1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/refcount.h> 10 #include <linux/compat.h> 11 #include <linux/skbuff.h> 12 #include <linux/linkage.h> 13 #include <linux/printk.h> 14 #include <linux/workqueue.h> 15 #include <linux/sched.h> 16 #include <linux/capability.h> 17 #include <linux/set_memory.h> 18 #include <linux/kallsyms.h> 19 #include <linux/if_vlan.h> 20 #include <linux/vmalloc.h> 21 #include <linux/sockptr.h> 22 #include <crypto/sha1.h> 23 #include <linux/u64_stats_sync.h> 24 25 #include <net/sch_generic.h> 26 27 #include <asm/byteorder.h> 28 #include <uapi/linux/filter.h> 29 #include <uapi/linux/bpf.h> 30 31 struct sk_buff; 32 struct sock; 33 struct seccomp_data; 34 struct bpf_prog_aux; 35 struct xdp_rxq_info; 36 struct xdp_buff; 37 struct sock_reuseport; 38 struct ctl_table; 39 struct ctl_table_header; 40 41 /* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45 #define BPF_REG_ARG1 BPF_REG_1 46 #define BPF_REG_ARG2 BPF_REG_2 47 #define BPF_REG_ARG3 BPF_REG_3 48 #define BPF_REG_ARG4 BPF_REG_4 49 #define BPF_REG_ARG5 BPF_REG_5 50 #define BPF_REG_CTX BPF_REG_6 51 #define BPF_REG_FP BPF_REG_10 52 53 /* Additional register mappings for converted user programs. */ 54 #define BPF_REG_A BPF_REG_0 55 #define BPF_REG_X BPF_REG_7 56 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60 /* Kernel hidden auxiliary/helper register. */ 61 #define BPF_REG_AX MAX_BPF_REG 62 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65 /* unused opcode to mark special call to bpf_tail_call() helper */ 66 #define BPF_TAIL_CALL 0xf0 67 68 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 69 #define BPF_PROBE_MEM 0x20 70 71 /* unused opcode to mark call to interpreter with arguments */ 72 #define BPF_CALL_ARGS 0xe0 73 74 /* unused opcode to mark speculation barrier for mitigating 75 * Speculative Store Bypass 76 */ 77 #define BPF_NOSPEC 0xc0 78 79 /* As per nm, we expose JITed images as text (code) section for 80 * kallsyms. That way, tools like perf can find it to match 81 * addresses. 82 */ 83 #define BPF_SYM_ELF_TYPE 't' 84 85 /* BPF program can access up to 512 bytes of stack space. */ 86 #define MAX_BPF_STACK 512 87 88 /* Helper macros for filter block array initializers. */ 89 90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 91 92 #define BPF_ALU64_REG(OP, DST, SRC) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 95 .dst_reg = DST, \ 96 .src_reg = SRC, \ 97 .off = 0, \ 98 .imm = 0 }) 99 100 #define BPF_ALU32_REG(OP, DST, SRC) \ 101 ((struct bpf_insn) { \ 102 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 103 .dst_reg = DST, \ 104 .src_reg = SRC, \ 105 .off = 0, \ 106 .imm = 0 }) 107 108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 109 110 #define BPF_ALU64_IMM(OP, DST, IMM) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = IMM }) 117 118 #define BPF_ALU32_IMM(OP, DST, IMM) \ 119 ((struct bpf_insn) { \ 120 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 121 .dst_reg = DST, \ 122 .src_reg = 0, \ 123 .off = 0, \ 124 .imm = IMM }) 125 126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 127 128 #define BPF_ENDIAN(TYPE, DST, LEN) \ 129 ((struct bpf_insn) { \ 130 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 131 .dst_reg = DST, \ 132 .src_reg = 0, \ 133 .off = 0, \ 134 .imm = LEN }) 135 136 /* Short form of mov, dst_reg = src_reg */ 137 138 #define BPF_MOV64_REG(DST, SRC) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 141 .dst_reg = DST, \ 142 .src_reg = SRC, \ 143 .off = 0, \ 144 .imm = 0 }) 145 146 #define BPF_MOV32_REG(DST, SRC) \ 147 ((struct bpf_insn) { \ 148 .code = BPF_ALU | BPF_MOV | BPF_X, \ 149 .dst_reg = DST, \ 150 .src_reg = SRC, \ 151 .off = 0, \ 152 .imm = 0 }) 153 154 /* Short form of mov, dst_reg = imm32 */ 155 156 #define BPF_MOV64_IMM(DST, IMM) \ 157 ((struct bpf_insn) { \ 158 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 159 .dst_reg = DST, \ 160 .src_reg = 0, \ 161 .off = 0, \ 162 .imm = IMM }) 163 164 #define BPF_MOV32_IMM(DST, IMM) \ 165 ((struct bpf_insn) { \ 166 .code = BPF_ALU | BPF_MOV | BPF_K, \ 167 .dst_reg = DST, \ 168 .src_reg = 0, \ 169 .off = 0, \ 170 .imm = IMM }) 171 172 /* Special form of mov32, used for doing explicit zero extension on dst. */ 173 #define BPF_ZEXT_REG(DST) \ 174 ((struct bpf_insn) { \ 175 .code = BPF_ALU | BPF_MOV | BPF_X, \ 176 .dst_reg = DST, \ 177 .src_reg = DST, \ 178 .off = 0, \ 179 .imm = 1 }) 180 181 static inline bool insn_is_zext(const struct bpf_insn *insn) 182 { 183 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 184 } 185 186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 187 #define BPF_LD_IMM64(DST, IMM) \ 188 BPF_LD_IMM64_RAW(DST, 0, IMM) 189 190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_LD | BPF_DW | BPF_IMM, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = 0, \ 196 .imm = (__u32) (IMM) }), \ 197 ((struct bpf_insn) { \ 198 .code = 0, /* zero is reserved opcode */ \ 199 .dst_reg = 0, \ 200 .src_reg = 0, \ 201 .off = 0, \ 202 .imm = ((__u64) (IMM)) >> 32 }) 203 204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 205 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 206 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 207 208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 209 210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 211 ((struct bpf_insn) { \ 212 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 213 .dst_reg = DST, \ 214 .src_reg = SRC, \ 215 .off = 0, \ 216 .imm = IMM }) 217 218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 219 ((struct bpf_insn) { \ 220 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 221 .dst_reg = DST, \ 222 .src_reg = SRC, \ 223 .off = 0, \ 224 .imm = IMM }) 225 226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 227 228 #define BPF_LD_ABS(SIZE, IMM) \ 229 ((struct bpf_insn) { \ 230 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 231 .dst_reg = 0, \ 232 .src_reg = 0, \ 233 .off = 0, \ 234 .imm = IMM }) 235 236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 237 238 #define BPF_LD_IND(SIZE, SRC, IMM) \ 239 ((struct bpf_insn) { \ 240 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 241 .dst_reg = 0, \ 242 .src_reg = SRC, \ 243 .off = 0, \ 244 .imm = IMM }) 245 246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 247 248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 249 ((struct bpf_insn) { \ 250 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 251 .dst_reg = DST, \ 252 .src_reg = SRC, \ 253 .off = OFF, \ 254 .imm = 0 }) 255 256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 257 258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 259 ((struct bpf_insn) { \ 260 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 261 .dst_reg = DST, \ 262 .src_reg = SRC, \ 263 .off = OFF, \ 264 .imm = 0 }) 265 266 267 /* 268 * Atomic operations: 269 * 270 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 271 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 272 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 273 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 274 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 275 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 276 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 277 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 278 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 279 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 280 */ 281 282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 283 ((struct bpf_insn) { \ 284 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 285 .dst_reg = DST, \ 286 .src_reg = SRC, \ 287 .off = OFF, \ 288 .imm = OP }) 289 290 /* Legacy alias */ 291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 292 293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 294 295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 298 .dst_reg = DST, \ 299 .src_reg = 0, \ 300 .off = OFF, \ 301 .imm = IMM }) 302 303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 304 305 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 308 .dst_reg = DST, \ 309 .src_reg = SRC, \ 310 .off = OFF, \ 311 .imm = 0 }) 312 313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 314 315 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 318 .dst_reg = DST, \ 319 .src_reg = 0, \ 320 .off = OFF, \ 321 .imm = IMM }) 322 323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 324 325 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 334 335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 338 .dst_reg = DST, \ 339 .src_reg = 0, \ 340 .off = OFF, \ 341 .imm = IMM }) 342 343 /* Unconditional jumps, goto pc + off16 */ 344 345 #define BPF_JMP_A(OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_JMP | BPF_JA, \ 348 .dst_reg = 0, \ 349 .src_reg = 0, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 /* Relative call */ 354 355 #define BPF_CALL_REL(TGT) \ 356 ((struct bpf_insn) { \ 357 .code = BPF_JMP | BPF_CALL, \ 358 .dst_reg = 0, \ 359 .src_reg = BPF_PSEUDO_CALL, \ 360 .off = 0, \ 361 .imm = TGT }) 362 363 /* Convert function address to BPF immediate */ 364 365 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 366 367 #define BPF_EMIT_CALL(FUNC) \ 368 ((struct bpf_insn) { \ 369 .code = BPF_JMP | BPF_CALL, \ 370 .dst_reg = 0, \ 371 .src_reg = 0, \ 372 .off = 0, \ 373 .imm = BPF_CALL_IMM(FUNC) }) 374 375 /* Raw code statement block */ 376 377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 378 ((struct bpf_insn) { \ 379 .code = CODE, \ 380 .dst_reg = DST, \ 381 .src_reg = SRC, \ 382 .off = OFF, \ 383 .imm = IMM }) 384 385 /* Program exit */ 386 387 #define BPF_EXIT_INSN() \ 388 ((struct bpf_insn) { \ 389 .code = BPF_JMP | BPF_EXIT, \ 390 .dst_reg = 0, \ 391 .src_reg = 0, \ 392 .off = 0, \ 393 .imm = 0 }) 394 395 /* Speculation barrier */ 396 397 #define BPF_ST_NOSPEC() \ 398 ((struct bpf_insn) { \ 399 .code = BPF_ST | BPF_NOSPEC, \ 400 .dst_reg = 0, \ 401 .src_reg = 0, \ 402 .off = 0, \ 403 .imm = 0 }) 404 405 /* Internal classic blocks for direct assignment */ 406 407 #define __BPF_STMT(CODE, K) \ 408 ((struct sock_filter) BPF_STMT(CODE, K)) 409 410 #define __BPF_JUMP(CODE, K, JT, JF) \ 411 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 412 413 #define bytes_to_bpf_size(bytes) \ 414 ({ \ 415 int bpf_size = -EINVAL; \ 416 \ 417 if (bytes == sizeof(u8)) \ 418 bpf_size = BPF_B; \ 419 else if (bytes == sizeof(u16)) \ 420 bpf_size = BPF_H; \ 421 else if (bytes == sizeof(u32)) \ 422 bpf_size = BPF_W; \ 423 else if (bytes == sizeof(u64)) \ 424 bpf_size = BPF_DW; \ 425 \ 426 bpf_size; \ 427 }) 428 429 #define bpf_size_to_bytes(bpf_size) \ 430 ({ \ 431 int bytes = -EINVAL; \ 432 \ 433 if (bpf_size == BPF_B) \ 434 bytes = sizeof(u8); \ 435 else if (bpf_size == BPF_H) \ 436 bytes = sizeof(u16); \ 437 else if (bpf_size == BPF_W) \ 438 bytes = sizeof(u32); \ 439 else if (bpf_size == BPF_DW) \ 440 bytes = sizeof(u64); \ 441 \ 442 bytes; \ 443 }) 444 445 #define BPF_SIZEOF(type) \ 446 ({ \ 447 const int __size = bytes_to_bpf_size(sizeof(type)); \ 448 BUILD_BUG_ON(__size < 0); \ 449 __size; \ 450 }) 451 452 #define BPF_FIELD_SIZEOF(type, field) \ 453 ({ \ 454 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 455 BUILD_BUG_ON(__size < 0); \ 456 __size; \ 457 }) 458 459 #define BPF_LDST_BYTES(insn) \ 460 ({ \ 461 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 462 WARN_ON(__size < 0); \ 463 __size; \ 464 }) 465 466 #define __BPF_MAP_0(m, v, ...) v 467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 472 473 #define __BPF_REG_0(...) __BPF_PAD(5) 474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 479 480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 482 483 #define __BPF_CAST(t, a) \ 484 (__force t) \ 485 (__force \ 486 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 487 (unsigned long)0, (t)0))) a 488 #define __BPF_V void 489 #define __BPF_N 490 491 #define __BPF_DECL_ARGS(t, a) t a 492 #define __BPF_DECL_REGS(t, a) u64 a 493 494 #define __BPF_PAD(n) \ 495 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 496 u64, __ur_3, u64, __ur_4, u64, __ur_5) 497 498 #define BPF_CALL_x(x, name, ...) \ 499 static __always_inline \ 500 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 501 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 502 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 503 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 504 { \ 505 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 506 } \ 507 static __always_inline \ 508 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 509 510 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 511 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 512 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 513 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 514 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 515 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 516 517 #define bpf_ctx_range(TYPE, MEMBER) \ 518 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 520 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 521 #if BITS_PER_LONG == 64 522 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 523 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 524 #else 525 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 526 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 527 #endif /* BITS_PER_LONG == 64 */ 528 529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 530 ({ \ 531 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 532 *(PTR_SIZE) = (SIZE); \ 533 offsetof(TYPE, MEMBER); \ 534 }) 535 536 /* A struct sock_filter is architecture independent. */ 537 struct compat_sock_fprog { 538 u16 len; 539 compat_uptr_t filter; /* struct sock_filter * */ 540 }; 541 542 struct sock_fprog_kern { 543 u16 len; 544 struct sock_filter *filter; 545 }; 546 547 /* Some arches need doubleword alignment for their instructions and/or data */ 548 #define BPF_IMAGE_ALIGNMENT 8 549 550 struct bpf_binary_header { 551 u32 pages; 552 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 553 }; 554 555 struct bpf_prog_stats { 556 u64_stats_t cnt; 557 u64_stats_t nsecs; 558 u64_stats_t misses; 559 struct u64_stats_sync syncp; 560 } __aligned(2 * sizeof(u64)); 561 562 struct bpf_prog { 563 u16 pages; /* Number of allocated pages */ 564 u16 jited:1, /* Is our filter JIT'ed? */ 565 jit_requested:1,/* archs need to JIT the prog */ 566 gpl_compatible:1, /* Is filter GPL compatible? */ 567 cb_access:1, /* Is control block accessed? */ 568 dst_needed:1, /* Do we need dst entry? */ 569 blinded:1, /* Was blinded */ 570 is_func:1, /* program is a bpf function */ 571 kprobe_override:1, /* Do we override a kprobe? */ 572 has_callchain_buf:1, /* callchain buffer allocated? */ 573 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 574 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 575 call_get_func_ip:1; /* Do we call get_func_ip() */ 576 enum bpf_prog_type type; /* Type of BPF program */ 577 enum bpf_attach_type expected_attach_type; /* For some prog types */ 578 u32 len; /* Number of filter blocks */ 579 u32 jited_len; /* Size of jited insns in bytes */ 580 u8 tag[BPF_TAG_SIZE]; 581 struct bpf_prog_stats __percpu *stats; 582 int __percpu *active; 583 unsigned int (*bpf_func)(const void *ctx, 584 const struct bpf_insn *insn); 585 struct bpf_prog_aux *aux; /* Auxiliary fields */ 586 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 587 /* Instructions for interpreter */ 588 union { 589 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 590 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 591 }; 592 }; 593 594 struct sk_filter { 595 refcount_t refcnt; 596 struct rcu_head rcu; 597 struct bpf_prog *prog; 598 }; 599 600 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 601 602 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 603 const struct bpf_insn *insnsi, 604 unsigned int (*bpf_func)(const void *, 605 const struct bpf_insn *)); 606 607 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 608 const void *ctx, 609 bpf_dispatcher_fn dfunc) 610 { 611 u32 ret; 612 613 cant_migrate(); 614 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 615 struct bpf_prog_stats *stats; 616 u64 start = sched_clock(); 617 unsigned long flags; 618 619 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 620 stats = this_cpu_ptr(prog->stats); 621 flags = u64_stats_update_begin_irqsave(&stats->syncp); 622 u64_stats_inc(&stats->cnt); 623 u64_stats_add(&stats->nsecs, sched_clock() - start); 624 u64_stats_update_end_irqrestore(&stats->syncp, flags); 625 } else { 626 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 627 } 628 return ret; 629 } 630 631 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 632 { 633 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 634 } 635 636 /* 637 * Use in preemptible and therefore migratable context to make sure that 638 * the execution of the BPF program runs on one CPU. 639 * 640 * This uses migrate_disable/enable() explicitly to document that the 641 * invocation of a BPF program does not require reentrancy protection 642 * against a BPF program which is invoked from a preempting task. 643 * 644 * For non RT enabled kernels migrate_disable/enable() maps to 645 * preempt_disable/enable(), i.e. it disables also preemption. 646 */ 647 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 648 const void *ctx) 649 { 650 u32 ret; 651 652 migrate_disable(); 653 ret = bpf_prog_run(prog, ctx); 654 migrate_enable(); 655 return ret; 656 } 657 658 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 659 660 struct bpf_skb_data_end { 661 struct qdisc_skb_cb qdisc_cb; 662 void *data_meta; 663 void *data_end; 664 }; 665 666 struct bpf_nh_params { 667 u32 nh_family; 668 union { 669 u32 ipv4_nh; 670 struct in6_addr ipv6_nh; 671 }; 672 }; 673 674 struct bpf_redirect_info { 675 u32 flags; 676 u32 tgt_index; 677 void *tgt_value; 678 struct bpf_map *map; 679 u32 map_id; 680 enum bpf_map_type map_type; 681 u32 kern_flags; 682 struct bpf_nh_params nh; 683 }; 684 685 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 686 687 /* flags for bpf_redirect_info kern_flags */ 688 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 689 690 /* Compute the linear packet data range [data, data_end) which 691 * will be accessed by various program types (cls_bpf, act_bpf, 692 * lwt, ...). Subsystems allowing direct data access must (!) 693 * ensure that cb[] area can be written to when BPF program is 694 * invoked (otherwise cb[] save/restore is necessary). 695 */ 696 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 697 { 698 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 699 700 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 701 cb->data_meta = skb->data - skb_metadata_len(skb); 702 cb->data_end = skb->data + skb_headlen(skb); 703 } 704 705 /* Similar to bpf_compute_data_pointers(), except that save orginal 706 * data in cb->data and cb->meta_data for restore. 707 */ 708 static inline void bpf_compute_and_save_data_end( 709 struct sk_buff *skb, void **saved_data_end) 710 { 711 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 712 713 *saved_data_end = cb->data_end; 714 cb->data_end = skb->data + skb_headlen(skb); 715 } 716 717 /* Restore data saved by bpf_compute_data_pointers(). */ 718 static inline void bpf_restore_data_end( 719 struct sk_buff *skb, void *saved_data_end) 720 { 721 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 722 723 cb->data_end = saved_data_end; 724 } 725 726 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 727 { 728 /* eBPF programs may read/write skb->cb[] area to transfer meta 729 * data between tail calls. Since this also needs to work with 730 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 731 * 732 * In some socket filter cases, the cb unfortunately needs to be 733 * saved/restored so that protocol specific skb->cb[] data won't 734 * be lost. In any case, due to unpriviledged eBPF programs 735 * attached to sockets, we need to clear the bpf_skb_cb() area 736 * to not leak previous contents to user space. 737 */ 738 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 739 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 740 sizeof_field(struct qdisc_skb_cb, data)); 741 742 return qdisc_skb_cb(skb)->data; 743 } 744 745 /* Must be invoked with migration disabled */ 746 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 747 const void *ctx) 748 { 749 const struct sk_buff *skb = ctx; 750 u8 *cb_data = bpf_skb_cb(skb); 751 u8 cb_saved[BPF_SKB_CB_LEN]; 752 u32 res; 753 754 if (unlikely(prog->cb_access)) { 755 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 756 memset(cb_data, 0, sizeof(cb_saved)); 757 } 758 759 res = bpf_prog_run(prog, skb); 760 761 if (unlikely(prog->cb_access)) 762 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 763 764 return res; 765 } 766 767 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 768 struct sk_buff *skb) 769 { 770 u32 res; 771 772 migrate_disable(); 773 res = __bpf_prog_run_save_cb(prog, skb); 774 migrate_enable(); 775 return res; 776 } 777 778 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 779 struct sk_buff *skb) 780 { 781 u8 *cb_data = bpf_skb_cb(skb); 782 u32 res; 783 784 if (unlikely(prog->cb_access)) 785 memset(cb_data, 0, BPF_SKB_CB_LEN); 786 787 res = bpf_prog_run_pin_on_cpu(prog, skb); 788 return res; 789 } 790 791 DECLARE_BPF_DISPATCHER(xdp) 792 793 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 794 795 u32 xdp_master_redirect(struct xdp_buff *xdp); 796 797 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 798 struct xdp_buff *xdp) 799 { 800 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus 801 * under local_bh_disable(), which provides the needed RCU protection 802 * for accessing map entries. 