1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/bpf.h> 10 #include <linux/refcount.h> 11 #include <linux/compat.h> 12 #include <linux/skbuff.h> 13 #include <linux/linkage.h> 14 #include <linux/printk.h> 15 #include <linux/workqueue.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/capability.h> 19 #include <linux/set_memory.h> 20 #include <linux/kallsyms.h> 21 #include <linux/if_vlan.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sockptr.h> 24 #include <crypto/sha1.h> 25 #include <linux/u64_stats_sync.h> 26 27 #include <net/sch_generic.h> 28 29 #include <asm/byteorder.h> 30 #include <uapi/linux/filter.h> 31 32 struct sk_buff; 33 struct sock; 34 struct seccomp_data; 35 struct bpf_prog_aux; 36 struct xdp_rxq_info; 37 struct xdp_buff; 38 struct sock_reuseport; 39 struct ctl_table; 40 struct ctl_table_header; 41 42 /* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46 #define BPF_REG_ARG1 BPF_REG_1 47 #define BPF_REG_ARG2 BPF_REG_2 48 #define BPF_REG_ARG3 BPF_REG_3 49 #define BPF_REG_ARG4 BPF_REG_4 50 #define BPF_REG_ARG5 BPF_REG_5 51 #define BPF_REG_CTX BPF_REG_6 52 #define BPF_REG_FP BPF_REG_10 53 54 /* Additional register mappings for converted user programs. */ 55 #define BPF_REG_A BPF_REG_0 56 #define BPF_REG_X BPF_REG_7 57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61 /* Kernel hidden auxiliary/helper register. */ 62 #define BPF_REG_AX MAX_BPF_REG 63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66 /* unused opcode to mark special call to bpf_tail_call() helper */ 67 #define BPF_TAIL_CALL 0xf0 68 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 70 #define BPF_PROBE_MEM 0x20 71 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73 #define BPF_PROBE_MEMSX 0x40 74 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */ 76 #define BPF_PROBE_MEM32 0xa0 77 78 /* unused opcode to mark special atomic instruction */ 79 #define BPF_PROBE_ATOMIC 0xe0 80 81 /* unused opcode to mark call to interpreter with arguments */ 82 #define BPF_CALL_ARGS 0xe0 83 84 /* unused opcode to mark speculation barrier for mitigating 85 * Speculative Store Bypass 86 */ 87 #define BPF_NOSPEC 0xc0 88 89 /* As per nm, we expose JITed images as text (code) section for 90 * kallsyms. That way, tools like perf can find it to match 91 * addresses. 92 */ 93 #define BPF_SYM_ELF_TYPE 't' 94 95 /* BPF program can access up to 512 bytes of stack space. */ 96 #define MAX_BPF_STACK 512 97 98 /* Helper macros for filter block array initializers. */ 99 100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 101 102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 105 .dst_reg = DST, \ 106 .src_reg = SRC, \ 107 .off = OFF, \ 108 .imm = 0 }) 109 110 #define BPF_ALU64_REG(OP, DST, SRC) \ 111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 112 113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 116 .dst_reg = DST, \ 117 .src_reg = SRC, \ 118 .off = OFF, \ 119 .imm = 0 }) 120 121 #define BPF_ALU32_REG(OP, DST, SRC) \ 122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 123 124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 125 126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 127 ((struct bpf_insn) { \ 128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 129 .dst_reg = DST, \ 130 .src_reg = 0, \ 131 .off = OFF, \ 132 .imm = IMM }) 133 #define BPF_ALU64_IMM(OP, DST, IMM) \ 134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 135 136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 139 .dst_reg = DST, \ 140 .src_reg = 0, \ 141 .off = OFF, \ 142 .imm = IMM }) 143 #define BPF_ALU32_IMM(OP, DST, IMM) \ 144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 145 146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 147 148 #define BPF_ENDIAN(TYPE, DST, LEN) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = LEN }) 155 156 /* Byte Swap, bswap16/32/64 */ 157 158 #define BPF_BSWAP(DST, LEN) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 161 .dst_reg = DST, \ 162 .src_reg = 0, \ 163 .off = 0, \ 164 .imm = LEN }) 165 166 /* Short form of mov, dst_reg = src_reg */ 167 168 #define BPF_MOV64_REG(DST, SRC) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = 0 }) 175 176 #define BPF_MOV32_REG(DST, SRC) \ 177 ((struct bpf_insn) { \ 178 .code = BPF_ALU | BPF_MOV | BPF_X, \ 179 .dst_reg = DST, \ 180 .src_reg = SRC, \ 181 .off = 0, \ 182 .imm = 0 }) 183 184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs: 185 * dst_reg = src_reg + <percpu_base_off> 186 * BPF_ADDR_PERCPU is used as a special insn->off value. 187 */ 188 #define BPF_ADDR_PERCPU (-1) 189 190 #define BPF_MOV64_PERCPU_REG(DST, SRC) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = BPF_ADDR_PERCPU, \ 196 .imm = 0 }) 197 198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 199 { 200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 201 } 202 203 /* Short form of mov, dst_reg = imm32 */ 204 205 #define BPF_MOV64_IMM(DST, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 208 .dst_reg = DST, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213 #define BPF_MOV32_IMM(DST, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_K, \ 216 .dst_reg = DST, \ 217 .src_reg = 0, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 222 223 #define BPF_MOVSX64_REG(DST, SRC, OFF) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 226 .dst_reg = DST, \ 227 .src_reg = SRC, \ 228 .off = OFF, \ 229 .imm = 0 }) 230 231 #define BPF_MOVSX32_REG(DST, SRC, OFF) \ 232 ((struct bpf_insn) { \ 233 .code = BPF_ALU | BPF_MOV | BPF_X, \ 234 .dst_reg = DST, \ 235 .src_reg = SRC, \ 236 .off = OFF, \ 237 .imm = 0 }) 238 239 /* Special form of mov32, used for doing explicit zero extension on dst. */ 240 #define BPF_ZEXT_REG(DST) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_ALU | BPF_MOV | BPF_X, \ 243 .dst_reg = DST, \ 244 .src_reg = DST, \ 245 .off = 0, \ 246 .imm = 1 }) 247 248 static inline bool insn_is_zext(const struct bpf_insn *insn) 249 { 250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 251 } 252 253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 254 * to pointers in user vma. 255 */ 256 static inline bool insn_is_cast_user(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 259 insn->off == BPF_ADDR_SPACE_CAST && 260 insn->imm == 1U << 