xref: /linux-6.15/include/linux/filter.h (revision e723608b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80 
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS	0xe0
83 
84 /* unused opcode to mark speculation barrier for mitigating
85  * Speculative Store Bypass
86  */
87 #define BPF_NOSPEC	0xc0
88 
89 /* As per nm, we expose JITed images as text (code) section for
90  * kallsyms. That way, tools like perf can find it to match
91  * addresses.
92  */
93 #define BPF_SYM_ELF_TYPE	't'
94 
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK	512
97 
98 /* Helper macros for filter block array initializers. */
99 
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101 
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
105 		.dst_reg = DST,					\
106 		.src_reg = SRC,					\
107 		.off   = OFF,					\
108 		.imm   = 0 })
109 
110 #define BPF_ALU64_REG(OP, DST, SRC)				\
111 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112 
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
114 	((struct bpf_insn) {					\
115 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
116 		.dst_reg = DST,					\
117 		.src_reg = SRC,					\
118 		.off   = OFF,					\
119 		.imm   = 0 })
120 
121 #define BPF_ALU32_REG(OP, DST, SRC)				\
122 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123 
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125 
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
127 	((struct bpf_insn) {					\
128 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
129 		.dst_reg = DST,					\
130 		.src_reg = 0,					\
131 		.off   = OFF,					\
132 		.imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)				\
134 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135 
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
137 	((struct bpf_insn) {					\
138 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
139 		.dst_reg = DST,					\
140 		.src_reg = 0,					\
141 		.off   = OFF,					\
142 		.imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)				\
144 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145 
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147 
148 #define BPF_ENDIAN(TYPE, DST, LEN)				\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
151 		.dst_reg = DST,					\
152 		.src_reg = 0,					\
153 		.off   = 0,					\
154 		.imm   = LEN })
155 
156 /* Byte Swap, bswap16/32/64 */
157 
158 #define BPF_BSWAP(DST, LEN)					\
159 	((struct bpf_insn) {					\
160 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
161 		.dst_reg = DST,					\
162 		.src_reg = 0,					\
163 		.off   = 0,					\
164 		.imm   = LEN })
165 
166 /* Short form of mov, dst_reg = src_reg */
167 
168 #define BPF_MOV64_REG(DST, SRC)					\
169 	((struct bpf_insn) {					\
170 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
171 		.dst_reg = DST,					\
172 		.src_reg = SRC,					\
173 		.off   = 0,					\
174 		.imm   = 0 })
175 
176 #define BPF_MOV32_REG(DST, SRC)					\
177 	((struct bpf_insn) {					\
178 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
179 		.dst_reg = DST,					\
180 		.src_reg = SRC,					\
181 		.off   = 0,					\
182 		.imm   = 0 })
183 
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU	(-1)
189 
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = BPF_ADDR_PERCPU,			\
196 		.imm   = 0 })
197 
198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202 
203 /* Short form of mov, dst_reg = imm32 */
204 
205 #define BPF_MOV64_IMM(DST, IMM)					\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
208 		.dst_reg = DST,					\
209 		.src_reg = 0,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 #define BPF_MOV32_IMM(DST, IMM)					\
214 	((struct bpf_insn) {					\
215 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
216 		.dst_reg = DST,					\
217 		.src_reg = 0,					\
218 		.off   = 0,					\
219 		.imm   = IMM })
220 
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222 
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
224 	((struct bpf_insn) {					\
225 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
226 		.dst_reg = DST,					\
227 		.src_reg = SRC,					\
228 		.off   = OFF,					\
229 		.imm   = 0 })
230 
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
232 	((struct bpf_insn) {					\
233 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
234 		.dst_reg = DST,					\
235 		.src_reg = SRC,					\
236 		.off   = OFF,					\
237 		.imm   = 0 })
238 
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)					\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
243 		.dst_reg = DST,					\
244 		.src_reg = DST,					\
245 		.off   = 0,					\
246 		.imm   = 1 })
247 
248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252 
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259 			      insn->off == BPF_ADDR_SPACE_CAST &&
260 			      insn->imm == 1U << 16;
261 }
262 
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)					\
265 	BPF_LD_IMM64_RAW(DST, 0, IMM)
266 
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
268 	((struct bpf_insn) {					\
269 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
270 		.dst_reg = DST,					\
271 		.src_reg = SRC,					\
272 		.off   = 0,					\
273 		.imm   = (__u32) (IMM) }),			\
274 	((struct bpf_insn) {					\
275 		.code  = 0, /* zero is reserved opcode */	\
276 		.dst_reg = 0,					\
277 		.src_reg = 0,					\
278 		.off   = 0,					\
279 		.imm   = ((__u64) (IMM)) >> 32 })
280 
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
283 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284 
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286 
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
288 	((struct bpf_insn) {					\
289 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
290 		.dst_reg = DST,					\
291 		.src_reg = SRC,					\
292 		.off   = 0,					\
293 		.imm   = IMM })
294 
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
298 		.dst_reg = DST,					\
299 		.src_reg = SRC,					\
300 		.off   = 0,					\
301 		.imm   = IMM })
302 
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304 
