xref: /linux-6.15/include/linux/filter.h (revision d0f482bb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 #include <uapi/linux/bpf.h>
32 
33 struct sk_buff;
34 struct sock;
35 struct seccomp_data;
36 struct bpf_prog_aux;
37 struct xdp_rxq_info;
38 struct xdp_buff;
39 struct sock_reuseport;
40 struct ctl_table;
41 struct ctl_table_header;
42 
43 /* ArgX, context and stack frame pointer register positions. Note,
44  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45  * calls in BPF_CALL instruction.
46  */
47 #define BPF_REG_ARG1	BPF_REG_1
48 #define BPF_REG_ARG2	BPF_REG_2
49 #define BPF_REG_ARG3	BPF_REG_3
50 #define BPF_REG_ARG4	BPF_REG_4
51 #define BPF_REG_ARG5	BPF_REG_5
52 #define BPF_REG_CTX	BPF_REG_6
53 #define BPF_REG_FP	BPF_REG_10
54 
55 /* Additional register mappings for converted user programs. */
56 #define BPF_REG_A	BPF_REG_0
57 #define BPF_REG_X	BPF_REG_7
58 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
59 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
60 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
61 
62 /* Kernel hidden auxiliary/helper register. */
63 #define BPF_REG_AX		MAX_BPF_REG
64 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
65 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
66 
67 /* unused opcode to mark special call to bpf_tail_call() helper */
68 #define BPF_TAIL_CALL	0xf0
69 
70 /* unused opcode to mark special load instruction. Same as BPF_ABS */
71 #define BPF_PROBE_MEM	0x20
72 
73 /* unused opcode to mark call to interpreter with arguments */
74 #define BPF_CALL_ARGS	0xe0
75 
76 /* As per nm, we expose JITed images as text (code) section for
77  * kallsyms. That way, tools like perf can find it to match
78  * addresses.
79  */
80 #define BPF_SYM_ELF_TYPE	't'
81 
82 /* BPF program can access up to 512 bytes of stack space. */
83 #define MAX_BPF_STACK	512
84 
85 /* Helper macros for filter block array initializers. */
86 
87 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
88 
89 #define BPF_ALU64_REG(OP, DST, SRC)				\
90 	((struct bpf_insn) {					\
91 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
92 		.dst_reg = DST,					\
93 		.src_reg = SRC,					\
94 		.off   = 0,					\
95 		.imm   = 0 })
96 
97 #define BPF_ALU32_REG(OP, DST, SRC)				\
98 	((struct bpf_insn) {					\
99 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
100 		.dst_reg = DST,					\
101 		.src_reg = SRC,					\
102 		.off   = 0,					\
103 		.imm   = 0 })
104 
105 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
106 
107 #define BPF_ALU64_IMM(OP, DST, IMM)				\
108 	((struct bpf_insn) {					\
109 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
110 		.dst_reg = DST,					\
111 		.src_reg = 0,					\
112 		.off   = 0,					\
113 		.imm   = IMM })
114 
115 #define BPF_ALU32_IMM(OP, DST, IMM)				\
116 	((struct bpf_insn) {					\
117 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
118 		.dst_reg = DST,					\
119 		.src_reg = 0,					\
120 		.off   = 0,					\
121 		.imm   = IMM })
122 
123 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
124 
125 #define BPF_ENDIAN(TYPE, DST, LEN)				\
126 	((struct bpf_insn) {					\
127 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
128 		.dst_reg = DST,					\
129 		.src_reg = 0,					\
130 		.off   = 0,					\
131 		.imm   = LEN })
132 
133 /* Short form of mov, dst_reg = src_reg */
134 
135 #define BPF_MOV64_REG(DST, SRC)					\
136 	((struct bpf_insn) {					\
137 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
138 		.dst_reg = DST,					\
139 		.src_reg = SRC,					\
140 		.off   = 0,					\
141 		.imm   = 0 })
142 
143 #define BPF_MOV32_REG(DST, SRC)					\
144 	((struct bpf_insn) {					\
145 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
146 		.dst_reg = DST,					\
147 		.src_reg = SRC,					\
148 		.off   = 0,					\
149 		.imm   = 0 })
150 
151 /* Short form of mov, dst_reg = imm32 */
152 
153 #define BPF_MOV64_IMM(DST, IMM)					\
154 	((struct bpf_insn) {					\
155 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
156 		.dst_reg = DST,					\
157 		.src_reg = 0,					\
158 		.off   = 0,					\
159 		.imm   = IMM })
160 
161 #define BPF_MOV32_IMM(DST, IMM)					\
162 	((struct bpf_insn) {					\
163 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
164 		.dst_reg = DST,					\
165 		.src_reg = 0,					\
166 		.off   = 0,					\
167 		.imm   = IMM })
168 
169 /* Special form of mov32, used for doing explicit zero extension on dst. */
170 #define BPF_ZEXT_REG(DST)					\
171 	((struct bpf_insn) {					\
172 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
173 		.dst_reg = DST,					\
174 		.src_reg = DST,					\
175 		.off   = 0,					\
176 		.imm   = 1 })
177 
178 static inline bool insn_is_zext(const struct bpf_insn *insn)
179 {
180 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
181 }
182 
183 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
184 #define BPF_LD_IMM64(DST, IMM)					\
185 	BPF_LD_IMM64_RAW(DST, 0, IMM)
186 
187 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
188 	((struct bpf_insn) {					\
189 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
190 		.dst_reg = DST,					\
191 		.src_reg = SRC,					\
192 		.off   = 0,					\
193 		.imm   = (__u32) (IMM) }),			\
194 	((struct bpf_insn) {					\
195 		.code  = 0, /* zero is reserved opcode */	\
196 		.dst_reg = 0,					\
197 		.src_reg = 0,					\
198 		.off   = 0,					\
199 		.imm   = ((__u64) (IMM)) >> 32 })
200 
201 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
202 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
203 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
204 
205 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
206 
207 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
208 	((struct bpf_insn) {					\
209 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
210 		.dst_reg = DST,					\
211 		.src_reg = SRC,					\
212 		.off   = 0,					\
213 		.imm   = IMM })
214 
215 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
216 	((struct bpf_insn) {					\
217 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
218 		.dst_reg = DST,					\
219 		.src_reg = SRC,					\
220 		.off   = 0,					\
221 		.imm   = IMM })
222 
223 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
224 
225 #define BPF_LD_ABS(SIZE, IMM)					\
226 	((struct bpf_insn) {					\
