xref: /linux-6.15/include/linux/filter.h (revision c7db6ffb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 
23 #include <net/sch_generic.h>
24 
25 #include <uapi/linux/filter.h>
26 #include <uapi/linux/bpf.h>
27 
28 struct sk_buff;
29 struct sock;
30 struct seccomp_data;
31 struct bpf_prog_aux;
32 struct xdp_rxq_info;
33 struct xdp_buff;
34 
35 /* ArgX, context and stack frame pointer register positions. Note,
36  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
37  * calls in BPF_CALL instruction.
38  */
39 #define BPF_REG_ARG1	BPF_REG_1
40 #define BPF_REG_ARG2	BPF_REG_2
41 #define BPF_REG_ARG3	BPF_REG_3
42 #define BPF_REG_ARG4	BPF_REG_4
43 #define BPF_REG_ARG5	BPF_REG_5
44 #define BPF_REG_CTX	BPF_REG_6
45 #define BPF_REG_FP	BPF_REG_10
46 
47 /* Additional register mappings for converted user programs. */
48 #define BPF_REG_A	BPF_REG_0
49 #define BPF_REG_X	BPF_REG_7
50 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
51 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
52 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
53 
54 /* Kernel hidden auxiliary/helper register for hardening step.
55  * Only used by eBPF JITs. It's nothing more than a temporary
56  * register that JITs use internally, only that here it's part
57  * of eBPF instructions that have been rewritten for blinding
58  * constants. See JIT pre-step in bpf_jit_blind_constants().
59  */
60 #define BPF_REG_AX		MAX_BPF_REG
61 #define MAX_BPF_JIT_REG		(MAX_BPF_REG + 1)
62 
63 /* unused opcode to mark special call to bpf_tail_call() helper */
64 #define BPF_TAIL_CALL	0xf0
65 
66 /* unused opcode to mark call to interpreter with arguments */
67 #define BPF_CALL_ARGS	0xe0
68 
69 /* As per nm, we expose JITed images as text (code) section for
70  * kallsyms. That way, tools like perf can find it to match
71  * addresses.
72  */
73 #define BPF_SYM_ELF_TYPE	't'
74 
75 /* BPF program can access up to 512 bytes of stack space. */
76 #define MAX_BPF_STACK	512
77 
78 /* Helper macros for filter block array initializers. */
79 
80 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
81 
82 #define BPF_ALU64_REG(OP, DST, SRC)				\
83 	((struct bpf_insn) {					\
84 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
85 		.dst_reg = DST,					\
86 		.src_reg = SRC,					\
87 		.off   = 0,					\
88 		.imm   = 0 })
89 
90 #define BPF_ALU32_REG(OP, DST, SRC)				\
91 	((struct bpf_insn) {					\
92 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
93 		.dst_reg = DST,					\
94 		.src_reg = SRC,					\
95 		.off   = 0,					\
96 		.imm   = 0 })
97 
98 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
99 
100 #define BPF_ALU64_IMM(OP, DST, IMM)				\
101 	((struct bpf_insn) {					\
102 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
103 		.dst_reg = DST,					\
104 		.src_reg = 0,					\
105 		.off   = 0,					\
106 		.imm   = IMM })
107 
108 #define BPF_ALU32_IMM(OP, DST, IMM)				\
109 	((struct bpf_insn) {					\
110 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
111 		.dst_reg = DST,					\
112 		.src_reg = 0,					\
113 		.off   = 0,					\
114 		.imm   = IMM })
115 
116 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
117 
118 #define BPF_ENDIAN(TYPE, DST, LEN)				\
119 	((struct bpf_insn) {					\
120 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
121 		.dst_reg = DST,					\
122 		.src_reg = 0,					\
123 		.off   = 0,					\
124 		.imm   = LEN })
125 
126 /* Short form of mov, dst_reg = src_reg */
127 
128 #define BPF_MOV64_REG(DST, SRC)					\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
131 		.dst_reg = DST,					\
132 		.src_reg = SRC,					\
133 		.off   = 0,					\
134 		.imm   = 0 })
135 
136 #define BPF_MOV32_REG(DST, SRC)					\
137 	((struct bpf_insn) {					\
138 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
139 		.dst_reg = DST,					\
140 		.src_reg = SRC,					\
141 		.off   = 0,					\
142 		.imm   = 0 })
143 
144 /* Short form of mov, dst_reg = imm32 */
145 
146 #define BPF_MOV64_IMM(DST, IMM)					\
147 	((struct bpf_insn) {					\
148 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
149 		.dst_reg = DST,					\