305 #define BPF_LD_ABS(SIZE, IMM)					\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
308 		.dst_reg = 0,					\
309 		.src_reg = 0,					\
310 		.off   = 0,					\
311 		.imm   = IMM })
312 
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314 
315 #define BPF_LD_IND(SIZE, SRC, IMM)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
318 		.dst_reg = 0,					\
319 		.src_reg = SRC,					\
320 		.off   = 0,					\
321 		.imm   = IMM })
322 
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324 
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334 
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344 
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
348 		.dst_reg = DST,					\
349 		.src_reg = SRC,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368 
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
370 	((struct bpf_insn) {					\
371 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
372 		.dst_reg = DST,					\
373 		.src_reg = SRC,					\
374 		.off   = OFF,					\
375 		.imm   = OP })
376 
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379 
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381 
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
383 	((struct bpf_insn) {					\
384 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
385 		.dst_reg = DST,					\
386 		.src_reg = 0,					\
387 		.off   = OFF,					\
388 		.imm   = IMM })
389 
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391 
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
393 	((struct bpf_insn) {					\
394 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
395 		.dst_reg = DST,					\
396 		.src_reg = SRC,					\
397 		.off   = OFF,					\
398 		.imm   = 0 })
399 
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401 
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
403 	((struct bpf_insn) {					\
404 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
405 		.dst_reg = DST,					\
406 		.src_reg = 0,					\
407 		.off   = OFF,					\
408 		.imm   = IMM })
409 
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411 
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
413 	((struct bpf_insn) {					\
414 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
415 		.dst_reg = DST,					\
416 		.src_reg = SRC,					\
417 		.off   = OFF,					\
418 		.imm   = 0 })
419 
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421 
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
423 	((struct bpf_insn) {					\
424 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
425 		.dst_reg = DST,					\
426 		.src_reg = 0,					\
427 		.off   = OFF,					\
428 		.imm   = IMM })
429 
430 /* Unconditional jumps, goto pc + off16 */
431 
432 #define BPF_JMP_A(OFF)						\
433 	((struct bpf_insn) {					\
434 		.code  = BPF_JMP | BPF_JA,			\
435 		.dst_reg = 0,					\
436 		.src_reg = 0,					\
437 		.off   = OFF,					\
438 		.imm   = 0 })
439 
440 /* Unconditional jumps, gotol pc + imm32 */
441 
442 #define BPF_JMP32_A(IMM)					\
443 	((struct bpf_insn) {					\
444 		.code  = BPF_JMP32 | BPF_JA,			\
445 		.dst_reg = 0,					\
446 		.src_reg = 0,					\
447 		.off   = 0,					\
448 		.imm   = IMM })
449 
450 /* Relative call */
451 
452 #define BPF_CALL_REL(TGT)					\
453 	((struct bpf_insn) {					\
454 		.code  = BPF_JMP | BPF_CALL,			\
455 		.dst_reg = 0,					\
456 		.src_reg = BPF_PSEUDO_CALL,			\
457 		.off   = 0,					\
458 		.imm   = TGT })
459 
460 /* Convert function address to BPF immediate */
461 
462 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
463 
464 #define BPF_EMIT_CALL(FUNC)					\
465 	((struct bpf_insn) {					\
466 		.code  = BPF_JMP | BPF_CALL,			\
467 		.dst_reg = 0,					\
468 		.src_reg = 0,					\
469 		.off   = 0,					\
470 		.imm   = BPF_CALL_IMM(FUNC) })
471 
472 /* Kfunc call */
473 
474 #define BPF_CALL_KFUNC(OFF, IMM)				\
475 	((struct bpf_insn) {					\
476 		.code  = BPF_JMP | BPF_CALL,			\
477 		.dst_reg = 0,					\
478 		.src_reg = BPF_PSEUDO_KFUNC_CALL,		\
479 		.off   = OFF,					\
480 		.imm   = IMM })
481 
482 /* Raw code statement block */
483 
484 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
485 	((struct bpf_insn) {					\
486 		.code  = CODE,					\
487 		.dst_reg = DST,					\
488 		.src_reg = SRC,					\
489 		.off   = OFF,					\
490 		.imm   = IMM })
491 
492 /* Program exit */
493 
494 #define BPF_EXIT_INSN()						\
495 	((struct bpf_insn) {					\
496 		.code  = BPF_JMP | BPF_EXIT,			\
497 		.dst_reg = 0,					\
498 		.src_reg = 0,					\
499 		.off   = 0,					\
500 		.imm   = 0 })
501 
502 /* Speculation barrier */
503 
504 #define BPF_ST_NOSPEC()						\
505 	((struct bpf_insn) {					\
506 		.code  = BPF_ST | BPF_NOSPEC,			\
507 		.dst_reg = 0,					\
508 		.src_reg = 0,					\
509 		.off   = 0,					\
510 		.imm   = 0 })
511 
512 /* Internal classic blocks for direct assignment */
513 
514 #define __BPF_STMT(CODE, K)					\
515 	((struct sock_filter) BPF_STMT(CODE, K))
516 
517 #define __BPF_JUMP(CODE, K, JT, JF)				\
518 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
519 
520 #define bytes_to_bpf_size(bytes)				\
521 ({								\
522 	int bpf_size = -EINVAL;					\
523 								\
524 	if (bytes == sizeof(u8))				\
525 		bpf_size = BPF_B;				\
526 	else if (bytes == sizeof(u16))				\
527 		bpf_size = BPF_H;				\
528 	else if (bytes == sizeof(u32))				\
529 		bpf_size = BPF_W;				\
530 	else if (bytes == sizeof(u64))				\
531 		bpf_size = BPF_DW;				\
532 								\
533 	bpf_size;						\
534 })
535 
536 #define bpf_size_to_bytes(bpf_size)				\
537 ({								\
538 	int bytes = -EINVAL;					\
539 								\
540 	if (bpf_size == BPF_B)					\
541 		bytes = sizeof(u8);				\
542 	else if (bpf_size == BPF_H)				\
543 		bytes = sizeof(u16);				\
544 	else if (bpf_size == BPF_W)				\
545 		bytes = sizeof(u32);				\
546 	else if (bpf_size == BPF_DW)				\
547 		bytes = sizeof(u64);				\
548 								\
549 	bytes;							\
550 })
551 
552 #define BPF_SIZEOF(type)					\
553 	({							\
554 		const int __size = bytes_to_bpf_size(sizeof(type)); \
555 		BUILD_BUG_ON(__size < 0);			\
