1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <stdarg.h> 9 10 #include <linux/atomic.h> 11 #include <linux/refcount.h> 12 #include <linux/compat.h> 13 #include <linux/skbuff.h> 14 #include <linux/linkage.h> 15 #include <linux/printk.h> 16 #include <linux/workqueue.h> 17 #include <linux/sched.h> 18 #include <linux/capability.h> 19 #include <linux/cryptohash.h> 20 #include <linux/set_memory.h> 21 #include <linux/kallsyms.h> 22 #include <linux/if_vlan.h> 23 #include <linux/vmalloc.h> 24 25 #include <net/sch_generic.h> 26 27 #include <uapi/linux/filter.h> 28 #include <uapi/linux/bpf.h> 29 30 struct sk_buff; 31 struct sock; 32 struct seccomp_data; 33 struct bpf_prog_aux; 34 struct xdp_rxq_info; 35 struct xdp_buff; 36 struct sock_reuseport; 37 struct ctl_table; 38 struct ctl_table_header; 39 40 /* ArgX, context and stack frame pointer register positions. Note, 41 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 42 * calls in BPF_CALL instruction. 43 */ 44 #define BPF_REG_ARG1 BPF_REG_1 45 #define BPF_REG_ARG2 BPF_REG_2 46 #define BPF_REG_ARG3 BPF_REG_3 47 #define BPF_REG_ARG4 BPF_REG_4 48 #define BPF_REG_ARG5 BPF_REG_5 49 #define BPF_REG_CTX BPF_REG_6 50 #define BPF_REG_FP BPF_REG_10 51 52 /* Additional register mappings for converted user programs. */ 53 #define BPF_REG_A BPF_REG_0 54 #define BPF_REG_X BPF_REG_7 55 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 56 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 57 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 58 59 /* Kernel hidden auxiliary/helper register. */ 60 #define BPF_REG_AX MAX_BPF_REG 61 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 62 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 63 64 /* unused opcode to mark special call to bpf_tail_call() helper */ 65 #define BPF_TAIL_CALL 0xf0 66 67 /* unused opcode to mark call to interpreter with arguments */ 68 #define BPF_CALL_ARGS 0xe0 69 70 /* As per nm, we expose JITed images as text (code) section for 71 * kallsyms. That way, tools like perf can find it to match 72 * addresses. 73 */ 74 #define BPF_SYM_ELF_TYPE 't' 75 76 /* BPF program can access up to 512 bytes of stack space. */ 77 #define MAX_BPF_STACK 512 78 79 /* Helper macros for filter block array initializers. */ 80 81 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 82 83 #define BPF_ALU64_REG(OP, DST, SRC) \ 84 ((struct bpf_insn) { \ 85 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 86 .dst_reg = DST, \ 87 .src_reg = SRC, \ 88 .off = 0, \ 89 .imm = 0 }) 90 91 #define BPF_ALU32_REG(OP, DST, SRC) \ 92 ((struct bpf_insn) { \ 93 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 94 .dst_reg = DST, \ 95 .src_reg = SRC, \ 96 .off = 0, \ 97 .imm = 0 }) 98 99 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 100 101 #define BPF_ALU64_IMM(OP, DST, IMM) \ 102 ((struct bpf_insn) { \ 103 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 104 .dst_reg = DST, \ 105 .src_reg = 0, \ 106 .off = 0, \ 107 .imm = IMM }) 108 109 #define BPF_ALU32_IMM(OP, DST, IMM) \ 110 ((struct bpf_insn) { \ 111 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 112 .dst_reg = DST, \ 113 .src_reg = 0, \ 114 .off = 0, \ 115 .imm = IMM }) 116 117 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 118 119 #define BPF_ENDIAN(TYPE, DST, LEN) \ 120 ((struct bpf_insn) { \ 121 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 122 .dst_reg = DST, \ 123 .src_reg = 0, \ 124 .off = 0, \ 125 .imm = LEN }) 126 127 /* Short form of mov, dst_reg = src_reg */ 128 129 #define BPF_MOV64_REG(DST, SRC) \ 130 ((struct bpf_insn) { \ 131 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 132 .dst_reg = DST, \ 133 .src_reg = SRC, \ 134 .off = 0, \ 135 .imm = 0 }) 136 137 #define BPF_MOV32_REG(DST, SRC) \ 138 ((struct bpf_insn) { \ 139 .code = BPF_ALU | BPF_MOV | BPF_X, \ 140 .dst_reg = DST, \ 141 .src_reg = SRC, \ 142 .off = 0, \ 143 .imm = 0 }) 144 145 /* Short form of mov, dst_reg = imm32 */ 146 147 #define BPF_MOV64_IMM(DST, IMM) \ 148 ((struct bpf_insn) { \ 149 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 150 .dst_reg = DST, \ 151 .src_reg = 0, \ 152 .off = 0, \ 153 .imm = IMM }) 154 155 #define BPF_MOV32_IMM(DST, IMM) \ 156 ((struct bpf_insn) { \ 157 .code = BPF_ALU | BPF_MOV | BPF_K, \ 158 .dst_reg = DST, \ 159 .src_reg = 0, \ 160 .off = 0, \ 161 .imm = IMM }) 162 163 /* Special form of mov32, used for doing explicit zero extension on dst. */ 164 #define BPF_ZEXT_REG(DST) \ 165 ((struct bpf_insn) { \ 166 .code = BPF_ALU | BPF_MOV | BPF_X, \ 167 .dst_reg = DST, \ 168 .src_reg = DST, \ 169 .off = 0, \ 170 .imm = 1 }) 171 172 static inline bool insn_is_zext(const struct bpf_insn *insn) 173 { 174 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 175 } 176 177 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 178 #define BPF_LD_IMM64(DST, IMM) \ 179 BPF_LD_IMM64_RAW(DST, 0, IMM) 180 181 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 182 ((struct bpf_insn) { \ 183 .code = BPF_LD | BPF_DW | BPF_IMM, \ 184 .dst_reg = DST, \ 185 .src_reg = SRC, \ 186 .off = 0, \ 187 .imm = (__u32) (IMM) }), \ 188 ((struct bpf_insn) { \ 189 .code = 0, /* zero is reserved opcode */ \ 190 .dst_reg = 0, \ 191 .src_reg = 0, \ 192 .off = 0, \ 193 .imm = ((__u64) (IMM)) >> 32 }) 194 195 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 196 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 197 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 198 199 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 200 201 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 202 ((struct bpf_insn) { \ 203 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 204 .dst_reg = DST, \ 205 .src_reg = SRC, \ 206 .off = 0, \ 207 .imm = IMM }) 208 209 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 210 ((struct bpf_insn) { \ 211 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 212 .dst_reg = DST, \ 213 .src_reg = SRC, \ 214 .off = 0, \ 215 .imm = IMM }) 216 217 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 218 219 #define BPF_LD_ABS(SIZE, IMM) \ 220 ((struct bpf_insn) { \ 221 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 222 .dst_reg = 0, \ 223 .src_reg = 0, \ 224 .off = 0, \ 225 .imm = IMM }) 226 227 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 228 229 #define BPF_LD_IND(SIZE, SRC, IMM) \ 230 ((struct bpf_insn) { \ 231 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 232 .dst_reg = 0, \ 233 .src_reg = SRC, \ 234 .off = 0, \ 235 .imm = IMM }) 236 237 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 238 239 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 240 ((struct bpf_insn) { \ 241 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 242 .dst_reg = DST, \ 243 .src_reg = SRC, \ 244 .off = OFF, \ 245 .imm = 0 }) 246 247 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 248 249 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 250 ((struct bpf_insn) { \ 251 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 252 .dst_reg = DST, \ 253 .src_reg = SRC, \ 254 .off = OFF, \ 255 .imm = 0 }) 256 257 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 258 259 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 260 ((struct bpf_insn) { \ 261 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 262 .dst_reg = DST, \ 263 .src_reg = SRC, \ 264 .off = OFF, \ 265 .imm = 0 }) 266 267 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 268 269 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 270 ((struct bpf_insn) { \ 271 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 272 .dst_reg = DST, \ 273 .src_reg = 0, \ 274 .off = OFF, \ 275 .imm = IMM }) 276 277 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 278 279 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 280 ((struct bpf_insn) { \ 281 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 282 .dst_reg = DST, \ 283 .src_reg = SRC, \ 284 .off = OFF, \ 285 .imm = 0 }) 286 287 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 288 289 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 290 ((struct bpf_insn) { \ 291 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 292 .dst_reg = DST, \ 293 .src_reg = 0, \ 294 .off = OFF, \ 295 .imm = IMM }) 296 297 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 298 299 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 300 ((struct bpf_insn) { \ 301 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 302 .dst_reg = DST, \ 303 .src_reg = SRC, \ 304 .off = OFF, \ 305 .imm = 0 }) 306 307 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 308 309 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 310 ((struct bpf_insn) { \ 311 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 312 .dst_reg = DST, \ 313 .src_reg = 0, \ 314 .off = OFF, \ 315 .imm = IMM }) 316 317 /* Unconditional jumps, goto pc + off16 */ 318 319 #define BPF_JMP_A(OFF) \ 320 ((struct bpf_insn) { \ 321 .code = BPF_JMP | BPF_JA, \ 322 .dst_reg = 0, \ 323 .src_reg = 0, \ 324 .off = OFF, \ 325 .imm = 0 }) 326 327 /* Relative call */ 328 329 #define BPF_CALL_REL(TGT) \ 330 ((struct bpf_insn) { \ 331 .code = BPF_JMP | BPF_CALL, \ 332 .dst_reg = 0, \ 333 .src_reg = BPF_PSEUDO_CALL, \ 334 .off = 0, \ 335 .imm = TGT }) 336 337 /* Function call */ 338 339 #define BPF_CAST_CALL(x) \ 340 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 341 342 #define BPF_EMIT_CALL(FUNC) \ 343 ((struct bpf_insn) { \ 344 .code = BPF_JMP | BPF_CALL, \ 345 .dst_reg = 0, \ 346 .src_reg = 0, \ 347 .off = 0, \ 348 .imm = ((FUNC) - __bpf_call_base) }) 349 350 /* Raw code statement block */ 351 352 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 353 ((struct bpf_insn) { \ 354 .code = CODE, \ 355 .dst_reg = DST, \ 356 .src_reg = SRC, \ 357 .off = OFF, \ 358 .imm = IMM }) 359 360 /* Program exit */ 361 362 #define BPF_EXIT_INSN() \ 363 ((struct bpf_insn) { \ 364 .code = BPF_JMP | BPF_EXIT, \ 365 .dst_reg = 0, \ 366 .src_reg = 0, \ 367 .off = 0, \ 368 .imm = 0 }) 369 370 /* Internal classic blocks for direct assignment */ 371 372 #define __BPF_STMT(CODE, K) \ 373 ((struct sock_filter) BPF_STMT(CODE, K)) 374 375 #define __BPF_JUMP(CODE, K, JT, JF) \ 376 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 377 378 #define bytes_to_bpf_size(bytes) \ 379 ({ \ 380 int bpf_size = -EINVAL; \ 381 \ 382 if (bytes == sizeof(u8)) \ 383 bpf_size = BPF_B; \ 384 else if (bytes == sizeof(u16)) \ 385 bpf_size = BPF_H; \ 386 else if (bytes == sizeof(u32)) \ 387 bpf_size = BPF_W; \ 388 else if (bytes == sizeof(u64)) \ 389 bpf_size = BPF_DW; \ 390 \ 391 bpf_size; \ 392 }) 393 394 #define bpf_size_to_bytes(bpf_size) \ 395 ({ \ 396 int bytes = -EINVAL; \ 397 \ 398 if (bpf_size == BPF_B) \ 399 bytes = sizeof(u8); \ 400 else if (bpf_size == BPF_H) \ 401 bytes = sizeof(u16); \ 402 else if (bpf_size == BPF_W) \ 403 bytes = sizeof(u32); \ 404 else if (bpf_size == BPF_DW) \ 405 bytes = sizeof(u64); \ 406 \ 407 bytes; \ 408 }) 409 410 #define BPF_SIZEOF(type) \ 411 ({ \ 412 const int __size = bytes_to_bpf_size(sizeof(type)); \ 413 BUILD_BUG_ON(__size < 0); \ 414 __size; \ 415 }) 416 417 #define BPF_FIELD_SIZEOF(type, field) \ 418 ({ \ 419 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 420 BUILD_BUG_ON(__size < 0); \ 421 __size; \ 422 }) 423 424 #define BPF_LDST_BYTES(insn) \ 425 ({ \ 426 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 427 WARN_ON(__size < 0); \ 428 __size; \ 429 }) 430 431 #define __BPF_MAP_0(m, v, ...) v 432 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 433 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 434 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 435 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 436 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 437 438 #define __BPF_REG_0(...) __BPF_PAD(5) 439 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 440 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 441 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 442 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 443 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 444 445 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 446 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 447 448 #define __BPF_CAST(t, a) \ 449 (__force t) \ 450 (__force \ 451 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 452 (unsigned long)0, (t)0))) a 453 #define __BPF_V void 454 #define __BPF_N 455 456 #define __BPF_DECL_ARGS(t, a) t a 457 #define __BPF_DECL_REGS(t, a) u64 a 458 459 #define __BPF_PAD(n) \ 460 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 461 u64, __ur_3, u64, __ur_4, u64, __ur_5) 462 463 #define BPF_CALL_x(x, name, ...) \ 464 static __always_inline \ 465 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 466 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 467 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 468 { \ 469 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 470 } \ 471 static __always_inline \ 472 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 473 474 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 475 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 476 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 477 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 478 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 479 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 480 481 #define bpf_ctx_range(TYPE, MEMBER) \ 482 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 483 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 484 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 485 #if BITS_PER_LONG == 64 486 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 487 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 488 #else 489 