1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <stdarg.h> 9 10 #include <linux/atomic.h> 11 #include <linux/refcount.h> 12 #include <linux/compat.h> 13 #include <linux/skbuff.h> 14 #include <linux/linkage.h> 15 #include <linux/printk.h> 16 #include <linux/workqueue.h> 17 #include <linux/sched.h> 18 #include <linux/capability.h> 19 #include <linux/cryptohash.h> 20 #include <linux/set_memory.h> 21 #include <linux/kallsyms.h> 22 #include <linux/if_vlan.h> 23 24 #include <net/sch_generic.h> 25 26 #include <uapi/linux/filter.h> 27 #include <uapi/linux/bpf.h> 28 29 struct sk_buff; 30 struct sock; 31 struct seccomp_data; 32 struct bpf_prog_aux; 33 struct xdp_rxq_info; 34 struct xdp_buff; 35 struct sock_reuseport; 36 struct ctl_table; 37 struct ctl_table_header; 38 39 /* ArgX, context and stack frame pointer register positions. Note, 40 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 41 * calls in BPF_CALL instruction. 42 */ 43 #define BPF_REG_ARG1 BPF_REG_1 44 #define BPF_REG_ARG2 BPF_REG_2 45 #define BPF_REG_ARG3 BPF_REG_3 46 #define BPF_REG_ARG4 BPF_REG_4 47 #define BPF_REG_ARG5 BPF_REG_5 48 #define BPF_REG_CTX BPF_REG_6 49 #define BPF_REG_FP BPF_REG_10 50 51 /* Additional register mappings for converted user programs. */ 52 #define BPF_REG_A BPF_REG_0 53 #define BPF_REG_X BPF_REG_7 54 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 55 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 56 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 57 58 /* Kernel hidden auxiliary/helper register. */ 59 #define BPF_REG_AX MAX_BPF_REG 60 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 61 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 62 63 /* unused opcode to mark special call to bpf_tail_call() helper */ 64 #define BPF_TAIL_CALL 0xf0 65 66 /* unused opcode to mark call to interpreter with arguments */ 67 #define BPF_CALL_ARGS 0xe0 68 69 /* As per nm, we expose JITed images as text (code) section for 70 * kallsyms. That way, tools like perf can find it to match 71 * addresses. 72 */ 73 #define BPF_SYM_ELF_TYPE 't' 74 75 /* BPF program can access up to 512 bytes of stack space. */ 76 #define MAX_BPF_STACK 512 77 78 /* Helper macros for filter block array initializers. */ 79 80 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 81 82 #define BPF_ALU64_REG(OP, DST, SRC) \ 83 ((struct bpf_insn) { \ 84 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 85 .dst_reg = DST, \ 86 .src_reg = SRC, \ 87 .off = 0, \ 88 .imm = 0 }) 89 90 #define BPF_ALU32_REG(OP, DST, SRC) \ 91 ((struct bpf_insn) { \ 92 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 93 .dst_reg = DST, \ 94 .src_reg = SRC, \ 95 .off = 0, \ 96 .imm = 0 }) 97 98 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 99 100 #define BPF_ALU64_IMM(OP, DST, IMM) \ 101 ((struct bpf_insn) { \ 102 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 103 .dst_reg = DST, \ 104 .src_reg = 0, \ 105 .off = 0, \ 106 .imm = IMM }) 107 108 #define BPF_ALU32_IMM(OP, DST, IMM) \ 109 ((struct bpf_insn) { \ 110 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 111 .dst_reg = DST, \ 112 .src_reg = 0, \ 113 .off = 0, \ 114 .imm = IMM }) 115 116 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 117 118 #define BPF_ENDIAN(TYPE, DST, LEN) \ 119 ((struct bpf_insn) { \ 120 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 121 .dst_reg = DST, \ 122 .src_reg = 0, \ 123 .off = 0, \ 124 .imm = LEN }) 125 126 /* Short form of mov, dst_reg = src_reg */ 127 128 #define BPF_MOV64_REG(DST, SRC) \ 129 ((struct bpf_insn) { \ 130 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 131 .dst_reg = DST, \ 132 .src_reg = SRC, \ 133 .off = 0, \ 134 .imm = 0 }) 135 136 #define BPF_MOV32_REG(DST, SRC) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_MOV | BPF_X, \ 139 .dst_reg = DST, \ 140 .src_reg = SRC, \ 141 .off = 0, \ 142 .imm = 0 }) 143 144 /* Short form of mov, dst_reg = imm32 */ 145 146 #define BPF_MOV64_IMM(DST, IMM) \ 147 ((struct bpf_insn) { \ 148 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 149 .dst_reg = DST, \ 150 .src_reg = 0, \ 151 .off = 0, \ 152 .imm = IMM }) 153 154 #define BPF_MOV32_IMM(DST, IMM) \ 155 ((struct bpf_insn) { \ 156 .code = BPF_ALU | BPF_MOV | BPF_K, \ 157 .dst_reg = DST, \ 158 .src_reg = 0, \ 159 .off = 0, \ 