556 		__size;						\
557 	})
558 
559 #define BPF_FIELD_SIZEOF(type, field)				\
560 	({							\
561 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
562 		BUILD_BUG_ON(__size < 0);			\
563 		__size;						\
564 	})
565 
566 #define BPF_LDST_BYTES(insn)					\
567 	({							\
568 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
569 		WARN_ON(__size < 0);				\
570 		__size;						\
571 	})
572 
573 #define __BPF_MAP_0(m, v, ...) v
574 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
575 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
576 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
577 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
578 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
579 
580 #define __BPF_REG_0(...) __BPF_PAD(5)
581 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
582 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
583 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
584 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
585 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
586 
587 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
588 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
589 
590 #define __BPF_CAST(t, a)						       \
591 	(__force t)							       \
592 	(__force							       \
593 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
594 				      (unsigned long)0, (t)0))) a
595 #define __BPF_V void
596 #define __BPF_N
597 
598 #define __BPF_DECL_ARGS(t, a) t   a
599 #define __BPF_DECL_REGS(t, a) u64 a
600 
601 #define __BPF_PAD(n)							       \
602 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
603 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
604 
605 #define BPF_CALL_x(x, attr, name, ...)					       \
606 	static __always_inline						       \
607 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
608 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
609 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
610 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
611 	{								       \
612 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
613 	}								       \
614 	static __always_inline						       \
615 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
616 
617 #define __NOATTR
618 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
619 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
620 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
621 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
622 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
623 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
624 
625 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
626 
627 #define bpf_ctx_range(TYPE, MEMBER)						\
628 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
629 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
630 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
631 #if BITS_PER_LONG == 64
632 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
633 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
634 #else
635 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
636 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
637 #endif /* BITS_PER_LONG == 64 */
638 
639 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
640 	({									\
641 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
642 		*(PTR_SIZE) = (SIZE);						\
643 		offsetof(TYPE, MEMBER);						\
644 	})
645 
646 /* A struct sock_filter is architecture independent. */
647 struct compat_sock_fprog {
648 	u16		len;
649 	compat_uptr_t	filter;	/* struct sock_filter * */
650 };
651 
652 struct sock_fprog_kern {
653 	u16			len;
654 	struct sock_filter	*filter;
655 };
656 
657 /* Some arches need doubleword alignment for their instructions and/or data */
658 #define BPF_IMAGE_ALIGNMENT 8
659 
660 struct bpf_binary_header {
661 	u32 size;
662 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
663 };
664 
665 struct bpf_prog_stats {
666 	u64_stats_t cnt;
667 	u64_stats_t nsecs;
668 	u64_stats_t misses;
669 	struct u64_stats_sync syncp;
670 } __aligned(2 * sizeof(u64));
671 
672 struct bpf_timed_may_goto {
673 	u64 count;
674 	u64 timestamp;
675 };
676 
677 struct sk_filter {
678 	refcount_t	refcnt;
679 	struct rcu_head	rcu;
680 	struct bpf_prog	*prog;
681 };
682 
683 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
684 
685 extern struct mutex nf_conn_btf_access_lock;
686 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
687 				     const struct bpf_reg_state *reg,
688 				     int off, int size);
689 
690 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
691 					  const struct bpf_insn *insnsi,
692 					  unsigned int (*bpf_func)(const void *,
693 								   const struct bpf_insn *));
694 
695 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
696 					  const void *ctx,
697 					  bpf_dispatcher_fn dfunc)
698 {
699 	u32 ret;
700 
701 	cant_migrate();
702 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
703 		struct bpf_prog_stats *stats;
704 		u64 duration, start = sched_clock();
705 		unsigned long flags;
706 
707 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
708 
709 		duration = sched_clock() - start;
710 		stats = this_cpu_ptr(prog->stats);
711 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
712 		u64_stats_inc(&stats->cnt);
713 		u64_stats_add(&stats->nsecs, duration);
714 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
715 	} else {
716 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
717 	}
718 	return ret;
719 }
720 
721 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
722 {
723 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
724 }
725 
726 /*
727  * Use in preemptible and therefore migratable context to make sure that
728  * the execution of the BPF program runs on one CPU.
729  *
730  * This uses migrate_disable/enable() explicitly to document that the
731  * invocation of a BPF program does not require reentrancy protection
732  * against a BPF program which is invoked from a preempting task.