150 		.src_reg = 0,					\
151 		.off   = 0,					\
152 		.imm   = IMM })
153 
154 #define BPF_MOV32_IMM(DST, IMM)					\
155 	((struct bpf_insn) {					\
156 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
157 		.dst_reg = DST,					\
158 		.src_reg = 0,					\
159 		.off   = 0,					\
160 		.imm   = IMM })
161 
162 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
163 #define BPF_LD_IMM64(DST, IMM)					\
164 	BPF_LD_IMM64_RAW(DST, 0, IMM)
165 
166 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
167 	((struct bpf_insn) {					\
168 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
169 		.dst_reg = DST,					\
170 		.src_reg = SRC,					\
171 		.off   = 0,					\
172 		.imm   = (__u32) (IMM) }),			\
173 	((struct bpf_insn) {					\
174 		.code  = 0, /* zero is reserved opcode */	\
175 		.dst_reg = 0,					\
176 		.src_reg = 0,					\
177 		.off   = 0,					\
178 		.imm   = ((__u64) (IMM)) >> 32 })
179 
180 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
181 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
182 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
183 
184 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
185 
186 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
187 	((struct bpf_insn) {					\
188 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
189 		.dst_reg = DST,					\
190 		.src_reg = SRC,					\
191 		.off   = 0,					\
192 		.imm   = IMM })
193 
194 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
195 	((struct bpf_insn) {					\
196 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
197 		.dst_reg = DST,					\
198 		.src_reg = SRC,					\
199 		.off   = 0,					\
200 		.imm   = IMM })
201 
202 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
203 
204 #define BPF_LD_ABS(SIZE, IMM)					\
205 	((struct bpf_insn) {					\
206 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
207 		.dst_reg = 0,					\
208 		.src_reg = 0,					\
209 		.off   = 0,					\
210 		.imm   = IMM })
211 
212 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
213 
214 #define BPF_LD_IND(SIZE, SRC, IMM)				\
215 	((struct bpf_insn) {					\
216 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
217 		.dst_reg = 0,					\
218 		.src_reg = SRC,					\
219 		.off   = 0,					\
220 		.imm   = IMM })
221 
222 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
223 
224 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
225 	((struct bpf_insn) {					\
226 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
227 		.dst_reg = DST,					\
228 		.src_reg = SRC,					\
229 		.off   = OFF,					\
230 		.imm   = 0 })
231 
232 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
233 
234 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
235 	((struct bpf_insn) {					\
236 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
237 		.dst_reg = DST,					\
238 		.src_reg = SRC,					\
239 		.off   = OFF,					\
240 		.imm   = 0 })
241 
242 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
243 
244 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
245 	((struct bpf_insn) {					\
246 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
247 		.dst_reg = DST,					\
248 		.src_reg = SRC,					\
249 		.off   = OFF,					\
250 		.imm   = 0 })
251 
252 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
253 
254 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
255 	((struct bpf_insn) {					\
256 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
257 		.dst_reg = DST,					\
258 		.src_reg = 0,					\
259 		.off   = OFF,					\
260 		.imm   = IMM })
261 
262 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
263 
264 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
265 	((struct bpf_insn) {					\
266 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
267 		.dst_reg = DST,					\
268 		.src_reg = SRC,					\
269 		.off   = OFF,					\
270 		.imm   = 0 })
271 
272 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
273 
274 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
275 	((struct bpf_insn) {					\
276 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
277 		.dst_reg = DST,					\
278 		.src_reg = 0,					\