16; 261 } 262 263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 264 #define BPF_LD_IMM64(DST, IMM) \ 265 BPF_LD_IMM64_RAW(DST, 0, IMM) 266 267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 268 ((struct bpf_insn) { \ 269 .code = BPF_LD | BPF_DW | BPF_IMM, \ 270 .dst_reg = DST, \ 271 .src_reg = SRC, \ 272 .off = 0, \ 273 .imm = (__u32) (IMM) }), \ 274 ((struct bpf_insn) { \ 275 .code = 0, /* zero is reserved opcode */ \ 276 .dst_reg = 0, \ 277 .src_reg = 0, \ 278 .off = 0, \ 279 .imm = ((__u64) (IMM)) >> 32 }) 280 281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 282 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 284 285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 286 287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 288 ((struct bpf_insn) { \ 289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 290 .dst_reg = DST, \ 291 .src_reg = SRC, \ 292 .off = 0, \ 293 .imm = IMM }) 294 295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 298 .dst_reg = DST, \ 299 .src_reg = SRC, \ 300 .off = 0, \ 301 .imm = IMM }) 302 303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 304 305 #define BPF_LD_ABS(SIZE, IMM) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = 0, \ 311 .imm = IMM }) 312 313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 314 315 #define BPF_LD_IND(SIZE, SRC, IMM) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 318 .dst_reg = 0, \ 319 .src_reg = SRC, \ 320 .off = 0, \ 321 .imm = IMM }) 322 323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 324 325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 334 335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 338 .dst_reg = DST, \ 339 .src_reg = SRC, \ 340 .off = OFF, \ 341 .imm = 0 }) 342 343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 344 345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 348 .dst_reg = DST, \ 349 .src_reg = SRC, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 354 /* 355 * Atomic operations: 356 * 357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 367 */ 368 369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 370 ((struct bpf_insn) { \ 371 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 372 .dst_reg = DST, \ 373 .src_reg = SRC, \ 374 .off = OFF, \ 375 .imm = OP }) 376 377 /* Legacy alias */ 378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 379 380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 381 382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 383 ((struct bpf_insn) { \ 384 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 385 .dst_reg = DST, \ 386 .src_reg = 0, \ 387 .off = OFF, \ 388 .imm = IMM }) 389 390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 391 392 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 393 ((struct bpf_insn) { \ 394 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 395 .dst_reg = DST, \ 396 .src_reg = SRC, \ 397 .off = OFF, \ 398 .imm = 0 }) 399 400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 401 402 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 403 ((struct bpf_insn) { \ 404 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 405 .dst_reg = DST, \ 406 .src_reg = 0, \ 407 .off = OFF, \ 408 .imm = IMM }) 409 410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 411 412 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 413 ((struct bpf_insn) { \ 414 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 415 .dst_reg = DST, \ 416 .src_reg = SRC, \ 417 .off = OFF, \ 418 .imm = 0 }) 419 420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 421 422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 423 ((struct bpf_insn) { \ 424 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 425 .dst_reg = DST, \ 426 .src_reg = 0, \ 427 .off = OFF, \ 428 .imm = IMM }) 429 430 /* Unconditional jumps, goto pc + off16 */ 431 432 #define BPF_JMP_A(OFF) \ 433 ((struct bpf_insn) { \ 434 .code = BPF_JMP | BPF_JA, \ 435 .dst_reg = 0, \ 436 .src_reg = 0, \ 437 .off = OFF, \ 438 .imm = 0 }) 439 440 /* Unconditional jumps, gotol pc + imm32 */ 441 442 #define BPF_JMP32_A(IMM) \ 443 ((struct bpf_insn) { \ 444 .code = BPF_JMP32 | BPF_JA, \ 445 .dst_reg = 0, \ 446 .src_reg = 0, \ 447 .off = 0, \ 448 .imm = IMM }) 449 450 /* Relative call */ 451 452 #define BPF_CALL_REL(TGT) \ 453 ((struct bpf_insn) { \ 454 .code = BPF_JMP | BPF_CALL, \ 455 .dst_reg = 0, \ 456 .src_reg = BPF_PSEUDO_CALL, \ 457 .off = 0, \ 458 .imm = TGT }) 459 460 /* Convert function address to BPF immediate */ 461 462 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 463 464 #define BPF_EMIT_CALL(FUNC) \ 465 ((struct bpf_insn) { \ 466 .code = BPF_JMP | BPF_CALL, \ 467 .dst_reg = 0, \ 468 .src_reg = 0, \ 469 .off = 0, \ 470 .imm = BPF_CALL_IMM(FUNC) }) 471 472 /* Kfunc call */ 473 474 #define BPF_CALL_KFUNC(OFF, IMM) \ 475 ((struct bpf_insn) { \ 476 .code = BPF_JMP | BPF_CALL, \ 477 .dst_reg = 0, \ 478 .src_reg = BPF_PSEUDO_KFUNC_CALL, \ 479 .off = OFF, \ 480 .imm = IMM }) 481 482 /* Raw code statement block */ 483 484 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 485 ((struct bpf_insn) { \ 486 .code = CODE, \ 487 .dst_reg = DST, \ 488 .src_reg = SRC, \ 489 .off = OFF, \ 490 .imm = IMM }) 491 492 /* Program exit */ 493 494 #define BPF_EXIT_INSN() \ 495 ((struct bpf_insn) { \ 496 .code = BPF_JMP | BPF_EXIT, \ 497 .dst_reg = 0, \ 498 .src_reg = 0, \ 499 .off = 0, \ 500 .imm = 0 }) 501 502 /* Speculation barrier */ 503 504 #define BPF_ST_NOSPEC() \ 505 ((struct bpf_insn) { \ 506 .code = BPF_ST | BPF_NOSPEC, \ 507 .dst_reg = 0, \ 508 .src_reg = 0, \ 509 .off = 0, \ 510 .imm = 0 }) 511 512 /* Internal classic blocks for direct assignment */ 513 514 #define __BPF_STMT(CODE, K) \ 515 ((struct sock_filter) BPF_STMT(CODE, K)) 516 517 #define __BPF_JUMP(CODE, K, JT, JF) \ 518 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 519 520 #define bytes_to_bpf_size(bytes) \ 521 ({ \ 522 int bpf_size = -EINVAL; \ 523 \ 524 if (bytes == sizeof(u8)) \ 525 bpf_size = BPF_B; \ 526 else if (bytes == sizeof(u16)) \ 527 bpf_size = BPF_H; \ 528 else if (bytes == sizeof(u32)) \ 529 bpf_size = BPF_W; \ 530 else if (bytes == sizeof(u64)) \ 531 bpf_size = BPF_DW; \ 532 \ 533 bpf_size; \ 534 }) 535 536 #define bpf_size_to_bytes(bpf_size) \ 537 ({ \ 