227 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
228 		.dst_reg = 0,					\
229 		.src_reg = 0,					\
230 		.off   = 0,					\
231 		.imm   = IMM })
232 
233 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
234 
235 #define BPF_LD_IND(SIZE, SRC, IMM)				\
236 	((struct bpf_insn) {					\
237 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
238 		.dst_reg = 0,					\
239 		.src_reg = SRC,					\
240 		.off   = 0,					\
241 		.imm   = IMM })
242 
243 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
244 
245 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
246 	((struct bpf_insn) {					\
247 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
248 		.dst_reg = DST,					\
249 		.src_reg = SRC,					\
250 		.off   = OFF,					\
251 		.imm   = 0 })
252 
253 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
254 
255 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
256 	((struct bpf_insn) {					\
257 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
258 		.dst_reg = DST,					\
259 		.src_reg = SRC,					\
260 		.off   = OFF,					\
261 		.imm   = 0 })
262 
263 
264 /*
265  * Atomic operations:
266  *
267  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
268  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
269  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
270  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
271  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
272  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
273  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
274  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
275  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
276  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
277  */
278 
279 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
280 	((struct bpf_insn) {					\
281 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
282 		.dst_reg = DST,					\
283 		.src_reg = SRC,					\
284 		.off   = OFF,					\
285 		.imm   = OP })
286 
287 /* Legacy alias */
288 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
289 
290 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
291 
292 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
293 	((struct bpf_insn) {					\
294 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
295 		.dst_reg = DST,					\
296 		.src_reg = 0,					\
297 		.off   = OFF,					\
298 		.imm   = IMM })
299 
300 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
301 
302 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
303 	((struct bpf_insn) {					\
304 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
305 		.dst_reg = DST,					\
306 		.src_reg = SRC,					\
307 		.off   = OFF,					\
308 		.imm   = 0 })
309 
310 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
311 
312 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
313 	((struct bpf_insn) {					\
314 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
315 		.dst_reg = DST,					\
316 		.src_reg = 0,					\
317 		.off   = OFF,					\
318 		.imm   = IMM })
319 
320 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
321 
322 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
323 	((struct bpf_insn) {					\
324 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
325 		.dst_reg = DST,					\
326 		.src_reg = SRC,					\
327 		.off   = OFF,					\
328 		.imm   = 0 })
329 
330 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
331 
332 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
333 	((struct bpf_insn) {					\
334 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
335 		.dst_reg = DST,					\
336 		.src_reg = 0,					\
337 		.off   = OFF,					\
338 		.imm   = IMM })
339 
340 /* Unconditional jumps, goto pc + off16 */
341 
342 #define BPF_JMP_A(OFF)						\
343 	((struct bpf_insn) {					\
344 		.code  = BPF_JMP | BPF_JA,			\
345 		.dst_reg = 0,					\
346 		.src_reg = 0,					\
347 		.off   = OFF,					\
348 		.imm   = 0 })
349 
350 /* Relative call */
351 
352 #define BPF_CALL_REL(TGT)					\
353 	((struct bpf_insn) {					\
354 		.code  = BPF_JMP | BPF_CALL,			\
355 		.dst_reg = 0,					\
356 		.src_reg = BPF_PSEUDO_CALL,			\
357 		.off   = 0,					\
358 		.imm   = TGT })
359 
360 /* Function call */
361 
362 #define BPF_CAST_CALL(x)					\
363 		((u64 (*)(u64, u64, u64, u64, u64))(x))
364 
365 #define BPF_EMIT_CALL(FUNC)					\
366 	((struct bpf_insn) {					\
367 		.code  = BPF_JMP | BPF_CALL,			\
368 		.dst_reg = 0,					\
369 		.src_reg = 0,					\
370 		.off   = 0,					\
371 		.imm   = ((FUNC) - __bpf_call_base) })
372 
373 /* Raw code statement block */
374 
375 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
376 	((struct bpf_insn) {					\
377 		.code  = CODE,					\
378 		.dst_reg = DST,					\
379 		.src_reg = SRC,					\
380 		.off   = OFF,					\
381 		.imm   = IMM })
382 
383 /* Program exit */
384 
385 #define BPF_EXIT_INSN()						\
386 	((struct bpf_insn) {					\
387 		.code  = BPF_JMP | BPF_EXIT,			\
388 		.dst_reg = 0,					\
389 		.src_reg = 0,					\
390 		.off   = 0,					\
391 		.imm   = 0 })
392 
393 /* Internal classic blocks for direct assignment */
394 
395 #define __BPF_STMT(CODE, K)					\
396 	((struct sock_filter) BPF_STMT(CODE, K))
397 
398 #define __BPF_JUMP(CODE, K, JT, JF)				\
399 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
400 
401 #define bytes_to_bpf_size(bytes)				\
402 ({								\
403 	int bpf_size = -EINVAL;					\
404 								\
405 	if (bytes == sizeof(u8))				\
406 		bpf_size = BPF_B;				\
407 	else if (bytes == sizeof(u16))				\
408 		bpf_size = BPF_H;				\
409 	else if (bytes == sizeof(u32))				\
410 		bpf_size = BPF_W;				\
411 	else if (bytes == sizeof(u64))				\
412 		bpf_size = BPF_DW;				\
413 								\
414 	bpf_size;						\
415 })
416 
417 #define bpf_size_to_bytes(bpf_size)				\
418 ({								\
419 	int bytes = -EINVAL;					\
420 								\
421 	if (bpf_size == BPF_B)					\
422 		bytes = sizeof(u8);				\
423 	else if (bpf_size == BPF_H)				\
424 		bytes = sizeof(u16);				\
425 	else if (bpf_size == BPF_W)				\
426 		bytes = sizeof(u32);				\
427 	else if (bpf_size == BPF_DW)				\
428 		bytes = sizeof(u64);				\
429 								\
430 	bytes;							\
431 })
432 
433 #define BPF_SIZEOF(type)					\
434 	({							\
435 		const int __size = bytes_to_bpf_size(sizeof(type)); \
436 		BUILD_BUG_ON(__size < 0);			\
437 		__size;						\
438 	})
439 
