xref: /linux-6.15/include/linux/filter.h (revision bb4e9af0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 #include <linux/vmalloc.h>
24 
25 #include <net/sch_generic.h>
26 
27 #include <uapi/linux/filter.h>
28 #include <uapi/linux/bpf.h>
29 
30 struct sk_buff;
31 struct sock;
32 struct seccomp_data;
33 struct bpf_prog_aux;
34 struct xdp_rxq_info;
35 struct xdp_buff;
36 struct sock_reuseport;
37 struct ctl_table;
38 struct ctl_table_header;
39 
40 /* ArgX, context and stack frame pointer register positions. Note,
41  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
42  * calls in BPF_CALL instruction.
43  */
44 #define BPF_REG_ARG1	BPF_REG_1
45 #define BPF_REG_ARG2	BPF_REG_2
46 #define BPF_REG_ARG3	BPF_REG_3
47 #define BPF_REG_ARG4	BPF_REG_4
48 #define BPF_REG_ARG5	BPF_REG_5
49 #define BPF_REG_CTX	BPF_REG_6
50 #define BPF_REG_FP	BPF_REG_10
51 
52 /* Additional register mappings for converted user programs. */
53 #define BPF_REG_A	BPF_REG_0
54 #define BPF_REG_X	BPF_REG_7
55 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
56 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
57 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
58 
59 /* Kernel hidden auxiliary/helper register. */
60 #define BPF_REG_AX		MAX_BPF_REG
61 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
62 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
63 
64 /* unused opcode to mark special call to bpf_tail_call() helper */
65 #define BPF_TAIL_CALL	0xf0
66 
67 /* unused opcode to mark call to interpreter with arguments */
68 #define BPF_CALL_ARGS	0xe0
69 
70 /* As per nm, we expose JITed images as text (code) section for
71  * kallsyms. That way, tools like perf can find it to match
72  * addresses.
73  */
74 #define BPF_SYM_ELF_TYPE	't'
75 
76 /* BPF program can access up to 512 bytes of stack space. */
77 #define MAX_BPF_STACK	512
78 
79 /* Helper macros for filter block array initializers. */
80 
81 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
82 
83 #define BPF_ALU64_REG(OP, DST, SRC)				\
84 	((struct bpf_insn) {					\
85 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
86 		.dst_reg = DST,					\
87 		.src_reg = SRC,					\
88 		.off   = 0,					\
89 		.imm   = 0 })
90 
91 #define BPF_ALU32_REG(OP, DST, SRC)				\
92 	((struct bpf_insn) {					\
93 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
94 		.dst_reg = DST,					\
95 		.src_reg = SRC,					\
96 		.off   = 0,					\
97 		.imm   = 0 })
98 
99 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
100 
101 #define BPF_ALU64_IMM(OP, DST, IMM)				\
102 	((struct bpf_insn) {					\
103 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
104 		.dst_reg = DST,					\
105 		.src_reg = 0,					\
106 		.off   = 0,					\
107 		.imm   = IMM })
108 
109 #define BPF_ALU32_IMM(OP, DST, IMM)				\
110 	((struct bpf_insn) {					\
111 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
112 		.dst_reg = DST,					\
113 		.src_reg = 0,					\
114 		.off   = 0,					\
115 		.imm   = IMM })
116 
117 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
118 
119 #define BPF_ENDIAN(TYPE, DST, LEN)				\
120 	((struct bpf_insn) {					\
121 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
122 		.dst_reg = DST,					\
123 		.src_reg = 0,					\
124 		.off   = 0,					\
125 		.imm   = LEN })
126 
127 /* Short form of mov, dst_reg = src_reg */
128 
129 #define BPF_MOV64_REG(DST, SRC)					\
130 	((struct bpf_insn) {					\
131 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
132 		.dst_reg = DST,					\
133 		.src_reg = SRC,					\
134 		.off   = 0,					\
135 		.imm   = 0 })
136 
137 #define BPF_MOV32_REG(DST, SRC)					\
138 	((struct bpf_insn) {					\
139 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
140 		.dst_reg = DST,					\
141 		.src_reg = SRC,					\
142 		.off   = 0,					\
143 		.imm   = 0 })
144 
145 /* Short form of mov, dst_reg = imm32 */
146 
147 #define BPF_MOV64_IMM(DST, IMM)					\
148 	((struct bpf_insn) {					\
149 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
150 		.dst_reg = DST,					\
151 		.src_reg = 0,					\
152 		.off   = 0,					\
153 		.imm   = IMM })
154 
155 #define BPF_MOV32_IMM(DST, IMM)					\
156 	((struct bpf_insn) {					\
157 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
158 		.dst_reg = DST,					\
159 		.src_reg = 0,					\
160 		.off   = 0,					\
161 		.imm   = IMM })
162 
163 /* Special form of mov32, used for doing explicit zero extension on dst. */
164 #define BPF_ZEXT_REG(DST)					\
165 	((struct bpf_insn) {					\
166 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
167 		.dst_reg = DST,					\
168 		.src_reg = DST,					\