538 int bytes = -EINVAL; \ 539 \ 540 if (bpf_size == BPF_B) \ 541 bytes = sizeof(u8); \ 542 else if (bpf_size == BPF_H) \ 543 bytes = sizeof(u16); \ 544 else if (bpf_size == BPF_W) \ 545 bytes = sizeof(u32); \ 546 else if (bpf_size == BPF_DW) \ 547 bytes = sizeof(u64); \ 548 \ 549 bytes; \ 550 }) 551 552 #define BPF_SIZEOF(type) \ 553 ({ \ 554 const int __size = bytes_to_bpf_size(sizeof(type)); \ 555 BUILD_BUG_ON(__size < 0); \ 556 __size; \ 557 }) 558 559 #define BPF_FIELD_SIZEOF(type, field) \ 560 ({ \ 561 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 562 BUILD_BUG_ON(__size < 0); \ 563 __size; \ 564 }) 565 566 #define BPF_LDST_BYTES(insn) \ 567 ({ \ 568 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 569 WARN_ON(__size < 0); \ 570 __size; \ 571 }) 572 573 #define __BPF_MAP_0(m, v, ...) v 574 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 575 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 576 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 577 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 578 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 579 580 #define __BPF_REG_0(...) __BPF_PAD(5) 581 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 582 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 583 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 584 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 585 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 586 587 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 588 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 589 590 #define __BPF_CAST(t, a) \ 591 (__force t) \ 592 (__force \ 593 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 594 (unsigned long)0, (t)0))) a 595 #define __BPF_V void 596 #define __BPF_N 597 598 #define __BPF_DECL_ARGS(t, a) t a 599 #define __BPF_DECL_REGS(t, a) u64 a 600 601 #define __BPF_PAD(n) \ 602 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 603 u64, __ur_3, u64, __ur_4, u64, __ur_5) 604 605 #define BPF_CALL_x(x, attr, name, ...) \ 606 static __always_inline \ 607 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 608 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 609 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 610 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 611 { \ 612 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 613 } \ 614 static __always_inline \ 615 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 616 617 #define __NOATTR 618 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 619 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 620 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 621 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 622 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 623 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 624 625 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 626 627 #define bpf_ctx_range(TYPE, MEMBER) \ 628 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 629 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 630 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 631 #if BITS_PER_LONG == 64 632 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 633 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 634 #else 635 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 636 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 637 #endif /* BITS_PER_LONG == 64 */ 638 639 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 640 ({ \ 641 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 642 *(PTR_SIZE) = (SIZE); \ 643 offsetof(TYPE, MEMBER); \ 644 }) 645 646 /* A struct sock_filter is architecture independent. */ 647 struct compat_sock_fprog { 648 u16 len; 649 compat_uptr_t filter; /* struct sock_filter * */ 650 }; 651 652 struct sock_fprog_kern { 653 u16 len; 654 struct sock_filter *filter; 655 }; 656 657 /* Some arches need doubleword alignment for their instructions and/or data */ 658 #define BPF_IMAGE_ALIGNMENT 8 659 660 struct bpf_binary_header { 661 u32 size; 662 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 663 }; 664 665 struct bpf_prog_stats { 666 u64_stats_t cnt; 667 u64_stats_t nsecs; 668 u64_stats_t misses; 669 struct u64_stats_sync syncp; 670 } __aligned(2 * sizeof(u64)); 671 672 struct bpf_timed_may_goto { 673 u64 count; 674 u64 timestamp; 675 }; 676 677 struct sk_filter { 678 refcount_t refcnt; 679 struct rcu_head rcu; 680 struct bpf_prog *prog; 681 }; 682 683 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 684 685 extern struct mutex nf_conn_btf_access_lock; 686 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 687 const struct bpf_reg_state *reg, 688 int off, int size); 689 690 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 691 const struct bpf_insn *insnsi, 692 unsigned int (*bpf_func)(const void *, 693 const struct bpf_insn *)); 694 695 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 696 const void *ctx, 697 bpf_dispatcher_fn dfunc) 698 { 699 u32 ret; 700 701 cant_migrate(); 702 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 703 struct bpf_prog_stats *stats; 704 u64 duration, start = sched_clock(); 705 unsigned long flags; 706 707 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 708 709 duration = sched_clock() - start; 710 stats = this_cpu_ptr(prog->stats); 711 flags = u64_stats_update_begin_irqsave(&stats->syncp); 712 u64_stats_inc(&stats->cnt); 713 u64_stats_add(&stats->nsecs, duration); 714 u64_stats_update_end_irqrestore(&stats->syncp, flags); 715 } else { 716 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 717 } 718 return ret; 719 } 720 721 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 722 { 723 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 724 } 725 726 /* 727 * Use in preemptible and therefore migratable context to make sure that 728 * the execution of the BPF program runs on one CPU. 729 * 730 * This uses migrate_disable/enable() explicitly to document that the 731 * invocation of a BPF program does not require reentrancy protection 732 * against a BPF program which is invoked from a preempting task. 733 */ 734 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 735 const void *ctx) 736 { 737 u32 ret; 738 739 migrate_disable(); 740 ret = bpf_prog_run(prog, ctx); 