440 #define BPF_FIELD_SIZEOF(type, field)				\
441 	({							\
442 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
443 		BUILD_BUG_ON(__size < 0);			\
444 		__size;						\
445 	})
446 
447 #define BPF_LDST_BYTES(insn)					\
448 	({							\
449 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
450 		WARN_ON(__size < 0);				\
451 		__size;						\
452 	})
453 
454 #define __BPF_MAP_0(m, v, ...) v
455 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
456 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
457 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
458 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
459 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
460 
461 #define __BPF_REG_0(...) __BPF_PAD(5)
462 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
463 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
464 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
465 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
466 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
467 
468 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
469 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
470 
471 #define __BPF_CAST(t, a)						       \
472 	(__force t)							       \
473 	(__force							       \
474 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
475 				      (unsigned long)0, (t)0))) a
476 #define __BPF_V void
477 #define __BPF_N
478 
479 #define __BPF_DECL_ARGS(t, a) t   a
480 #define __BPF_DECL_REGS(t, a) u64 a
481 
482 #define __BPF_PAD(n)							       \
483 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
484 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
485 
486 #define BPF_CALL_x(x, name, ...)					       \
487 	static __always_inline						       \
488 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
489 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
490 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
491 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
492 	{								       \
493 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
494 	}								       \
495 	static __always_inline						       \
496 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
497 
498 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
499 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
500 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
501 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
502 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
503 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
504 
505 #define bpf_ctx_range(TYPE, MEMBER)						\
506 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
507 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
508 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
509 #if BITS_PER_LONG == 64
510 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
511 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
512 #else
513 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
514 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
515 #endif /* BITS_PER_LONG == 64 */
516 
517 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
518 	({									\
519 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
520 		*(PTR_SIZE) = (SIZE);						\
521 		offsetof(TYPE, MEMBER);						\
522 	})
523 
524 /* A struct sock_filter is architecture independent. */
525 struct compat_sock_fprog {
526 	u16		len;
527 	compat_uptr_t	filter;	/* struct sock_filter * */
528 };
529 
530 struct sock_fprog_kern {
531 	u16			len;
532 	struct sock_filter	*filter;
533 };
534 
535 /* Some arches need doubleword alignment for their instructions and/or data */
536 #define BPF_IMAGE_ALIGNMENT 8
537 
538 struct bpf_binary_header {
539 	u32 pages;
540 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
541 };
542 
543 struct bpf_prog_stats {
544 	u64 cnt;
545 	u64 nsecs;
546 	u64 misses;
547 	struct u64_stats_sync syncp;
548 } __aligned(2 * sizeof(u64));
549 
550 struct bpf_prog {
551 	u16			pages;		/* Number of allocated pages */
552 	u16			jited:1,	/* Is our filter JIT'ed? */
553 				jit_requested:1,/* archs need to JIT the prog */
554 				gpl_compatible:1, /* Is filter GPL compatible? */
555 				cb_access:1,	/* Is control block accessed? */
556 				dst_needed:1,	/* Do we need dst entry? */
557 				blinded:1,	/* Was blinded */
558 				is_func:1,	/* program is a bpf function */
559 				kprobe_override:1, /* Do we override a kprobe? */
560 				has_callchain_buf:1, /* callchain buffer allocated? */
561 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
562 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
563 	enum bpf_prog_type	type;		/* Type of BPF program */
564 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
565 	u32			len;		/* Number of filter blocks */
566 	u32			jited_len;	/* Size of jited insns in bytes */
567 	u8			tag[BPF_TAG_SIZE];
568 	struct bpf_prog_stats __percpu *stats;
569 	int __percpu		*active;
570 	unsigned int		(*bpf_func)(const void *ctx,
571 					    const struct bpf_insn *insn);
572 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
573 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
574 	/* Instructions for interpreter */
575 	struct sock_filter	insns[0];
576 	struct bpf_insn		insnsi[];
577 };
578 
579 struct sk_filter {
580 	refcount_t	refcnt;
581 	struct rcu_head	rcu;
582 	struct bpf_prog	*prog;
583 };
584 
585 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
586 
587 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
588 	u32 __ret;							\
589 	cant_migrate();							\
590 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
591 		struct bpf_prog_stats *__stats;				\
592 		u64 __start = sched_clock();				\
593 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
594 		__stats = this_cpu_ptr(prog->stats);			\
595 		u64_stats_update_begin(&__stats->syncp);		\
596 		__stats->cnt++;						\
597 		__stats->nsecs += sched_clock() - __start;		\
598 		u64_stats_update_end(&__stats->syncp);			\
599 	} else {							\
600 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
601 	}								\
602 	__ret; })
603 
604 #define BPF_PROG_RUN(prog, ctx)						\
605 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
606 
607 /*
608  * Use in preemptible and therefore migratable context to make sure that
609  * the execution of the BPF program runs on one CPU.