279 		.off   = OFF,					\
280 		.imm   = IMM })
281 
282 /* Unconditional jumps, goto pc + off16 */
283 
284 #define BPF_JMP_A(OFF)						\
285 	((struct bpf_insn) {					\
286 		.code  = BPF_JMP | BPF_JA,			\
287 		.dst_reg = 0,					\
288 		.src_reg = 0,					\
289 		.off   = OFF,					\
290 		.imm   = 0 })
291 
292 /* Relative call */
293 
294 #define BPF_CALL_REL(TGT)					\
295 	((struct bpf_insn) {					\
296 		.code  = BPF_JMP | BPF_CALL,			\
297 		.dst_reg = 0,					\
298 		.src_reg = BPF_PSEUDO_CALL,			\
299 		.off   = 0,					\
300 		.imm   = TGT })
301 
302 /* Function call */
303 
304 #define BPF_CAST_CALL(x)					\
305 		((u64 (*)(u64, u64, u64, u64, u64))(x))
306 
307 #define BPF_EMIT_CALL(FUNC)					\
308 	((struct bpf_insn) {					\
309 		.code  = BPF_JMP | BPF_CALL,			\
310 		.dst_reg = 0,					\
311 		.src_reg = 0,					\
312 		.off   = 0,					\
313 		.imm   = ((FUNC) - __bpf_call_base) })
314 
315 /* Raw code statement block */
316 
317 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
318 	((struct bpf_insn) {					\
319 		.code  = CODE,					\
320 		.dst_reg = DST,					\
321 		.src_reg = SRC,					\
322 		.off   = OFF,					\
323 		.imm   = IMM })
324 
325 /* Program exit */
326 
327 #define BPF_EXIT_INSN()						\
328 	((struct bpf_insn) {					\
329 		.code  = BPF_JMP | BPF_EXIT,			\
330 		.dst_reg = 0,					\
331 		.src_reg = 0,					\
332 		.off   = 0,					\
333 		.imm   = 0 })
334 
335 /* Internal classic blocks for direct assignment */
336 
337 #define __BPF_STMT(CODE, K)					\
338 	((struct sock_filter) BPF_STMT(CODE, K))
339 
340 #define __BPF_JUMP(CODE, K, JT, JF)				\
341 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
342 
343 #define bytes_to_bpf_size(bytes)				\
344 ({								\
345 	int bpf_size = -EINVAL;					\
346 								\
347 	if (bytes == sizeof(u8))				\
348 		bpf_size = BPF_B;				\
349 	else if (bytes == sizeof(u16))				\
350 		bpf_size = BPF_H;				\
351 	else if (bytes == sizeof(u32))				\
352 		bpf_size = BPF_W;				\
353 	else if (bytes == sizeof(u64))				\
354 		bpf_size = BPF_DW;				\
355 								\
356 	bpf_size;						\
357 })
358 
359 #define bpf_size_to_bytes(bpf_size)				\
360 ({								\
361 	int bytes = -EINVAL;					\
362 								\
363 	if (bpf_size == BPF_B)					\
364 		bytes = sizeof(u8);				\
365 	else if (bpf_size == BPF_H)				\
366 		bytes = sizeof(u16);				\
367 	else if (bpf_size == BPF_W)				\
368 		bytes = sizeof(u32);				\
369 	else if (bpf_size == BPF_DW)				\
370 		bytes = sizeof(u64);				\
371 								\
372 	bytes;							\
373 })
374 
375 #define BPF_SIZEOF(type)					\
376 	({							\
377 		const int __size = bytes_to_bpf_size(sizeof(type)); \
378 		BUILD_BUG_ON(__size < 0);			\
379 		__size;						\
380 	})
381 
382 #define BPF_FIELD_SIZEOF(type, field)				\
383 	({							\
384 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
385 		BUILD_BUG_ON(__size < 0);			\
386 		__size;						\
387 	})
388 
389 #define BPF_LDST_BYTES(insn)					\
390 	({							\
391 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
392 		WARN_ON(__size < 0);				\
393 		__size;						\
394 	})
395 
396 #define __BPF_MAP_0(m, v, ...) v
397 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
398 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
399 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
400 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
401 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
402 
403 #define __BPF_REG_0(...) __BPF_PAD(5)
404 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
405 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
406 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
407 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
408 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
409 
410 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
411 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
412 
413 #define __BPF_CAST(t, a)						       \
414 	(__force t)							       \
415 	(__force							       \
416 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
417 				      (unsigned long)0, (t)0))) a
418 #define __BPF_V void