741 migrate_enable(); 742 return ret; 743 } 744 745 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 746 747 struct bpf_skb_data_end { 748 struct qdisc_skb_cb qdisc_cb; 749 void *data_meta; 750 void *data_end; 751 }; 752 753 struct bpf_nh_params { 754 u32 nh_family; 755 union { 756 u32 ipv4_nh; 757 struct in6_addr ipv6_nh; 758 }; 759 }; 760 761 /* flags for bpf_redirect_info kern_flags */ 762 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 763 #define BPF_RI_F_RI_INIT BIT(1) 764 #define BPF_RI_F_CPU_MAP_INIT BIT(2) 765 #define BPF_RI_F_DEV_MAP_INIT BIT(3) 766 #define BPF_RI_F_XSK_MAP_INIT BIT(4) 767 768 struct bpf_redirect_info { 769 u64 tgt_index; 770 void *tgt_value; 771 struct bpf_map *map; 772 u32 flags; 773 u32 map_id; 774 enum bpf_map_type map_type; 775 struct bpf_nh_params nh; 776 u32 kern_flags; 777 }; 778 779 struct bpf_net_context { 780 struct bpf_redirect_info ri; 781 struct list_head cpu_map_flush_list; 782 struct list_head dev_map_flush_list; 783 struct list_head xskmap_map_flush_list; 784 }; 785 786 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 787 { 788 struct task_struct *tsk = current; 789 790 if (tsk->bpf_net_context != NULL) 791 return NULL; 792 bpf_net_ctx->ri.kern_flags = 0; 793 794 tsk->bpf_net_context = bpf_net_ctx; 795 return bpf_net_ctx; 796 } 797 798 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 799 { 800 if (bpf_net_ctx) 801 current->bpf_net_context = NULL; 802 } 803 804 static inline struct bpf_net_context *bpf_net_ctx_get(void) 805 { 806 return current->bpf_net_context; 807 } 808 809 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 810 { 811 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 812 813 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 814 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 815 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 816 } 817 818 return &bpf_net_ctx->ri; 819 } 820 821 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 822 { 823 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 824 825 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 826 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 827 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 828 } 829 830 return &bpf_net_ctx->cpu_map_flush_list; 831 } 832 833 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 834 { 835 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 836 837 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 838 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 839 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 840 } 841 842 return &bpf_net_ctx->dev_map_flush_list; 843 } 844 845 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 846 { 847 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 848 849 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 850 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 851 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 852 } 853 854 return &bpf_net_ctx->xskmap_map_flush_list; 855 } 856 857 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 858 struct list_head **lh_dev, 859 struct list_head **lh_xsk) 860 { 861 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 862 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 863 struct list_head *lh; 864 865 *lh_map = *lh_dev = *lh_xsk = NULL; 866 867 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 868 return; 869 870 lh = &bpf_net_ctx->dev_map_flush_list; 871 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 872 *lh_dev = lh; 873 874 lh = &bpf_net_ctx->cpu_map_flush_list; 875 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 876 *lh_map = lh; 877 878 lh = &bpf_net_ctx->xskmap_map_flush_list; 879 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 880 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 881 *lh_xsk = lh; 882 } 883 884 /* Compute the linear packet data range [data, data_end) which 885 * will be accessed by various program types (cls_bpf, act_bpf, 886 * lwt, ...). Subsystems allowing direct data access must (!) 887 * ensure that cb[] area can be written to when BPF program is 888 * invoked (otherwise cb[] save/restore is necessary). 889 */ 890 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 891 { 892 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 893 894 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 895 cb->data_meta = skb->data - skb_metadata_len(skb); 896 cb->data_end = skb->data + skb_headlen(skb); 897 } 898 899 /* Similar to bpf_compute_data_pointers(), except that save orginal 900 * data in cb->data and cb->meta_data for restore. 901 */ 902 static inline void bpf_compute_and_save_data_end( 903 struct sk_buff *skb, void **saved_data_end) 904 { 905 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 906 907 *saved_data_end = cb->data_end; 908 cb->data_end = skb->data + skb_headlen(skb); 909 } 910 911 /* Restore data saved by bpf_compute_and_save_data_end(). */ 912 static inline void bpf_restore_data_end( 913 struct sk_buff *skb, void *saved_data_end) 914 { 915 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 916 917 cb->data_end = saved_data_end; 918 } 919 920 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 921 { 922 /* eBPF programs may read/write skb->cb[] area to transfer meta 923 * data between tail calls. Since this also needs to work with 924 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 925 * 926 * In some socket filter cases, the cb unfortunately needs to be 927 * saved/restored so that protocol specific skb->cb[] data won't 928 * be lost. In any case, due to unpriviledged eBPF programs 929 * attached to sockets, we need to clear the bpf_skb_cb() area 930 * to not leak previous contents to user space. 