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 490 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 491 #endif /* BITS_PER_LONG == 64 */ 492 493 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 494 ({ \ 495 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 496 *(PTR_SIZE) = (SIZE); \ 497 offsetof(TYPE, MEMBER); \ 498 }) 499 500 #ifdef CONFIG_COMPAT 501 /* A struct sock_filter is architecture independent. */ 502 struct compat_sock_fprog { 503 u16 len; 504 compat_uptr_t filter; /* struct sock_filter * */ 505 }; 506 #endif 507 508 struct sock_fprog_kern { 509 u16 len; 510 struct sock_filter *filter; 511 }; 512 513 struct bpf_binary_header { 514 u32 pages; 515 /* Some arches need word alignment for their instructions */ 516 u8 image[] __aligned(4); 517 }; 518 519 struct bpf_prog { 520 u16 pages; /* Number of allocated pages */ 521 u16 jited:1, /* Is our filter JIT'ed? */ 522 jit_requested:1,/* archs need to JIT the prog */ 523 gpl_compatible:1, /* Is filter GPL compatible? */ 524 cb_access:1, /* Is control block accessed? */ 525 dst_needed:1, /* Do we need dst entry? */ 526 blinded:1, /* Was blinded */ 527 is_func:1, /* program is a bpf function */ 528 kprobe_override:1, /* Do we override a kprobe? */ 529 has_callchain_buf:1, /* callchain buffer allocated? */ 530 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */ 531 enum bpf_prog_type type; /* Type of BPF program */ 532 enum bpf_attach_type expected_attach_type; /* For some prog types */ 533 u32 len; /* Number of filter blocks */ 534 u32 jited_len; /* Size of jited insns in bytes */ 535 u8 tag[BPF_TAG_SIZE]; 536 struct bpf_prog_aux *aux; /* Auxiliary fields */ 537 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 538 unsigned int (*bpf_func)(const void *ctx, 539 const struct bpf_insn *insn); 540 /* Instructions for interpreter */ 541 union { 542 struct sock_filter insns[0]; 543 struct bpf_insn insnsi[0]; 544 }; 545 }; 546 547 struct sk_filter { 548 refcount_t refcnt; 549 struct rcu_head rcu; 550 struct bpf_prog *prog; 551 }; 552 553 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 554 555 #define BPF_PROG_RUN(prog, ctx) ({ \ 556 u32 ret; \ 557 cant_sleep(); \ 558 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 559 struct bpf_prog_stats *stats; \ 560 u64 start = sched_clock(); \ 561 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 562 stats = this_cpu_ptr(prog->aux->stats); \ 563 u64_stats_update_begin(&stats->syncp); \ 564 stats->cnt++; \ 565 stats->nsecs += sched_clock() - start; \ 566 u64_stats_update_end(&stats->syncp); \ 567 } else { \ 568 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 569 } \ 570 ret; }) 571 572 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 573 574 struct bpf_skb_data_end { 575 struct qdisc_skb_cb qdisc_cb; 576 void *data_meta; 577 void *data_end; 578 }; 579 580 struct bpf_redirect_info { 581 u32 ifindex; 582 u32 flags; 583 struct bpf_map *map; 584 struct bpf_map *map_to_flush; 585 u32 kern_flags; 586 }; 587 588 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 589 590 /* flags for bpf_redirect_info kern_flags */ 591 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 592 593 /* Compute the linear packet data range [data, data_end) which 594 * will be accessed by various program types (cls_bpf, act_bpf, 595 * lwt, ...). Subsystems allowing direct data access must (!) 596 * ensure that cb[] area can be written to when BPF program is 597 * invoked (otherwise cb[] save/restore is necessary). 598 */ 599 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 600 { 601 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 602 603 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 604 cb->data_meta = skb->data - skb_metadata_len(skb); 605 cb->data_end = skb->data + skb_headlen(skb); 606 } 607 608 /* Similar to bpf_compute_data_pointers(), except that save orginal 609 * data in cb->data and cb->meta_data for restore. 610 */ 611 static inline void bpf_compute_and_save_data_end( 612 struct sk_buff *skb, void **saved_data_end) 613 { 614 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 615 616 *saved_data_end = cb->data_end; 617 cb->data_end = skb->data + skb_headlen(skb); 618 } 619 620 /* Restore data saved by bpf_compute_data_pointers(). */ 621 static inline void bpf_restore_data_end( 622 struct sk_buff *skb, void *saved_data_end) 623 { 624 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 625 626 cb->data_end = saved_data_end; 627 } 628 629 static inline u8 *bpf_skb_cb(struct sk_buff *skb) 630 { 631 /* eBPF programs may read/write skb->cb[] area to transfer meta 632 * data between tail calls. Since this also needs to work with 633 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 634 * 635 * In some socket filter cases, the cb unfortunately needs to be 636 * saved/restored so that protocol specific skb->cb[] data won't 637 * be lost. In any case, due to unpriviledged eBPF programs 638 * attached to sockets, we need to clear the bpf_skb_cb() area 639 * to not leak previous contents to user space. 