169 		.off   = 0,					\
170 		.imm   = 1 })
171 
172 static inline bool insn_is_zext(const struct bpf_insn *insn)
173 {
174 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
175 }
176 
177 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
178 #define BPF_LD_IMM64(DST, IMM)					\
179 	BPF_LD_IMM64_RAW(DST, 0, IMM)
180 
181 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
182 	((struct bpf_insn) {					\
183 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
184 		.dst_reg = DST,					\
185 		.src_reg = SRC,					\
186 		.off   = 0,					\
187 		.imm   = (__u32) (IMM) }),			\
188 	((struct bpf_insn) {					\
189 		.code  = 0, /* zero is reserved opcode */	\
190 		.dst_reg = 0,					\
191 		.src_reg = 0,					\
192 		.off   = 0,					\
193 		.imm   = ((__u64) (IMM)) >> 32 })
194 
195 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
196 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
197 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
198 
199 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
200 
201 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
202 	((struct bpf_insn) {					\
203 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
204 		.dst_reg = DST,					\
205 		.src_reg = SRC,					\
206 		.off   = 0,					\
207 		.imm   = IMM })
208 
209 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
210 	((struct bpf_insn) {					\
211 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
212 		.dst_reg = DST,					\
213 		.src_reg = SRC,					\
214 		.off   = 0,					\
215 		.imm   = IMM })
216 
217 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
218 
219 #define BPF_LD_ABS(SIZE, IMM)					\
220 	((struct bpf_insn) {					\
221 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
222 		.dst_reg = 0,					\
223 		.src_reg = 0,					\
224 		.off   = 0,					\
225 		.imm   = IMM })
226 
227 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
228 
229 #define BPF_LD_IND(SIZE, SRC, IMM)				\
230 	((struct bpf_insn) {					\
231 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
232 		.dst_reg = 0,					\
233 		.src_reg = SRC,					\
234 		.off   = 0,					\
235 		.imm   = IMM })
236 
237 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
238 
239 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
240 	((struct bpf_insn) {					\
241 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
242 		.dst_reg = DST,					\
243 		.src_reg = SRC,					\
244 		.off   = OFF,					\
245 		.imm   = 0 })
246 
247 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
248 
249 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
250 	((struct bpf_insn) {					\
251 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
252 		.dst_reg = DST,					\
253 		.src_reg = SRC,					\
254 		.off   = OFF,					\
255 		.imm   = 0 })
256 
257 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
258 
259 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
260 	((struct bpf_insn) {					\
261 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
262 		.dst_reg = DST,					\
263 		.src_reg = SRC,					\
264 		.off   = OFF,					\
265 		.imm   = 0 })
266 
267 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
268 
269 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
270 	((struct bpf_insn) {					\
271 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
272 		.dst_reg = DST,					\
273 		.src_reg = 0,					\
274 		.off   = OFF,					\
275 		.imm   = IMM })
276 
277 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
278 
279 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
280 	((struct bpf_insn) {					\
281 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
282 		.dst_reg = DST,					\
283 		.src_reg = SRC,					\
284 		.off   = OFF,					\
285 		.imm   = 0 })
286 
287 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
288 
289 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
290 	((struct bpf_insn) {					\
291 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
292 		.dst_reg = DST,					\
293 		.src_reg = 0,					\
294 		.off   = OFF,					\
295 		.imm   = IMM })
296 
297 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
298 
299 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
300 	((struct bpf_insn) {					\
301 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
302 		.dst_reg = DST,					\
303 		.src_reg = SRC,					\
304 		.off   = OFF,					\
305 		.imm   = 0 })
306 
307 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
308 
309 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
310 	((struct bpf_insn) {					\
311 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