610  *
611  * This uses migrate_disable/enable() explicitly to document that the
612  * invocation of a BPF program does not require reentrancy protection
613  * against a BPF program which is invoked from a preempting task.
614  *
615  * For non RT enabled kernels migrate_disable/enable() maps to
616  * preempt_disable/enable(), i.e. it disables also preemption.
617  */
618 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
619 					  const void *ctx)
620 {
621 	u32 ret;
622 
623 	migrate_disable();
624 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
625 	migrate_enable();
626 	return ret;
627 }
628 
629 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
630 
631 struct bpf_skb_data_end {
632 	struct qdisc_skb_cb qdisc_cb;
633 	void *data_meta;
634 	void *data_end;
635 };
636 
637 struct bpf_nh_params {
638 	u32 nh_family;
639 	union {
640 		u32 ipv4_nh;
641 		struct in6_addr ipv6_nh;
642 	};
643 };
644 
645 struct bpf_redirect_info {
646 	u32 flags;
647 	u32 tgt_index;
648 	void *tgt_value;
649 	struct bpf_map *map;
650 	u32 map_id;
651 	enum bpf_map_type map_type;
652 	u32 kern_flags;
653 	struct bpf_nh_params nh;
654 };
655 
656 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
657 
658 /* flags for bpf_redirect_info kern_flags */
659 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
660 
661 /* Compute the linear packet data range [data, data_end) which
662  * will be accessed by various program types (cls_bpf, act_bpf,
663  * lwt, ...). Subsystems allowing direct data access must (!)
664  * ensure that cb[] area can be written to when BPF program is
665  * invoked (otherwise cb[] save/restore is necessary).
666  */
667 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
668 {
669 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
670 
671 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
672 	cb->data_meta = skb->data - skb_metadata_len(skb);
673 	cb->data_end  = skb->data + skb_headlen(skb);
674 }
675 
676 /* Similar to bpf_compute_data_pointers(), except that save orginal
677  * data in cb->data and cb->meta_data for restore.
678  */
679 static inline void bpf_compute_and_save_data_end(
680 	struct sk_buff *skb, void **saved_data_end)
681 {
682 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
683 
684 	*saved_data_end = cb->data_end;
685 	cb->data_end  = skb->data + skb_headlen(skb);
686 }
687 
688 /* Restore data saved by bpf_compute_data_pointers(). */
689 static inline void bpf_restore_data_end(
690 	struct sk_buff *skb, void *saved_data_end)
691 {
692 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
693 
694 	cb->data_end = saved_data_end;
695 }
696 
697 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
698 {
699 	/* eBPF programs may read/write skb->cb[] area to transfer meta
700 	 * data between tail calls. Since this also needs to work with
701 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
702 	 *
703 	 * In some socket filter cases, the cb unfortunately needs to be
704 	 * saved/restored so that protocol specific skb->cb[] data won't
705 	 * be lost. In any case, due to unpriviledged eBPF programs
706 	 * attached to sockets, we need to clear the bpf_skb_cb() area
707 	 * to not leak previous contents to user space.
708 	 */
709 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
710 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
711 		     sizeof_field(struct qdisc_skb_cb, data));
712 
713 	return qdisc_skb_cb(skb)->data;
714 }
715 
716 /* Must be invoked with migration disabled */
717 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
718 					 struct sk_buff *skb)
719 {
720 	u8 *cb_data = bpf_skb_cb(skb);
721 	u8 cb_saved[BPF_SKB_CB_LEN];
722 	u32 res;
723 
724 	if (unlikely(prog->cb_access)) {
725 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
726 		memset(cb_data, 0, sizeof(cb_saved));
727 	}
728 
729 	res = BPF_PROG_RUN(prog, skb);
730 
731 	if (unlikely(prog->cb_access))
732 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
733 
734 	return res;
735 }
736 
737 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
738 				       struct sk_buff *skb)
739 {
740 	u32 res;
741 
742 	migrate_disable();
743 	res = __bpf_prog_run_save_cb(prog, skb);
744 	migrate_enable();
745 	return res;
746 }
747 
748 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
749 					struct sk_buff *skb)
750 {
751 	u8 *cb_data = bpf_skb_cb(skb);
752 	u32 res;
753 
754 	if (unlikely(prog->cb_access))
755 		memset(cb_data, 0, BPF_SKB_CB_LEN);
756 
757 	res = bpf_prog_run_pin_on_cpu(prog, skb);
758 	return res;
759 }
760 
761 DECLARE_BPF_DISPATCHER(xdp)
762 
763 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
764 					    struct xdp_buff *xdp)
765 {
766 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
767 	 * can be released while still running, or map elements could be
768 	 * freed early while still having concurrent users. XDP fastpath
769 	 * already takes rcu_read_lock() when fetching the program, so
770 	 * it's not necessary here anymore.