803 */ 804 u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 805 806 if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { 807 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) 808 act = xdp_master_redirect(xdp); 809 } 810 811 return act; 812 } 813 814 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 815 816 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 817 { 818 return prog->len * sizeof(struct bpf_insn); 819 } 820 821 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 822 { 823 return round_up(bpf_prog_insn_size(prog) + 824 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 825 } 826 827 static inline unsigned int bpf_prog_size(unsigned int proglen) 828 { 829 return max(sizeof(struct bpf_prog), 830 offsetof(struct bpf_prog, insns[proglen])); 831 } 832 833 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 834 { 835 /* When classic BPF programs have been loaded and the arch 836 * does not have a classic BPF JIT (anymore), they have been 837 * converted via bpf_migrate_filter() to eBPF and thus always 838 * have an unspec program type. 839 */ 840 return prog->type == BPF_PROG_TYPE_UNSPEC; 841 } 842 843 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 844 { 845 const u32 size_machine = sizeof(unsigned long); 846 847 if (size > size_machine && size % size_machine == 0) 848 size = size_machine; 849 850 return size; 851 } 852 853 static inline bool 854 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 855 { 856 return size <= size_default && (size & (size - 1)) == 0; 857 } 858 859 static inline u8 860 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 861 { 862 u8 access_off = off & (size_default - 1); 863 864 #ifdef __LITTLE_ENDIAN 865 return access_off; 866 #else 867 return size_default - (access_off + size); 868 #endif 869 } 870 871 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 872 (size == sizeof(__u64) && \ 873 off >= offsetof(type, field) && \ 874 off + sizeof(__u64) <= offsetofend(type, field) && \ 875 off % sizeof(__u64) == 0) 876 877 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 878 879 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 880 { 881 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 882 if (!fp->jited) { 883 set_vm_flush_reset_perms(fp); 884 set_memory_ro((unsigned long)fp, fp->pages); 885 } 886 #endif 887 } 888 889 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 890 { 891 set_vm_flush_reset_perms(hdr); 892 set_memory_ro((unsigned long)hdr, hdr->pages); 893 set_memory_x((unsigned long)hdr, hdr->pages); 894 } 895 896 static inline struct bpf_binary_header * 897 bpf_jit_binary_hdr(const struct bpf_prog *fp) 898 { 899 unsigned long real_start = (unsigned long)fp->bpf_func; 900 unsigned long addr = real_start & PAGE_MASK; 901 902 return (void *)addr; 903 } 904 905 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 906 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 907 { 908 return sk_filter_trim_cap(sk, skb, 1); 909 } 910 911 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 912 void bpf_prog_free(struct bpf_prog *fp); 913 914 bool bpf_opcode_in_insntable(u8 code); 915 916 void bpf_prog_free_linfo(struct bpf_prog *prog); 917 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 918 const u32 *insn_to_jit_off); 919 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 920 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 921 922 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 923 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 924 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 925 gfp_t gfp_extra_flags); 926 void __bpf_prog_free(struct bpf_prog *fp); 927 928 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 929 { 930 __bpf_prog_free(fp); 931 } 932 933 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 934 unsigned int flen); 935 936 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 937 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 938 bpf_aux_classic_check_t trans, bool save_orig); 939 void bpf_prog_destroy(struct bpf_prog *fp); 940 941 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 942 int sk_attach_bpf(u32 ufd, struct sock *sk); 943 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 944 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 945 void sk_reuseport_prog_free(struct bpf_prog *prog); 946 int sk_detach_filter(struct sock *sk); 947 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 948 unsigned int len); 949 950 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 951 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 952 953 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 954 #define __bpf_call_base_args \ 955 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 956 (void *)__bpf_call_base) 957 958 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 959 void bpf_jit_compile(struct bpf_prog *prog); 960 bool bpf_jit_needs_zext(void); 961 bool bpf_jit_supports_kfunc_call(void); 962 bool bpf_helper_changes_pkt_data(void *func); 963 964 static inline bool bpf_dump_raw_ok(const struct cred *cred) 965 { 966 /* Reconstruction of call-sites is dependent on kallsyms, 967 * thus make dump the same restriction. 