1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/bpf.h> 10 #include <linux/refcount.h> 11 #include <linux/compat.h> 12 #include <linux/skbuff.h> 13 #include <linux/linkage.h> 14 #include <linux/printk.h> 15 #include <linux/workqueue.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/capability.h> 19 #include <linux/set_memory.h> 20 #include <linux/kallsyms.h> 21 #include <linux/if_vlan.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sockptr.h> 24 #include <crypto/sha1.h> 25 #include <linux/u64_stats_sync.h> 26 27 #include <net/sch_generic.h> 28 29 #include <asm/byteorder.h> 30 #include <uapi/linux/filter.h> 31 32 struct sk_buff; 33 struct sock; 34 struct seccomp_data; 35 struct bpf_prog_aux; 36 struct xdp_rxq_info; 37 struct xdp_buff; 38 struct sock_reuseport; 39 struct ctl_table; 40 struct ctl_table_header; 41 42 /* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46 #define BPF_REG_ARG1 BPF_REG_1 47 #define BPF_REG_ARG2 BPF_REG_2 48 #define BPF_REG_ARG3 BPF_REG_3 49 #define BPF_REG_ARG4 BPF_REG_4 50 #define BPF_REG_ARG5 BPF_REG_5 51 #define BPF_REG_CTX BPF_REG_6 52 #define BPF_REG_FP BPF_REG_10 53 54 /* Additional register mappings for converted user programs. */ 55 #define BPF_REG_A BPF_REG_0 56 #define BPF_REG_X BPF_REG_7 57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61 /* Kernel hidden auxiliary/helper register. */ 62 #define BPF_REG_AX MAX_BPF_REG 63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66 /* unused opcode to mark special call to bpf_tail_call() helper */ 67 #define BPF_TAIL_CALL 0xf0 68 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 70 #define BPF_PROBE_MEM 0x20 71 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73 #define BPF_PROBE_MEMSX 0x40 74 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */ 76 #define BPF_PROBE_MEM32 0xa0 77 78 /* unused opcode to mark special atomic instruction */ 79 #define BPF_PROBE_ATOMIC 0xe0 80 81 /* unused opcode to mark call to interpreter with arguments */ 82 #define BPF_CALL_ARGS 0xe0 83 84 /* unused opcode to mark speculation barrier for mitigating 85 * Speculative Store Bypass 86 */ 87 #define BPF_NOSPEC 0xc0 88 89 /* As per nm, we expose JITed images as text (code) section for 90 * kallsyms. That way, tools like perf can find it to match 91 * addresses. 92 */ 93 #define BPF_SYM_ELF_TYPE 't' 94 95 /* BPF program can access up to 512 bytes of stack space. */ 96 #define MAX_BPF_STACK 512 97 98 /* Helper macros for filter block array initializers. */ 99 100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 101 102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 105 .dst_reg = DST, \ 106 .src_reg = SRC, \ 107 .off = OFF, \ 108 .imm = 0 }) 109 110 #define BPF_ALU64_REG(OP, DST, SRC) \ 111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 112 113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 116 .dst_reg = DST, \ 117 .src_reg = SRC, \ 118 .off = OFF, \ 119 .imm = 0 }) 120 121 #define BPF_ALU32_REG(OP, DST, SRC) \ 122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 123 124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 125 126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 127 ((struct bpf_insn) { \ 128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 129 .dst_reg = DST, \ 130 .src_reg = 0, \ 131 .off = OFF, \ 132 .imm = IMM }) 133 #define BPF_ALU64_IMM(OP, DST, IMM) \ 134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 135 136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 139 .dst_reg = DST, \ 140 .src_reg = 0, \ 141 .off = OFF, \ 142 .imm = IMM }) 143 #define BPF_ALU32_IMM(OP, DST, IMM) \ 144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 145 146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 147 148 #define BPF_ENDIAN(TYPE, DST, LEN) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = LEN }) 155 156 /* Byte Swap, bswap16/32/64 */ 157 158 #define BPF_BSWAP(DST, LEN) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 161 .dst_reg = DST, \ 162 .src_reg = 0, \ 163 .off = 0, \ 164 .imm = LEN }) 165 166 /* Short form of mov, dst_reg = src_reg */ 167 168 #define BPF_MOV64_REG(DST, SRC) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = 0 }) 175 176 #define BPF_MOV32_REG(DST, SRC) \ 177 ((struct bpf_insn) { \ 178 .code = BPF_ALU | BPF_MOV | BPF_X, \ 179 .dst_reg = DST, \ 180 .src_reg = SRC, \ 181 .off = 0, \ 182 .imm = 0 }) 183 184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs: 185 * dst_reg = src_reg + <percpu_base_off> 186 * BPF_ADDR_PERCPU is used as a special insn->off value. 187 */ 188 #define BPF_ADDR_PERCPU (-1) 189 190 #define BPF_MOV64_PERCPU_REG(DST, SRC) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = BPF_ADDR_PERCPU, \ 196 .imm = 0 }) 197 198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 199 { 200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 201 } 202 203 /* Short form of mov, dst_reg = imm32 */ 204 205 #define BPF_MOV64_IMM(DST, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 208 .dst_reg = DST, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213 #define BPF_MOV32_IMM(DST, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_K, \ 216 .dst_reg = DST, \ 217 .src_reg = 0, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 222 223 #define BPF_MOVSX64_REG(DST, SRC, OFF) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 226 .dst_reg = DST, \ 227 .src_reg = SRC, \ 228 .off = OFF, \ 229 .imm = 0 }) 230 231 #define BPF_MOVSX32_REG(DST, SRC, OFF) \ 232 ((struct bpf_insn) { \ 233 .code = BPF_ALU | BPF_MOV | BPF_X, \ 234 .dst_reg = DST, \ 235 .src_reg = SRC, \ 236 .off = OFF, \ 237 .imm = 0 }) 238 239 /* Special form of mov32, used for doing explicit zero extension on dst. */ 240 #define BPF_ZEXT_REG(DST) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_ALU | BPF_MOV | BPF_X, \ 243 .dst_reg = DST, \ 244 .src_reg = DST, \ 245 .off = 0, \ 246 .imm = 1 }) 247 248 static inline bool insn_is_zext(const struct bpf_insn *insn) 249 { 250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 251 } 252 253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 254 * to pointers in user vma. 255 */ 256 static inline bool insn_is_cast_user(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 