160 .imm = IMM }) 161 162 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 163 #define BPF_LD_IMM64(DST, IMM) \ 164 BPF_LD_IMM64_RAW(DST, 0, IMM) 165 166 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 167 ((struct bpf_insn) { \ 168 .code = BPF_LD | BPF_DW | BPF_IMM, \ 169 .dst_reg = DST, \ 170 .src_reg = SRC, \ 171 .off = 0, \ 172 .imm = (__u32) (IMM) }), \ 173 ((struct bpf_insn) { \ 174 .code = 0, /* zero is reserved opcode */ \ 175 .dst_reg = 0, \ 176 .src_reg = 0, \ 177 .off = 0, \ 178 .imm = ((__u64) (IMM)) >> 32 }) 179 180 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 181 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 182 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 183 184 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 185 186 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 187 ((struct bpf_insn) { \ 188 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 189 .dst_reg = DST, \ 190 .src_reg = SRC, \ 191 .off = 0, \ 192 .imm = IMM }) 193 194 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 195 ((struct bpf_insn) { \ 196 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 197 .dst_reg = DST, \ 198 .src_reg = SRC, \ 199 .off = 0, \ 200 .imm = IMM }) 201 202 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 203 204 #define BPF_LD_ABS(SIZE, IMM) \ 205 ((struct bpf_insn) { \ 206 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 207 .dst_reg = 0, \ 208 .src_reg = 0, \ 209 .off = 0, \ 210 .imm = IMM }) 211 212 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 213 214 #define BPF_LD_IND(SIZE, SRC, IMM) \ 215 ((struct bpf_insn) { \ 216 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 217 .dst_reg = 0, \ 218 .src_reg = SRC, \ 219 .off = 0, \ 220 .imm = IMM }) 221 222 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 223 224 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 225 ((struct bpf_insn) { \ 226 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 227 .dst_reg = DST, \ 228 .src_reg = SRC, \ 229 .off = OFF, \ 230 .imm = 0 }) 231 232 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 233 234 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 235 ((struct bpf_insn) { \ 236 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 237 .dst_reg = DST, \ 238 .src_reg = SRC, \ 239 .off = OFF, \ 240 .imm = 0 }) 241 242 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 243 244 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 245 ((struct bpf_insn) { \ 246 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 247 .dst_reg = DST, \ 248 .src_reg = SRC, \ 249 .off = OFF, \ 250 .imm = 0 }) 251 252 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 253 254 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 255 ((struct bpf_insn) { \ 256 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 257 .dst_reg = DST, \ 258 .src_reg = 0, \ 259 .off = OFF, \ 260 .imm = IMM }) 261 262 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 263 264 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 265 ((struct bpf_insn) { \ 266 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 267 .dst_reg = DST, \ 268 .src_reg = SRC, \ 269 .off = OFF, \ 270 .imm = 0 }) 271 272 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 273 274 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 275 ((struct bpf_insn) { \ 276 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 277 .dst_reg = DST, \ 278 .src_reg = 0, \ 279 .off = OFF, \ 280 .imm = IMM }) 281 282 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 283 284 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 285 ((struct bpf_insn) { \ 286 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 287 .dst_reg = DST, \ 288 .src_reg = SRC, \ 289 .off = OFF, \ 290 .imm = 0 }) 291 292 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 293 294 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 295 ((struct bpf_insn) { \ 296 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 297 .dst_reg = DST, \ 298 .src_reg = 0, \ 299 .off = OFF, \ 300 .imm = IMM }) 301 302 /* Unconditional jumps, goto pc + off16 */ 303 304 #define BPF_JMP_A(OFF) \ 305 ((struct bpf_insn) { \ 306 .code = BPF_JMP | BPF_JA, \ 307 .dst_reg = 0, \ 308 .src_reg = 0, \ 309 .off = OFF, \ 310 .imm = 0 }) 311 312 /* Relative call */ 313 314 #define BPF_CALL_REL(TGT) \ 315 ((struct bpf_insn) { \ 316 .code = BPF_JMP | BPF_CALL, \ 317 .dst_reg = 0, \ 318 .src_reg = BPF_PSEUDO_CALL, \ 319 .off = 0, \ 320 .imm = TGT }) 321 322 /* Function call */ 323 324 #define BPF_CAST_CALL(x) \ 325 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 326 327 #define BPF_EMIT_CALL(FUNC) \ 328 ((struct bpf_insn) { \ 329 .code = BPF_JMP | BPF_CALL, \ 330 .dst_reg = 0, \ 331 .src_reg = 0, \ 332 .off = 0, \ 333 .imm = ((FUNC) - __bpf_call_base) }) 334 335 /* Raw code statement block */ 336 337 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 338 ((struct bpf_insn) { \ 339 .code = CODE, \ 340 .dst_reg = DST, \ 341 .src_reg = SRC, \ 342 .off = OFF, \ 343 .imm = IMM }) 344 345 /* Program exit */ 346 347 #define BPF_EXIT_INSN() \ 348 ((struct bpf_insn) { \ 349 .code = BPF_JMP | BPF_EXIT, \ 350 .dst_reg = 0, \ 351 .src_reg = 0, \ 352 .off = 0, \ 353 .imm = 0 }) 354 355 /* Internal classic blocks for direct assignment */ 356 357 #define __BPF_STMT(CODE, K) \ 358 ((struct sock_filter) BPF_STMT(CODE, K)) 359 360 #define __BPF_JUMP(CODE, K, JT, JF) \ 361 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 362 363 #define bytes_to_bpf_size(bytes) \ 364 ({ \ 365 int bpf_size = -EINVAL; \ 366 \ 367 if (bytes == sizeof(u8)) \ 368 bpf_size = BPF_B; \ 369 else if (bytes == sizeof(u16)) \ 370 bpf_size = BPF_H; \ 371 else if (bytes == sizeof(u32)) \ 372 bpf_size = BPF_W; \ 373 else if (bytes == sizeof(u64)) \ 374 bpf_size = BPF_DW; \ 375 \ 376 bpf_size; \ 377 }) 378 379 #define bpf_size_to_bytes(bpf_size) \ 380 ({ \ 381 int bytes = -EINVAL; \ 382 \ 383 if (bpf_size == BPF_B) \ 384 bytes = sizeof(u8); \ 385 else if (bpf_size == BPF_H) \ 386 bytes = sizeof(u16); \ 387 else if (bpf_size == BPF_W) \ 388 bytes = sizeof(u32); \ 389 else if (bpf_size == BPF_DW) \ 390 bytes = sizeof(u64); \ 391 \ 392 bytes; \ 393 }) 394 395 #define BPF_SIZEOF(type) \ 396 ({ \ 397 const int __size = bytes_to_bpf_size(sizeof(type)); \ 398 BUILD_BUG_ON(__size < 0); \ 399 __size; \ 400 }) 401 402 #define BPF_FIELD_SIZEOF(type, field) \ 403 ({ \ 404 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 405 BUILD_BUG_ON(__size < 0); \ 406 __size; \ 407 }) 408 409 #define BPF_LDST_BYTES(insn) \ 410 ({ \ 411 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 412 WARN_ON(__size < 0); \ 413 __size; \ 414 }) 415 416 #define __BPF_MAP_0(m, v, ...) v 417 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 418 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 419 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 420 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 421 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 422 423 #define __BPF_REG_0(...) __BPF_PAD(5) 424 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 425 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 426 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 427 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 428 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 429 430 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 431 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 432 433 #define __BPF_CAST(t, a) \ 434 (__force t) \ 435 (__force \ 436 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 437 (unsigned long)0, (t)0))) a 438 #define __BPF_V void 439 #define __BPF_N 440 441 #define __BPF_DECL_ARGS(t, a) t a 442 #define __BPF_DECL_REGS(t, a) u64 a 443 444 #define __BPF_PAD(n) \ 445 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 446 u64, __ur_3, u64, __ur_4, u64, __ur_5) 447 448 #define BPF_CALL_x(x, name, ...) \ 449 static __always_inline \ 450 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 451 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 452 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 453 { \ 454 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 455 } \ 456 static __always_inline \ 457 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 458 459 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 460 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 461 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 462 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 463 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 464 