931 */ 932 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 933 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 934 sizeof_field(struct qdisc_skb_cb, data)); 935 936 return qdisc_skb_cb(skb)->data; 937 } 938 939 /* Must be invoked with migration disabled */ 940 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 941 const void *ctx) 942 { 943 const struct sk_buff *skb = ctx; 944 u8 *cb_data = bpf_skb_cb(skb); 945 u8 cb_saved[BPF_SKB_CB_LEN]; 946 u32 res; 947 948 if (unlikely(prog->cb_access)) { 949 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 950 memset(cb_data, 0, sizeof(cb_saved)); 951 } 952 953 res = bpf_prog_run(prog, skb); 954 955 if (unlikely(prog->cb_access)) 956 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 957 958 return res; 959 } 960 961 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 962 struct sk_buff *skb) 963 { 964 u32 res; 965 966 migrate_disable(); 967 res = __bpf_prog_run_save_cb(prog, skb); 968 migrate_enable(); 969 return res; 970 } 971 972 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 973 struct sk_buff *skb) 974 { 975 u8 *cb_data = bpf_skb_cb(skb); 976 u32 res; 977 978 if (unlikely(prog->cb_access)) 979 memset(cb_data, 0, BPF_SKB_CB_LEN); 980 981 res = bpf_prog_run_pin_on_cpu(prog, skb); 982 return res; 983 } 984 985 DECLARE_BPF_DISPATCHER(xdp) 986 987 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 988 989 u32 xdp_master_redirect(struct xdp_buff *xdp); 990 991 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 992 993 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 994 { 995 return prog->len * sizeof(struct bpf_insn); 996 } 997 998 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 999 { 1000 return round_up(bpf_prog_insn_size(prog) + 1001 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 1002 } 1003 1004 static inline unsigned int bpf_prog_size(unsigned int proglen) 1005 { 1006 return max(sizeof(struct bpf_prog), 1007 offsetof(struct bpf_prog, insns[proglen])); 1008 } 1009 1010 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 1011 { 1012 /* When classic BPF programs have been loaded and the arch 1013 * does not have a classic BPF JIT (anymore), they have been 1014 * converted via bpf_migrate_filter() to eBPF and thus always 1015 * have an unspec program type. 1016 */ 1017 return prog->type == BPF_PROG_TYPE_UNSPEC; 1018 } 1019 1020 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1021 { 1022 const u32 size_machine = sizeof(unsigned long); 1023 1024 if (size > size_machine && size % size_machine == 0) 1025 size = size_machine; 1026 1027 return size; 1028 } 1029 1030 static inline bool 1031 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1032 { 1033 return size <= size_default && (size & (size - 1)) == 0; 1034 } 1035 1036 static inline u8 1037 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1038 { 1039 u8 access_off = off & (size_default - 1); 1040 1041 #ifdef __LITTLE_ENDIAN 1042 return access_off; 1043 #else 1044 return size_default - (access_off + size); 1045 #endif 1046 } 1047 1048 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 1049 (size == sizeof(__u64) && \ 1050 off >= offsetof(type, field) && \ 1051 off + sizeof(__u64) <= offsetofend(type, field) && \ 1052 off % sizeof(__u64) == 0) 1053 1054 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1055 1056 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1057 { 1058 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1059 if (!fp->jited) { 1060 set_vm_flush_reset_perms(fp); 1061 return set_memory_ro((unsigned long)fp, fp->pages); 1062 } 1063 #endif 1064 return 0; 1065 } 1066 1067 static inline int __must_check 1068 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1069 { 1070 set_vm_flush_reset_perms(hdr); 1071 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1072 } 1073 1074 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 1075 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1076 { 1077 return sk_filter_trim_cap(sk, skb, 1); 1078 } 1079 1080 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1081 void bpf_prog_free(struct bpf_prog *fp); 1082 1083 bool bpf_opcode_in_insntable(u8 code); 1084 1085 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1086 const u32 *insn_to_jit_off); 1087 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1088 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1089 1090 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1091 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1092 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1093 gfp_t gfp_extra_flags); 1094 void __bpf_prog_free(struct bpf_prog *fp); 1095 1096 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1097 { 1098 __bpf_prog_free(fp); 1099 } 1100 1101 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1102 unsigned int flen); 1103 1104 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1105 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1106 bpf_aux_classic_check_t trans, bool save_orig); 1107 void bpf_prog_destroy(struct bpf_prog *fp); 1108 1109 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1110 int sk_attach_bpf(u32 ufd, struct sock *sk); 1111 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1112 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1113 void sk_reuseport_prog_free(struct bpf_prog *prog); 1114 int sk_detach_filter(struct sock *sk); 1115 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1116 1117 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1118 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1119 1120 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1121 #define __bpf_call_base_args \ 1122 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1123 (void *)__bpf_call_base) 1124 1125 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1126 void bpf_jit_compile(struct bpf_prog *prog); 1127 bool bpf_jit_needs_zext(void); 1128 bool bpf_jit_inlines_helper_call(s32 imm); 1129 bool bpf_jit_supports_subprog_tailcalls(void); 1130 bool bpf_jit_supports_percpu_insn(void); 1131 bool bpf_jit_supports_kfunc_call(void); 1132 bool bpf_jit_supports_far_kfunc_call(void); 1133 bool bpf_jit_supports_exceptions(void); 1134 bool bpf_jit_supports_ptr_xchg(void); 1135 bool bpf_jit_supports_arena(void); 1136 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1137 bool bpf_jit_supports_private_stack(void); 1138 bool bpf_jit_supports_timed_may_goto(void); 1139 u64 bpf_arch_uaddress_limit(void); 1140 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1141 u64 arch_bpf_timed_may_goto(void); 1142 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *); 1143 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id); 1144 1145 static inline bool bpf_dump_raw_ok(const struct cred *cred) 1146 { 1147 /* Reconstruction of call-sites is dependent on kallsyms, 1148 * thus make dump the same restriction. 