259 insn->off == BPF_ADDR_SPACE_CAST && 260 insn->imm == 1U << 16; 261 } 262 263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 264 #define BPF_LD_IMM64(DST, IMM) \ 265 BPF_LD_IMM64_RAW(DST, 0, IMM) 266 267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 268 ((struct bpf_insn) { \ 269 .code = BPF_LD | BPF_DW | BPF_IMM, \ 270 .dst_reg = DST, \ 271 .src_reg = SRC, \ 272 .off = 0, \ 273 .imm = (__u32) (IMM) }), \ 274 ((struct bpf_insn) { \ 275 .code = 0, /* zero is reserved opcode */ \ 276 .dst_reg = 0, \ 277 .src_reg = 0, \ 278 .off = 0, \ 279 .imm = ((__u64) (IMM)) >> 32 }) 280 281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 282 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 284 285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 286 287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 288 ((struct bpf_insn) { \ 289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 290 .dst_reg = DST, \ 291 .src_reg = SRC, \ 292 .off = 0, \ 293 .imm = IMM }) 294 295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 298 .dst_reg = DST, \ 299 .src_reg = SRC, \ 300 .off = 0, \ 301 .imm = IMM }) 302 303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 304 305 #define BPF_LD_ABS(SIZE, IMM) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = 0, \ 311 .imm = IMM }) 312 313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 314 315 #define BPF_LD_IND(SIZE, SRC, IMM) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 318 .dst_reg = 0, \ 319 .src_reg = SRC, \ 320 .off = 0, \ 321 .imm = IMM }) 322 323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 324 325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 334 335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 338 .dst_reg = DST, \ 339 .src_reg = SRC, \ 340 .off = OFF, \ 341 .imm = 0 }) 342 343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 344 345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 348 .dst_reg = DST, \ 349 .src_reg = SRC, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 354 /* 355 * Atomic operations: 356 * 357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 367 */ 368 369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 370 ((struct bpf_insn) { \ 371 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 372 .dst_reg = DST, \ 373 .src_reg = SRC, \ 374 .off = OFF, \ 375 .imm = OP }) 376 377 /* Legacy alias */ 378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 379 380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 381 382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 383 ((struct bpf_insn) { \ 384 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 385 .dst_reg = DST, \ 386 .src_reg = 0, \ 387 .off = OFF, \ 388 .imm = IMM }) 389 390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 391 392 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 393 ((struct bpf_insn) { \ 394 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 395 .dst_reg = DST, \ 396 .src_reg = SRC, \ 397 .off = OFF, \ 398 .imm = 0 }) 399 400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 401 402 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 403 ((struct bpf_insn) { \ 404 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 405 .dst_reg = DST, \ 406 .src_reg = 0, \ 407 .off = OFF, \ 408 .imm = IMM }) 409 410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 411 412 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 413 ((struct bpf_insn) { \ 414 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 415 .dst_reg = DST, \ 416 .src_reg = SRC, \ 417 .off = OFF, \ 418 .imm = 0 }) 419 420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 421 422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 423 ((struct bpf_insn) { \ 424 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 425 .dst_reg = DST, \ 426 .src_reg = 0, \ 427 .off = OFF, \ 428 .imm = IMM }) 429 430 /* Unconditional jumps, goto pc + off16 */ 431 432 #define BPF_JMP_A(OFF) \ 433 ((struct bpf_insn) { \ 434 .code = BPF_JMP | BPF_JA, \ 435 .dst_reg = 0, \ 436 .src_reg = 0, \ 437 .off = OFF, \ 438 .imm = 0 }) 439 440 /* Unconditional jumps, gotol pc + imm32 */ 441 442 #define BPF_JMP32_A(IMM) \ 443 ((struct bpf_insn) { \ 444 .code = BPF_JMP32 | BPF_JA, \ 445 .dst_reg = 0, \ 446 .src_reg = 0, \ 447 .off = 0, \ 448 .imm = IMM }) 449 450 /* Relative call */ 451 452 #define BPF_CALL_REL(TGT) \ 453 ((struct bpf_insn) { \ 454 .code = BPF_JMP | BPF_CALL, \ 455 .dst_reg = 0, \ 456 .src_reg = BPF_PSEUDO_CALL, \ 457 .off = 0, \ 458 .imm = TGT }) 459 460 /* Convert function address to BPF immediate */ 461 462 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 463 464 #define BPF_EMIT_CALL(FUNC) \ 465 ((struct bpf_insn) { \ 466 .code = BPF_JMP | BPF_CALL, \ 467 .dst_reg = 0, \ 468 .src_reg = 0, \ 469 .off = 0, \ 470 .imm = BPF_CALL_IMM(FUNC) }) 471 472 /* Raw code statement block */ 473 474 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 475 ((struct bpf_insn) { \ 476 .code = CODE, \ 477 .dst_reg = DST, \ 478 .src_reg = SRC, \ 479 .off = OFF, \ 480 .imm = IMM }) 481 482 /* Program exit */ 483 484 #define BPF_EXIT_INSN() \ 485 ((struct bpf_insn) { \ 486 .code = BPF_JMP | BPF_EXIT, \ 487 .dst_reg = 0, \ 488 .src_reg = 0, \ 489 .off = 0, \ 490 .imm = 0 }) 491 492 /* Speculation barrier */ 493 494 #define BPF_ST_NOSPEC() \ 495 ((struct bpf_insn) { \ 496 .code = BPF_ST | BPF_NOSPEC, \ 497 .dst_reg = 0, \ 498 .src_reg = 0, \ 499 .off = 0, \ 500 .imm = 0 }) 501 502 /* Internal classic blocks for direct assignment */ 503 504 #define __BPF_STMT(CODE, K) \ 505 ((struct sock_filter) BPF_STMT(CODE, K)) 506 507 #define __BPF_JUMP(CODE, K, JT, JF) \ 508 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 509 510 #define bytes_to_bpf_size(bytes) \ 511 ({ \ 512 int bpf_size = -EINVAL; \ 513 \ 514 if (bytes == sizeof(u8)) \ 515 bpf_size = BPF_B; \ 516 else if (bytes == sizeof(u16)) \ 517 bpf_size = BPF_H; \ 518 else if (bytes == sizeof(u32)) \ 519 bpf_size = BPF_W; \ 520 else if (bytes == sizeof(u64)) \ 521 bpf_size = BPF_DW; \ 522 \ 523 bpf_size; \ 524 }) 525 526 #define bpf_size_to_bytes(bpf_size) \ 527 ({ \ 528 int bytes = -EINVAL; \ 529 \ 530 if (bpf_size == BPF_B) \ 531 bytes = sizeof(u8); \ 532 else if (bpf_size == BPF_H) \ 533 bytes = sizeof(u16); \ 534 else if (bpf_size == BPF_W) \ 535 bytes = sizeof(u32); \ 536 else if (bpf_size == BPF_DW) \ 537 bytes = sizeof(u64); \ 538 \ 539 bytes; \ 540 }) 541 542 #define BPF_SIZEOF(type) \ 543 ({ \ 544 const int __size = bytes_to_bpf_size(sizeof(type)); \ 545 BUILD_BUG_ON(__size < 0); \ 546 __size; \ 547 }) 548 549 #define BPF_FIELD_SIZEOF(type, field) \ 550 ({ \ 551 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 552 BUILD_BUG_ON(__size < 0); \ 553 __size; \ 554 }) 555 556 #define BPF_LDST_BYTES(insn) \ 557 ({ \ 558 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 559 WARN_ON(__size < 0); \ 560 __size; \ 561 }) 562 563 #define __BPF_MAP_0(m, v, ...) v 564 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 565 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 566 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 567 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 568 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 569 570 #define __BPF_REG_0(...) __BPF_PAD(5) 571 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 572 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 573 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 574 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 575 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 576 577 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 578 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 579 580 #define __BPF_CAST(t, a) \ 581 (__force t) \ 582 (__force \ 583 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 584 (unsigned long)0, (t)0))) a 585 #define __BPF_V void 586 #define __BPF_N 587 588 #define __BPF_DECL_ARGS(t, a) t a 589 #define __BPF_DECL_REGS(t, a) u64 a 590 591 #define __BPF_PAD(n) \ 592 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 593 u64, __ur_3, u64, __ur_4, u64, __ur_5) 594 595 #define BPF_CALL_x(x, attr, name, ...) \ 596 static __always_inline \ 597 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 598 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 599 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 600 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 601 { \ 602 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 603 } \ 604 static __always_inline \ 605 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 606 607 #define __NOATTR 608 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 609 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 610 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 611 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 612 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 613 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 614 615 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 616 617 #define bpf_ctx_range(TYPE, MEMBER) \ 618 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 619 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 620 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 621 #if BITS_PER_LONG == 64 622 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 623 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 624 #else 625 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 626 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 627 #endif /* BITS_PER_LONG == 64 */ 628 629 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 630 ({ \ 631 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 632 *(PTR_SIZE) = (SIZE); \ 633 offsetof(TYPE, MEMBER); \ 634 }) 635 636 /* A struct sock_filter is architecture independent. */ 637 struct compat_sock_fprog { 638 u16 len; 639 compat_uptr_t filter; /* struct sock_filter * */ 640 }; 641 642 struct sock_fprog_kern { 643 u16 len; 644 struct sock_filter *filter; 645 }; 646 647 /* Some arches need doubleword alignment for their instructions and/or data */ 648 #define BPF_IMAGE_ALIGNMENT 8 649 650 struct bpf_binary_header { 651 u32 size; 652 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 653 }; 654 655 struct bpf_prog_stats { 656 u64_stats_t cnt; 657 u64_stats_t nsecs; 658 u64_stats_t misses; 659 struct u64_stats_sync syncp; 660 } __aligned(2 * sizeof(u64)); 661 662 struct sk_filter { 663 refcount_t refcnt; 664 struct rcu_head rcu; 665 struct bpf_prog *prog; 666 }; 667 668 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 669 670 extern struct mutex nf_conn_btf_access_lock; 671 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 672 const struct bpf_reg_state *reg, 673 int off, int size); 674 675 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 676 const struct bpf_insn *insnsi, 677 unsigned int (*bpf_func)(const void *, 678 const struct bpf_insn *)); 679 680 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 681 const void *ctx, 682 bpf_dispatcher_fn dfunc) 683 { 684 u32 ret; 685 686 cant_migrate(); 687 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 688 struct bpf_prog_stats *stats; 689 u64 duration, start = sched_clock(); 690 unsigned long flags; 691 692 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 693 694 duration = sched_clock() - start; 695 stats = this_cpu_ptr(prog->stats); 696 flags = u64_stats_update_begin_irqsave(&stats->syncp); 697 u64_stats_inc(&stats->cnt); 698 u64_stats_add(&stats->nsecs, duration); 699 u64_stats_update_end_irqrestore(&stats->syncp, flags); 700 } else { 701 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 702 } 703 return ret; 704 } 705 706 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 707 { 708 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 709 } 710 711 /* 712 * Use in preemptible and therefore migratable context to make sure that 713 * the execution of the BPF program runs on one CPU. 714 * 715 * This uses migrate_disable/enable() explicitly to document that the 716 * invocation of a BPF program does not require reentrancy protection 717 * against a BPF program which is invoked from a preempting task. 718 */ 719 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 720 const void *ctx) 721 { 722 u32 ret; 723 724 migrate_disable(); 725 ret = bpf_prog_run(prog, ctx); 726 migrate_enable(); 727 return ret; 728 } 729 730 