640 */ 641 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 642 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 643 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 644 645 return qdisc_skb_cb(skb)->data; 646 } 647 648 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 649 struct sk_buff *skb) 650 { 651 u8 *cb_data = bpf_skb_cb(skb); 652 u8 cb_saved[BPF_SKB_CB_LEN]; 653 u32 res; 654 655 if (unlikely(prog->cb_access)) { 656 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 657 memset(cb_data, 0, sizeof(cb_saved)); 658 } 659 660 res = BPF_PROG_RUN(prog, skb); 661 662 if (unlikely(prog->cb_access)) 663 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 664 665 return res; 666 } 667 668 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 669 struct sk_buff *skb) 670 { 671 u32 res; 672 673 preempt_disable(); 674 res = __bpf_prog_run_save_cb(prog, skb); 675 preempt_enable(); 676 return res; 677 } 678 679 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 680 struct sk_buff *skb) 681 { 682 u8 *cb_data = bpf_skb_cb(skb); 683 u32 res; 684 685 if (unlikely(prog->cb_access)) 686 memset(cb_data, 0, BPF_SKB_CB_LEN); 687 688 preempt_disable(); 689 res = BPF_PROG_RUN(prog, skb); 690 preempt_enable(); 691 return res; 692 } 693 694 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 695 struct xdp_buff *xdp) 696 { 697 /* Caller needs to hold rcu_read_lock() (!), otherwise program 698 * can be released while still running, or map elements could be 699 * freed early while still having concurrent users. XDP fastpath 700 * already takes rcu_read_lock() when fetching the program, so 701 * it's not necessary here anymore. 702 */ 703 return BPF_PROG_RUN(prog, xdp); 704 } 705 706 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 707 { 708 return prog->len * sizeof(struct bpf_insn); 709 } 710 711 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 712 { 713 return round_up(bpf_prog_insn_size(prog) + 714 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 715 } 716 717 static inline unsigned int bpf_prog_size(unsigned int proglen) 718 { 719 return max(sizeof(struct bpf_prog), 720 offsetof(struct bpf_prog, insns[proglen])); 721 } 722 723 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 724 { 725 /* When classic BPF programs have been loaded and the arch 726 * does not have a classic BPF JIT (anymore), they have been 727 * converted via bpf_migrate_filter() to eBPF and thus always 728 * have an unspec program type. 729 */ 730 return prog->type == BPF_PROG_TYPE_UNSPEC; 731 } 732 733 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 734 { 735 const u32 size_machine = sizeof(unsigned long); 736 737 if (size > size_machine && size % size_machine == 0) 738 size = size_machine; 739 740 return size; 741 } 742 743 static inline bool 744 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 745 { 746 return size <= size_default && (size & (size - 1)) == 0; 747 } 748 749 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 750 751 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 752 { 753 set_vm_flush_reset_perms(fp); 754 set_memory_ro((unsigned long)fp, fp->pages); 755 } 756 757 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 758 { 759 set_vm_flush_reset_perms(hdr); 760 set_memory_ro((unsigned long)hdr, hdr->pages); 761 set_memory_x((unsigned long)hdr, hdr->pages); 762 } 763 764 static inline struct bpf_binary_header * 765 bpf_jit_binary_hdr(const struct bpf_prog *fp) 766 { 767 unsigned long real_start = (unsigned long)fp->bpf_func; 768 unsigned long addr = real_start & PAGE_MASK; 769 770 return (void *)addr; 771 } 772 773 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 774 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 775 { 776 return sk_filter_trim_cap(sk, skb, 1); 777 } 778 779 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 780 void bpf_prog_free(struct bpf_prog *fp); 781 782 bool bpf_opcode_in_insntable(u8 code); 783 784 void bpf_prog_free_linfo(struct bpf_prog *prog); 785 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 786 const u32 *insn_to_jit_off); 787 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 