771 	 */
772 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
773 }
774 
775 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
776 
777 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
778 {
779 	return prog->len * sizeof(struct bpf_insn);
780 }
781 
782 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
783 {
784 	return round_up(bpf_prog_insn_size(prog) +
785 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
786 }
787 
788 static inline unsigned int bpf_prog_size(unsigned int proglen)
789 {
790 	return max(sizeof(struct bpf_prog),
791 		   offsetof(struct bpf_prog, insns[proglen]));
792 }
793 
794 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
795 {
796 	/* When classic BPF programs have been loaded and the arch
797 	 * does not have a classic BPF JIT (anymore), they have been
798 	 * converted via bpf_migrate_filter() to eBPF and thus always
799 	 * have an unspec program type.
800 	 */
801 	return prog->type == BPF_PROG_TYPE_UNSPEC;
802 }
803 
804 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
805 {
806 	const u32 size_machine = sizeof(unsigned long);
807 
808 	if (size > size_machine && size % size_machine == 0)
809 		size = size_machine;
810 
811 	return size;
812 }
813 
814 static inline bool
815 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
816 {
817 	return size <= size_default && (size & (size - 1)) == 0;
818 }
819 
820 static inline u8
821 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
822 {
823 	u8 access_off = off & (size_default - 1);
824 
825 #ifdef __LITTLE_ENDIAN
826 	return access_off;
827 #else
828 	return size_default - (access_off + size);
829 #endif
830 }
831 
832 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
833 	(size == sizeof(__u64) &&					\
834 	off >= offsetof(type, field) &&					\
835 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
836 	off % sizeof(__u64) == 0)
837 
838 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
839 
840 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
841 {
842 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
843 	if (!fp->jited) {
844 		set_vm_flush_reset_perms(fp);
845 		set_memory_ro((unsigned long)fp, fp->pages);
846 	}
847 #endif
848 }
849 
850 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
851 {
852 	set_vm_flush_reset_perms(hdr);
853 	set_memory_ro((unsigned long)hdr, hdr->pages);
854 	set_memory_x((unsigned long)hdr, hdr->pages);
855 }
856 
857 static inline struct bpf_binary_header *
858 bpf_jit_binary_hdr(const struct bpf_prog *fp)
859 {
860 	unsigned long real_start = (unsigned long)fp->bpf_func;
861 	unsigned long addr = real_start & PAGE_MASK;
862 
863 	return (void *)addr;
864 }
865 
866 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
867 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
868 {
869 	return sk_filter_trim_cap(sk, skb, 1);
870 }
871 
872 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
873 void bpf_prog_free(struct bpf_prog *fp);
874 
875 bool bpf_opcode_in_insntable(u8 code);
876 
877 void bpf_prog_free_linfo(struct bpf_prog *prog);
878 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
879 			       const u32 *insn_to_jit_off);
880 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
881 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
882 
883 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
884 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
885 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
886 				  gfp_t gfp_extra_flags);
887 void __bpf_prog_free(struct bpf_prog *fp);
888 
889 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
890 {
891 	__bpf_prog_free(fp);
892 }
893 
894 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
895 				       unsigned int flen);
896 
897 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
898 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
899 			      bpf_aux_classic_check_t trans, bool save_orig);
900 void bpf_prog_destroy(struct bpf_prog *fp);
901 
902 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
903 int sk_attach_bpf(u32 ufd, struct sock *sk);
904 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
905 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
906 void sk_reuseport_prog_free(struct bpf_prog *prog);
907 int sk_detach_filter(struct sock *sk);
908 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
909 		  unsigned int len);
910 
911 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
912 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
913 
914 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
915 #define __bpf_call_base_args \
916 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
917 	 (void *)__bpf_call_base)
918 
919 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
920 void bpf_jit_compile(struct bpf_prog *prog);
921 bool bpf_jit_needs_zext(void);
922 bool bpf_jit_supports_kfunc_call(void);
923 bool bpf_helper_changes_pkt_data(void *func);
924 
925 static inline bool bpf_dump_raw_ok(const struct cred *cred)
926 {
927 	/* Reconstruction of call-sites is dependent on kallsyms,
928 	 * thus make dump the same restriction.
929 	 */
930 	return kallsyms_show_value(cred);
931 }
932 
933 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
934 				       const struct bpf_insn *patch, u32 len);
935 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
936 
937 void bpf_clear_redirect_map(struct bpf_map *map);
938 
939 static inline bool xdp_return_frame_no_direct(void)
940 {
941 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
942 
943 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
944 }
945 
946 static inline void xdp_set_return_frame_no_direct(void)
947 {
948 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
949 
950 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
951 }
952 
953 static inline void xdp_clear_return_frame_no_direct(void)
954 {
955 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
956 
957 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
958 }
959 
960 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
961 				 unsigned int pktlen)
962 {
963 	unsigned int len;
964 
965 	if (unlikely(!(fwd->flags & IFF_UP)))
966 		return -ENETDOWN;
967 
968 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
969 	if (pktlen > len)
970 		return -EMSGSIZE;
971 
972 	return 0;
973 }
974 
975 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
976  * same cpu context. Further for best results no more than a single map
977  * for the do_redirect/do_flush pair should be used. This limitation is
978  * because we only track one map and force a flush when the map changes.
