\
341 })
342 
343 #define bpf_size_to_bytes(bpf_size)				\
344 ({								\
345 	int bytes = -EINVAL;					\
346 								\
347 	if (bpf_size == BPF_B)					\
348 		bytes = sizeof(u8);				\
349 	else if (bpf_size == BPF_H)				\
350 		bytes = sizeof(u16);				\
351 	else if (bpf_size == BPF_W)				\
352 		bytes = sizeof(u32);				\
353 	else if (bpf_size == BPF_DW)				\
354 		bytes = sizeof(u64);				\
355 								\
356 	bytes;							\
357 })
358 
359 #define BPF_SIZEOF(type)					\
360 	({							\
361 		const int __size = bytes_to_bpf_size(sizeof(type)); \
362 		BUILD_BUG_ON(__size < 0);			\
363 		__size;						\
364 	})
365 
366 #define BPF_FIELD_SIZEOF(type, field)				\
367 	({							\
368 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
369 		BUILD_BUG_ON(__size < 0);			\
370 		__size;						\
371 	})
372 
373 #define BPF_LDST_BYTES(insn)					\
374 	({							\
375 		const int __size = bpf_size_to_bytes(BPF_SIZE(insn->code)); \
376 		WARN_ON(__size < 0);				\
377 		__size;						\
378 	})
379 
380 #define __BPF_MAP_0(m, v, ...) v
381 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
382 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
383 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
384 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
385 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
386 
387 #define __BPF_REG_0(...) __BPF_PAD(5)
388 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
389 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
390 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
391 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
392 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
393 
394 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
395 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
396 
397 #define __BPF_CAST(t, a)						       \
398 	(__force t)							       \
399 	(__force							       \
400 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
401 				      (unsigned long)0, (t)0))) a
402 #define __BPF_V void
403 #define __BPF_N
404 
405 #define __BPF_DECL_ARGS(t, a) t   a
406 #define __BPF_DECL_REGS(t, a) u64 a
407 
408 #define __BPF_PAD(n)							       \
409 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
410 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
411 
412 #define BPF_CALL_x(x, name, ...)					       \
413 	static __always_inline						       \
414 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
415 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
416 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
417 	{								       \
418 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
419 	}								       \
420 	static __always_inline						       \
421 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
422 
423 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
424 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
425 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
426 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
427 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
428 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
429 
430 #define bpf_ctx_range(TYPE, MEMBER)						\
431 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
432 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
433 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
434 
435 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
436 	({									\
437 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
438 		*(PTR_SIZE) = (SIZE);						\
439 		offsetof(TYPE, MEMBER);						\
440 	})
441 
442 #ifdef CONFIG_COMPAT
443 /* A struct sock_filter is architecture independent. */
444 struct compat_sock_fprog {
445 	u16		len;
446 	compat_uptr_t	filter;	/* struct sock_filter * */
447 };
448 #endif
449 
450 struct sock_fprog_kern {
451 	u16			len;
452 	struct sock_filter	*filter;
453 };
454 
455 struct bpf_binary_header {
456 	unsigned int pages;
457 	u8 image[];
458 };
459 
460 struct bpf_prog {
461 	u16			pages;		/* Number of allocated pages */
462 	u16			jited:1,	/* Is our filter JIT'ed? */
463 				jit_requested:1,/* archs need to JIT the prog */
464 				locked:1,	/* Program image locked? */
465 				gpl_compatible:1, /* Is filter GPL compatible? */
466 				cb_access:1,	/* Is control block accessed? */
467 				dst_needed:1,	/* Do we need dst entry? */
468 				blinded:1,	/* Was blinded */
469 				is_func:1,	/* program is a bpf function */
470 				kprobe_override:1; /* Do we override a kprobe? */
471 	enum bpf_prog_type	type;		/* Type of BPF program */