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 465 466 #define bpf_ctx_range(TYPE, MEMBER) \ 467 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 468 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 469 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 470 #if BITS_PER_LONG == 64 471 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 472 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 473 #else 474 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 475 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 476 #endif /* BITS_PER_LONG == 64 */ 477 478 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 479 ({ \ 480 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 481 *(PTR_SIZE) = (SIZE); \ 482 offsetof(TYPE, MEMBER); \ 483 }) 484 485 #ifdef CONFIG_COMPAT 486 /* A struct sock_filter is architecture independent. */ 487 struct compat_sock_fprog { 488 u16 len; 489 compat_uptr_t filter; /* struct sock_filter * */ 490 }; 491 #endif 492 493 struct sock_fprog_kern { 494 u16 len; 495 struct sock_filter *filter; 496 }; 497 498 struct bpf_binary_header { 499 u32 pages; 500 /* Some arches need word alignment for their instructions */ 501 u8 image[] __aligned(4); 502 }; 503 504 struct bpf_prog { 505 u16 pages; /* Number of allocated pages */ 506 u16 jited:1, /* Is our filter JIT'ed? */ 507 jit_requested:1,/* archs need to JIT the prog */ 508 undo_set_mem:1, /* Passed set_memory_ro() checkpoint */ 509 gpl_compatible:1, /* Is filter GPL compatible? */ 510 cb_access:1, /* Is control block accessed? */ 511 dst_needed:1, /* Do we need dst entry? */ 512 blinded:1, /* Was blinded */ 513 is_func:1, /* program is a bpf function */ 514 kprobe_override:1, /* Do we override a kprobe? */ 515 has_callchain_buf:1; /* callchain buffer allocated? */ 516 enum bpf_prog_type type; /* Type of BPF program */ 517 enum bpf_attach_type expected_attach_type; /* For some prog types */ 518 u32 len; /* Number of filter blocks */ 519 u32 jited_len; /* Size of jited insns in bytes */ 520 u8 tag[BPF_TAG_SIZE]; 521 struct bpf_prog_aux *aux; /* Auxiliary fields */ 522 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 523 unsigned int (*bpf_func)(const void *ctx, 524 const struct bpf_insn *insn); 525 /* Instructions for interpreter */ 526 union { 527 struct sock_filter insns[0]; 528 struct bpf_insn insnsi[0]; 529 }; 530 }; 531 532 struct sk_filter { 533 refcount_t refcnt; 534 struct rcu_head rcu; 535 struct bpf_prog *prog; 536 }; 537 538 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 539 540 #define BPF_PROG_RUN(prog, ctx) ({ \ 541 u32 ret; \ 542 cant_sleep(); \ 543 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 544 struct bpf_prog_stats *stats; \ 545 u64 start = sched_clock(); \ 546 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 547 stats = this_cpu_ptr(prog->aux->stats); \ 548 u64_stats_update_begin(&stats->syncp); \ 549 stats->cnt++; \ 550 stats->nsecs += sched_clock() - start; \ 551 u64_stats_update_end(&stats->syncp); \ 552 } else { \ 553 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 554 } \ 555 ret; }) 556 557 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 558 559 struct bpf_skb_data_end { 560 struct qdisc_skb_cb qdisc_cb; 561 void *data_meta; 562 void *data_end; 563 }; 564 565 struct bpf_redirect_info { 566 u32 ifindex; 567 u32 flags; 568 struct bpf_map *map; 569 struct bpf_map *map_to_flush; 570 u32 kern_flags; 571 }; 572 573 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 574 575 /* flags for bpf_redirect_info kern_flags */ 576 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 577 578 /* Compute the linear packet data range [data, data_end) which 579 * will be accessed by various program types (cls_bpf, act_bpf, 580 * lwt, ...). Subsystems allowing direct data access must (!) 581 * ensure that cb[] area can be written to when BPF program is 582 * invoked (otherwise cb[] save/restore is necessary). 583 */ 584 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 585 { 586 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 587 588 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 589 cb->data_meta = skb->data - skb_metadata_len(skb); 590 cb->data_end = skb->data + skb_headlen(skb); 591 } 592 593 /* Similar to bpf_compute_data_pointers(), except that save orginal 594 * data in cb->data and cb->meta_data for restore. 