733  */
734 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
735 					  const void *ctx)
736 {
737 	u32 ret;
738 
739 	migrate_disable();
740 	ret = bpf_prog_run(prog, ctx);
741 	migrate_enable();
742 	return ret;
743 }
744 
745 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
746 
747 struct bpf_skb_data_end {
748 	struct qdisc_skb_cb qdisc_cb;
749 	void *data_meta;
750 	void *data_end;
751 };
752 
753 struct bpf_nh_params {
754 	u32 nh_family;
755 	union {
756 		u32 ipv4_nh;
757 		struct in6_addr ipv6_nh;
758 	};
759 };
760 
761 /* flags for bpf_redirect_info kern_flags */
762 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
763 #define BPF_RI_F_RI_INIT	BIT(1)
764 #define BPF_RI_F_CPU_MAP_INIT	BIT(2)
765 #define BPF_RI_F_DEV_MAP_INIT	BIT(3)
766 #define BPF_RI_F_XSK_MAP_INIT	BIT(4)
767 
768 struct bpf_redirect_info {
769 	u64 tgt_index;
770 	void *tgt_value;
771 	struct bpf_map *map;
772 	u32 flags;
773 	u32 map_id;
774 	enum bpf_map_type map_type;
775 	struct bpf_nh_params nh;
776 	u32 kern_flags;
777 };
778 
779 struct bpf_net_context {
780 	struct bpf_redirect_info ri;
781 	struct list_head cpu_map_flush_list;
782 	struct list_head dev_map_flush_list;
783 	struct list_head xskmap_map_flush_list;
784 };
785 
786 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
787 {
788 	struct task_struct *tsk = current;
789 
790 	if (tsk->bpf_net_context != NULL)
791 		return NULL;
792 	bpf_net_ctx->ri.kern_flags = 0;
793 
794 	tsk->bpf_net_context = bpf_net_ctx;
795 	return bpf_net_ctx;
796 }
797 
798 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
799 {
800 	if (bpf_net_ctx)
801 		current->bpf_net_context = NULL;
802 }
803 
804 static inline struct bpf_net_context *bpf_net_ctx_get(void)
805 {
806 	return current->bpf_net_context;
807 }
808 
809 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
810 {
811 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
812 
813 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
814 		memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
815 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
816 	}
817 
818 	return &bpf_net_ctx->ri;
819 }
820 
821 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
822 {
823 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
824 
825 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
826 		INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
827 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
828 	}
829 
830 	return &bpf_net_ctx->cpu_map_flush_list;
831 }
832 
833 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
834 {
835 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
836 
837 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
838 		INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
839 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
840 	}
841 
842 	return &bpf_net_ctx->dev_map_flush_list;
843 }
844 
845 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
846 {
847 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
848 
849 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
850 		INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
851 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
852 	}
853 
854 	return &bpf_net_ctx->xskmap_map_flush_list;
855 }
856 
857 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
858 							struct list_head **lh_dev,
859 							struct list_head **lh_xsk)
860 {
861 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
862 	u32 kern_flags = bpf_net_ctx->ri.kern_flags;
863 	struct list_head *lh;
864 
865 	*lh_map = *lh_dev = *lh_xsk = NULL;
866 
867 	if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
868 		return;
869 
870 	lh = &bpf_net_ctx->dev_map_flush_list;
871 	if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
872 		*lh_dev = lh;
873 
874 	lh = &bpf_net_ctx->cpu_map_flush_list;
875 	if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
876 		*lh_map = lh;
877 
878 	lh = &bpf_net_ctx->xskmap_map_flush_list;
879 	if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
880 	    kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
881 		*lh_xsk = lh;
882 }
883 
884 /* Compute the linear packet data range [data, data_end) which
885  * will be accessed by various program types (cls_bpf, act_bpf,
886  * lwt, ...). Subsystems allowing direct data access must (!)
887  * ensure that cb[] area can be written to when BPF program is
888  * invoked (otherwise cb[] save/restore is necessary).
889  */
890 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
891 {
892 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
893 
894 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
895 	cb->data_meta = skb->data - skb_metadata_len(skb);
896 	cb->data_end  = skb->data + skb_headlen(skb);
897 }
898 
899 /* Similar to bpf_compute_data_pointers(), except that save orginal
900  * data in cb->data and cb->meta_data for restore.
901  */
902 static inline void bpf_compute_and_save_data_end(
903 	struct sk_buff *skb, void **saved_data_end)
904 {
905 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
906 
907 	*saved_data_end = cb->data_end;
908 	cb->data_end  = skb->data + skb_headlen(skb);
909 }
910 
911 /* Restore data saved by bpf_compute_and_save_data_end(). */
912 static inline void bpf_restore_data_end(
913 	struct sk_buff *skb, void *saved_data_end)
914 {
915 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
916 
917 	cb->data_end = saved_data_end;
918 }
919 
920 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
921 {
922 	/* eBPF programs may read/write skb->cb[] area to transfer meta
923 	 * data between tail calls. Since this also needs to work with
924 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
925 	 *
926 	 * In some socket filter cases, the cb unfortunately needs to be
927 	 * saved/restored so that protocol specific skb->cb[] data won't
928 	 * be lost. In any case, due to unpriviledged eBPF programs
929 	 * attached to sockets, we need to clear the bpf_skb_cb() area
930 	 * to not leak previous contents to user space.
931 	 */
932 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
933 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
934 		     sizeof_field(struct qdisc_skb_cb, data));
935 
936 	return qdisc_skb_cb(skb)->data;
937 }
938 
939 /* Must be invoked with migration disabled */
940 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
941 					 const void *ctx)
942 {
943 	const struct sk_buff *skb = ctx;
944 	u8 *cb_data = bpf_skb_cb(skb);
945 	u8 cb_saved[BPF_SKB_CB_LEN];
946 	u32 res;
947 
948 	if (unlikely(prog->cb_access)) {
949 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
950 		memset(cb_data, 0, sizeof(cb_saved));
951 	}
952 
953 	res = bpf_prog_run(prog, skb);
954 
955 	if (unlikely(prog->cb_access))
956 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
957 
958 	return res;
959 }
960 
961 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
962 				       struct sk_buff *skb)
963 {
964 	u32 res;
965 
966 	migrate_disable();
967 	res = __bpf_prog_run_save_cb(prog, skb);
968 	migrate_enable();
969 	return res;
970 }
971 
972 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
973 					struct sk_buff *skb)
974 {
975 	u8 *cb_data = bpf_skb_cb(skb);
976 	u32 res;
977 
978 	if (unlikely(prog->cb_access))
979 		memset(cb_data, 0, BPF_SKB_CB_LEN);
980 
981 	res = bpf_prog_run_pin_on_cpu(prog, skb);
982 	return res;
983 }
984 
985 DECLARE_BPF_DISPATCHER(xdp)
986 
987 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
988 
989 u32 xdp_master_redirect(struct xdp_buff *xdp);
990 
991 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
992 
993 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
994 {
995 	return prog->len * sizeof(struct bpf_insn);
996 }
997 
998 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
999 {
1000 	return round_up(bpf_prog_insn_size(prog) +
1001 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
1002 }
1003 
1004 static inline unsigned int bpf_prog_size(unsigned int proglen)
1005 {
1006 	return max(sizeof(struct bpf_prog),
1007 		   offsetof(struct bpf_prog, insns[proglen]));
1008 }
1009 
1010 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
1011 {
1012 	/* When classic BPF programs have been loaded and the arch
1013 	 * does not have a classic BPF JIT (anymore), they have been
1014 	 * converted via bpf_migrate_filter() to eBPF and thus always
1015 	 * have an unspec program type.