788 void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 789 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 790 791 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 792 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 793 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 794 gfp_t gfp_extra_flags); 795 void __bpf_prog_free(struct bpf_prog *fp); 796 797 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 798 { 799 __bpf_prog_free(fp); 800 } 801 802 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 803 unsigned int flen); 804 805 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 806 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 807 bpf_aux_classic_check_t trans, bool save_orig); 808 void bpf_prog_destroy(struct bpf_prog *fp); 809 810 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 811 int sk_attach_bpf(u32 ufd, struct sock *sk); 812 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 813 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 814 void sk_reuseport_prog_free(struct bpf_prog *prog); 815 int sk_detach_filter(struct sock *sk); 816 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 817 unsigned int len); 818 819 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 820 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 821 822 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 823 #define __bpf_call_base_args \ 824 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 825 __bpf_call_base) 826 827 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 828 void bpf_jit_compile(struct bpf_prog *prog); 829 bool bpf_jit_needs_zext(void); 830 bool bpf_helper_changes_pkt_data(void *func); 831 832 static inline bool bpf_dump_raw_ok(void) 833 { 834 /* Reconstruction of call-sites is dependent on kallsyms, 835 * thus make dump the same restriction. 836 */ 837 return kallsyms_show_value() == 1; 838 } 839 840 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 841 const struct bpf_insn *patch, u32 len); 842 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 843 844 void bpf_clear_redirect_map(struct bpf_map *map); 845 846 static inline bool xdp_return_frame_no_direct(void) 847 { 848 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 849 850 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 851 } 852 853 static inline void xdp_set_return_frame_no_direct(void) 854 { 855 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 856 857 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 858 } 859 860 static inline void xdp_clear_return_frame_no_direct(void) 861 { 862 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 863 864 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 865 } 866 867 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 868 unsigned int pktlen) 869 { 870 unsigned int len; 871 872 if (unlikely(!(fwd->flags & IFF_UP))) 873 return -ENETDOWN; 874 875 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 876 if (pktlen > len) 877 return -EMSGSIZE; 878 879 return 0; 880 } 881 882 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 883 * same cpu context. Further for best results no more than a single map 884 * for the do_redirect/do_flush pair should be used. This limitation is 885 * because we only track one map and force a flush when the map changes. 886 * This does not appear to be a real limitation for existing software. 887 */ 888 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 889 struct xdp_buff *xdp, struct bpf_prog *prog); 890 int xdp_do_redirect(struct net_device *dev, 891 struct xdp_buff *xdp, 892 struct bpf_prog *prog); 893 void xdp_do_flush_map(void); 894 895 void bpf_warn_invalid_xdp_action(u32 act); 896 897 #ifdef CONFIG_INET 898 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 899 struct bpf_prog *prog, struct sk_buff *skb, 900 u32 hash); 901 #else 902 static inline struct sock * 903 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 904 struct bpf_prog *prog, struct sk_buff *skb, 905 u32 hash) 906 { 907 return NULL; 908 } 909 #endif 910 911 #ifdef CONFIG_BPF_JIT 912 extern int bpf_jit_enable; 913 extern int bpf_jit_harden; 914 extern int bpf_jit_kallsyms; 915 extern long bpf_jit_limit; 916 917 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 918 919 struct bpf_binary_header * 920 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 921 unsigned int alignment, 922 bpf_jit_fill_hole_t bpf_fill_ill_insns); 923 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 924 u64 bpf_jit_alloc_exec_limit(void); 925 void *bpf_jit_alloc_exec(unsigned long size); 926 void