419 #define __BPF_N
420 
421 #define __BPF_DECL_ARGS(t, a) t   a
422 #define __BPF_DECL_REGS(t, a) u64 a
423 
424 #define __BPF_PAD(n)							       \
425 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
426 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
427 
428 #define BPF_CALL_x(x, name, ...)					       \
429 	static __always_inline						       \
430 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
431 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
432 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
433 	{								       \
434 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
435 	}								       \
436 	static __always_inline						       \
437 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
438 
439 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
440 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
441 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
442 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
443 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
444 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
445 
446 #define bpf_ctx_range(TYPE, MEMBER)						\
447 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
448 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
449 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
450 
451 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
452 	({									\
453 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
454 		*(PTR_SIZE) = (SIZE);						\
455 		offsetof(TYPE, MEMBER);						\
456 	})
457 
458 #ifdef CONFIG_COMPAT
459 /* A struct sock_filter is architecture independent. */
460 struct compat_sock_fprog {
461 	u16		len;
462 	compat_uptr_t	filter;	/* struct sock_filter * */
463 };
464 #endif
465 
466 struct sock_fprog_kern {
467 	u16			len;
468 	struct sock_filter	*filter;
469 };
470 
471 struct bpf_binary_header {
472 	unsigned int pages;
473 	u8 image[];
474 };
475 
476 struct bpf_prog {
477 	u16			pages;		/* Number of allocated pages */
478 	u16			jited:1,	/* Is our filter JIT'ed? */
479 				jit_requested:1,/* archs need to JIT the prog */
480 				locked:1,	/* Program image locked? */
481 				gpl_compatible:1, /* Is filter GPL compatible? */
482 				cb_access:1,	/* Is control block accessed? */
483 				dst_needed:1,	/* Do we need dst entry? */
484 				blinded:1,	/* Was blinded */
485 				is_func:1,	/* program is a bpf function */
486 				kprobe_override:1, /* Do we override a kprobe? */
487 				has_callchain_buf:1; /* callchain buffer allocated? */
488 	enum bpf_prog_type	type;		/* Type of BPF program */
489 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
490 	u32			len;		/* Number of filter blocks */
491 	u32			jited_len;	/* Size of jited insns in bytes */
492 	u8			tag[BPF_TAG_SIZE];
493 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
494 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
495 	unsigned int		(*bpf_func)(const void *ctx,
496 					    const struct bpf_insn *insn);
497 	/* Instructions for interpreter */
498 	union {
499 		struct sock_filter	insns[0];
500 		struct bpf_insn		insnsi[0];
501 	};
502 };
503 
504 struct sk_filter {
505 	refcount_t	refcnt;
506 	struct rcu_head	rcu;
507 	struct bpf_prog	*prog;
508 };
509 
510 #define BPF_PROG_RUN(filter, ctx)  (*(filter)->bpf_func)(ctx, (filter)->insnsi)
511 
512 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
513 
514 struct bpf_skb_data_end {
515 	struct qdisc_skb_cb qdisc_cb;
516 	void *data_meta;
517 	void *data_end;
518 };
519 
520 struct sk_msg_buff {
521 	void *data;
522 	void *data_end;
523 	__u32 apply_bytes;
524 	__u32 cork_bytes;
525 	int sg_copybreak;
526 	int sg_start;
527 	int sg_curr;
528 	int sg_end;
529 	struct scatterlist sg_data[MAX_SKB_FRAGS];
530 	bool sg_copy[MAX_SKB_FRAGS];
531 	__u32 flags;
532 	struct sock *sk_redir;
533 	struct sock *sk;
534 	struct sk_buff *skb;
535 	struct list_head list;
536 };
537 
538 /* Compute the linear packet data range [data, data_end) which
539  * will be accessed by various program types (cls_bpf, act_bpf,
540  * lwt, ...). Subsystems allowing direct data access must (!)