1016 	 */
1017 	return prog->type == BPF_PROG_TYPE_UNSPEC;
1018 }
1019 
1020 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1021 {
1022 	const u32 size_machine = sizeof(unsigned long);
1023 
1024 	if (size > size_machine && size % size_machine == 0)
1025 		size = size_machine;
1026 
1027 	return size;
1028 }
1029 
1030 static inline bool
1031 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1032 {
1033 	return size <= size_default && (size & (size - 1)) == 0;
1034 }
1035 
1036 static inline u8
1037 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1038 {
1039 	u8 access_off = off & (size_default - 1);
1040 
1041 #ifdef __LITTLE_ENDIAN
1042 	return access_off;
1043 #else
1044 	return size_default - (access_off + size);
1045 #endif
1046 }
1047 
1048 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
1049 	(size == sizeof(__u64) &&					\
1050 	off >= offsetof(type, field) &&					\
1051 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
1052 	off % sizeof(__u64) == 0)
1053 
1054 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1055 
1056 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1057 {
1058 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1059 	if (!fp->jited) {
1060 		set_vm_flush_reset_perms(fp);
1061 		return set_memory_ro((unsigned long)fp, fp->pages);
1062 	}
1063 #endif
1064 	return 0;
1065 }
1066 
1067 static inline int __must_check
1068 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1069 {
1070 	set_vm_flush_reset_perms(hdr);
1071 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1072 }
1073 
1074 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
1075 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1076 {
1077 	return sk_filter_trim_cap(sk, skb, 1);
1078 }
1079 
1080 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1081 void bpf_prog_free(struct bpf_prog *fp);
1082 
1083 bool bpf_opcode_in_insntable(u8 code);
1084 
1085 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1086 			       const u32 *insn_to_jit_off);
1087 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1088 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1089 
1090 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1091 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1092 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1093 				  gfp_t gfp_extra_flags);
1094 void __bpf_prog_free(struct bpf_prog *fp);
1095 
1096 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1097 {
1098 	__bpf_prog_free(fp);
1099 }
1100 
1101 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1102 				       unsigned int flen);
1103 
1104 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1105 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1106 			      bpf_aux_classic_check_t trans, bool save_orig);
1107 void bpf_prog_destroy(struct bpf_prog *fp);
1108 
1109 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1110 int sk_attach_bpf(u32 ufd, struct sock *sk);
1111 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1112 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1113 void sk_reuseport_prog_free(struct bpf_prog *prog);
1114 int sk_detach_filter(struct sock *sk);
1115 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1116 
1117 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1118 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1119 
1120 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1121 #define __bpf_call_base_args \
1122 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1123 	 (void *)__bpf_call_base)
1124 
1125 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1126 void bpf_jit_compile(struct bpf_prog *prog);
1127 bool bpf_jit_needs_zext(void);
1128 bool bpf_jit_inlines_helper_call(s32 imm);
1129 bool bpf_jit_supports_subprog_tailcalls(void);
1130 bool bpf_jit_supports_percpu_insn(void);
1131 bool bpf_jit_supports_kfunc_call(void);
1132 bool bpf_jit_supports_far_kfunc_call(void);
1133 bool bpf_jit_supports_exceptions(void);
1134 bool bpf_jit_supports_ptr_xchg(void);
1135 bool bpf_jit_supports_arena(void);
1136 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1137 bool bpf_jit_supports_private_stack(void);
1138 bool bpf_jit_supports_timed_may_goto(void);
1139 u64 bpf_arch_uaddress_limit(void);
1140 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1141 u64 arch_bpf_timed_may_goto(void);
1142 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *);
1143 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id);
1144 
1145 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1146 {
1147 	/* Reconstruction of call-sites is dependent on kallsyms,
1148 	 * thus make dump the same restriction.
1149 	 */
1150 	return kallsyms_show_value(cred);
1151 }
1152 
1153 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1154 				       const struct bpf_insn *patch, u32 len);
1155 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1156 
1157 static inline bool xdp_return_frame_no_direct(void)
1158 {
1159 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1160 
1161 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1162 }
1163 
1164 static inline void xdp_set_return_frame_no_direct(void)
1165 {
1166 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1167 
1168 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1169 }
1170 
1171 static inline void xdp_clear_return_frame_no_direct(void)
1172 {
1173 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1174 
1175 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1176 }
1177 
1178 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1179 				 unsigned int pktlen)
1180 {
1181 	unsigned int len;
1182 
1183 	if (unlikely(!(fwd->flags & IFF_UP)))
1184 		return -ENETDOWN;
1185 
1186 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1187 	if (pktlen > len)
1188 		return -EMSGSIZE;
1189 
1190 	return 0;
1191 }
1192 
1193 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1194  * same cpu context. Further for best results no more than a single map
1195  * for the do_redirect/do_flush pair should be used. This limitation is
1196  * because we only track one map and force a flush when the map changes.
1197  * This does not appear to be a real limitation for existing software.