312 		.dst_reg = DST,					\
313 		.src_reg = 0,					\
314 		.off   = OFF,					\
315 		.imm   = IMM })
316 
317 /* Unconditional jumps, goto pc + off16 */
318 
319 #define BPF_JMP_A(OFF)						\
320 	((struct bpf_insn) {					\
321 		.code  = BPF_JMP | BPF_JA,			\
322 		.dst_reg = 0,					\
323 		.src_reg = 0,					\
324 		.off   = OFF,					\
325 		.imm   = 0 })
326 
327 /* Relative call */
328 
329 #define BPF_CALL_REL(TGT)					\
330 	((struct bpf_insn) {					\
331 		.code  = BPF_JMP | BPF_CALL,			\
332 		.dst_reg = 0,					\
333 		.src_reg = BPF_PSEUDO_CALL,			\
334 		.off   = 0,					\
335 		.imm   = TGT })
336 
337 /* Function call */
338 
339 #define BPF_CAST_CALL(x)					\
340 		((u64 (*)(u64, u64, u64, u64, u64))(x))
341 
342 #define BPF_EMIT_CALL(FUNC)					\
343 	((struct bpf_insn) {					\
344 		.code  = BPF_JMP | BPF_CALL,			\
345 		.dst_reg = 0,					\
346 		.src_reg = 0,					\
347 		.off   = 0,					\
348 		.imm   = ((FUNC) - __bpf_call_base) })
349 
350 /* Raw code statement block */
351 
352 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
353 	((struct bpf_insn) {					\
354 		.code  = CODE,					\
355 		.dst_reg = DST,					\
356 		.src_reg = SRC,					\
357 		.off   = OFF,					\
358 		.imm   = IMM })
359 
360 /* Program exit */
361 
362 #define BPF_EXIT_INSN()						\
363 	((struct bpf_insn) {					\
364 		.code  = BPF_JMP | BPF_EXIT,			\
365 		.dst_reg = 0,					\
366 		.src_reg = 0,					\
367 		.off   = 0,					\
368 		.imm   = 0 })
369 
370 /* Internal classic blocks for direct assignment */
371 
372 #define __BPF_STMT(CODE, K)					\
373 	((struct sock_filter) BPF_STMT(CODE, K))
374 
375 #define __BPF_JUMP(CODE, K, JT, JF)				\
376 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
377 
378 #define bytes_to_bpf_size(bytes)				\
379 ({								\
380 	int bpf_size = -EINVAL;					\
381 								\
382 	if (bytes == sizeof(u8))				\
383 		bpf_size = BPF_B;				\
384 	else if (bytes == sizeof(u16))				\
385 		bpf_size = BPF_H;				\
386 	else if (bytes == sizeof(u32))				\
387 		bpf_size = BPF_W;				\
388 	else if (bytes == sizeof(u64))				\
389 		bpf_size = BPF_DW;				\
390 								\
391 	bpf_size;						\
392 })
393 
394 #define bpf_size_to_bytes(bpf_size)				\
395 ({								\
396 	int bytes = -EINVAL;					\
397 								\
398 	if (bpf_size == BPF_B)					\
399 		bytes = sizeof(u8);				\
400 	else if (bpf_size == BPF_H)				\
401 		bytes = sizeof(u16);				\
402 	else if (bpf_size == BPF_W)				\
403 		bytes = sizeof(u32);				\
404 	else if (bpf_size == BPF_DW)				\
405 		bytes = sizeof(u64);				\
406 								\
407 	bytes;							\
408 })
409 
410 #define BPF_SIZEOF(type)					\
411 	({							\
412 		const int __size = bytes_to_bpf_size(sizeof(type)); \
413 		BUILD_BUG_ON(__size < 0);			\
414 		__size;						\
415 	})
416 
417 #define BPF_FIELD_SIZEOF(type, field)				\
418 	({							\
419 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
420 		BUILD_BUG_ON(__size < 0);			\
421 		__size;						\
422 	})
423 
424 #define BPF_LDST_BYTES(insn)					\
425 	({							\
426 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
427 		WARN_ON(__size < 0);				\
428 		__size;						\
429 	})
430 
431 #define __BPF_MAP_0(m, v, ...) v
432 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
433 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
434 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
435 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
436 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
437 
438 #define __BPF_REG_0(...) __BPF_PAD(5)
439 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
440 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
441 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
442 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
443 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
444 
445 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
446 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
447 
448 #define __BPF_CAST(t, a)						       \
449 	(__force t)							       \
450 	(__force							       \
451 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
452 				      (unsigned long)0, (t)0))) a
453 #define __BPF_V void
454 #define __BPF_N
455 
456 #define __BPF_DECL_ARGS(t, a) t   a
457 #define __BPF_DECL_REGS(t, a) u64 a
458 
459 #define __BPF_PAD(n)							       \
460 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
461 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
462 
463 #define BPF_CALL_x(x, name, ...)					       \
464 	static __always_inline						       \
465 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
466 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