541  * ensure that cb[] area can be written to when BPF program is
542  * invoked (otherwise cb[] save/restore is necessary).
543  */
544 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
545 {
546 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
547 
548 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
549 	cb->data_meta = skb->data - skb_metadata_len(skb);
550 	cb->data_end  = skb->data + skb_headlen(skb);
551 }
552 
553 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
554 {
555 	/* eBPF programs may read/write skb->cb[] area to transfer meta
556 	 * data between tail calls. Since this also needs to work with
557 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
558 	 *
559 	 * In some socket filter cases, the cb unfortunately needs to be
560 	 * saved/restored so that protocol specific skb->cb[] data won't
561 	 * be lost. In any case, due to unpriviledged eBPF programs
562 	 * attached to sockets, we need to clear the bpf_skb_cb() area
563 	 * to not leak previous contents to user space.
564 	 */
565 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
566 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
567 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
568 
569 	return qdisc_skb_cb(skb)->data;
570 }
571 
572 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
573 				       struct sk_buff *skb)
574 {
575 	u8 *cb_data = bpf_skb_cb(skb);
576 	u8 cb_saved[BPF_SKB_CB_LEN];
577 	u32 res;
578 
579 	if (unlikely(prog->cb_access)) {
580 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
581 		memset(cb_data, 0, sizeof(cb_saved));
582 	}
583 
584 	res = BPF_PROG_RUN(prog, skb);
585 
586 	if (unlikely(prog->cb_access))
587 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
588 
589 	return res;
590 }
591 
592 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
593 					struct sk_buff *skb)
594 {
595 	u8 *cb_data = bpf_skb_cb(skb);
596 
597 	if (unlikely(prog->cb_access))
598 		memset(cb_data, 0, BPF_SKB_CB_LEN);
599 
600 	return BPF_PROG_RUN(prog, skb);
601 }
602 
603 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
604 					    struct xdp_buff *xdp)
605 {
606 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
607 	 * can be released while still running, or map elements could be
608 	 * freed early while still having concurrent users. XDP fastpath
609 	 * already takes rcu_read_lock() when fetching the program, so
610 	 * it's not necessary here anymore.
611 	 */
612 	return BPF_PROG_RUN(prog, xdp);
613 }
614 
615 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
616 {
617 	return prog->len * sizeof(struct bpf_insn);
618 }
619 
620 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
621 {
622 	return round_up(bpf_prog_insn_size(prog) +
623 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
624 }
625 
626 static inline unsigned int bpf_prog_size(unsigned int proglen)
627 {
628 	return max(sizeof(struct bpf_prog),
629 		   offsetof(struct bpf_prog, insns[proglen]));
630 }
631 
632 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
633 {
634 	/* When classic BPF programs have been loaded and the arch
635 	 * does not have a classic BPF JIT (anymore), they have been
636 	 * converted via bpf_migrate_filter() to eBPF and thus always
637 	 * have an unspec program type.