1198  */
1199 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1200 			    struct xdp_buff *xdp, const struct bpf_prog *prog);
1201 int xdp_do_redirect(struct net_device *dev,
1202 		    struct xdp_buff *xdp,
1203 		    const struct bpf_prog *prog);
1204 int xdp_do_redirect_frame(struct net_device *dev,
1205 			  struct xdp_buff *xdp,
1206 			  struct xdp_frame *xdpf,
1207 			  const struct bpf_prog *prog);
1208 void xdp_do_flush(void);
1209 
1210 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
1211 				 const struct bpf_prog *prog, u32 act);
1212 
1213 #ifdef CONFIG_INET
1214 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1215 				  struct bpf_prog *prog, struct sk_buff *skb,
1216 				  struct sock *migrating_sk,
1217 				  u32 hash);
1218 #else
1219 static inline struct sock *
1220 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1221 		     struct bpf_prog *prog, struct sk_buff *skb,
1222 		     struct sock *migrating_sk,
1223 		     u32 hash)
1224 {
1225 	return NULL;
1226 }
1227 #endif
1228 
1229 #ifdef CONFIG_BPF_JIT
1230 extern int bpf_jit_enable;
1231 extern int bpf_jit_harden;
1232 extern int bpf_jit_kallsyms;
1233 extern long bpf_jit_limit;
1234 extern long bpf_jit_limit_max;
1235 
1236 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1237 
1238 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1239 
1240 struct bpf_binary_header *
1241 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1242 		     unsigned int alignment,
1243 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1244 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1245 u64 bpf_jit_alloc_exec_limit(void);
1246 void *bpf_jit_alloc_exec(unsigned long size);
1247 void bpf_jit_free_exec(void *addr);
1248 void bpf_jit_free(struct bpf_prog *fp);
1249 struct bpf_binary_header *
1250 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1251 
1252 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1253 void bpf_prog_pack_free(void *ptr, u32 size);
1254 
1255 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1256 {
1257 	return list_empty(&fp->aux->ksym.lnode) ||
1258 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1259 }
1260 
1261 struct bpf_binary_header *
1262 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1263 			  unsigned int alignment,
1264 			  struct bpf_binary_header **rw_hdr,
1265 			  u8 **rw_image,
1266 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1267 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1268 				 struct bpf_binary_header *rw_header);
1269 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1270 			      struct bpf_binary_header *rw_header);
1271 
1272 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1273 				struct bpf_jit_poke_descriptor *poke);
1274 
1275 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1276 			  const struct bpf_insn *insn, bool extra_pass,
1277 			  u64 *func_addr, bool *func_addr_fixed);
1278 
1279 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1280 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1281 
1282 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1283 				u32 pass, void *image)
1284 {
1285 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1286 	       proglen, pass, image, current->comm, task_pid_nr(current));
1287 
1288 	if (image)
1289 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1290 			       16, 1, image, proglen, false);
1291 }
1292 
1293 static inline bool bpf_jit_is_ebpf(void)
1294 {
1295 # ifdef CONFIG_HAVE_EBPF_JIT
1296 	return true;
1297 # else
1298 	return false;
1299 # endif
1300 }
1301 
1302 static inline bool ebpf_jit_enabled(void)
1303 {
1304 	return bpf_jit_enable && bpf_jit_is_ebpf();
1305 }
1306 
1307 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1308 {
1309 	return fp->jited && bpf_jit_is_ebpf();
1310 }
1311 
1312 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1313 {
1314 	/* These are the prerequisites, should someone ever have the
1315 	 * idea to call blinding outside of them, we make sure to
1316 	 * bail out.
1317 	 */
1318 	if (!bpf_jit_is_ebpf())
1319 		return false;
1320 	if (!prog->jit_requested)
1321 		return false;
1322 	if (!bpf_jit_harden)
1323 		return false;
1324 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1325 		return false;
1326 
1327 	return true;
1328 }
1329 
1330 static inline bool bpf_jit_kallsyms_enabled(void)
1331 {
1332 	/* There are a couple of corner cases where kallsyms should
1333 	 * not be enabled f.e. on hardening.
1334 	 */
1335 	if (bpf_jit_harden)
1336 		return false;
1337 	if (!bpf_jit_kallsyms)
1338 		return false;
1339 	if (bpf_jit_kallsyms == 1)
1340 		return true;
1341 
1342 	return false;
1343 }
1344 
1345 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1346 				 unsigned long *off, char *sym);
1347 bool is_bpf_text_address(unsigned long addr);
1348 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1349 		    char *sym);
1350 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1351 
1352 static inline int
1353 bpf_address_lookup(unsigned long addr, unsigned long *size,
1354 		   unsigned long *off, char **modname, char *sym)
1355 {
1356 	int ret = __bpf_address_lookup(addr, size, off, sym);
1357 
1358 	if (ret && modname)
1359 		*modname = NULL;
1360 	return ret;
1361 }
1362 
1363 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1364 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1365 
1366 #else /* CONFIG_BPF_JIT */
1367 
1368 static inline bool ebpf_jit_enabled(void)
1369 {
1370 	return false;
1371 }
1372 
1373 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1374 {
1375 	return false;
1376 }
1377 
1378 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1379 {
1380 	return false;
1381 }
1382 
1383 static inline int
1384 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1385 			    struct bpf_jit_poke_descriptor *poke)
1386 {
1387 	return -ENOTSUPP;
1388 }
1389 
1390 static inline void bpf_jit_free(struct bpf_prog *fp)
1391 {
1392 	bpf_prog_unlock_free(fp);
1393 }
1394 
1395 static inline bool bpf_jit_kallsyms_enabled(void)