467 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
468 	{								       \
469 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
470 	}								       \
471 	static __always_inline						       \
472 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
473 
474 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
475 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
476 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
477 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
478 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
479 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
480 
481 #define bpf_ctx_range(TYPE, MEMBER)						\
482 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
483 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
484 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
485 #if BITS_PER_LONG == 64
486 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
487 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
488 #else
489 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
490 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
491 #endif /* BITS_PER_LONG == 64 */
492 
493 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
494 	({									\
495 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
496 		*(PTR_SIZE) = (SIZE);						\
497 		offsetof(TYPE, MEMBER);						\
498 	})
499 
500 #ifdef CONFIG_COMPAT
501 /* A struct sock_filter is architecture independent. */
502 struct compat_sock_fprog {
503 	u16		len;
504 	compat_uptr_t	filter;	/* struct sock_filter * */
505 };
506 #endif
507 
508 struct sock_fprog_kern {
509 	u16			len;
510 	struct sock_filter	*filter;
511 };
512 
513 struct bpf_binary_header {
514 	u32 pages;
515 	/* Some arches need word alignment for their instructions */
516 	u8 image[] __aligned(4);
517 };
518 
519 struct bpf_prog {
520 	u16			pages;		/* Number of allocated pages */
521 	u16			jited:1,	/* Is our filter JIT'ed? */
522 				jit_requested:1,/* archs need to JIT the prog */
523 				gpl_compatible:1, /* Is filter GPL compatible? */
524 				cb_access:1,	/* Is control block accessed? */
525 				dst_needed:1,	/* Do we need dst entry? */
526 				blinded:1,	/* Was blinded */
527 				is_func:1,	/* program is a bpf function */
528 				kprobe_override:1, /* Do we override a kprobe? */
529 				has_callchain_buf:1, /* callchain buffer allocated? */
530 				enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
531 	enum bpf_prog_type	type;		/* Type of BPF program */
532 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
533 	u32			len;		/* Number of filter blocks */
534 	u32			jited_len;	/* Size of jited insns in bytes */
535 	u8			tag[BPF_TAG_SIZE];
536 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
537 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
538 	unsigned int		(*bpf_func)(const void *ctx,
539 					    const struct bpf_insn *insn);
540 	/* Instructions for interpreter */
541 	union {
542 		struct sock_filter	insns[0];
543 		struct bpf_insn		insnsi[0];
544 	};
545 };
546 
547 struct sk_filter {
548 	refcount_t	refcnt;
549 	struct rcu_head	rcu;
550 	struct bpf_prog	*prog;
551 };
552 
553 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
554 
555 #define BPF_PROG_RUN(prog, ctx)	({				\
556 	u32 ret;						\
557 	cant_sleep();						\
558 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {	\
559 		struct bpf_prog_stats *stats;			\
560 		u64 start = sched_clock();			\
561 		ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi);	\
562 		stats = this_cpu_ptr(prog->aux->stats);		\
563 		u64_stats_update_begin(&stats->syncp);		\
564 		stats->cnt++;					\
565 		stats->nsecs += sched_clock() - start;		\
566 		u64_stats_update_end(&stats->syncp);		\
567 	} else {						\
568 		ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi);	\
569 	}							\
570 	ret; })
571 
572 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
573 
574 struct bpf_skb_data_end {
575 	struct qdisc_skb_cb qdisc_cb;
576 	void *data_meta;
577 	void *data_end;
578 };
579 
580 struct bpf_redirect_info {
581 	u32 flags;
582 	u32 tgt_index;
583 	void *tgt_value;
584 	struct bpf_map *map;
585 	struct bpf_map *map_to_flush;
586 	u32 kern_flags;
587 };
588 
589 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
590 
591 /* flags for bpf_redirect_info kern_flags */
592 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
593 
594 /* Compute the linear packet data range [data, data_end) which
595  * will be accessed by various program types (cls_bpf, act_bpf,
596  * lwt, ...). Subsystems allowing direct data access must (!)