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 731 732 struct bpf_skb_data_end { 733 struct qdisc_skb_cb qdisc_cb; 734 void *data_meta; 735 void *data_end; 736 }; 737 738 struct bpf_nh_params { 739 u32 nh_family; 740 union { 741 u32 ipv4_nh; 742 struct in6_addr ipv6_nh; 743 }; 744 }; 745 746 /* flags for bpf_redirect_info kern_flags */ 747 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 748 #define BPF_RI_F_RI_INIT BIT(1) 749 #define BPF_RI_F_CPU_MAP_INIT BIT(2) 750 #define BPF_RI_F_DEV_MAP_INIT BIT(3) 751 #define BPF_RI_F_XSK_MAP_INIT BIT(4) 752 753 struct bpf_redirect_info { 754 u64 tgt_index; 755 void *tgt_value; 756 struct bpf_map *map; 757 u32 flags; 758 u32 map_id; 759 enum bpf_map_type map_type; 760 struct bpf_nh_params nh; 761 u32 kern_flags; 762 }; 763 764 struct bpf_net_context { 765 struct bpf_redirect_info ri; 766 struct list_head cpu_map_flush_list; 767 struct list_head dev_map_flush_list; 768 struct list_head xskmap_map_flush_list; 769 }; 770 771 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 772 { 773 struct task_struct *tsk = current; 774 775 if (tsk->bpf_net_context != NULL) 776 return NULL; 777 bpf_net_ctx->ri.kern_flags = 0; 778 779 tsk->bpf_net_context = bpf_net_ctx; 780 return bpf_net_ctx; 781 } 782 783 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 784 { 785 if (bpf_net_ctx) 786 current->bpf_net_context = NULL; 787 } 788 789 static inline struct bpf_net_context *bpf_net_ctx_get(void) 790 { 791 return current->bpf_net_context; 792 } 793 794 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 795 { 796 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 797 798 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 799 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 800 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 801 } 802 803 return &bpf_net_ctx->ri; 804 } 805 806 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 807 { 808 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 809 810 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 811 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 812 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 813 } 814 815 return &bpf_net_ctx->cpu_map_flush_list; 816 } 817 818 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 819 { 820 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 821 822 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 823 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 824 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 825 } 826 827 return &bpf_net_ctx->dev_map_flush_list; 828 } 829 830 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 831 { 832 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 833 834 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 835 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 836 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 837 } 838 839 return &bpf_net_ctx->xskmap_map_flush_list; 840 } 841 842 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 843 struct list_head **lh_dev, 844 struct list_head **lh_xsk) 845 { 846 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 847 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 848 struct list_head *lh; 849 850 *lh_map = *lh_dev = *lh_xsk = NULL; 851 852 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 853 return; 854 855 lh = &bpf_net_ctx->dev_map_flush_list; 856 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 857 *lh_dev = lh; 858 859 lh = &bpf_net_ctx->cpu_map_flush_list; 860 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 861 *lh_map = lh; 862 863 lh = &bpf_net_ctx->xskmap_map_flush_list; 864 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 865 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 866 *lh_xsk = lh; 867 } 868 869 /* Compute the linear packet data range [data, data_end) which 870 * will be accessed by various program types (cls_bpf, act_bpf, 871 * lwt, ...). Subsystems allowing direct data access must (!) 872 * ensure that cb[] area can be written to when BPF program is 873 * invoked (otherwise cb[] save/restore is necessary). 874 */ 875 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 876 { 877 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 878 879 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 880 cb->data_meta = skb->data - skb_metadata_len(skb); 881 cb->data_end = skb->data + skb_headlen(skb); 882 } 883 884 /* Similar to bpf_compute_data_pointers(), except that save orginal 885 * data in cb->data and cb->meta_data for restore. 886 */ 887 static inline void bpf_compute_and_save_data_end( 888 struct sk_buff *skb, void **saved_data_end) 889 { 890 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 891 892 *saved_data_end = cb->data_end; 893 cb->data_end = skb->data + skb_headlen(skb); 894 } 895 896 /* Restore data saved by bpf_compute_and_save_data_end(). */ 897 static inline void bpf_restore_data_end( 898 struct sk_buff *skb, void *saved_data_end) 899 { 900 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 901 902 cb->data_end = saved_data_end; 903 } 904 905 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 906 { 907 /* eBPF programs may read/write skb->cb[] area to transfer meta 908 * data between tail calls. Since this also needs to work with 909 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 910 * 911 * In some socket filter cases, the cb unfortunately needs to be 912 * saved/restored so that protocol specific skb->cb[] data won't 913 * be lost. In any case, due to unpriviledged eBPF programs 914 * attached to sockets, we need to clear the bpf_skb_cb() area 915 * to not leak previous contents to user space. 