1396 {
1397 	return false;
1398 }
1399 
1400 static inline int
1401 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1402 		     unsigned long *off, char *sym)
1403 {
1404 	return 0;
1405 }
1406 
1407 static inline bool is_bpf_text_address(unsigned long addr)
1408 {
1409 	return false;
1410 }
1411 
1412 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1413 				  char *type, char *sym)
1414 {
1415 	return -ERANGE;
1416 }
1417 
1418 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1419 {
1420 	return NULL;
1421 }
1422 
1423 static inline int
1424 bpf_address_lookup(unsigned long addr, unsigned long *size,
1425 		   unsigned long *off, char **modname, char *sym)
1426 {
1427 	return 0;
1428 }
1429 
1430 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1431 {
1432 }
1433 
1434 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1435 {
1436 }
1437 
1438 #endif /* CONFIG_BPF_JIT */
1439 
1440 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1441 
1442 #define BPF_ANC		BIT(15)
1443 
1444 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1445 {
1446 	switch (first->code) {
1447 	case BPF_RET | BPF_K:
1448 	case BPF_LD | BPF_W | BPF_LEN:
1449 		return false;
1450 
1451 	case BPF_LD | BPF_W | BPF_ABS:
1452 	case BPF_LD | BPF_H | BPF_ABS:
1453 	case BPF_LD | BPF_B | BPF_ABS:
1454 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1455 			return true;
1456 		return false;
1457 
1458 	default:
1459 		return true;
1460 	}
1461 }
1462 
1463 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1464 {
1465 	BUG_ON(ftest->code & BPF_ANC);
1466 
1467 	switch (ftest->code) {
1468 	case BPF_LD | BPF_W | BPF_ABS:
1469 	case BPF_LD | BPF_H | BPF_ABS:
1470 	case BPF_LD | BPF_B | BPF_ABS:
1471 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1472 				return BPF_ANC | SKF_AD_##CODE
1473 		switch (ftest->k) {
1474 		BPF_ANCILLARY(PROTOCOL);
1475 		BPF_ANCILLARY(PKTTYPE);
1476 		BPF_ANCILLARY(IFINDEX);
1477 		BPF_ANCILLARY(NLATTR);
1478 		BPF_ANCILLARY(NLATTR_NEST);
1479 		BPF_ANCILLARY(MARK);
1480 		BPF_ANCILLARY(QUEUE);
1481 		BPF_ANCILLARY(HATYPE);
1482 		BPF_ANCILLARY(RXHASH);
1483 		BPF_ANCILLARY(CPU);
1484 		BPF_ANCILLARY(ALU_XOR_X);
1485 		BPF_ANCILLARY(VLAN_TAG);
1486 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1487 		BPF_ANCILLARY(PAY_OFFSET);
1488 		BPF_ANCILLARY(RANDOM);
1489 		BPF_ANCILLARY(VLAN_TPID);
1490 		}
1491 		fallthrough;
1492 	default:
1493 		return ftest->code;
1494 	}
1495 }
1496 
1497 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1498 					   int k, unsigned int size);
1499 
1500 static inline int bpf_tell_extensions(void)
1501 {
1502 	return SKF_AD_MAX;
1503 }
1504 
1505 struct bpf_sock_addr_kern {
1506 	struct sock *sk;
1507 	struct sockaddr *uaddr;
1508 	/* Temporary "register" to make indirect stores to nested structures
1509 	 * defined above. We need three registers to make such a store, but
1510 	 * only two (src and dst) are available at convert_ctx_access time
1511 	 */
1512 	u64 tmp_reg;
1513 	void *t_ctx;	/* Attach type specific context. */
1514 	u32 uaddrlen;
1515 };
1516 
1517 struct bpf_sock_ops_kern {
1518 	struct	sock *sk;
1519 	union {
1520 		u32 args[4];
1521 		u32 reply;
1522 		u32 replylong[4];
1523 	};
1524 	struct sk_buff	*syn_skb;
1525 	struct sk_buff	*skb;
1526 	void	*skb_data_end;
1527 	u8	op;
1528 	u8	is_fullsock;
1529 	u8	remaining_opt_len;
1530 	u64	temp;			/* temp and everything after is not
1531 					 * initialized to 0 before calling
1532 					 * the BPF program. New fields that
1533 					 * should be initialized to 0 should
1534 					 * be inserted before temp.
1535 					 * temp is scratch storage used by
1536 					 * sock_ops_convert_ctx_access
1537 					 * as temporary storage of a register.
1538 					 */
1539 };
1540 
1541 struct bpf_sysctl_kern {
1542 	struct ctl_table_header *head;
1543 	const struct ctl_table *table;
1544 	void *cur_val;
1545 	size_t cur_len;
1546 	void *new_val;
1547 	size_t new_len;
1548 	int new_updated;
1549 	int write;
1550 	loff_t *ppos;
1551 	/* Temporary "register" for indirect stores to ppos. */
1552 	u64 tmp_reg;
1553 };
1554 
1555 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1556 struct bpf_sockopt_buf {
1557 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1558 };
1559 
1560 struct bpf_sockopt_kern {
1561 	struct sock	*sk;
1562 	u8		*optval;
1563 	u8		*optval_end;
1564 	s32		level;
1565 	s32		optname;
1566 	s32		optlen;
1567 	/* for retval in struct bpf_cg_run_ctx */
1568 	struct task_struct *current_task;
1569 	/* Temporary "register" for indirect stores to ppos. */
1570 	u64		tmp_reg;
1571 };
1572 
1573 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1574 
1575 struct bpf_sk_lookup_kern {
1576 	u16		family;
1577 	u16		protocol;
1578 	__be16		sport;
1579 	u16		dport;
1580 	struct {
1581 		__be32 saddr;
1582 		__be32 daddr;
1583 	} v4;
1584 	struct {
1585 		const struct in6_addr *saddr;
1586 		const struct in6_addr *daddr;
1587 	} v6;
1588 	struct sock	*selected_sk;
1589 	u32		ingress_ifindex;
1590 	bool		no_reuseport;
1591 };
1592 
1593 extern struct static_key_false bpf_sk_lookup_enabled;
1594 
1595 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1596  *
1597  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1598  * SK_DROP. Their meaning is as follows:
1599  *
1600  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1601  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1602  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1603  *
1604  * This macro aggregates return values and selected sockets from
1605  * multiple BPF programs according to following rules in order:
1606  *
1607  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1608  *     macro result is SK_PASS and last ctx.selected_sk is used.
1609  *  2. If any program returned SK_DROP return value,
1610  *     macro result is SK_DROP.
1611  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1612  *
1613  * Caller must ensure that the prog array is non-NULL, and that the
1614  * array as well as the programs it contains remain valid.