968 */ 969 return kallsyms_show_value(cred); 970 } 971 972 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 973 const struct bpf_insn *patch, u32 len); 974 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 975 976 void bpf_clear_redirect_map(struct bpf_map *map); 977 978 static inline bool xdp_return_frame_no_direct(void) 979 { 980 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 981 982 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 983 } 984 985 static inline void xdp_set_return_frame_no_direct(void) 986 { 987 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 988 989 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 990 } 991 992 static inline void xdp_clear_return_frame_no_direct(void) 993 { 994 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 995 996 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 997 } 998 999 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1000 unsigned int pktlen) 1001 { 1002 unsigned int len; 1003 1004 if (unlikely(!(fwd->flags & IFF_UP))) 1005 return -ENETDOWN; 1006 1007 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1008 if (pktlen > len) 1009 return -EMSGSIZE; 1010 1011 return 0; 1012 } 1013 1014 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1015 * same cpu context. Further for best results no more than a single map 1016 * for the do_redirect/do_flush pair should be used. This limitation is 1017 * because we only track one map and force a flush when the map changes. 1018 * This does not appear to be a real limitation for existing software. 1019 */ 1020 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1021 struct xdp_buff *xdp, struct bpf_prog *prog); 1022 int xdp_do_redirect(struct net_device *dev, 1023 struct xdp_buff *xdp, 1024 struct bpf_prog *prog); 1025 void xdp_do_flush(void); 1026 1027 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 1028 * it is no longer only flushing maps. Keep this define for compatibility 1029 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 1030 */ 1031 #define xdp_do_flush_map xdp_do_flush 1032 1033 void bpf_warn_invalid_xdp_action(u32 act); 1034 1035 #ifdef CONFIG_INET 1036 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1037 struct bpf_prog *prog, struct sk_buff *skb, 1038 struct sock *migrating_sk, 1039 u32 hash); 1040 #else 1041 static inline struct sock * 1042 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1043 struct bpf_prog *prog, struct sk_buff *skb, 1044 struct sock *migrating_sk, 1045 u32 hash) 1046 { 1047 return NULL; 1048 } 1049 #endif 1050 1051 #ifdef CONFIG_BPF_JIT 1052 extern int bpf_jit_enable; 1053 extern int bpf_jit_harden; 1054 extern int bpf_jit_kallsyms; 1055 extern long bpf_jit_limit; 1056 extern long bpf_jit_limit_max; 1057 1058 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1059 1060 struct bpf_binary_header * 1061 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1062 unsigned int alignment, 1063 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1064 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1065 u64 bpf_jit_alloc_exec_limit(void); 1066 void *bpf_jit_alloc_exec(unsigned long size); 1067 void bpf_jit_free_exec(void *addr); 1068 void bpf_jit_free(struct bpf_prog *fp); 1069 1070 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1071 struct bpf_jit_poke_descriptor *poke); 1072 1073 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1074 const struct bpf_insn *insn, bool extra_pass, 1075 u64 *func_addr, bool *func_addr_fixed); 1076 1077 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1078 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1079 1080 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1081 u32 pass, void *image) 1082 { 1083 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1084 proglen, pass, image, current->comm, task_pid_nr(current)); 1085 1086 if (image) 1087 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1088 16, 1, image, proglen, false); 1089 } 1090 1091 static inline bool bpf_jit_is_ebpf(void) 1092 { 1093 # ifdef CONFIG_HAVE_EBPF_JIT 1094 return true; 1095 # else 1096 return false; 1097 # endif 1098 } 1099 1100 static inline bool ebpf_jit_enabled(void) 1101 { 1102 return bpf_jit_enable && bpf_jit_is_ebpf(); 1103 } 1104 1105 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1106 { 1107 return fp->jited && bpf_jit_is_ebpf(); 1108 } 1109 1110 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1111 { 1112 /* These are the prerequisites, should someone ever have the 1113 * idea to call blinding outside of them, we make sure to 1114 * bail out. 1115 */ 1116 if (!bpf_jit_is_ebpf()) 1117 return false; 1118 if (!prog->jit_requested) 1119 return false; 1120 if (!bpf_jit_harden) 1121 return false; 1122 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1123 return false; 1124 1125 return true; 1126 } 1127 1128 static inline bool bpf_jit_kallsyms_enabled(void) 1129 { 1130 /* There are a couple of corner cases where kallsyms should 1131 * not be enabled f.e. on hardening. 