916 */ 917 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 918 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 919 sizeof_field(struct qdisc_skb_cb, data)); 920 921 return qdisc_skb_cb(skb)->data; 922 } 923 924 /* Must be invoked with migration disabled */ 925 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 926 const void *ctx) 927 { 928 const struct sk_buff *skb = ctx; 929 u8 *cb_data = bpf_skb_cb(skb); 930 u8 cb_saved[BPF_SKB_CB_LEN]; 931 u32 res; 932 933 if (unlikely(prog->cb_access)) { 934 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 935 memset(cb_data, 0, sizeof(cb_saved)); 936 } 937 938 res = bpf_prog_run(prog, skb); 939 940 if (unlikely(prog->cb_access)) 941 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 942 943 return res; 944 } 945 946 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 947 struct sk_buff *skb) 948 { 949 u32 res; 950 951 migrate_disable(); 952 res = __bpf_prog_run_save_cb(prog, skb); 953 migrate_enable(); 954 return res; 955 } 956 957 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 958 struct sk_buff *skb) 959 { 960 u8 *cb_data = bpf_skb_cb(skb); 961 u32 res; 962 963 if (unlikely(prog->cb_access)) 964 memset(cb_data, 0, BPF_SKB_CB_LEN); 965 966 res = bpf_prog_run_pin_on_cpu(prog, skb); 967 return res; 968 } 969 970 DECLARE_BPF_DISPATCHER(xdp) 971 972 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 973 974 u32 xdp_master_redirect(struct xdp_buff *xdp); 975 976 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 977 978 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 979 { 980 return prog->len * sizeof(struct bpf_insn); 981 } 982 983 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 984 { 985 return round_up(bpf_prog_insn_size(prog) + 986 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 987 } 988 989 static inline unsigned int bpf_prog_size(unsigned int proglen) 990 { 991 return max(sizeof(struct bpf_prog), 992 offsetof(struct bpf_prog, insns[proglen])); 993 } 994 995 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 996 { 997 /* When classic BPF programs have been loaded and the arch 998 * does not have a classic BPF JIT (anymore), they have been 999 * converted via bpf_migrate_filter() to eBPF and thus always 1000 * have an unspec program type. 1001 */ 1002 return prog->type == BPF_PROG_TYPE_UNSPEC; 1003 } 1004 1005 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1006 { 1007 const u32 size_machine = sizeof(unsigned long); 1008 1009 if (size > size_machine && size % size_machine == 0) 1010 size = size_machine; 1011 1012 return size; 1013 } 1014 1015 static inline bool 1016 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1017 { 1018 return size <= size_default && (size & (size - 1)) == 0; 1019 } 1020 1021 static inline u8 1022 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1023 { 1024 u8 access_off = off & (size_default - 1); 1025 1026 #ifdef __LITTLE_ENDIAN 1027 return access_off; 1028 #else 1029 return size_default - (access_off + size); 1030 #endif 1031 } 1032 1033 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 1034 (size == sizeof(__u64) && \ 1035 off >= offsetof(type, field) && \ 1036 off + sizeof(__u64) <= offsetofend(type, field) && \ 1037 off % sizeof(__u64) == 0) 1038 1039 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1040 1041 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1042 { 1043 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1044 if (!fp->jited) { 1045 set_vm_flush_reset_perms(fp); 1046 return set_memory_ro((unsigned long)fp, fp->pages); 1047 } 1048 #endif 1049 return 0; 1050 } 1051 1052 static inline int __must_check 1053 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1054 { 1055 set_vm_flush_reset_perms(hdr); 1056 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1057 } 1058 1059 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 1060 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1061 { 1062 return sk_filter_trim_cap(sk, skb, 1); 1063 } 1064 1065 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1066 void bpf_prog_free(struct bpf_prog *fp); 1067 1068 bool bpf_opcode_in_insntable(u8 code); 1069 1070 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1071 const u32 *insn_to_jit_off); 1072 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1073 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1074 1075 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1076 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1077 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1078 gfp_t gfp_extra_flags); 1079 void __bpf_prog_free(struct bpf_prog *fp); 1080 1081 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1082 { 1083 __bpf_prog_free(fp); 1084 } 1085 1086 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1087 unsigned int flen); 1088 1089 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1090 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1091 bpf_aux_classic_check_t trans, bool save_orig); 1092 void bpf_prog_destroy(struct bpf_prog *fp); 1093 1094 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1095 int sk_attach_bpf(u32 ufd, struct sock *sk); 1096 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1097 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1098 void sk_reuseport_prog_free(struct bpf_prog *prog); 1099 int sk_detach_filter(struct sock *sk); 1100 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1101 1102 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1103 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1104 1105 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1106 #define __bpf_call_base_args \ 1107 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1108 (void *)__bpf_call_base) 1109 1110 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1111 void bpf_jit_compile(struct bpf_prog *prog); 1112 bool bpf_jit_needs_zext(void); 1113 bool bpf_jit_inlines_helper_call(s32 imm); 1114 bool bpf_jit_supports_subprog_tailcalls(void); 1115 bool bpf_jit_supports_percpu_insn(void); 1116 bool bpf_jit_supports_kfunc_call(void); 1117 bool bpf_jit_supports_far_kfunc_call(void); 1118 bool bpf_jit_supports_exceptions(void); 1119 bool bpf_jit_supports_ptr_xchg(void); 1120 bool bpf_jit_supports_arena(void); 1121 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1122 bool bpf_jit_supports_private_stack(void); 1123 u64 bpf_arch_uaddress_limit(void); 1124 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1125 bool bpf_helper_changes_pkt_data(void *func); 1126 1127 static inline bool bpf_dump_raw_ok(const struct cred *cred) 1128 { 1129 /* Reconstruction of call-sites is dependent on kallsyms, 1130 * thus make dump the same restriction. 