1615  */
1616 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1617 	({								\
1618 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1619 		struct bpf_prog_array_item *_item;			\
1620 		struct sock *_selected_sk = NULL;			\
1621 		bool _no_reuseport = false;				\
1622 		struct bpf_prog *_prog;					\
1623 		bool _all_pass = true;					\
1624 		u32 _ret;						\
1625 									\
1626 		migrate_disable();					\
1627 		_item = &(array)->items[0];				\
1628 		while ((_prog = READ_ONCE(_item->prog))) {		\
1629 			/* restore most recent selection */		\
1630 			_ctx->selected_sk = _selected_sk;		\
1631 			_ctx->no_reuseport = _no_reuseport;		\
1632 									\
1633 			_ret = func(_prog, _ctx);			\
1634 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1635 				/* remember last non-NULL socket */	\
1636 				_selected_sk = _ctx->selected_sk;	\
1637 				_no_reuseport = _ctx->no_reuseport;	\
1638 			} else if (_ret == SK_DROP && _all_pass) {	\
1639 				_all_pass = false;			\
1640 			}						\
1641 			_item++;					\
1642 		}							\
1643 		_ctx->selected_sk = _selected_sk;			\
1644 		_ctx->no_reuseport = _no_reuseport;			\
1645 		migrate_enable();					\
1646 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1647 	 })
1648 
1649 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1650 					const __be32 saddr, const __be16 sport,
1651 					const __be32 daddr, const u16 dport,
1652 					const int ifindex, struct sock **psk)
1653 {
1654 	struct bpf_prog_array *run_array;
1655 	struct sock *selected_sk = NULL;
1656 	bool no_reuseport = false;
1657 
1658 	rcu_read_lock();
1659 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1660 	if (run_array) {
1661 		struct bpf_sk_lookup_kern ctx = {
1662 			.family		= AF_INET,
1663 			.protocol	= protocol,
1664 			.v4.saddr	= saddr,
1665 			.v4.daddr	= daddr,
1666 			.sport		= sport,
1667 			.dport		= dport,
1668 			.ingress_ifindex	= ifindex,
1669 		};
1670 		u32 act;
1671 
1672 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1673 		if (act == SK_PASS) {
1674 			selected_sk = ctx.selected_sk;
1675 			no_reuseport = ctx.no_reuseport;
1676 		} else {
1677 			selected_sk = ERR_PTR(-ECONNREFUSED);
1678 		}
1679 	}
1680 	rcu_read_unlock();
1681 	*psk = selected_sk;
1682 	return no_reuseport;
1683 }
1684 
1685 #if IS_ENABLED(CONFIG_IPV6)
1686 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1687 					const struct in6_addr *saddr,
1688 					const __be16 sport,
1689 					const struct in6_addr *daddr,
1690 					const u16 dport,
1691 					const int ifindex, struct sock **psk)
1692 {
1693 	struct bpf_prog_array *run_array;
1694 	struct sock *selected_sk = NULL;
1695 	bool no_reuseport = false;
1696 
1697 	rcu_read_lock();
1698 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1699 	if (run_array) {
1700 		struct bpf_sk_lookup_kern ctx = {
1701 			.family		= AF_INET6,
1702 			.protocol	= protocol,
1703 			.v6.saddr	= saddr,
1704 			.v6.daddr	= daddr,
1705 			.sport		= sport,
1706 			.dport		= dport,
1707 			.ingress_ifindex	= ifindex,
1708 		};
1709 		u32 act;
1710 
1711 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1712 		if (act == SK_PASS) {
1713 			selected_sk = ctx.selected_sk;
1714 			no_reuseport = ctx.no_reuseport;
1715 		} else {
1716 			selected_sk = ERR_PTR(-ECONNREFUSED);
1717 		}
1718 	}
1719 	rcu_read_unlock();
1720 	*psk = selected_sk;
1721 	return no_reuseport;
1722 }
1723 #endif /* IS_ENABLED(CONFIG_IPV6) */
1724 
1725 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1726 						   u64 flags, const u64 flag_mask,
1727 						   void *lookup_elem(struct bpf_map *map, u32 key))
1728 {
1729 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1730 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1731 
1732 	/* Lower bits of the flags are used as return code on lookup failure */
1733 	if (unlikely(flags & ~(action_mask | flag_mask)))
1734 		return XDP_ABORTED;
1735 
1736 	ri->tgt_value = lookup_elem(map, index);
1737 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1738 		/* If the lookup fails we want to clear out the state in the
1739 		 * redirect_info struct completely, so that if an eBPF program
1740 		 * performs multiple lookups, the last one always takes
1741 		 * precedence.
1742 		 */
1743 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1744 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1745 		return flags & action_mask;
1746 	}
1747 
1748 	ri->tgt_index = index;
1749 	ri->map_id = map->id;
1750 	ri->map_type = map->map_type;
1751 
1752 	if (flags & BPF_F_BROADCAST) {
1753 		WRITE_ONCE(ri->map, map);
1754 		ri->flags = flags;
1755 	} else {
1756 		WRITE_ONCE(ri->map, NULL);
1757 		ri->flags = 0;
1758 	}
1759 
1760 	return XDP_REDIRECT;
1761 }
1762 
1763 #ifdef CONFIG_NET
1764 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1765 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1766 			  u32 len, u64 flags);
1767 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1768 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1769 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1770 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1771 		      void *buf, unsigned long len, bool flush);
1772 #else /* CONFIG_NET */
1773 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1774 				       void *to, u32 len)
1775 {
1776 	return -EOPNOTSUPP;
1777 }
1778 
1779 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1780 					const void *from, u32 len, u64 flags)
1781 {
1782 	return -EOPNOTSUPP;
1783 }
1784 
1785 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1786 				       void *buf, u32 len)
1787 {
1788 	return -EOPNOTSUPP;
1789 }
1790 
1791 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1792 					void *buf, u32 len)
1793 {
1794 	return -EOPNOTSUPP;
1795 }
1796 
1797 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1798 {
1799 	return NULL;
1800 }
1801 
1802 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1803 				    unsigned long len, bool flush)
1804 {
1805 }
1806 #endif /* CONFIG_NET */
1807 
1808 #endif /* __LINUX_FILTER_H__ */
1809