979  * This does not appear to be a real limitation for existing software.
980  */
981 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
982 			    struct xdp_buff *xdp, struct bpf_prog *prog);
983 int xdp_do_redirect(struct net_device *dev,
984 		    struct xdp_buff *xdp,
985 		    struct bpf_prog *prog);
986 void xdp_do_flush(void);
987 
988 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
989  * it is no longer only flushing maps. Keep this define for compatibility
990  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
991  */
992 #define xdp_do_flush_map xdp_do_flush
993 
994 void bpf_warn_invalid_xdp_action(u32 act);
995 
996 #ifdef CONFIG_INET
997 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
998 				  struct bpf_prog *prog, struct sk_buff *skb,
999 				  struct sock *migrating_sk,
1000 				  u32 hash);
1001 #else
1002 static inline struct sock *
1003 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1004 		     struct bpf_prog *prog, struct sk_buff *skb,
1005 		     struct sock *migrating_sk,
1006 		     u32 hash)
1007 {
1008 	return NULL;
1009 }
1010 #endif
1011 
1012 #ifdef CONFIG_BPF_JIT
1013 extern int bpf_jit_enable;
1014 extern int bpf_jit_harden;
1015 extern int bpf_jit_kallsyms;
1016 extern long bpf_jit_limit;
1017 
1018 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1019 
1020 struct bpf_binary_header *
1021 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1022 		     unsigned int alignment,
1023 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1024 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1025 u64 bpf_jit_alloc_exec_limit(void);
1026 void *bpf_jit_alloc_exec(unsigned long size);
1027 void bpf_jit_free_exec(void *addr);
1028 void bpf_jit_free(struct bpf_prog *fp);
1029 
1030 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1031 				struct bpf_jit_poke_descriptor *poke);
1032 
1033 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1034 			  const struct bpf_insn *insn, bool extra_pass,
1035 			  u64 *func_addr, bool *func_addr_fixed);
1036 
1037 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1038 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1039 
1040 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1041 				u32 pass, void *image)
1042 {
1043 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1044 	       proglen, pass, image, current->comm, task_pid_nr(current));
1045 
1046 	if (image)
1047 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1048 			       16, 1, image, proglen, false);
1049 }
1050 
1051 static inline bool bpf_jit_is_ebpf(void)
1052 {
1053 # ifdef CONFIG_HAVE_EBPF_JIT
1054 	return true;
1055 # else
1056 	return false;
1057 # endif
1058 }
1059 
1060 static inline bool ebpf_jit_enabled(void)
1061 {
1062 	return bpf_jit_enable && bpf_jit_is_ebpf();
1063 }
1064 
1065 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1066 {
1067 	return fp->jited && bpf_jit_is_ebpf();
1068 }
1069 
1070 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1071 {
1072 	/* These are the prerequisites, should someone ever have the
1073 	 * idea to call blinding outside of them, we make sure to
1074 	 * bail out.
1075 	 */
1076 	if (!bpf_jit_is_ebpf())
1077 		return false;
1078 	if (!prog->jit_requested)
1079 		return false;
1080 	if (!bpf_jit_harden)
1081 		return false;
1082 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1083 		return false;
1084 
1085 	return true;
1086 }
1087 
1088 static inline bool bpf_jit_kallsyms_enabled(void)
1089 {
1090 	/* There are a couple of corner cases where kallsyms should
1091 	 * not be enabled f.e. on hardening.
1092 	 */
1093 	if (bpf_jit_harden)
1094 		return false;
1095 	if (!bpf_jit_kallsyms)
1096 		return false;
1097 	if (bpf_jit_kallsyms == 1)
1098 		return true;
1099 
1100 	return false;
1101 }
1102 
1103 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1104 				 unsigned long *off, char *sym);
1105 bool is_bpf_text_address(unsigned long addr);
1106 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1107 		    char *sym);
1108 
1109 static inline const char *
1110 bpf_address_lookup(unsigned long addr, unsigned long *size,
1111 		   unsigned long *off, char **modname, char *sym)
1112 {
1113 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1114 
1115 	if (ret && modname)
1116 		*modname = NULL;
1117 	return ret;
1118 }
1119 
1120 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1121 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1122 
1123 #else /* CONFIG_BPF_JIT */
1124 
1125 static inline bool ebpf_jit_enabled(void)
1126 {
1127 	return false;
1128 }
1129 
1130 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1131 {
1132 	return false;
1133 }
1134 
1135 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1136 {
1137 	return false;
1138 }
1139 
1140 static inline int
1141 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1142 			    struct bpf_jit_poke_descriptor *poke)
1143 {
1144 	return -ENOTSUPP;
1145 }
1146 
1147 static inline void bpf_jit_free(struct bpf_prog *fp)
1148 {
1149 	bpf_prog_unlock_free(fp);
1150 }
1151 
1152 static inline bool bpf_jit_kallsyms_enabled(void)
1153 {
1154 	return false;
1155 }
1156 
1157 static inline const char *
1158 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1159 		     unsigned long *off, char *sym)