1132 */ 1133 if (bpf_jit_harden) 1134 return false; 1135 if (!bpf_jit_kallsyms) 1136 return false; 1137 if (bpf_jit_kallsyms == 1) 1138 return true; 1139 1140 return false; 1141 } 1142 1143 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1144 unsigned long *off, char *sym); 1145 bool is_bpf_text_address(unsigned long addr); 1146 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1147 char *sym); 1148 1149 static inline const char * 1150 bpf_address_lookup(unsigned long addr, unsigned long *size, 1151 unsigned long *off, char **modname, char *sym) 1152 { 1153 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1154 1155 if (ret && modname) 1156 *modname = NULL; 1157 return ret; 1158 } 1159 1160 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1161 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1162 1163 #else /* CONFIG_BPF_JIT */ 1164 1165 static inline bool ebpf_jit_enabled(void) 1166 { 1167 return false; 1168 } 1169 1170 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1171 { 1172 return false; 1173 } 1174 1175 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1176 { 1177 return false; 1178 } 1179 1180 static inline int 1181 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1182 struct bpf_jit_poke_descriptor *poke) 1183 { 1184 return -ENOTSUPP; 1185 } 1186 1187 static inline void bpf_jit_free(struct bpf_prog *fp) 1188 { 1189 bpf_prog_unlock_free(fp); 1190 } 1191 1192 static inline bool bpf_jit_kallsyms_enabled(void) 1193 { 1194 return false; 1195 } 1196 1197 static inline const char * 1198 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1199 unsigned long *off, char *sym) 1200 { 1201 return NULL; 1202 } 1203 1204 static inline bool is_bpf_text_address(unsigned long addr) 1205 { 1206 return false; 1207 } 1208 1209 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1210 char *type, char *sym) 1211 { 1212 return -ERANGE; 1213 } 1214 1215 static inline const char * 1216 bpf_address_lookup(unsigned long addr, unsigned long *size, 1217 unsigned long *off, char **modname, char *sym) 1218 { 1219 return NULL; 1220 } 1221 1222 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1223 { 1224 } 1225 1226 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1227 { 1228 } 1229 1230 #endif /* CONFIG_BPF_JIT */ 1231 1232 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1233 1234 #define BPF_ANC BIT(15) 1235 1236 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1237 { 1238 switch (first->code) { 1239 case BPF_RET | BPF_K: 1240 case BPF_LD | BPF_W | BPF_LEN: 1241 return false; 1242 1243 case BPF_LD | BPF_W | BPF_ABS: 1244 case BPF_LD | BPF_H | BPF_ABS: 1245 case BPF_LD | BPF_B | BPF_ABS: 1246 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1247 return true; 1248 return false; 1249 1250 default: 1251 return true; 1252 } 1253 } 1254 1255 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1256 { 1257 BUG_ON(ftest->code & BPF_ANC); 1258 1259 switch (ftest->code) { 1260 case BPF_LD | BPF_W | BPF_ABS: 1261 case BPF_LD | BPF_H | BPF_ABS: 1262 case BPF_LD | BPF_B | BPF_ABS: 1263 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1264 return BPF_ANC | SKF_AD_##CODE 1265 switch (ftest->k) { 1266 BPF_ANCILLARY(PROTOCOL); 1267 BPF_ANCILLARY(PKTTYPE); 1268 BPF_ANCILLARY(IFINDEX); 1269 BPF_ANCILLARY(NLATTR); 1270 BPF_ANCILLARY(NLATTR_NEST); 1271 BPF_ANCILLARY(MARK); 1272 BPF_ANCILLARY(QUEUE); 1273 BPF_ANCILLARY(HATYPE); 1274 BPF_ANCILLARY(RXHASH); 1275 BPF_ANCILLARY(CPU); 1276 BPF_ANCILLARY(ALU_XOR_X); 1277 BPF_ANCILLARY(VLAN_TAG); 1278 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1279 BPF_ANCILLARY(PAY_OFFSET); 1280 BPF_ANCILLARY(RANDOM); 1281 BPF_ANCILLARY(VLAN_TPID); 1282 } 1283 fallthrough; 1284 default: 1285 return ftest->code; 1286 } 1287 } 1288 1289 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1290 int k, unsigned int size); 1291 1292 static inline int bpf_tell_extensions(void) 1293 { 1294 return SKF_AD_MAX; 1295 } 1296 1297 struct bpf_sock_addr_kern { 1298 struct sock *sk; 1299 struct sockaddr *uaddr; 1300 /* Temporary "register" to make indirect stores to nested structures 1301 * defined above. We need three registers to make such a store, but 1302 * only two (src and dst) are available at convert_ctx_access time 1303 */ 1304 u64 tmp_reg; 1305 void *t_ctx; /* Attach type specific context. */ 1306 }; 1307 1308 struct bpf_sock_ops_kern { 1309 struct sock *sk; 1310 union { 1311 u32 args[4]; 1312 u32 reply; 1313 u32 replylong[4]; 1314 }; 1315 struct sk_buff *syn_skb; 1316 struct sk_buff *skb; 1317 void *skb_data_end; 1318 u8 op; 1319 u8 is_fullsock; 1320 u8 remaining_opt_len; 1321 u64 temp; /* temp and everything after is not 1322 * initialized to 0 before calling 1323 * the BPF program. New fields that 1324 * should be initialized to 0 should 1325 * be inserted before temp. 1326 * temp is scratch storage used by 1327 * sock_ops_convert_ctx_access 1328 * as temporary storage of a register. 1329 */ 1330 }; 1331 1332 struct bpf_sysctl_kern { 1333 struct ctl_table_header *head; 1334 struct ctl_table *table; 1335 void *cur_val; 1336 size_t cur_len; 1337 void *new_val; 1338 size_t new_len; 1339 int new_updated; 1340 int write; 1341 loff_t *ppos; 1342 /* Temporary "register" for indirect stores to ppos. */ 1343 u64 tmp_reg; 1344 }; 1345 1346 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1347 struct bpf_sockopt_buf { 1348 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1349 }; 1350 1351 struct bpf_sockopt_kern { 1352 struct sock *sk; 1353 u8 *optval; 1354 u8 *optval_end; 1355 s32 level; 1356 s32 optname; 1357 s32 optlen; 1358 s32 retval; 1359 }; 1360 1361 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1362 1363 struct bpf_sk_lookup_kern { 1364 u16 family; 1365 u16 protocol; 1366 __be16 sport; 1367 u16 dport; 1368 struct { 1369 __be32 saddr; 1370 __be32 daddr; 1371 } v4; 1372 struct { 1373 const struct in6_addr *saddr; 