595 */ 596 static inline void bpf_compute_and_save_data_end( 597 struct sk_buff *skb, void **saved_data_end) 598 { 599 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 600 601 *saved_data_end = cb->data_end; 602 cb->data_end = skb->data + skb_headlen(skb); 603 } 604 605 /* Restore data saved by bpf_compute_data_pointers(). */ 606 static inline void bpf_restore_data_end( 607 struct sk_buff *skb, void *saved_data_end) 608 { 609 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 610 611 cb->data_end = saved_data_end; 612 } 613 614 static inline u8 *bpf_skb_cb(struct sk_buff *skb) 615 { 616 /* eBPF programs may read/write skb->cb[] area to transfer meta 617 * data between tail calls. Since this also needs to work with 618 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 619 * 620 * In some socket filter cases, the cb unfortunately needs to be 621 * saved/restored so that protocol specific skb->cb[] data won't 622 * be lost. In any case, due to unpriviledged eBPF programs 623 * attached to sockets, we need to clear the bpf_skb_cb() area 624 * to not leak previous contents to user space. 625 */ 626 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 627 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 628 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 629 630 return qdisc_skb_cb(skb)->data; 631 } 632 633 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 634 struct sk_buff *skb) 635 { 636 u8 *cb_data = bpf_skb_cb(skb); 637 u8 cb_saved[BPF_SKB_CB_LEN]; 638 u32 res; 639 640 if (unlikely(prog->cb_access)) { 641 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 642 memset(cb_data, 0, sizeof(cb_saved)); 643 } 644 645 res = BPF_PROG_RUN(prog, skb); 646 647 if (unlikely(prog->cb_access)) 648 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 649 650 return res; 651 } 652 653 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 654 struct sk_buff *skb) 655 { 656 u32 res; 657 658 preempt_disable(); 659 res = __bpf_prog_run_save_cb(prog, skb); 660 preempt_enable(); 661 return res; 662 } 663 664 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 665 struct sk_buff *skb) 666 { 667 u8 *cb_data = bpf_skb_cb(skb); 668 u32 res; 669 670 if (unlikely(prog->cb_access)) 671 memset(cb_data, 0, BPF_SKB_CB_LEN); 672 673 preempt_disable(); 674 res = BPF_PROG_RUN(prog, skb); 675 preempt_enable(); 676 return res; 677 } 678 679 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 680 struct xdp_buff *xdp) 681 { 682 /* Caller needs to hold rcu_read_lock() (!), otherwise program 683 * can be released while still running, or map elements could be 684 * freed early while still having concurrent users. XDP fastpath 685 * already takes rcu_read_lock() when fetching the program, so 686 * it's not necessary here anymore. 687 */ 688 return BPF_PROG_RUN(prog, xdp); 689 } 690 691 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 692 { 693 return prog->len * sizeof(struct bpf_insn); 694 } 695 696 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 697 { 698 return round_up(bpf_prog_insn_size(prog) + 699 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 700 } 701 702 static inline unsigned int bpf_prog_size(unsigned int proglen) 703 { 704 return max(sizeof(struct bpf_prog), 705 offsetof(struct bpf_prog, insns[proglen])); 706 } 707 708 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 709 { 710 /* When classic BPF programs have been loaded and the arch 711 * does not have a classic BPF JIT (anymore), they have been 712 * converted via bpf_migrate_filter() to eBPF and thus always 713 * have an unspec program type. 714 */ 715 return prog->type == BPF_PROG_TYPE_UNSPEC; 716 } 717 718 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 719 { 720 const u32 size_machine = sizeof(unsigned long); 721 722 if (size > size_machine && size % size_machine == 0) 723 size = size_machine; 724 725 return size; 726 } 727 728 static inline bool 729 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 730 { 731 return size <= size_default && (size & (size - 1)) == 0; 732 } 733 734 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 735 736 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 737 { 738 fp->undo_set_mem = 1; 739 set_memory_ro((unsigned