1160 {
1161 	return NULL;
1162 }
1163 
1164 static inline bool is_bpf_text_address(unsigned long addr)
1165 {
1166 	return false;
1167 }
1168 
1169 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1170 				  char *type, char *sym)
1171 {
1172 	return -ERANGE;
1173 }
1174 
1175 static inline const char *
1176 bpf_address_lookup(unsigned long addr, unsigned long *size,
1177 		   unsigned long *off, char **modname, char *sym)
1178 {
1179 	return NULL;
1180 }
1181 
1182 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1183 {
1184 }
1185 
1186 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1187 {
1188 }
1189 
1190 #endif /* CONFIG_BPF_JIT */
1191 
1192 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1193 
1194 #define BPF_ANC		BIT(15)
1195 
1196 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1197 {
1198 	switch (first->code) {
1199 	case BPF_RET | BPF_K:
1200 	case BPF_LD | BPF_W | BPF_LEN:
1201 		return false;
1202 
1203 	case BPF_LD | BPF_W | BPF_ABS:
1204 	case BPF_LD | BPF_H | BPF_ABS:
1205 	case BPF_LD | BPF_B | BPF_ABS:
1206 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1207 			return true;
1208 		return false;
1209 
1210 	default:
1211 		return true;
1212 	}
1213 }
1214 
1215 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1216 {
1217 	BUG_ON(ftest->code & BPF_ANC);
1218 
1219 	switch (ftest->code) {
1220 	case BPF_LD | BPF_W | BPF_ABS:
1221 	case BPF_LD | BPF_H | BPF_ABS:
1222 	case BPF_LD | BPF_B | BPF_ABS:
1223 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1224 				return BPF_ANC | SKF_AD_##CODE
1225 		switch (ftest->k) {
1226 		BPF_ANCILLARY(PROTOCOL);
1227 		BPF_ANCILLARY(PKTTYPE);
1228 		BPF_ANCILLARY(IFINDEX);
1229 		BPF_ANCILLARY(NLATTR);
1230 		BPF_ANCILLARY(NLATTR_NEST);
1231 		BPF_ANCILLARY(MARK);
1232 		BPF_ANCILLARY(QUEUE);
1233 		BPF_ANCILLARY(HATYPE);
1234 		BPF_ANCILLARY(RXHASH);
1235 		BPF_ANCILLARY(CPU);
1236 		BPF_ANCILLARY(ALU_XOR_X);
1237 		BPF_ANCILLARY(VLAN_TAG);
1238 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1239 		BPF_ANCILLARY(PAY_OFFSET);
1240 		BPF_ANCILLARY(RANDOM);
1241 		BPF_ANCILLARY(VLAN_TPID);
1242 		}
1243 		fallthrough;
1244 	default:
1245 		return ftest->code;
1246 	}
1247 }
1248 
1249 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1250 					   int k, unsigned int size);
1251 
1252 static inline int bpf_tell_extensions(void)
1253 {
1254 	return SKF_AD_MAX;
1255 }
1256 
1257 struct bpf_sock_addr_kern {
1258 	struct sock *sk;
1259 	struct sockaddr *uaddr;
1260 	/* Temporary "register" to make indirect stores to nested structures
1261 	 * defined above. We need three registers to make such a store, but
1262 	 * only two (src and dst) are available at convert_ctx_access time
1263 	 */
1264 	u64 tmp_reg;
1265 	void *t_ctx;	/* Attach type specific context. */
1266 };
1267 
1268 struct bpf_sock_ops_kern {
1269 	struct	sock *sk;
1270 	union {
1271 		u32 args[4];
1272 		u32 reply;
1273 		u32 replylong[4];
1274 	};
1275 	struct sk_buff	*syn_skb;
1276 	struct sk_buff	*skb;
1277 	void	*skb_data_end;
1278 	u8	op;
1279 	u8	is_fullsock;
1280 	u8	remaining_opt_len;
1281 	u64	temp;			/* temp and everything after is not
1282 					 * initialized to 0 before calling
1283 					 * the BPF program. New fields that
1284 					 * should be initialized to 0 should
1285 					 * be inserted before temp.
1286 					 * temp is scratch storage used by
1287 					 * sock_ops_convert_ctx_access
1288 					 * as temporary storage of a register.
1289 					 */
1290 };
1291 
1292 struct bpf_sysctl_kern {
1293 	struct ctl_table_header *head;
1294 	struct ctl_table *table;
1295 	void *cur_val;
1296 	size_t cur_len;
1297 	void *new_val;
1298 	size_t new_len;
1299 	int new_updated;
1300 	int write;
1301 	loff_t *ppos;
1302 	/* Temporary "register" for indirect stores to ppos. */
1303 	u64 tmp_reg;
1304 };
1305 
1306 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1307 struct bpf_sockopt_buf {
1308 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1309 };
1310 
1311 struct bpf_sockopt_kern {
1312 	struct sock	*sk;
1313 	u8		*optval;
1314 	u8		*optval_end;
1315 	s32		level;
1316 	s32		optname;
1317 	s32		optlen;
1318 	s32		retval;
1319 };
1320 
1321 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1322 
1323 struct bpf_sk_lookup_kern {
1324 	u16		family;
1325 	u16		protocol;
1326 	__be16		sport;
1327 	u16		dport;
1328 	struct {
1329 		__be32 saddr;
1330 		__be32 daddr;
1331 	} v4;
1332 	struct {
1333 		const struct in6_addr *saddr;
1334 		const struct in6_addr *daddr;
1335 	} v6;
1336 	struct sock	*selected_sk;
1337 	bool		no_reuseport;
1338 };
1339 
1340 extern struct static_key_false bpf_sk_lookup_enabled;
1341 
1342 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1343  *
1344  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1345  * SK_DROP. Their meaning is as follows:
1346  *
1347  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1348  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1349  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1350  *
1351  * This macro aggregates return values and selected sockets from
1352  * multiple BPF programs according to following rules in order:
1353  *
1354  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1355  *     macro result is SK_PASS and last ctx.selected_sk is used.