472 	u32			len;		/* Number of filter blocks */
473 	u32			jited_len;	/* Size of jited insns in bytes */
474 	u8			tag[BPF_TAG_SIZE];
475 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
476 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
477 	unsigned int		(*bpf_func)(const void *ctx,
478 					    const struct bpf_insn *insn);
479 	/* Instructions for interpreter */
480 	union {
481 		struct sock_filter	insns[0];
482 		struct bpf_insn		insnsi[0];
483 	};
484 };
485 
486 struct sk_filter {
487 	refcount_t	refcnt;
488 	struct rcu_head	rcu;
489 	struct bpf_prog	*prog;
490 };
491 
492 #define BPF_PROG_RUN(filter, ctx)  (*(filter)->bpf_func)(ctx, (filter)->insnsi)
493 
494 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
495 
496 struct bpf_skb_data_end {
497 	struct qdisc_skb_cb qdisc_cb;
498 	void *data_meta;
499 	void *data_end;
500 };
501 
502 struct xdp_buff {
503 	void *data;
504 	void *data_end;
505 	void *data_meta;
506 	void *data_hard_start;
507 	struct xdp_rxq_info *rxq;
508 };
509 
510 /* Compute the linear packet data range [data, data_end) which
511  * will be accessed by various program types (cls_bpf, act_bpf,
512  * lwt, ...). Subsystems allowing direct data access must (!)
513  * ensure that cb[] area can be written to when BPF program is
514  * invoked (otherwise cb[] save/restore is necessary).
515  */
516 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
517 {
518 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
519 
520 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
521 	cb->data_meta = skb->data - skb_metadata_len(skb);
522 	cb->data_end  = skb->data + skb_headlen(skb);
523 }
524 
525 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
526 {
527 	/* eBPF programs may read/write skb->cb[] area to transfer meta
528 	 * data between tail calls. Since this also needs to work with
529 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
530 	 *
531 	 * In some socket filter cases, the cb unfortunately needs to be
532 	 * saved/restored so that protocol specific skb->cb[] data won't
533 	 * be lost. In any case, due to unpriviledged eBPF programs
534 	 * attached to sockets, we need to clear the bpf_skb_cb() area
535 	 * to not leak previous contents to user space.
536 	 */
537 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
538 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
539 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
540 
541 	return qdisc_skb_cb(skb)->data;
542 }
543 
544 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
545 				       struct sk_buff *skb)
546 {
547 	u8 *cb_data = bpf_skb_cb(skb);
548 	u8 cb_saved[BPF_SKB_CB_LEN];
549 	u32 res;
550 
551 	if (unlikely(prog->cb_access)) {
552 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
553 		memset(cb_data, 0, sizeof(cb_saved));
554 	}
555 
556 	res = BPF_PROG_RUN(prog, skb);
557 
558 	if (unlikely(prog->cb_access))
559 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
560 
561 	return res;
562 }
563 
564 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
565 					struct sk_buff *skb)
566 {
567 	u8 *cb_data = bpf_skb_cb(skb);
568 
569 	if (unlikely(prog->cb_access))
570 		memset(cb_data, 0, BPF_SKB_CB_LEN);
571 
572 	return BPF_PROG_RUN(prog, skb);
573 }
574 
575 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
576 					    struct xdp_buff *xdp)
577 {
578 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
579 	 * can be released while still running, or map elements could be
580 	 * freed early while still having concurrent users. XDP fastpath
581 	 * already takes rcu_read_lock() when fetching the program, so
582 	 * it's not necessary here anymore.
583 	 */
584 	return BPF_PROG_RUN(prog, xdp);
585 }
586 
587 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
588 {
589 	return prog->len * sizeof(struct bpf_insn);
590 }
591 
592 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
593 {
594 	return round_up(bpf_prog_insn_size(prog) +
595 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
596 }
597 
598 static inline unsigned int bpf_prog_size(unsigned int proglen)
599 {
600 	return max(sizeof(struct bpf_prog),
601 		   offsetof(struct bpf_prog, insns[proglen]));
602 }
603 
604 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
605 {
606 	/* When classic BPF programs have been loaded and the arch
607 	 * does not have a classic BPF JIT (anymore), they have been
608 	 * converted via bpf_migrate_filter() to eBPF and thus always
609 	 * have an unspec program type.