597  * ensure that cb[] area can be written to when BPF program is
598  * invoked (otherwise cb[] save/restore is necessary).
599  */
600 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
601 {
602 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
603 
604 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
605 	cb->data_meta = skb->data - skb_metadata_len(skb);
606 	cb->data_end  = skb->data + skb_headlen(skb);
607 }
608 
609 /* Similar to bpf_compute_data_pointers(), except that save orginal
610  * data in cb->data and cb->meta_data for restore.
611  */
612 static inline void bpf_compute_and_save_data_end(
613 	struct sk_buff *skb, void **saved_data_end)
614 {
615 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
616 
617 	*saved_data_end = cb->data_end;
618 	cb->data_end  = skb->data + skb_headlen(skb);
619 }
620 
621 /* Restore data saved by bpf_compute_data_pointers(). */
622 static inline void bpf_restore_data_end(
623 	struct sk_buff *skb, void *saved_data_end)
624 {
625 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
626 
627 	cb->data_end = saved_data_end;
628 }
629 
630 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
631 {
632 	/* eBPF programs may read/write skb->cb[] area to transfer meta
633 	 * data between tail calls. Since this also needs to work with
634 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
635 	 *
636 	 * In some socket filter cases, the cb unfortunately needs to be
637 	 * saved/restored so that protocol specific skb->cb[] data won't
638 	 * be lost. In any case, due to unpriviledged eBPF programs
639 	 * attached to sockets, we need to clear the bpf_skb_cb() area
640 	 * to not leak previous contents to user space.
641 	 */
642 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
643 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
644 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
645 
646 	return qdisc_skb_cb(skb)->data;
647 }
648 
649 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
650 					 struct sk_buff *skb)
651 {
652 	u8 *cb_data = bpf_skb_cb(skb);
653 	u8 cb_saved[BPF_SKB_CB_LEN];
654 	u32 res;
655 
656 	if (unlikely(prog->cb_access)) {
657 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
658 		memset(cb_data, 0, sizeof(cb_saved));
659 	}
660 
661 	res = BPF_PROG_RUN(prog, skb);
662 
663 	if (unlikely(prog->cb_access))
664 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
665 
666 	return res;
667 }
668 
669 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
670 				       struct sk_buff *skb)
671 {
672 	u32 res;
673 
674 	preempt_disable();
675 	res = __bpf_prog_run_save_cb(prog, skb);
676 	preempt_enable();
677 	return res;
678 }
679 
680 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
681 					struct sk_buff *skb)
682 {
683 	u8 *cb_data = bpf_skb_cb(skb);
684 	u32 res;
685 
686 	if (unlikely(prog->cb_access))
687 		memset(cb_data, 0, BPF_SKB_CB_LEN);
688 
689 	preempt_disable();
690 	res = BPF_PROG_RUN(prog, skb);
691 	preempt_enable();
692 	return res;
693 }
694 
695 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
696 					    struct xdp_buff *xdp)
697 {
698 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
699 	 * can be released while still running, or map elements could be
700 	 * freed early while still having concurrent users. XDP fastpath
701 	 * already takes rcu_read_lock() when fetching the program, so
702 	 * it's not necessary here anymore.
703 	 */
704 	return BPF_PROG_RUN(prog, xdp);
705 }
706 
707 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
708 {
709 	return prog->len * sizeof(struct bpf_insn);
710 }
711 
712 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
713 {
714 	return round_up(bpf_prog_insn_size(prog) +
715 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
716 }
717 
718 static inline unsigned int bpf_prog_size(unsigned int proglen)
719 {
720 	return max(sizeof(struct bpf_prog),
721 		   offsetof(struct bpf_prog, insns[proglen]));
722 }
723 
724 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
725 {
726 	/* When classic BPF programs have been loaded and the arch
727 	 * does not have a classic BPF JIT (anymore), they have been
728 	 * converted via bpf_migrate_filter() to eBPF and thus always
729 	 * have an unspec program type.