long)fp, fp->pages); 740 } 741 742 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp) 743 { 744 if (fp->undo_set_mem) 745 set_memory_rw((unsigned long)fp, fp->pages); 746 } 747 748 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 749 { 750 set_memory_ro((unsigned long)hdr, hdr->pages); 751 } 752 753 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr) 754 { 755 set_memory_rw((unsigned long)hdr, hdr->pages); 756 } 757 758 static inline struct bpf_binary_header * 759 bpf_jit_binary_hdr(const struct bpf_prog *fp) 760 { 761 unsigned long real_start = (unsigned long)fp->bpf_func; 762 unsigned long addr = real_start & PAGE_MASK; 763 764 return (void *)addr; 765 } 766 767 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 768 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 769 { 770 return sk_filter_trim_cap(sk, skb, 1); 771 } 772 773 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 774 void bpf_prog_free(struct bpf_prog *fp); 775 776 bool bpf_opcode_in_insntable(u8 code); 777 778 void bpf_prog_free_linfo(struct bpf_prog *prog); 779 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 780 const u32 *insn_to_jit_off); 781 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 782 void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 783 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 784 785 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 786 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 787 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 788 gfp_t gfp_extra_flags); 789 void __bpf_prog_free(struct bpf_prog *fp); 790 791 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 792 { 793 bpf_prog_unlock_ro(fp); 794 __bpf_prog_free(fp); 795 } 796 797 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 798 unsigned int flen); 799 800 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 801 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 802 bpf_aux_classic_check_t trans, bool save_orig); 803 void bpf_prog_destroy(struct bpf_prog *fp); 804 805 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 806 int sk_attach_bpf(u32 ufd, struct sock *sk); 807 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 808 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 809 void sk_reuseport_prog_free(struct bpf_prog *prog); 810 int sk_detach_filter(struct sock *sk); 811 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 812 unsigned int len); 813 814 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 815 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 816 817 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 818 #define __bpf_call_base_args \ 819 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 820 __bpf_call_base) 821 822 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 823 void bpf_jit_compile(struct bpf_prog *prog); 824 bool bpf_helper_changes_pkt_data(void *func); 825 826 static inline bool bpf_dump_raw_ok(void) 827 { 828 /* Reconstruction of call-sites is dependent on kallsyms, 829 * thus make dump the same restriction. 830 */ 831 return kallsyms_show_value() == 1; 832 } 833 834 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 835 const struct bpf_insn *patch, u32 len); 836 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 837 838 void bpf_clear_redirect_map(struct bpf_map *map); 839 840 static inline bool xdp_return_frame_no_direct(void) 841 { 842 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 843 844 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 845 } 846 847 static inline void xdp_set_return_frame_no_direct(void) 848 { 849 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 850 851 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 852 } 853 854 static inline void xdp_clear_return_frame_no_direct(void) 855 { 856 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 857 858 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 859 } 860 861 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 862 unsigned int pktlen) 863 { 864 unsigned int len; 865 866 if (unlikely(!(fwd->flags & IFF_UP))) 867 return -ENETDOWN; 868 869 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 870 if (pktlen > len) 871 return -EMSGSIZE; 872 873 return 0; 874 } 875 876 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 877 * same cpu context. Further for best results no more than a single map 878 * for the do_redirect/do_flush pair should be used. This limitation is 879 * because we only track one map and force a flush when the map changes. 