1149 */ 1150 return kallsyms_show_value(cred); 1151 } 1152 1153 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1154 const struct bpf_insn *patch, u32 len); 1155 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1156 1157 static inline bool xdp_return_frame_no_direct(void) 1158 { 1159 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1160 1161 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1162 } 1163 1164 static inline void xdp_set_return_frame_no_direct(void) 1165 { 1166 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1167 1168 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1169 } 1170 1171 static inline void xdp_clear_return_frame_no_direct(void) 1172 { 1173 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1174 1175 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1176 } 1177 1178 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1179 unsigned int pktlen) 1180 { 1181 unsigned int len; 1182 1183 if (unlikely(!(fwd->flags & IFF_UP))) 1184 return -ENETDOWN; 1185 1186 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1187 if (pktlen > len) 1188 return -EMSGSIZE; 1189 1190 return 0; 1191 } 1192 1193 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1194 * same cpu context. Further for best results no more than a single map 1195 * for the do_redirect/do_flush pair should be used. This limitation is 1196 * because we only track one map and force a flush when the map changes. 1197 * This does not appear to be a real limitation for existing software. 1198 */ 1199 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1200 struct xdp_buff *xdp, const struct bpf_prog *prog); 1201 int xdp_do_redirect(struct net_device *dev, 1202 struct xdp_buff *xdp, 1203 const struct bpf_prog *prog); 1204 int xdp_do_redirect_frame(struct net_device *dev, 1205 struct xdp_buff *xdp, 1206 struct xdp_frame *xdpf, 1207 const struct bpf_prog *prog); 1208 void xdp_do_flush(void); 1209 1210 void bpf_warn_invalid_xdp_action(const struct net_device *dev, 1211 const struct bpf_prog *prog, u32 act); 1212 1213 #ifdef CONFIG_INET 1214 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1215 struct bpf_prog *prog, struct sk_buff *skb, 1216 struct sock *migrating_sk, 1217 u32 hash); 1218 #else 1219 static inline struct sock * 1220 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1221 struct bpf_prog *prog, struct sk_buff *skb, 1222 struct sock *migrating_sk, 1223 u32 hash) 1224 { 1225 return NULL; 1226 } 1227 #endif 1228 1229 #ifdef CONFIG_BPF_JIT 1230 extern int bpf_jit_enable; 1231 extern int bpf_jit_harden; 1232 extern int bpf_jit_kallsyms; 1233 extern long bpf_jit_limit; 1234 extern long bpf_jit_limit_max; 1235 1236 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1237 1238 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1239 1240 struct bpf_binary_header * 1241 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1242 unsigned int alignment, 1243 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1244 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1245 u64 bpf_jit_alloc_exec_limit(void); 1246 void *bpf_jit_alloc_exec(unsigned long size); 1247 void bpf_jit_free_exec(void *addr); 1248 void bpf_jit_free(struct bpf_prog *fp); 1249 struct bpf_binary_header * 1250 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1251 1252 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1253 void bpf_prog_pack_free(void *ptr, u32 size); 1254 1255 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1256 { 1257 return list_empty(&fp->aux->ksym.lnode) || 1258 fp->aux->ksym.lnode.prev == LIST_POISON2; 1259 } 1260 1261 struct bpf_binary_header * 1262 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1263 unsigned int alignment, 1264 struct bpf_binary_header **rw_hdr, 1265 u8 **rw_image, 1266 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1267 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1268 struct bpf_binary_header *rw_header); 1269 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1270 struct bpf_binary_header *rw_header); 1271 1272 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1273 struct bpf_jit_poke_descriptor *poke); 1274 1275 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1276 const struct bpf_insn *insn, bool extra_pass, 1277 u64 *func_addr, bool *func_addr_fixed); 1278 1279 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1280 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1281 1282 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1283 u32 pass, void *image) 1284 { 1285 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1286 proglen, pass, image, current->comm, task_pid_nr(current)); 1287 1288 if (image) 1289 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1290 16, 1, image, proglen, false); 1291 } 1292 1293 static inline bool bpf_jit_is_ebpf(void) 1294 { 1295 # ifdef CONFIG_HAVE_EBPF_JIT 1296 return true; 1297 # else 1298 return false; 1299 # endif 1300 } 1301 1302 static inline bool ebpf_jit_enabled(void) 1303 { 1304 return bpf_jit_enable && bpf_jit_is_ebpf(); 1305 } 1306 1307 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1308 { 1309 return fp->jited && bpf_jit_is_ebpf(); 1310 } 1311 1312 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1313 { 1314 /* These are the prerequisites, should someone ever have the 1315 * idea to call blinding outside of them, we make sure to 1316 * bail out. 1317 */ 1318 if (!bpf_jit_is_ebpf()) 1319 return false; 1320 if (!prog->jit_requested) 1321 return false; 1322 if (!bpf_jit_harden) 1323 return false; 1324 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1325 return false; 1326 1327 return true; 1328 } 1329 1330 static inline bool bpf_jit_kallsyms_enabled(void) 1331 { 1332 /* There are a couple of corner cases where kallsyms should 1333 * not be enabled f.e. on hardening. 