730 	 */
731 	return prog->type == BPF_PROG_TYPE_UNSPEC;
732 }
733 
734 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
735 {
736 	const u32 size_machine = sizeof(unsigned long);
737 
738 	if (size > size_machine && size % size_machine == 0)
739 		size = size_machine;
740 
741 	return size;
742 }
743 
744 static inline bool
745 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
746 {
747 	return size <= size_default && (size & (size - 1)) == 0;
748 }
749 
750 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
751 	(size == sizeof(__u64) &&					\
752 	off >= offsetof(type, field) &&					\
753 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
754 	off % sizeof(__u64) == 0)
755 
756 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
757 
758 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
759 {
760 	set_vm_flush_reset_perms(fp);
761 	set_memory_ro((unsigned long)fp, fp->pages);
762 }
763 
764 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
765 {
766 	set_vm_flush_reset_perms(hdr);
767 	set_memory_ro((unsigned long)hdr, hdr->pages);
768 	set_memory_x((unsigned long)hdr, hdr->pages);
769 }
770 
771 static inline struct bpf_binary_header *
772 bpf_jit_binary_hdr(const struct bpf_prog *fp)
773 {
774 	unsigned long real_start = (unsigned long)fp->bpf_func;
775 	unsigned long addr = real_start & PAGE_MASK;
776 
777 	return (void *)addr;
778 }
779 
780 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
781 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
782 {
783 	return sk_filter_trim_cap(sk, skb, 1);
784 }
785 
786 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
787 void bpf_prog_free(struct bpf_prog *fp);
788 
789 bool bpf_opcode_in_insntable(u8 code);
790 
791 void bpf_prog_free_linfo(struct bpf_prog *prog);
792 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
793 			       const u32 *insn_to_jit_off);
794 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
795 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
796 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
797 
798 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
799 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
800 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
801 				  gfp_t gfp_extra_flags);
802 void __bpf_prog_free(struct bpf_prog *fp);
803 
804 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
805 {
806 	__bpf_prog_free(fp);
807 }
808 
809 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
810 				       unsigned int flen);
811 
812 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
813 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
814 			      bpf_aux_classic_check_t trans, bool save_orig);
815 void bpf_prog_destroy(struct bpf_prog *fp);
816 
817 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
818 int sk_attach_bpf(u32 ufd, struct sock *sk);
819 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
820 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
821 void sk_reuseport_prog_free(struct bpf_prog *prog);
822 int sk_detach_filter(struct sock *sk);
823 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
824 		  unsigned int len);
825 
826 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
827 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
828 
829 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
830 #define __bpf_call_base_args \
831 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
832 	 __bpf_call_base)
833 
834 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
835 void bpf_jit_compile(struct bpf_prog *prog);
836 bool bpf_jit_needs_zext(void);
837 bool bpf_helper_changes_pkt_data(void *func);
838 
839 static inline bool bpf_dump_raw_ok(void)
840 {
841 	/* Reconstruction of call-sites is dependent on kallsyms,
842 	 * thus make dump the same restriction.
843 	 */
844 	return kallsyms_show_value() == 1;
845 }
846 
847 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
848 				       const struct bpf_insn *patch, u32 len);
849 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
850 
851 void bpf_clear_redirect_map(struct bpf_map *map);
852 
853 static inline bool xdp_return_frame_no_direct(void)
854 {
855 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
856 
857 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
858 }
859 
860 static inline void xdp_set_return_frame_no_direct(void)
861 {
862 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
863 
864 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
865 }
866 
867 static inline void xdp_clear_return_frame_no_direct(void)
868 {
869 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
870 
871 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
872 }
873 
874 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
875 				 unsigned int pktlen)
876 {
877 	unsigned int len;
878 
879 	if (unlikely(!(fwd->flags & IFF_UP)))
880 		return -ENETDOWN;
881 
882 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
883 	if (pktlen > len)
884 		return -EMSGSIZE;
885 
886 	return 0;
887 }
888 
889 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
890  * same cpu context. Further for best results no more than a single map
891  * for the do_redirect/do_flush pair should be used. This limitation is
892  * because we only track one map and force a flush when the map changes.
893  * This does not appear to be a real limitation for existing software.