880 * This does not appear to be a real limitation for existing software. 881 */ 882 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 883 struct xdp_buff *xdp, struct bpf_prog *prog); 884 int xdp_do_redirect(struct net_device *dev, 885 struct xdp_buff *xdp, 886 struct bpf_prog *prog); 887 void xdp_do_flush_map(void); 888 889 void bpf_warn_invalid_xdp_action(u32 act); 890 891 #ifdef CONFIG_INET 892 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 893 struct bpf_prog *prog, struct sk_buff *skb, 894 u32 hash); 895 #else 896 static inline struct sock * 897 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 898 struct bpf_prog *prog, struct sk_buff *skb, 899 u32 hash) 900 { 901 return NULL; 902 } 903 #endif 904 905 #ifdef CONFIG_BPF_JIT 906 extern int bpf_jit_enable; 907 extern int bpf_jit_harden; 908 extern int bpf_jit_kallsyms; 909 extern long bpf_jit_limit; 910 911 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 912 913 struct bpf_binary_header * 914 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 915 unsigned int alignment, 916 bpf_jit_fill_hole_t bpf_fill_ill_insns); 917 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 918 u64 bpf_jit_alloc_exec_limit(void); 919 void *bpf_jit_alloc_exec(unsigned long size); 920 void bpf_jit_free_exec(void *addr); 921 void bpf_jit_free(struct bpf_prog *fp); 922 923 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 924 const struct bpf_insn *insn, bool extra_pass, 925 u64 *func_addr, bool *func_addr_fixed); 926 927 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 928 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 929 930 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 931 u32 pass, void *image) 932 { 933 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 934 proglen, pass, image, current->comm, task_pid_nr(current)); 935 936 if (image) 937 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 938 16, 1, image, proglen, false); 939 } 940 941 static inline bool bpf_jit_is_ebpf(void) 942 { 943 # ifdef CONFIG_HAVE_EBPF_JIT 944 return true; 945 # else 946 return false; 947 # endif 948 } 949 950 static inline bool ebpf_jit_enabled(void) 951 { 952 return bpf_jit_enable && bpf_jit_is_ebpf(); 953 } 954 955 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 956 { 957 return fp->jited && bpf_jit_is_ebpf(); 958 } 959 960 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 961 { 962 /* These are the prerequisites, should someone ever have the 963 * idea to call blinding outside of them, we make sure to 964 * bail out. 965 */ 966 if (!bpf_jit_is_ebpf()) 967 return false; 968 if (!prog->jit_requested) 969 return false; 970 if (!bpf_jit_harden) 971 return false; 972 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 973 return false; 974 975 return true; 976 } 977 978 static inline bool bpf_jit_kallsyms_enabled(void) 979 { 980 /* There are a couple of corner cases where kallsyms should 981 * not be enabled f.e. on hardening. 982 */ 983 if (bpf_jit_harden) 984 return false; 985 if (!bpf_jit_kallsyms) 986 return false; 987 if (bpf_jit_kallsyms == 1) 988 return true; 989 990 return false; 991 } 992 993 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 994 unsigned long *off, char *sym); 995 bool is_bpf_text_address(unsigned long addr); 996 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 997 char *sym); 998 999 static inline const char * 1000 bpf_address_lookup(unsigned long addr, unsigned long *size, 1001 unsigned long *off, char **modname, char *sym) 1002 { 1003 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1004 1005 if (ret && modname) 1006 *modname = NULL; 1007 return ret; 1008 } 1009 1010 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1011 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1012 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1013 1014 #else /* CONFIG_BPF_JIT */ 1015 1016 static inline bool ebpf_jit_enabled(void) 1017 { 1018 return false; 1019 } 1020 1021 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1022 { 1023 return false; 1024 } 1025 1026 static inline void