1131 */ 1132 return kallsyms_show_value(cred); 1133 } 1134 1135 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1136 const struct bpf_insn *patch, u32 len); 1137 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1138 1139 static inline bool xdp_return_frame_no_direct(void) 1140 { 1141 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1142 1143 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1144 } 1145 1146 static inline void xdp_set_return_frame_no_direct(void) 1147 { 1148 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1149 1150 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1151 } 1152 1153 static inline void xdp_clear_return_frame_no_direct(void) 1154 { 1155 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1156 1157 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1158 } 1159 1160 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1161 unsigned int pktlen) 1162 { 1163 unsigned int len; 1164 1165 if (unlikely(!(fwd->flags & IFF_UP))) 1166 return -ENETDOWN; 1167 1168 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1169 if (pktlen > len) 1170 return -EMSGSIZE; 1171 1172 return 0; 1173 } 1174 1175 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1176 * same cpu context. Further for best results no more than a single map 1177 * for the do_redirect/do_flush pair should be used. This limitation is 1178 * because we only track one map and force a flush when the map changes. 1179 * This does not appear to be a real limitation for existing software. 1180 */ 1181 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1182 struct xdp_buff *xdp, struct bpf_prog *prog); 1183 int xdp_do_redirect(struct net_device *dev, 1184 struct xdp_buff *xdp, 1185 struct bpf_prog *prog); 1186 int xdp_do_redirect_frame(struct net_device *dev, 1187 struct xdp_buff *xdp, 1188 struct xdp_frame *xdpf, 1189 struct bpf_prog *prog); 1190 void xdp_do_flush(void); 1191 1192 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1193 1194 #ifdef CONFIG_INET 1195 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1196 struct bpf_prog *prog, struct sk_buff *skb, 1197 struct sock *migrating_sk, 1198 u32 hash); 1199 #else 1200 static inline struct sock * 1201 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1202 struct bpf_prog *prog, struct sk_buff *skb, 1203 struct sock *migrating_sk, 1204 u32 hash) 1205 { 1206 return NULL; 1207 } 1208 #endif 1209 1210 #ifdef CONFIG_BPF_JIT 1211 extern int bpf_jit_enable; 1212 extern int bpf_jit_harden; 1213 extern int bpf_jit_kallsyms; 1214 extern long bpf_jit_limit; 1215 extern long bpf_jit_limit_max; 1216 1217 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1218 1219 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1220 1221 struct bpf_binary_header * 1222 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1223 unsigned int alignment, 1224 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1225 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1226 u64 bpf_jit_alloc_exec_limit(void); 1227 void *bpf_jit_alloc_exec(unsigned long size); 1228 void bpf_jit_free_exec(void *addr); 1229 void bpf_jit_free(struct bpf_prog *fp); 1230 struct bpf_binary_header * 1231 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1232 1233 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1234 void bpf_prog_pack_free(void *ptr, u32 size); 1235 1236 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1237 { 1238 return list_empty(&fp->aux->ksym.lnode) || 1239 fp->aux->ksym.lnode.prev == LIST_POISON2; 1240 } 1241 1242 struct bpf_binary_header * 1243 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1244 unsigned int alignment, 1245 struct bpf_binary_header **rw_hdr, 1246 u8 **rw_image, 1247 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1248 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1249 struct bpf_binary_header *rw_header); 1250 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1251 struct bpf_binary_header *rw_header); 1252 1253 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1254 struct bpf_jit_poke_descriptor *poke); 1255 1256 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1257 const struct bpf_insn *insn, bool extra_pass, 1258 u64 *func_addr, bool *func_addr_fixed); 1259 1260 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1261 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1262 1263 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1264 u32 pass, void *image) 1265 { 1266 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1267 proglen, pass, image, current->comm, task_pid_nr(current)); 1268 1269 if (image) 1270 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1271 16, 1, image, proglen, false); 1272 } 1273 1274 static inline bool bpf_jit_is_ebpf(void) 1275 { 1276 # ifdef CONFIG_HAVE_EBPF_JIT 1277 return true; 1278 # else 1279 return false; 1280 # endif 1281 } 1282 1283 static inline bool ebpf_jit_enabled(void) 1284 { 1285 return bpf_jit_enable && bpf_jit_is_ebpf(); 1286 } 1287 1288 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1289 { 1290 return fp->jited && bpf_jit_is_ebpf(); 1291 } 1292 1293 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1294 { 1295 /* These are the prerequisites, should someone ever have the 1296 * idea to call blinding outside of them, we make sure to 1297 * bail out. 1298 */ 1299 if (!bpf_jit_is_ebpf()) 1300 return false; 1301 if (!prog->jit_requested) 1302 return false; 1303 if (!bpf_jit_harden) 1304 return false; 1305 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1306 return false; 1307 1308 return true; 1309 } 1310 1311 static inline bool bpf_jit_kallsyms_enabled(void) 1312 { 1313 /* There are a couple of corner cases where kallsyms should 1314 * not be enabled f.e. on hardening. 