638 	 */
639 	return prog->type == BPF_PROG_TYPE_UNSPEC;
640 }
641 
642 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
643 {
644 	const u32 size_machine = sizeof(unsigned long);
645 
646 	if (size > size_machine && size % size_machine == 0)
647 		size = size_machine;
648 
649 	return size;
650 }
651 
652 static inline bool bpf_ctx_narrow_align_ok(u32 off, u32 size_access,
653 					   u32 size_default)
654 {
655 	size_default = bpf_ctx_off_adjust_machine(size_default);
656 	size_access  = bpf_ctx_off_adjust_machine(size_access);
657 
658 #ifdef __LITTLE_ENDIAN
659 	return (off & (size_default - 1)) == 0;
660 #else
661 	return (off & (size_default - 1)) + size_access == size_default;
662 #endif
663 }
664 
665 static inline bool
666 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
667 {
668 	return bpf_ctx_narrow_align_ok(off, size, size_default) &&
669 	       size <= size_default && (size & (size - 1)) == 0;
670 }
671 
672 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
673 
674 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
675 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
676 {
677 	fp->locked = 1;
678 	WARN_ON_ONCE(set_memory_ro((unsigned long)fp, fp->pages));
679 }
680 
681 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
682 {
683 	if (fp->locked) {
684 		WARN_ON_ONCE(set_memory_rw((unsigned long)fp, fp->pages));
685 		/* In case set_memory_rw() fails, we want to be the first
686 		 * to crash here instead of some random place later on.
687 		 */
688 		fp->locked = 0;
689 	}
690 }
691 
692 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
693 {
694 	WARN_ON_ONCE(set_memory_ro((unsigned long)hdr, hdr->pages));
695 }
696 
697 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
698 {
699 	WARN_ON_ONCE(set_memory_rw((unsigned long)hdr, hdr->pages));
700 }
701 #else
702 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
703 {
704 }
705 
706 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
707 {
708 }
709 
710 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
711 {
712 }
713 
714 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
715 {
716 }
717 #endif /* CONFIG_ARCH_HAS_SET_MEMORY */
718 
719 static inline struct bpf_binary_header *
720 bpf_jit_binary_hdr(const struct bpf_prog *fp)
721 {
722 	unsigned long real_start = (unsigned long)fp->bpf_func;
723 	unsigned long addr = real_start & PAGE_MASK;
724 
725 	return (void *)addr;
726 }
727 
728 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
729 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
730 {
731 	return sk_filter_trim_cap(sk, skb, 1);
732 }
733 
734 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
735 void bpf_prog_free(struct bpf_prog *fp);
736 
737 bool bpf_opcode_in_insntable(u8 code);
738 
739 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
740 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
741 				  gfp_t gfp_extra_flags);
742 void __bpf_prog_free(struct bpf_prog *fp);
743 
744 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
745 {
746 	bpf_prog_unlock_ro(fp);
747 	__bpf_prog_free(fp);
748 }
749 
750 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
751 				       unsigned int flen);
752 
753 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
754 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
755 			      bpf_aux_classic_check_t trans, bool save_orig);
756 void bpf_prog_destroy(struct bpf_prog *fp);
757 
758 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
759 int sk_attach_bpf(u32 ufd, struct sock *sk);
760 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
761 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
762 int sk_detach_filter(struct sock *sk);
763 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
764 		  unsigned int len);
765 
766 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
767 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
768 
769 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
770 #define __bpf_call_base_args \
771 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
772 	 __bpf_call_base)
773 
774 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
775 void bpf_jit_compile(struct bpf_prog *prog);
776 bool bpf_helper_changes_pkt_data(void *func);
777 
778 static inline bool bpf_dump_raw_ok(void)
779 {
780 	/* Reconstruction of call-sites is dependent on kallsyms,
781 	 * thus make dump the same restriction.
782 	 */
783 	return kallsyms_show_value() == 1;
784 }
785 
786 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
787 				       const struct bpf_insn *patch, u32 len);
788 
789 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
790  * same cpu context. Further for best results no more than a single map
791  * for the do_redirect/do_flush pair should be used. This limitation is
792  * because we only track one map and force a flush when the map changes.
793  * This does not appear to be a real limitation for existing software.