1356  *  2. If any program returned SK_DROP return value,
1357  *     macro result is SK_DROP.
1358  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1359  *
1360  * Caller must ensure that the prog array is non-NULL, and that the
1361  * array as well as the programs it contains remain valid.
1362  */
1363 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1364 	({								\
1365 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1366 		struct bpf_prog_array_item *_item;			\
1367 		struct sock *_selected_sk = NULL;			\
1368 		bool _no_reuseport = false;				\
1369 		struct bpf_prog *_prog;					\
1370 		bool _all_pass = true;					\
1371 		u32 _ret;						\
1372 									\
1373 		migrate_disable();					\
1374 		_item = &(array)->items[0];				\
1375 		while ((_prog = READ_ONCE(_item->prog))) {		\
1376 			/* restore most recent selection */		\
1377 			_ctx->selected_sk = _selected_sk;		\
1378 			_ctx->no_reuseport = _no_reuseport;		\
1379 									\
1380 			_ret = func(_prog, _ctx);			\
1381 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1382 				/* remember last non-NULL socket */	\
1383 				_selected_sk = _ctx->selected_sk;	\
1384 				_no_reuseport = _ctx->no_reuseport;	\
1385 			} else if (_ret == SK_DROP && _all_pass) {	\
1386 				_all_pass = false;			\
1387 			}						\
1388 			_item++;					\
1389 		}							\
1390 		_ctx->selected_sk = _selected_sk;			\
1391 		_ctx->no_reuseport = _no_reuseport;			\
1392 		migrate_enable();					\
1393 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1394 	 })
1395 
1396 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1397 					const __be32 saddr, const __be16 sport,
1398 					const __be32 daddr, const u16 dport,
1399 					struct sock **psk)
1400 {
1401 	struct bpf_prog_array *run_array;
1402 	struct sock *selected_sk = NULL;
1403 	bool no_reuseport = false;
1404 
1405 	rcu_read_lock();
1406 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1407 	if (run_array) {
1408 		struct bpf_sk_lookup_kern ctx = {
1409 			.family		= AF_INET,
1410 			.protocol	= protocol,
1411 			.v4.saddr	= saddr,
1412 			.v4.daddr	= daddr,
1413 			.sport		= sport,
1414 			.dport		= dport,
1415 		};
1416 		u32 act;
1417 
1418 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1419 		if (act == SK_PASS) {
1420 			selected_sk = ctx.selected_sk;
1421 			no_reuseport = ctx.no_reuseport;
1422 		} else {
1423 			selected_sk = ERR_PTR(-ECONNREFUSED);
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 	*psk = selected_sk;
1428 	return no_reuseport;
1429 }
1430 
1431 #if IS_ENABLED(CONFIG_IPV6)
1432 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1433 					const struct in6_addr *saddr,
1434 					const __be16 sport,
1435 					const struct in6_addr *daddr,
1436 					const u16 dport,
1437 					struct sock **psk)
1438 {
1439 	struct bpf_prog_array *run_array;
1440 	struct sock *selected_sk = NULL;
1441 	bool no_reuseport = false;
1442 
1443 	rcu_read_lock();
1444 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1445 	if (run_array) {
1446 		struct bpf_sk_lookup_kern ctx = {
1447 			.family		= AF_INET6,
1448 			.protocol	= protocol,
1449 			.v6.saddr	= saddr,
1450 			.v6.daddr	= daddr,
1451 			.sport		= sport,
1452 			.dport		= dport,
1453 		};
1454 		u32 act;
1455 
1456 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1457 		if (act == SK_PASS) {
1458 			selected_sk = ctx.selected_sk;
1459 			no_reuseport = ctx.no_reuseport;
1460 		} else {
1461 			selected_sk = ERR_PTR(-ECONNREFUSED);
1462 		}
1463 	}
1464 	rcu_read_unlock();
1465 	*psk = selected_sk;
1466 	return no_reuseport;
1467 }
1468 #endif /* IS_ENABLED(CONFIG_IPV6) */
1469 
1470 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1471 						  u64 flags, const u64 flag_mask,
1472 						  void *lookup_elem(struct bpf_map *map, u32 key))
1473 {
1474 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1475 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1476 
1477 	/* Lower bits of the flags are used as return code on lookup failure */
1478 	if (unlikely(flags & ~(action_mask | flag_mask)))
1479 		return XDP_ABORTED;
1480 
1481 	ri->tgt_value = lookup_elem(map, ifindex);
1482 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1483 		/* If the lookup fails we want to clear out the state in the
1484 		 * redirect_info struct completely, so that if an eBPF program
1485 		 * performs multiple lookups, the last one always takes
1486 		 * precedence.
1487 		 */
1488 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1489 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1490 		return flags & action_mask;
1491 	}
1492 
1493 	ri->tgt_index = ifindex;
1494 	ri->map_id = map->id;
1495 	ri->map_type = map->map_type;
1496 
1497 	if (flags & BPF_F_BROADCAST) {
1498 		WRITE_ONCE(ri->map, map);
1499 		ri->flags = flags;
1500 	} else {
1501 		WRITE_ONCE(ri->map, NULL);
1502 		ri->flags = 0;
1503 	}
1504 
1505 	return XDP_REDIRECT;
1506 }
1507 
1508 #endif /* __LINUX_FILTER_H__ */
1509