1315 */ 1316 if (bpf_jit_harden) 1317 return false; 1318 if (!bpf_jit_kallsyms) 1319 return false; 1320 if (bpf_jit_kallsyms == 1) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1327 unsigned long *off, char *sym); 1328 bool is_bpf_text_address(unsigned long addr); 1329 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1330 char *sym); 1331 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1332 1333 static inline int 1334 bpf_address_lookup(unsigned long addr, unsigned long *size, 1335 unsigned long *off, char **modname, char *sym) 1336 { 1337 int ret = __bpf_address_lookup(addr, size, off, sym); 1338 1339 if (ret && modname) 1340 *modname = NULL; 1341 return ret; 1342 } 1343 1344 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1345 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1346 1347 #else /* CONFIG_BPF_JIT */ 1348 1349 static inline bool ebpf_jit_enabled(void) 1350 { 1351 return false; 1352 } 1353 1354 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1355 { 1356 return false; 1357 } 1358 1359 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1360 { 1361 return false; 1362 } 1363 1364 static inline int 1365 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1366 struct bpf_jit_poke_descriptor *poke) 1367 { 1368 return -ENOTSUPP; 1369 } 1370 1371 static inline void bpf_jit_free(struct bpf_prog *fp) 1372 { 1373 bpf_prog_unlock_free(fp); 1374 } 1375 1376 static inline bool bpf_jit_kallsyms_enabled(void) 1377 { 1378 return false; 1379 } 1380 1381 static inline int 1382 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1383 unsigned long *off, char *sym) 1384 { 1385 return 0; 1386 } 1387 1388 static inline bool is_bpf_text_address(unsigned long addr) 1389 { 1390 return false; 1391 } 1392 1393 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1394 char *type, char *sym) 1395 { 1396 return -ERANGE; 1397 } 1398 1399 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1400 { 1401 return NULL; 1402 } 1403 1404 static inline int 1405 bpf_address_lookup(unsigned long addr, unsigned long *size, 1406 unsigned long *off, char **modname, char *sym) 1407 { 1408 return 0; 1409 } 1410 1411 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1412 { 1413 } 1414 1415 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1416 { 1417 } 1418 1419 #endif /* CONFIG_BPF_JIT */ 1420 1421 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1422 1423 #define BPF_ANC BIT(15) 1424 1425 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1426 { 1427 switch (first->code) { 1428 case BPF_RET | BPF_K: 1429 case BPF_LD | BPF_W | BPF_LEN: 1430 return false; 1431 1432 case BPF_LD | BPF_W | BPF_ABS: 1433 case BPF_LD | BPF_H | BPF_ABS: 1434 case BPF_LD | BPF_B | BPF_ABS: 1435 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1436 return true; 1437 return false; 1438 1439 default: 1440 return true; 1441 } 1442 } 1443 1444 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1445 { 1446 BUG_ON(ftest->code & BPF_ANC); 1447 1448 switch (ftest->code) { 1449 case BPF_LD | BPF_W | BPF_ABS: 1450 case BPF_LD | BPF_H | BPF_ABS: 1451 case BPF_LD | BPF_B | BPF_ABS: 1452 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1453 return BPF_ANC | SKF_AD_##CODE 1454 switch (ftest->k) { 1455 BPF_ANCILLARY(PROTOCOL); 1456 BPF_ANCILLARY(PKTTYPE); 1457 BPF_ANCILLARY(IFINDEX); 1458 BPF_ANCILLARY(NLATTR); 1459 BPF_ANCILLARY(NLATTR_NEST); 1460 BPF_ANCILLARY(MARK); 1461 BPF_ANCILLARY(QUEUE); 1462 BPF_ANCILLARY(HATYPE); 1463 BPF_ANCILLARY(RXHASH); 1464 BPF_ANCILLARY(CPU); 1465 BPF_ANCILLARY(ALU_XOR_X); 1466 BPF_ANCILLARY(VLAN_TAG); 1467 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1468 BPF_ANCILLARY(PAY_OFFSET); 1469 BPF_ANCILLARY(RANDOM); 1470 BPF_ANCILLARY(VLAN_TPID); 1471 } 1472 fallthrough; 1473 default: 1474 return ftest->code; 1475 } 1476 } 1477 1478 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1479 int k, unsigned int size); 1480 1481 static inline int bpf_tell_extensions(void) 1482 { 1483 return SKF_AD_MAX; 1484 } 1485 1486 struct bpf_sock_addr_kern { 1487 struct sock *sk; 1488 struct sockaddr *uaddr; 1489 /* Temporary "register" to make indirect stores to nested structures 1490 * defined above. We need three registers to make such a store, but 1491 * only two (src and dst) are available at convert_ctx_access time 1492 */ 1493 u64 tmp_reg; 1494 void *t_ctx; /* Attach type specific context. */ 1495 u32 uaddrlen; 1496 }; 1497 1498 struct bpf_sock_ops_kern { 1499 struct sock *sk; 1500 union { 1501 u32 args[4]; 1502 u32 reply; 1503 u32 replylong[4]; 1504 }; 1505 struct sk_buff *syn_skb; 1506 struct sk_buff *skb; 1507 void *skb_data_end; 1508 u8 op; 1509 u8 is_fullsock; 1510 u8 remaining_opt_len; 1511 u64 temp; /* temp and everything after is not 1512 * initialized to 0 before calling 1513 * the BPF program. New fields that 1514 * should be initialized to 0 should 1515 * be inserted before temp. 1516 * temp is scratch storage used by 1517 * sock_ops_convert_ctx_access 1518 * as temporary storage of a register. 1519 */ 1520 }; 1521 1522 struct bpf_sysctl_kern { 1523 struct ctl_table_header *head; 1524 const struct ctl_table *table; 1525 void *cur_val; 1526 size_t cur_len; 1527 void *new_val; 1528 size_t new_len; 1529 int new_updated; 1530 int write; 1531 loff_t *ppos; 1532 /* Temporary "register" for indirect stores to ppos. */ 1533 u64 tmp_reg; 1534 }; 1535 1536 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1537 struct bpf_sockopt_buf { 1538 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1539 }; 1540 1541 struct bpf_sockopt_kern { 1542 struct sock *sk; 1543 u8 *optval; 1544 u8 *optval_end; 1545 s32 level; 1546 s32 optname; 1547 s32 optlen; 1548 /* for retval in struct bpf_cg_run_ctx */ 1549 struct task_struct *current_task; 1550 /* Temporary "register" for indirect stores to ppos. */ 1551 u64 tmp_reg; 1552 }; 1553 1554 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1555 1556 struct bpf_sk_lookup_kern { 1557 u16 family; 1558 u16 protocol; 1559 __be16 sport; 1560 u16 dport; 1561 struct { 1562 __be32 saddr; 1563 __be32 daddr; 1564 } v4; 1565 struct { 1566 const struct in6_addr *saddr; 1567 const struct in6_addr *daddr; 1568 } v6; 1569 struct sock *selected_sk; 1570 u32 ingress_ifindex; 1571 bool no_reuseport; 1572 }; 1573 1574 extern struct static_key_false bpf_sk_lookup_enabled; 1575 1576 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1577 * 1578 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1579 * SK_DROP. Their meaning is as follows: 1580 * 1581 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1582 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1583 * SK_DROP : terminate lookup with -ECONNREFUSED 1584 * 1585 * This macro aggregates return values and selected sockets from 1586 * multiple BPF programs according to following rules in order: 1587 * 1588 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1589 * macro result is SK_PASS and last ctx.selected_sk is used. 1590 * 2. If any program returned SK_DROP return value, 1591 * macro result is SK_DROP. 1592 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1593 * 1594 * Caller must ensure that the prog array is non-NULL, and that the 1595 * array as well as the programs it contains remain valid. 