894  */
895 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
896 			    struct xdp_buff *xdp, struct bpf_prog *prog);
897 int xdp_do_redirect(struct net_device *dev,
898 		    struct xdp_buff *xdp,
899 		    struct bpf_prog *prog);
900 void xdp_do_flush_map(void);
901 
902 void bpf_warn_invalid_xdp_action(u32 act);
903 
904 #ifdef CONFIG_INET
905 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
906 				  struct bpf_prog *prog, struct sk_buff *skb,
907 				  u32 hash);
908 #else
909 static inline struct sock *
910 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
911 		     struct bpf_prog *prog, struct sk_buff *skb,
912 		     u32 hash)
913 {
914 	return NULL;
915 }
916 #endif
917 
918 #ifdef CONFIG_BPF_JIT
919 extern int bpf_jit_enable;
920 extern int bpf_jit_harden;
921 extern int bpf_jit_kallsyms;
922 extern long bpf_jit_limit;
923 
924 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
925 
926 struct bpf_binary_header *
927 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
928 		     unsigned int alignment,
929 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
930 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
931 u64 bpf_jit_alloc_exec_limit(void);
932 void *bpf_jit_alloc_exec(unsigned long size);
933 void bpf_jit_free_exec(void *addr);
934 void bpf_jit_free(struct bpf_prog *fp);
935 
936 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
937 			  const struct bpf_insn *insn, bool extra_pass,
938 			  u64 *func_addr, bool *func_addr_fixed);
939 
940 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
941 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
942 
943 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
944 				u32 pass, void *image)
945 {
946 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
947 	       proglen, pass, image, current->comm, task_pid_nr(current));
948 
949 	if (image)
950 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
951 			       16, 1, image, proglen, false);
952 }
953 
954 static inline bool bpf_jit_is_ebpf(void)
955 {
956 # ifdef CONFIG_HAVE_EBPF_JIT
957 	return true;
958 # else
959 	return false;
960 # endif
961 }
962 
963 static inline bool ebpf_jit_enabled(void)
964 {
965 	return bpf_jit_enable && bpf_jit_is_ebpf();
966 }
967 
968 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
969 {
970 	return fp->jited && bpf_jit_is_ebpf();
971 }
972 
973 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
974 {
975 	/* These are the prerequisites, should someone ever have the
976 	 * idea to call blinding outside of them, we make sure to
977 	 * bail out.
978 	 */
979 	if (!bpf_jit_is_ebpf())
980 		return false;
981 	if (!prog->jit_requested)
982 		return false;
983 	if (!bpf_jit_harden)
984 		return false;
985 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
986 		return false;
987 
988 	return true;
989 }
990 
991 static inline bool bpf_jit_kallsyms_enabled(void)
992 {
993 	/* There are a couple of corner cases where kallsyms should
994 	 * not be enabled f.e. on hardening.
995 	 */
996 	if (bpf_jit_harden)
997 		return false;
998 	if (!bpf_jit_kallsyms)
999 		return false;
1000 	if (bpf_jit_kallsyms == 1)
1001 		return true;
1002 
1003 	return false;
1004 }
1005 
1006 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1007 				 unsigned long *off, char *sym);
1008 bool is_bpf_text_address(unsigned long addr);
1009 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1010 		    char *sym);
1011 
1012 static inline const char *
1013 bpf_address_lookup(unsigned long addr, unsigned long *size,
1014 		   unsigned long *off, char **modname, char *sym)
1015 {
1016 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1017 
1018 	if (ret && modname)
1019 		*modname = NULL;
1020 	return ret;
1021 }
1022 
1023 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1024 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1025 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1026 
1027 #else /* CONFIG_BPF_JIT */
1028 
1029 static inline bool ebpf_jit_enabled(void)
1030 {
1031 	return false;
1032 }
1033 
1034 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1035 {
1036 	return false;
1037 }
1038 
1039 static inline void bpf_jit_free(struct bpf_prog *fp)
1040 {
1041 	bpf_prog_unlock_free(fp);
1042 }
1043 
1044 static inline bool bpf_jit_kallsyms_enabled(void)
1045 {
1046 	return false;
1047 }
1048 
1049 static inline const char *