1334 */ 1335 if (bpf_jit_harden) 1336 return false; 1337 if (!bpf_jit_kallsyms) 1338 return false; 1339 if (bpf_jit_kallsyms == 1) 1340 return true; 1341 1342 return false; 1343 } 1344 1345 int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1346 unsigned long *off, char *sym); 1347 bool is_bpf_text_address(unsigned long addr); 1348 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1349 char *sym); 1350 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1351 1352 static inline int 1353 bpf_address_lookup(unsigned long addr, unsigned long *size, 1354 unsigned long *off, char **modname, char *sym) 1355 { 1356 int ret = __bpf_address_lookup(addr, size, off, sym); 1357 1358 if (ret && modname) 1359 *modname = NULL; 1360 return ret; 1361 } 1362 1363 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1364 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1365 1366 #else /* CONFIG_BPF_JIT */ 1367 1368 static inline bool ebpf_jit_enabled(void) 1369 { 1370 return false; 1371 } 1372 1373 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1374 { 1375 return false; 1376 } 1377 1378 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1379 { 1380 return false; 1381 } 1382 1383 static inline int 1384 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1385 struct bpf_jit_poke_descriptor *poke) 1386 { 1387 return -ENOTSUPP; 1388 } 1389 1390 static inline void bpf_jit_free(struct bpf_prog *fp) 1391 { 1392 bpf_prog_unlock_free(fp); 1393 } 1394 1395 static inline bool bpf_jit_kallsyms_enabled(void) 1396 { 1397 return false; 1398 } 1399 1400 static inline int 1401 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1402 unsigned long *off, char *sym) 1403 { 1404 return 0; 1405 } 1406 1407 static inline bool is_bpf_text_address(unsigned long addr) 1408 { 1409 return false; 1410 } 1411 1412 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1413 char *type, char *sym) 1414 { 1415 return -ERANGE; 1416 } 1417 1418 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1419 { 1420 return NULL; 1421 } 1422 1423 static inline int 1424 bpf_address_lookup(unsigned long addr, unsigned long *size, 1425 unsigned long *off, char **modname, char *sym) 1426 { 1427 return 0; 1428 } 1429 1430 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1431 { 1432 } 1433 1434 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1435 { 1436 } 1437 1438 #endif /* CONFIG_BPF_JIT */ 1439 1440 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1441 1442 #define BPF_ANC BIT(15) 1443 1444 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1445 { 1446 switch (first->code) { 1447 case BPF_RET | BPF_K: 1448 case BPF_LD | BPF_W | BPF_LEN: 1449 return false; 1450 1451 case BPF_LD | BPF_W | BPF_ABS: 1452 case BPF_LD | BPF_H | BPF_ABS: 1453 case BPF_LD | BPF_B | BPF_ABS: 1454 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1455 return true; 1456 return false; 1457 1458 default: 1459 return true; 1460 } 1461 } 1462 1463 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1464 { 1465 BUG_ON(ftest->code & BPF_ANC); 1466 1467 switch (ftest->code) { 1468 case BPF_LD | BPF_W | BPF_ABS: 1469 case BPF_LD | BPF_H | BPF_ABS: 1470 case BPF_LD | BPF_B | BPF_ABS: 1471 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1472 return BPF_ANC | SKF_AD_##CODE 1473 switch (ftest->k) { 1474 BPF_ANCILLARY(PROTOCOL); 1475 BPF_ANCILLARY(PKTTYPE); 1476 BPF_ANCILLARY(IFINDEX); 1477 BPF_ANCILLARY(NLATTR); 1478 BPF_ANCILLARY(NLATTR_NEST); 1479 BPF_ANCILLARY(MARK); 1480 BPF_ANCILLARY(QUEUE); 1481 BPF_ANCILLARY(HATYPE); 1482 BPF_ANCILLARY(RXHASH); 1483 BPF_ANCILLARY(CPU); 1484 BPF_ANCILLARY(ALU_XOR_X); 1485 BPF_ANCILLARY(VLAN_TAG); 1486 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1487 BPF_ANCILLARY(PAY_OFFSET); 1488 BPF_ANCILLARY(RANDOM); 1489 BPF_ANCILLARY(VLAN_TPID); 1490 } 1491 fallthrough; 1492 default: 1493 return ftest->code; 1494 } 1495 } 1496 1497 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1498 int k, unsigned int size); 1499 1500 static inline int bpf_tell_extensions(void) 1501 { 1502 return SKF_AD_MAX; 1503 } 1504 1505 struct bpf_sock_addr_kern { 1506 struct sock *sk; 1507 struct sockaddr *uaddr; 1508 /* Temporary "register" to make indirect stores to nested structures 1509 * defined above. We need three registers to make such a store, but 1510 * only two (src and dst) are available at convert_ctx_access time 1511 */ 1512 u64 tmp_reg; 1513 void *t_ctx; /* Attach type specific context. */ 1514 u32 uaddrlen; 1515 }; 1516 1517 struct bpf_sock_ops_kern { 1518 struct sock *sk; 1519 union { 1520 u32 args[4]; 1521 u32 reply; 1522 u32 replylong[4]; 1523 }; 1524 struct sk_buff *syn_skb; 1525 struct sk_buff *skb; 1526 void *skb_data_end; 1527 u8 op; 1528 u8 is_fullsock; 1529 u8 remaining_opt_len; 1530 u64 temp; /* temp and everything after is not 1531 * initialized to 0 before calling 1532 * the BPF program. New fields that 1533 * should be initialized to 0 should 1534 * be inserted before temp. 1535 * temp is scratch storage used by 1536 * sock_ops_convert_ctx_access 1537 * as temporary storage of a register. 1538 */ 1539 }; 1540 1541 struct bpf_sysctl_kern { 1542 struct ctl_table_header *head; 1543 const struct ctl_table *table; 1544 void *cur_val; 1545 size_t cur_len; 1546 void *new_val; 1547 size_t new_len; 1548 int new_updated; 1549 int write; 1550 loff_t *ppos; 1551 /* Temporary "register" for indirect stores to ppos. */ 1552 u64 tmp_reg; 1553 }; 1554 1555 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1556 struct bpf_sockopt_buf { 1557 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1558 }; 1559 1560 struct bpf_sockopt_kern { 1561 struct sock *sk; 1562 u8 *optval; 1563 u8 *optval_end; 1564 s32 level; 1565 s32 optname; 1566 s32 optlen; 1567 /* for retval in struct bpf_cg_run_ctx */ 1568 struct task_struct *current_task; 1569 /* Temporary "register" for indirect stores to ppos. */ 1570 u64 tmp_reg; 1571 }; 1572 1573 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1574 1575 struct bpf_sk_lookup_kern { 1576 u16 family; 1577 u16 protocol; 1578 __be16 sport; 1579 u16 dport; 1580 struct { 1581 __be32 saddr; 1582 __be32 daddr; 1583 } v4; 1584 struct { 1585 const struct in6_addr *saddr; 1586 const struct in6_addr *daddr; 1587 } v6; 1588 struct sock *selected_sk; 1589 u32 ingress_ifindex; 1590 bool no_reuseport; 1591 }; 1592 1593 extern struct static_key_false bpf_sk_lookup_enabled; 1594 1595 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1596 * 1597 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1598 * SK_DROP. Their meaning is as follows: 1599 * 1600 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1601 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1602 * SK_DROP : terminate lookup with -ECONNREFUSED 1603 * 1604 * This macro aggregates return values and selected sockets from 1605 * multiple BPF programs according to following rules in order: 1606 * 1607 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1608 * macro result is SK_PASS and last ctx.selected_sk is used. 1609 * 2. If any program returned SK_DROP return value, 1610 * macro result is SK_DROP. 1611 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1612 * 1613 * Caller must ensure that the prog array is non-NULL, and that the 1614 * array as well as the programs it contains remain valid. 