1596 */ 1597 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1598 ({ \ 1599 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1600 struct bpf_prog_array_item *_item; \ 1601 struct sock *_selected_sk = NULL; \ 1602 bool _no_reuseport = false; \ 1603 struct bpf_prog *_prog; \ 1604 bool _all_pass = true; \ 1605 u32 _ret; \ 1606 \ 1607 migrate_disable(); \ 1608 _item = &(array)->items[0]; \ 1609 while ((_prog = READ_ONCE(_item->prog))) { \ 1610 /* restore most recent selection */ \ 1611 _ctx->selected_sk = _selected_sk; \ 1612 _ctx->no_reuseport = _no_reuseport; \ 1613 \ 1614 _ret = func(_prog, _ctx); \ 1615 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1616 /* remember last non-NULL socket */ \ 1617 _selected_sk = _ctx->selected_sk; \ 1618 _no_reuseport = _ctx->no_reuseport; \ 1619 } else if (_ret == SK_DROP && _all_pass) { \ 1620 _all_pass = false; \ 1621 } \ 1622 _item++; \ 1623 } \ 1624 _ctx->selected_sk = _selected_sk; \ 1625 _ctx->no_reuseport = _no_reuseport; \ 1626 migrate_enable(); \ 1627 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1628 }) 1629 1630 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1631 const __be32 saddr, const __be16 sport, 1632 const __be32 daddr, const u16 dport, 1633 const int ifindex, struct sock **psk) 1634 { 1635 struct bpf_prog_array *run_array; 1636 struct sock *selected_sk = NULL; 1637 bool no_reuseport = false; 1638 1639 rcu_read_lock(); 1640 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1641 if (run_array) { 1642 struct bpf_sk_lookup_kern ctx = { 1643 .family = AF_INET, 1644 .protocol = protocol, 1645 .v4.saddr = saddr, 1646 .v4.daddr = daddr, 1647 .sport = sport, 1648 .dport = dport, 1649 .ingress_ifindex = ifindex, 1650 }; 1651 u32 act; 1652 1653 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1654 if (act == SK_PASS) { 1655 selected_sk = ctx.selected_sk; 1656 no_reuseport = ctx.no_reuseport; 1657 } else { 1658 selected_sk = ERR_PTR(-ECONNREFUSED); 1659 } 1660 } 1661 rcu_read_unlock(); 1662 *psk = selected_sk; 1663 return no_reuseport; 1664 } 1665 1666 #if IS_ENABLED(CONFIG_IPV6) 1667 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1668 const struct in6_addr *saddr, 1669 const __be16 sport, 1670 const struct in6_addr *daddr, 1671 const u16 dport, 1672 const int ifindex, struct sock **psk) 1673 { 1674 struct bpf_prog_array *run_array; 1675 struct sock *selected_sk = NULL; 1676 bool no_reuseport = false; 1677 1678 rcu_read_lock(); 1679 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1680 if (run_array) { 1681 struct bpf_sk_lookup_kern ctx = { 1682 .family = AF_INET6, 1683 .protocol = protocol, 1684 .v6.saddr = saddr, 1685 .v6.daddr = daddr, 1686 .sport = sport, 1687 .dport = dport, 1688 .ingress_ifindex = ifindex, 1689 }; 1690 u32 act; 1691 1692 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1693 if (act == SK_PASS) { 1694 selected_sk = ctx.selected_sk; 1695 no_reuseport = ctx.no_reuseport; 1696 } else { 1697 selected_sk = ERR_PTR(-ECONNREFUSED); 1698 } 1699 } 1700 rcu_read_unlock(); 1701 *psk = selected_sk; 1702 return no_reuseport; 1703 } 1704 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1705 1706 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1707 u64 flags, const u64 flag_mask, 1708 void *lookup_elem(struct bpf_map *map, u32 key)) 1709 { 1710 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1711 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1712 1713 /* Lower bits of the flags are used as return code on lookup failure */ 1714 if (unlikely(flags & ~(action_mask | flag_mask))) 1715 return XDP_ABORTED; 1716 1717 ri->tgt_value = lookup_elem(map, index); 1718 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1719 /* If the lookup fails we want to clear out the state in the 1720 * redirect_info struct completely, so that if an eBPF program 1721 * performs multiple lookups, the last one always takes 1722 * precedence. 1723 */ 1724 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1725 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1726 return flags & action_mask; 1727 } 1728 1729 ri->tgt_index = index; 1730 ri->map_id = map->id; 1731 ri->map_type = map->map_type; 1732 1733 if (flags & BPF_F_BROADCAST) { 1734 WRITE_ONCE(ri->map, map); 1735 ri->flags = flags; 1736 } else { 1737 WRITE_ONCE(ri->map, NULL); 1738 ri->flags = 0; 1739 } 1740 1741 return XDP_REDIRECT; 1742 } 1743 1744 #ifdef CONFIG_NET 1745 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1746 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1747 u32 len, u64 flags); 1748 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1749 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1750 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1751 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1752 void *buf, unsigned long len, bool flush); 1753 #else /* CONFIG_NET */ 1754 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1755 void *to, u32 len) 1756 { 1757 return -EOPNOTSUPP; 1758 } 1759 1760 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1761 const void *from, u32 len, u64 flags) 1762 { 1763 return -EOPNOTSUPP; 1764 } 1765 1766 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1767 void *buf, u32 len) 1768 { 1769 return -EOPNOTSUPP; 1770 } 1771 1772 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1773 void *buf, u32 len) 1774 { 1775 return -EOPNOTSUPP; 1776 } 1777 1778 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1779 { 1780 return NULL; 1781 } 1782 1783 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1784 unsigned long len, bool flush) 1785 { 1786 } 1787 #endif /* CONFIG_NET */ 1788 1789 #endif /* __LINUX_FILTER_H__ */ 1790