794  */
795 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
796 			    struct xdp_buff *xdp, struct bpf_prog *prog);
797 int xdp_do_redirect(struct net_device *dev,
798 		    struct xdp_buff *xdp,
799 		    struct bpf_prog *prog);
800 void xdp_do_flush_map(void);
801 
802 void bpf_warn_invalid_xdp_action(u32 act);
803 
804 struct sock *do_sk_redirect_map(struct sk_buff *skb);
805 struct sock *do_msg_redirect_map(struct sk_msg_buff *md);
806 
807 #ifdef CONFIG_BPF_JIT
808 extern int bpf_jit_enable;
809 extern int bpf_jit_harden;
810 extern int bpf_jit_kallsyms;
811 
812 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
813 
814 struct bpf_binary_header *
815 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
816 		     unsigned int alignment,
817 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
818 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
819 
820 void bpf_jit_free(struct bpf_prog *fp);
821 
822 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
823 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
824 
825 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
826 				u32 pass, void *image)
827 {
828 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
829 	       proglen, pass, image, current->comm, task_pid_nr(current));
830 
831 	if (image)
832 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
833 			       16, 1, image, proglen, false);
834 }
835 
836 static inline bool bpf_jit_is_ebpf(void)
837 {
838 # ifdef CONFIG_HAVE_EBPF_JIT
839 	return true;
840 # else
841 	return false;
842 # endif
843 }
844 
845 static inline bool ebpf_jit_enabled(void)
846 {
847 	return bpf_jit_enable && bpf_jit_is_ebpf();
848 }
849 
850 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
851 {
852 	return fp->jited && bpf_jit_is_ebpf();
853 }
854 
855 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
856 {
857 	/* These are the prerequisites, should someone ever have the
858 	 * idea to call blinding outside of them, we make sure to
859 	 * bail out.
860 	 */
861 	if (!bpf_jit_is_ebpf())
862 		return false;
863 	if (!prog->jit_requested)
864 		return false;
865 	if (!bpf_jit_harden)
866 		return false;
867 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
868 		return false;
869 
870 	return true;
871 }
872 
873 static inline bool bpf_jit_kallsyms_enabled(void)
874 {
875 	/* There are a couple of corner cases where kallsyms should
876 	 * not be enabled f.e. on hardening.
877 	 */
878 	if (bpf_jit_harden)
879 		return false;
880 	if (!bpf_jit_kallsyms)
881 		return false;
882 	if (bpf_jit_kallsyms == 1)
883 		return true;
884 
885 	return false;
886 }
887 
888 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
889 				 unsigned long *off, char *sym);
890 bool is_bpf_text_address(unsigned long addr);
891 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
892 		    char *sym);
893 
894 static inline const char *
895 bpf_address_lookup(unsigned long addr, unsigned long *size,
896 		   unsigned long *off, char **modname, char *sym)
897 {
898 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
899 
900 	if (ret && modname)
901 		*modname = NULL;
902 	return ret;
903 }
904 
905 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
906 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
907 
908 #else /* CONFIG_BPF_JIT */
909 
910 static inline bool ebpf_jit_enabled(void)
911 {
912 	return false;
913 }
914 
915 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
916 {
917 	return false;
918 }
919 
920 static inline void bpf_jit_free(struct bpf_prog *fp)
921 {
922 	bpf_prog_unlock_free(fp);
923 }
924 
925 static inline bool bpf_jit_kallsyms_enabled(void)
926 {
927 	return false;
928 }
929 