1374 const struct in6_addr *daddr; 1375 } v6; 1376 struct sock *selected_sk; 1377 bool no_reuseport; 1378 }; 1379 1380 extern struct static_key_false bpf_sk_lookup_enabled; 1381 1382 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1383 * 1384 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1385 * SK_DROP. Their meaning is as follows: 1386 * 1387 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1388 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1389 * SK_DROP : terminate lookup with -ECONNREFUSED 1390 * 1391 * This macro aggregates return values and selected sockets from 1392 * multiple BPF programs according to following rules in order: 1393 * 1394 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1395 * macro result is SK_PASS and last ctx.selected_sk is used. 1396 * 2. If any program returned SK_DROP return value, 1397 * macro result is SK_DROP. 1398 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1399 * 1400 * Caller must ensure that the prog array is non-NULL, and that the 1401 * array as well as the programs it contains remain valid. 1402 */ 1403 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1404 ({ \ 1405 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1406 struct bpf_prog_array_item *_item; \ 1407 struct sock *_selected_sk = NULL; \ 1408 bool _no_reuseport = false; \ 1409 struct bpf_prog *_prog; \ 1410 bool _all_pass = true; \ 1411 u32 _ret; \ 1412 \ 1413 migrate_disable(); \ 1414 _item = &(array)->items[0]; \ 1415 while ((_prog = READ_ONCE(_item->prog))) { \ 1416 /* restore most recent selection */ \ 1417 _ctx->selected_sk = _selected_sk; \ 1418 _ctx->no_reuseport = _no_reuseport; \ 1419 \ 1420 _ret = func(_prog, _ctx); \ 1421 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1422 /* remember last non-NULL socket */ \ 1423 _selected_sk = _ctx->selected_sk; \ 1424 _no_reuseport = _ctx->no_reuseport; \ 1425 } else if (_ret == SK_DROP && _all_pass) { \ 1426 _all_pass = false; \ 1427 } \ 1428 _item++; \ 1429 } \ 1430 _ctx->selected_sk = _selected_sk; \ 1431 _ctx->no_reuseport = _no_reuseport; \ 1432 migrate_enable(); \ 1433 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1434 }) 1435 1436 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1437 const __be32 saddr, const __be16 sport, 1438 const __be32 daddr, const u16 dport, 1439 struct sock **psk) 1440 { 1441 struct bpf_prog_array *run_array; 1442 struct sock *selected_sk = NULL; 1443 bool no_reuseport = false; 1444 1445 rcu_read_lock(); 1446 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1447 if (run_array) { 1448 struct bpf_sk_lookup_kern ctx = { 1449 .family = AF_INET, 1450 .protocol = protocol, 1451 .v4.saddr = saddr, 1452 .v4.daddr = daddr, 1453 .sport = sport, 1454 .dport = dport, 1455 }; 1456 u32 act; 1457 1458 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1459 if (act == SK_PASS) { 1460 selected_sk = ctx.selected_sk; 1461 no_reuseport = ctx.no_reuseport; 1462 } else { 1463 selected_sk = ERR_PTR(-ECONNREFUSED); 1464 } 1465 } 1466 rcu_read_unlock(); 1467 *psk = selected_sk; 1468 return no_reuseport; 1469 } 1470 1471 #if IS_ENABLED(CONFIG_IPV6) 1472 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1473 const struct in6_addr *saddr, 1474 const __be16 sport, 1475 const struct in6_addr *daddr, 1476 const u16 dport, 1477 struct sock **psk) 1478 { 1479 struct bpf_prog_array *run_array; 1480 struct sock *selected_sk = NULL; 1481 bool no_reuseport = false; 1482 1483 rcu_read_lock(); 1484 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1485 if (run_array) { 1486 struct bpf_sk_lookup_kern ctx = { 1487 .family = AF_INET6, 1488 .protocol = protocol, 1489 .v6.saddr = saddr, 1490 .v6.daddr = daddr, 1491 .sport = sport, 1492 .dport = dport, 1493 }; 1494 u32 act; 1495 1496 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1497 if (act == SK_PASS) { 1498 selected_sk = ctx.selected_sk; 1499 no_reuseport = ctx.no_reuseport; 1500 } else { 1501 selected_sk = ERR_PTR(-ECONNREFUSED); 1502 } 1503 } 1504 rcu_read_unlock(); 1505 *psk = selected_sk; 1506 return no_reuseport; 1507 } 1508 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1509 1510 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, 1511 u64 flags, const u64 flag_mask, 1512 void *lookup_elem(struct bpf_map *map, u32 key)) 1513 { 1514 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1515 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1516 1517 /* Lower bits of the flags are used as return code on lookup failure */ 1518 if (unlikely(flags & ~(action_mask | flag_mask))) 1519 return XDP_ABORTED; 1520 1521 ri->tgt_value = lookup_elem(map, ifindex); 1522 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1523 /* If the lookup fails we want to clear out the state in the 1524 * redirect_info struct completely, so that if an eBPF program 1525 * performs multiple lookups, the last one always takes 1526 * precedence. 1527 */ 1528 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1529 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1530 return flags & action_mask; 1531 } 1532 1533 ri->tgt_index = ifindex; 1534 ri->map_id = map->id; 1535 ri->map_type = map->map_type; 1536 1537 if (flags & BPF_F_BROADCAST) { 1538 WRITE_ONCE(ri->map, map); 1539 ri->flags = flags; 1540 } else { 1541 WRITE_ONCE(ri->map, NULL); 1542 ri->flags = 0; 1543 } 1544 1545 return XDP_REDIRECT; 1546 } 1547 1548 #endif /* __LINUX_FILTER_H__ */ 1549