bpf_jit_free(struct bpf_prog *fp) 1027 { 1028 bpf_prog_unlock_free(fp); 1029 } 1030 1031 static inline bool bpf_jit_kallsyms_enabled(void) 1032 { 1033 return false; 1034 } 1035 1036 static inline const char * 1037 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1038 unsigned long *off, char *sym) 1039 { 1040 return NULL; 1041 } 1042 1043 static inline bool is_bpf_text_address(unsigned long addr) 1044 { 1045 return false; 1046 } 1047 1048 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1049 char *type, char *sym) 1050 { 1051 return -ERANGE; 1052 } 1053 1054 static inline const char * 1055 bpf_address_lookup(unsigned long addr, unsigned long *size, 1056 unsigned long *off, char **modname, char *sym) 1057 { 1058 return NULL; 1059 } 1060 1061 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1062 { 1063 } 1064 1065 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1066 { 1067 } 1068 1069 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1070 { 1071 sym[0] = '\0'; 1072 } 1073 1074 #endif /* CONFIG_BPF_JIT */ 1075 1076 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp); 1077 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1078 1079 #define BPF_ANC BIT(15) 1080 1081 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1082 { 1083 switch (first->code) { 1084 case BPF_RET | BPF_K: 1085 case BPF_LD | BPF_W | BPF_LEN: 1086 return false; 1087 1088 case BPF_LD | BPF_W | BPF_ABS: 1089 case BPF_LD | BPF_H | BPF_ABS: 1090 case BPF_LD | BPF_B | BPF_ABS: 1091 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1092 return true; 1093 return false; 1094 1095 default: 1096 return true; 1097 } 1098 } 1099 1100 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1101 { 1102 BUG_ON(ftest->code & BPF_ANC); 1103 1104 switch (ftest->code) { 1105 case BPF_LD | BPF_W | BPF_ABS: 1106 case BPF_LD | BPF_H | BPF_ABS: 1107 case BPF_LD | BPF_B | BPF_ABS: 1108 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1109 return BPF_ANC | SKF_AD_##CODE 1110 switch (ftest->k) { 1111 BPF_ANCILLARY(PROTOCOL); 1112 BPF_ANCILLARY(PKTTYPE); 1113 BPF_ANCILLARY(IFINDEX); 1114 BPF_ANCILLARY(NLATTR); 1115 BPF_ANCILLARY(NLATTR_NEST); 1116 BPF_ANCILLARY(MARK); 1117 BPF_ANCILLARY(QUEUE); 1118 BPF_ANCILLARY(HATYPE); 1119 BPF_ANCILLARY(RXHASH); 1120 BPF_ANCILLARY(CPU); 1121 BPF_ANCILLARY(ALU_XOR_X); 1122 BPF_ANCILLARY(VLAN_TAG); 1123 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1124 BPF_ANCILLARY(PAY_OFFSET); 1125 BPF_ANCILLARY(RANDOM); 1126 BPF_ANCILLARY(VLAN_TPID); 1127 } 1128 /* Fallthrough. */ 1129 default: 1130 return ftest->code; 1131 } 1132 } 1133 1134 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1135 int k, unsigned int size); 1136 1137 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1138 unsigned int size, void *buffer) 1139 { 1140 if (k >= 0) 1141 return skb_header_pointer(skb, k, size, buffer); 1142 1143 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1144 } 1145 1146 static inline int bpf_tell_extensions(void) 1147 { 1148 return SKF_AD_MAX; 1149 } 1150 1151 struct bpf_sock_addr_kern { 1152 struct sock *sk; 1153 struct sockaddr *uaddr; 1154 /* Temporary "register" to make indirect stores to nested structures 1155 * defined above. We need three registers to make such a store, but 1156 * only two (src and dst) are available at convert_ctx_access time 1157 */ 1158 u64 tmp_reg; 1159 void *t_ctx; /* Attach type specific context. */ 1160 }; 1161 1162 struct bpf_sock_ops_kern { 1163 struct sock *sk; 1164 u32 op; 1165 union { 1166 u32 args[4]; 1167 u32 reply; 1168 u32 replylong[4]; 1169 }; 1170 u32 is_fullsock; 1171 u64 temp; /* temp and everything after is not 1172 * initialized to 0 before calling 1173 * the BPF program. New fields that 1174 * should be initialized to 0 should 1175 * be inserted before temp. 1176 * temp is scratch storage used by 1177 * sock_ops_convert_ctx_access 1178 * as temporary storage of a register. 1179 */ 1180 }; 1181 1182 struct bpf_sysctl_kern { 1183 struct ctl_table_header *head; 1184 struct ctl_table *table; 1185 void *cur_val; 1186 size_t cur_len; 1187 void *new_val; 1188 size_t new_len; 1189 int new_updated; 1190 int write; 1191 loff_t *ppos; 1192 /* Temporary "register" for indirect stores to ppos. */ 1193 u64 tmp_reg; 1194 }; 1195 1196 #endif /* __LINUX_FILTER_H__ */ 1197