1050 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1051 		     unsigned long *off, char *sym)
1052 {
1053 	return NULL;
1054 }
1055 
1056 static inline bool is_bpf_text_address(unsigned long addr)
1057 {
1058 	return false;
1059 }
1060 
1061 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1062 				  char *type, char *sym)
1063 {
1064 	return -ERANGE;
1065 }
1066 
1067 static inline const char *
1068 bpf_address_lookup(unsigned long addr, unsigned long *size,
1069 		   unsigned long *off, char **modname, char *sym)
1070 {
1071 	return NULL;
1072 }
1073 
1074 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1075 {
1076 }
1077 
1078 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1079 {
1080 }
1081 
1082 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1083 {
1084 	sym[0] = '\0';
1085 }
1086 
1087 #endif /* CONFIG_BPF_JIT */
1088 
1089 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
1090 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1091 
1092 #define BPF_ANC		BIT(15)
1093 
1094 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1095 {
1096 	switch (first->code) {
1097 	case BPF_RET | BPF_K:
1098 	case BPF_LD | BPF_W | BPF_LEN:
1099 		return false;
1100 
1101 	case BPF_LD | BPF_W | BPF_ABS:
1102 	case BPF_LD | BPF_H | BPF_ABS:
1103 	case BPF_LD | BPF_B | BPF_ABS:
1104 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1105 			return true;
1106 		return false;
1107 
1108 	default:
1109 		return true;
1110 	}
1111 }
1112 
1113 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1114 {
1115 	BUG_ON(ftest->code & BPF_ANC);
1116 
1117 	switch (ftest->code) {
1118 	case BPF_LD | BPF_W | BPF_ABS:
1119 	case BPF_LD | BPF_H | BPF_ABS:
1120 	case BPF_LD | BPF_B | BPF_ABS:
1121 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1122 				return BPF_ANC | SKF_AD_##CODE
1123 		switch (ftest->k) {
1124 		BPF_ANCILLARY(PROTOCOL);
1125 		BPF_ANCILLARY(PKTTYPE);
1126 		BPF_ANCILLARY(IFINDEX);
1127 		BPF_ANCILLARY(NLATTR);
1128 		BPF_ANCILLARY(NLATTR_NEST);
1129 		BPF_ANCILLARY(MARK);
1130 		BPF_ANCILLARY(QUEUE);
1131 		BPF_ANCILLARY(HATYPE);
1132 		BPF_ANCILLARY(RXHASH);
1133 		BPF_ANCILLARY(CPU);
1134 		BPF_ANCILLARY(ALU_XOR_X);
1135 		BPF_ANCILLARY(VLAN_TAG);
1136 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1137 		BPF_ANCILLARY(PAY_OFFSET);
1138 		BPF_ANCILLARY(RANDOM);
1139 		BPF_ANCILLARY(VLAN_TPID);
1140 		}
1141 		/* Fallthrough. */
1142 	default:
1143 		return ftest->code;
1144 	}
1145 }
1146 
1147 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1148 					   int k, unsigned int size);
1149 
1150 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1151 				     unsigned int size, void *buffer)
1152 {
1153 	if (k >= 0)
1154 		return skb_header_pointer(skb, k, size, buffer);
1155 
1156 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1157 }
1158 
1159 static inline int bpf_tell_extensions(void)
1160 {
1161 	return SKF_AD_MAX;
1162 }
1163 
1164 struct bpf_sock_addr_kern {
1165 	struct sock *sk;
1166 	struct sockaddr *uaddr;
1167 	/* Temporary "register" to make indirect stores to nested structures
1168 	 * defined above. We need three registers to make such a store, but
1169 	 * only two (src and dst) are available at convert_ctx_access time
1170 	 */
1171 	u64 tmp_reg;
1172 	void *t_ctx;	/* Attach type specific context. */
1173 };
1174 
1175 struct bpf_sock_ops_kern {
1176 	struct	sock *sk;
1177 	u32	op;
1178 	union {
1179 		u32 args[4];
1180 		u32 reply;
1181 		u32 replylong[4];
1182 	};
1183 	u32	is_fullsock;
1184 	u64	temp;			/* temp and everything after is not
1185 					 * initialized to 0 before calling
1186 					 * the BPF program. New fields that
1187 					 * should be initialized to 0 should
1188 					 * be inserted before temp.
1189 					 * temp is scratch storage used by
1190 					 * sock_ops_convert_ctx_access
1191 					 * as temporary storage of a register.
1192 					 */
1193 };
1194 
1195 struct bpf_sysctl_kern {
1196 	struct ctl_table_header *head;
1197 	struct ctl_table *table;
1198 	void *cur_val;
1199 	size_t cur_len;
1200 	void *new_val;
1201 	size_t new_len;
1202 	int new_updated;
1203 	int write;
1204 	loff_t *ppos;
1205 	/* Temporary "register" for indirect stores to ppos. */
1206 	u64 tmp_reg;
1207 };
1208 
1209 struct bpf_sockopt_kern {
1210 	struct sock	*sk;
1211 	u8		*optval;
1212 	u8		*optval_end;
1213 	s32		level;
1214 	s32		optname;
1215 	s32		optlen;
1216 	s32		retval;
1217 };
1218 
1219 #endif /* __LINUX_FILTER_H__ */
1220