610 	 */
611 	return prog->type == BPF_PROG_TYPE_UNSPEC;
612 }
613 
614 static inline bool
615 bpf_ctx_narrow_access_ok(u32 off, u32 size, const u32 size_default)
616 {
617 	bool off_ok;
618 #ifdef __LITTLE_ENDIAN
619 	off_ok = (off & (size_default - 1)) == 0;
620 #else
621 	off_ok = (off & (size_default - 1)) + size == size_default;
622 #endif
623 	return off_ok && size <= size_default && (size & (size - 1)) == 0;
624 }
625 
626 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
627 
628 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
629 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
630 {
631 	fp->locked = 1;
632 	WARN_ON_ONCE(set_memory_ro((unsigned long)fp, fp->pages));
633 }
634 
635 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
636 {
637 	if (fp->locked) {
638 		WARN_ON_ONCE(set_memory_rw((unsigned long)fp, fp->pages));
639 		/* In case set_memory_rw() fails, we want to be the first
640 		 * to crash here instead of some random place later on.
641 		 */
642 		fp->locked = 0;
643 	}
644 }
645 
646 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
647 {
648 	WARN_ON_ONCE(set_memory_ro((unsigned long)hdr, hdr->pages));
649 }
650 
651 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
652 {
653 	WARN_ON_ONCE(set_memory_rw((unsigned long)hdr, hdr->pages));
654 }
655 #else
656 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
657 {
658 }
659 
660 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
661 {
662 }
663 
664 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
665 {
666 }
667 
668 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
669 {
670 }
671 #endif /* CONFIG_ARCH_HAS_SET_MEMORY */
672 
673 static inline struct bpf_binary_header *
674 bpf_jit_binary_hdr(const struct bpf_prog *fp)
675 {
676 	unsigned long real_start = (unsigned long)fp->bpf_func;
677 	unsigned long addr = real_start & PAGE_MASK;
678 
679 	return (void *)addr;
680 }
681 
682 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
683 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
684 {
685 	return sk_filter_trim_cap(sk, skb, 1);
686 }
687 
688 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
689 void bpf_prog_free(struct bpf_prog *fp);
690 
691 bool bpf_opcode_in_insntable(u8 code);
692 
693 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
694 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
695 				  gfp_t gfp_extra_flags);
696 void __bpf_prog_free(struct bpf_prog *fp);
697 
698 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
699 {
700 	bpf_prog_unlock_ro(fp);
701 	__bpf_prog_free(fp);
702 }
703 
704 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
705 				       unsigned int flen);
706 
707 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
708 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
709 			      bpf_aux_classic_check_t trans, bool save_orig);
710 void bpf_prog_destroy(struct bpf_prog *fp);
711 
712 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
713 int sk_attach_bpf(u32 ufd, struct sock *sk);
714 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
715 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
716 int sk_detach_filter(struct sock *sk);
717 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
718 		  unsigned int len);
719 
720 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
721 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
722 
723 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
724 #define __bpf_call_base_args \
725 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
726 	 __bpf_call_base)
727 
728 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
729 void bpf_jit_compile(struct bpf_prog *prog);
730 bool bpf_helper_changes_pkt_data(void *func);
731 
732 static inline bool bpf_dump_raw_ok(void)
733 {
734 	/* Reconstruction of call-sites is dependent on kallsyms,
735 	 * thus make dump the same restriction.
736 	 */
737 	return kallsyms_show_value() == 1;
738 }
739 
740 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
741 				       const struct bpf_insn *patch, u32 len);
742 
743 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
744  * same cpu context. Further for best results no more than a single map
745  * for the do_redirect/do_flush pair should be used. This limitation is
746  * because we only track one map and force a flush when the map changes.