930 static inline const char *
931 __bpf_address_lookup(unsigned long addr, unsigned long *size,
932 		     unsigned long *off, char *sym)
933 {
934 	return NULL;
935 }
936 
937 static inline bool is_bpf_text_address(unsigned long addr)
938 {
939 	return false;
940 }
941 
942 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
943 				  char *type, char *sym)
944 {
945 	return -ERANGE;
946 }
947 
948 static inline const char *
949 bpf_address_lookup(unsigned long addr, unsigned long *size,
950 		   unsigned long *off, char **modname, char *sym)
951 {
952 	return NULL;
953 }
954 
955 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
956 {
957 }
958 
959 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
960 {
961 }
962 #endif /* CONFIG_BPF_JIT */
963 
964 #define BPF_ANC		BIT(15)
965 
966 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
967 {
968 	switch (first->code) {
969 	case BPF_RET | BPF_K:
970 	case BPF_LD | BPF_W | BPF_LEN:
971 		return false;
972 
973 	case BPF_LD | BPF_W | BPF_ABS:
974 	case BPF_LD | BPF_H | BPF_ABS:
975 	case BPF_LD | BPF_B | BPF_ABS:
976 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
977 			return true;
978 		return false;
979 
980 	default:
981 		return true;
982 	}
983 }
984 
985 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
986 {
987 	BUG_ON(ftest->code & BPF_ANC);
988 
989 	switch (ftest->code) {
990 	case BPF_LD | BPF_W | BPF_ABS:
991 	case BPF_LD | BPF_H | BPF_ABS:
992 	case BPF_LD | BPF_B | BPF_ABS:
993 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
994 				return BPF_ANC | SKF_AD_##CODE
995 		switch (ftest->k) {
996 		BPF_ANCILLARY(PROTOCOL);
997 		BPF_ANCILLARY(PKTTYPE);
998 		BPF_ANCILLARY(IFINDEX);
999 		BPF_ANCILLARY(NLATTR);
1000 		BPF_ANCILLARY(NLATTR_NEST);
1001 		BPF_ANCILLARY(MARK);
1002 		BPF_ANCILLARY(QUEUE);
1003 		BPF_ANCILLARY(HATYPE);
1004 		BPF_ANCILLARY(RXHASH);
1005 		BPF_ANCILLARY(CPU);
1006 		BPF_ANCILLARY(ALU_XOR_X);
1007 		BPF_ANCILLARY(VLAN_TAG);
1008 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1009 		BPF_ANCILLARY(PAY_OFFSET);
1010 		BPF_ANCILLARY(RANDOM);
1011 		BPF_ANCILLARY(VLAN_TPID);
1012 		}
1013 		/* Fallthrough. */
1014 	default:
1015 		return ftest->code;
1016 	}
1017 }
1018 
1019 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1020 					   int k, unsigned int size);
1021 
1022 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1023 				     unsigned int size, void *buffer)
1024 {
1025 	if (k >= 0)
1026 		return skb_header_pointer(skb, k, size, buffer);
1027 
1028 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1029 }
1030 
1031 static inline int bpf_tell_extensions(void)
1032 {
1033 	return SKF_AD_MAX;
1034 }
1035 
1036 struct bpf_sock_addr_kern {
1037 	struct sock *sk;
1038 	struct sockaddr *uaddr;
1039 	/* Temporary "register" to make indirect stores to nested structures
1040 	 * defined above. We need three registers to make such a store, but
1041 	 * only two (src and dst) are available at convert_ctx_access time
1042 	 */
1043 	u64 tmp_reg;
1044 	void *t_ctx;	/* Attach type specific context. */
1045 };
1046 
1047 struct bpf_sock_ops_kern {
1048 	struct	sock *sk;
1049 	u32	op;
1050 	union {
1051 		u32 args[4];
1052 		u32 reply;
1053 		u32 replylong[4];
1054 	};
1055 	u32	is_fullsock;
1056 	u64	temp;			/* temp and everything after is not
1057 					 * initialized to 0 before calling
1058 					 * the BPF program. New fields that
1059 					 * should be initialized to 0 should
1060 					 * be inserted before temp.
1061 					 * temp is scratch storage used by
1062 					 * sock_ops_convert_ctx_access
1063 					 * as temporary storage of a register.
1064 					 */
1065 };
1066 
1067 #endif /* __LINUX_FILTER_H__ */
1068