1615 */ 1616 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1617 ({ \ 1618 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1619 struct bpf_prog_array_item *_item; \ 1620 struct sock *_selected_sk = NULL; \ 1621 bool _no_reuseport = false; \ 1622 struct bpf_prog *_prog; \ 1623 bool _all_pass = true; \ 1624 u32 _ret; \ 1625 \ 1626 migrate_disable(); \ 1627 _item = &(array)->items[0]; \ 1628 while ((_prog = READ_ONCE(_item->prog))) { \ 1629 /* restore most recent selection */ \ 1630 _ctx->selected_sk = _selected_sk; \ 1631 _ctx->no_reuseport = _no_reuseport; \ 1632 \ 1633 _ret = func(_prog, _ctx); \ 1634 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1635 /* remember last non-NULL socket */ \ 1636 _selected_sk = _ctx->selected_sk; \ 1637 _no_reuseport = _ctx->no_reuseport; \ 1638 } else if (_ret == SK_DROP && _all_pass) { \ 1639 _all_pass = false; \ 1640 } \ 1641 _item++; \ 1642 } \ 1643 _ctx->selected_sk = _selected_sk; \ 1644 _ctx->no_reuseport = _no_reuseport; \ 1645 migrate_enable(); \ 1646 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1647 }) 1648 1649 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1650 const __be32 saddr, const __be16 sport, 1651 const __be32 daddr, const u16 dport, 1652 const int ifindex, struct sock **psk) 1653 { 1654 struct bpf_prog_array *run_array; 1655 struct sock *selected_sk = NULL; 1656 bool no_reuseport = false; 1657 1658 rcu_read_lock(); 1659 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1660 if (run_array) { 1661 struct bpf_sk_lookup_kern ctx = { 1662 .family = AF_INET, 1663 .protocol = protocol, 1664 .v4.saddr = saddr, 1665 .v4.daddr = daddr, 1666 .sport = sport, 1667 .dport = dport, 1668 .ingress_ifindex = ifindex, 1669 }; 1670 u32 act; 1671 1672 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1673 if (act == SK_PASS) { 1674 selected_sk = ctx.selected_sk; 1675 no_reuseport = ctx.no_reuseport; 1676 } else { 1677 selected_sk = ERR_PTR(-ECONNREFUSED); 1678 } 1679 } 1680 rcu_read_unlock(); 1681 *psk = selected_sk; 1682 return no_reuseport; 1683 } 1684 1685 #if IS_ENABLED(CONFIG_IPV6) 1686 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1687 const struct in6_addr *saddr, 1688 const __be16 sport, 1689 const struct in6_addr *daddr, 1690 const u16 dport, 1691 const int ifindex, struct sock **psk) 1692 { 1693 struct bpf_prog_array *run_array; 1694 struct sock *selected_sk = NULL; 1695 bool no_reuseport = false; 1696 1697 rcu_read_lock(); 1698 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1699 if (run_array) { 1700 struct bpf_sk_lookup_kern ctx = { 1701 .family = AF_INET6, 1702 .protocol = protocol, 1703 .v6.saddr = saddr, 1704 .v6.daddr = daddr, 1705 .sport = sport, 1706 .dport = dport, 1707 .ingress_ifindex = ifindex, 1708 }; 1709 u32 act; 1710 1711 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1712 if (act == SK_PASS) { 1713 selected_sk = ctx.selected_sk; 1714 no_reuseport = ctx.no_reuseport; 1715 } else { 1716 selected_sk = ERR_PTR(-ECONNREFUSED); 1717 } 1718 } 1719 rcu_read_unlock(); 1720 *psk = selected_sk; 1721 return no_reuseport; 1722 } 1723 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1724 1725 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1726 u64 flags, const u64 flag_mask, 1727 void *lookup_elem(struct bpf_map *map, u32 key)) 1728 { 1729 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1730 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1731 1732 /* Lower bits of the flags are used as return code on lookup failure */ 1733 if (unlikely(flags & ~(action_mask | flag_mask))) 1734 return XDP_ABORTED; 1735 1736 ri->tgt_value = lookup_elem(map, index); 1737 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1738 /* If the lookup fails we want to clear out the state in the 1739 * redirect_info struct completely, so that if an eBPF program 1740 * performs multiple lookups, the last one always takes 1741 * precedence. 1742 */ 1743 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1744 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1745 return flags & action_mask; 1746 } 1747 1748 ri->tgt_index = index; 1749 ri->map_id = map->id; 1750 ri->map_type = map->map_type; 1751 1752 if (flags & BPF_F_BROADCAST) { 1753 WRITE_ONCE(ri->map, map); 1754 ri->flags = flags; 1755 } else { 1756 WRITE_ONCE(ri->map, NULL); 1757 ri->flags = 0; 1758 } 1759 1760 return XDP_REDIRECT; 1761 } 1762 1763 #ifdef CONFIG_NET 1764 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1765 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1766 u32 len, u64 flags); 1767 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1768 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1769 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1770 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1771 void *buf, unsigned long len, bool flush); 1772 #else /* CONFIG_NET */ 1773 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1774 void *to, u32 len) 1775 { 1776 return -EOPNOTSUPP; 1777 } 1778 1779 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1780 const void *from, u32 len, u64 flags) 1781 { 1782 return -EOPNOTSUPP; 1783 } 1784 1785 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1786 void *buf, u32 len) 1787 { 1788 return -EOPNOTSUPP; 1789 } 1790 1791 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1792 void *buf, u32 len) 1793 { 1794 return -EOPNOTSUPP; 1795 } 1796 1797 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1798 { 1799 return NULL; 1800 } 1801 1802 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1803 unsigned long len, bool flush) 1804 { 1805 } 1806 #endif /* CONFIG_NET */ 1807 1808 #endif /* __LINUX_FILTER_H__ */ 1809