747  * This does not appear to be a real limitation for existing software.
748  */
749 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
750 			    struct bpf_prog *prog);
751 int xdp_do_redirect(struct net_device *dev,
752 		    struct xdp_buff *xdp,
753 		    struct bpf_prog *prog);
754 void xdp_do_flush_map(void);
755 
756 /* Drivers not supporting XDP metadata can use this helper, which
757  * rejects any room expansion for metadata as a result.
758  */
759 static __always_inline void
760 xdp_set_data_meta_invalid(struct xdp_buff *xdp)
761 {
762 	xdp->data_meta = xdp->data + 1;
763 }
764 
765 static __always_inline bool
766 xdp_data_meta_unsupported(const struct xdp_buff *xdp)
767 {
768 	return unlikely(xdp->data_meta > xdp->data);
769 }
770 
771 void bpf_warn_invalid_xdp_action(u32 act);
772 
773 struct sock *do_sk_redirect_map(struct sk_buff *skb);
774 
775 #ifdef CONFIG_BPF_JIT
776 extern int bpf_jit_enable;
777 extern int bpf_jit_harden;
778 extern int bpf_jit_kallsyms;
779 
780 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
781 
782 struct bpf_binary_header *
783 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
784 		     unsigned int alignment,
785 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
786 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
787 
788 void bpf_jit_free(struct bpf_prog *fp);
789 
790 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
791 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
792 
793 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
794 				u32 pass, void *image)
795 {
796 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
797 	       proglen, pass, image, current->comm, task_pid_nr(current));
798 
799 	if (image)
800 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
801 			       16, 1, image, proglen, false);
802 }
803 
804 static inline bool bpf_jit_is_ebpf(void)
805 {
806 # ifdef CONFIG_HAVE_EBPF_JIT
807 	return true;
808 # else
809 	return false;
810 # endif
811 }
812 
813 static inline bool ebpf_jit_enabled(void)
814 {
815 	return bpf_jit_enable && bpf_jit_is_ebpf();
816 }
817 
818 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
819 {
820 	return fp->jited && bpf_jit_is_ebpf();
821 }
822 
823 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
824 {
825 	/* These are the prerequisites, should someone ever have the
826 	 * idea to call blinding outside of them, we make sure to
827 	 * bail out.
828 	 */
829 	if (!bpf_jit_is_ebpf())
830 		return false;
831 	if (!prog->jit_requested)
832 		return false;
833 	if (!bpf_jit_harden)
834 		return false;
835 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
836 		return false;
837 
838 	return true;
839 }
840 
841 static inline bool bpf_jit_kallsyms_enabled(void)
842 {
843 	/* There are a couple of corner cases where kallsyms should
844 	 * not be enabled f.e. on hardening.
845 	 */
846 	if (bpf_jit_harden)
847 		return false;
848 	if (!bpf_jit_kallsyms)
849 		return false;
850 	if (bpf_jit_kallsyms == 1)
851 		return true;
852 
853 	return false;
854 }
855 
856 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
857 				 unsigned long *off, char *sym);
858 bool is_bpf_text_address(unsigned long addr);
859 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
860 		    char *sym);
861 
862 static inline const char *
863 bpf_address_lookup(unsigned long addr, unsigned long *size,
864 		   unsigned long *off, char **modname, char *sym)
865 {
866 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
867 
868 	if (ret && modname)
869 		*modname = NULL;
870 	return ret;
871 }
872 
873 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
874 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
875 
876 #else /* CONFIG_BPF_JIT */
877 
878 static inline bool ebpf_jit_enabled(void)
879 {
880 	return false;
881 }
882 
883 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
884 {
885 	return false;
886 }
887 
888 static inline void bpf_jit_free(struct bpf_prog *fp)
889 {
890 	bpf_prog_unlock_free(fp);
891 }
892 
893 static inline bool bpf_jit_kallsyms_enabled(void)
894 {
895 	return false;
896 }
897 
898 static inline const char *
899 __bpf_address_lookup(unsigned long addr, unsigned long *size,
900 		     unsigned long *off, char *sym)
901 {
902 	return NULL;
903 }
904 
905 static inline bool is_bpf_text_address(unsigned long addr)
906 {
907 	return false;
908 }
909 
910 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
911 				  char *type, char *sym)
912 {
913 	return -ERANGE;
914 }
915 
916 static inline const char *
917 bpf_address_lookup(unsigned long addr, unsigned long *size,
918 		   unsigned long *off, char **modname, char *sym)
919 {
920 	return NULL;
921 }
922 
923 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
924 {
925 }
926 
927 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
928 {
929 }
930 #endif /* CONFIG_BPF_JIT */
931 
932 #define BPF_ANC		BIT(15)
933 
934 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
935 {
936 	switch (first->code) {
937 	case BPF_RET | BPF_K:
938 	case BPF_LD | BPF_W | BPF_LEN:
939 		return false;
940 
941 	case BPF_LD | BPF_W | BPF_ABS:
942 	case BPF_LD | BPF_H | BPF_ABS:
943 	case BPF_LD | BPF_B | BPF_ABS:
944 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
945 			return true;
946 		return false;
947 
948 	default:
949 		return true;
950 	}
951 }
952 
953 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
954 {
955 	BUG_ON(ftest->code & BPF_ANC);
956 
957 	switch (ftest->code) {
958 	case BPF_LD | BPF_W | BPF_ABS:
959 	case BPF_LD | BPF_H | BPF_ABS:
960 	case BPF_LD | BPF_B | BPF_ABS:
961 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
962 				return BPF_ANC | SKF_AD_##CODE
963 		switch (ftest->k) {
964 		BPF_ANCILLARY(PROTOCOL);
965 		BPF_ANCILLARY(PKTTYPE);
966 		BPF_ANCILLARY(IFINDEX);
967 		BPF_ANCILLARY(NLATTR);
968 		BPF_ANCILLARY(NLATTR_NEST);
969 		BPF_ANCILLARY(MARK);
970 		BPF_ANCILLARY(QUEUE);
971 		BPF_ANCILLARY(HATYPE);
972 		BPF_ANCILLARY(RXHASH);
973 		BPF_ANCILLARY(CPU);
974 		BPF_ANCILLARY(ALU_XOR_X);
975 		BPF_ANCILLARY(VLAN_TAG);
976 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
977 		BPF_ANCILLARY(PAY_OFFSET);
978 		BPF_ANCILLARY(RANDOM);
979 		BPF_ANCILLARY(VLAN_TPID);
980 		}
981 		/* Fallthrough. */
982 	default:
983 		return ftest->code;
984 	}
985 }
986 
987 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
988 					   int k, unsigned int size);
989 
990 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
991 				     unsigned int size, void *buffer)
992 {
993 	if (k >= 0)
994 		return skb_header_pointer(skb, k, size, buffer);
995 
996 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
997 }
998 
999 static inline int bpf_tell_extensions(void)
1000 {
1001 	return SKF_AD_MAX;
1002 }
1003 
1004 struct bpf_sock_ops_kern {
1005 	struct	sock *sk;
1006 	u32	op;
1007 	union {
1008 		u32 args[4];
1009 		u32 reply;
1010 		u32 replylong[4];
1011 	};
1012 	u32	is_fullsock;
1013 	u64	temp;			/* temp and everything after is not
1014 					 * initialized to 0 before calling
1015 					 * the BPF program. New fields that
1016 					 * should be initialized to 0 should
1017 					 * be inserted before temp.
1018 					 * temp is scratch storage used by
1019 					 * sock_ops_convert_ctx_access
1020 					 * as temporary storage of a register.
1021 					 */
1022 };
1023 
1024 #endif /* __LINUX_FILTER_H__ */
1025