bpf_jit_free_exec(void *addr); 927 void bpf_jit_free(struct bpf_prog *fp); 928 929 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 930 const struct bpf_insn *insn, bool extra_pass, 931 u64 *func_addr, bool *func_addr_fixed); 932 933 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 934 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 935 936 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 937 u32 pass, void *image) 938 { 939 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 940 proglen, pass, image, current->comm, task_pid_nr(current)); 941 942 if (image) 943 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 944 16, 1, image, proglen, false); 945 } 946 947 static inline bool bpf_jit_is_ebpf(void) 948 { 949 # ifdef CONFIG_HAVE_EBPF_JIT 950 return true; 951 # else 952 return false; 953 # endif 954 } 955 956 static inline bool ebpf_jit_enabled(void) 957 { 958 return bpf_jit_enable && bpf_jit_is_ebpf(); 959 } 960 961 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 962 { 963 return fp->jited && bpf_jit_is_ebpf(); 964 } 965 966 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 967 { 968 /* These are the prerequisites, should someone ever have the 969 * idea to call blinding outside of them, we make sure to 970 * bail out. 971 */ 972 if (!bpf_jit_is_ebpf()) 973 return false; 974 if (!prog->jit_requested) 975 return false; 976 if (!bpf_jit_harden) 977 return false; 978 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 979 return false; 980 981 return true; 982 } 983 984 static inline bool bpf_jit_kallsyms_enabled(void) 985 { 986 /* There are a couple of corner cases where kallsyms should 987 * not be enabled f.e. on hardening. 988 */ 989 if (bpf_jit_harden) 990 return false; 991 if (!bpf_jit_kallsyms) 992 return false; 993 if (bpf_jit_kallsyms == 1) 994 return true; 995 996 return false; 997 } 998 999 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1000 unsigned long *off, char *sym); 1001 bool is_bpf_text_address(unsigned long addr); 1002 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1003 char *sym); 1004 1005 static inline const char * 1006 bpf_address_lookup(unsigned long addr, unsigned long *size, 1007 unsigned long *off, char **modname, char *sym) 1008 { 1009 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1010 1011 if (ret && modname) 1012 *modname = NULL; 1013 return ret; 1014 } 1015 1016 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1017 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1018 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1019 1020 #else /* CONFIG_BPF_JIT */ 1021 1022 static inline bool ebpf_jit_enabled(void) 1023 { 1024 return false; 1025 } 1026 1027 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1028 { 1029 return false; 1030 } 1031 1032 static inline void bpf_jit_free(struct bpf_prog *fp) 1033 { 1034 bpf_prog_unlock_free(fp); 1035 } 1036 1037 static inline bool bpf_jit_kallsyms_enabled(void) 1038 { 1039 return false; 1040 } 1041 1042 static inline const char * 1043 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1044 unsigned long *off, char *sym) 1045 { 1046 return NULL; 1047 } 1048 1049 static inline bool is_bpf_text_address(unsigned long addr) 1050 { 1051 return false; 1052 } 1053 1054 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1055 char *type, char *sym) 1056 { 1057 return -ERANGE; 1058 } 1059 1060 static inline const char * 1061 bpf_address_lookup(unsigned long addr, unsigned long *size, 1062 unsigned long *off, char **modname, char *sym) 1063 { 1064 return NULL; 1065 } 1066 1067 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1068 { 1069 } 1070 1071 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1072 { 1073 } 1074 1075 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1076 { 1077 sym[0] = '\0'; 1078 } 1079 1080 #endif /* CONFIG_BPF_JIT */ 1081 1082 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp); 1083 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1084 1085 #define BPF_ANC BIT(15) 1086 1087 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1088 { 1089 switch (first->code) { 1090 case BPF_RET | BPF_K: 1091 case BPF_LD | BPF_W | BPF_LEN: 1092 return false; 1093 1094 case BPF_LD | BPF_W | BPF_ABS: 1095 case BPF_LD | BPF_H | BPF_ABS: 1096 case BPF_LD | BPF_B | BPF_ABS: 1097 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1098 return true; 1099 return false; 1100 1101 default: 1102 return true; 1103 } 1104 } 1105 1106 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1107 { 1108 BUG_ON(ftest->code & BPF_ANC); 1109 1110 switch (ftest->code) { 1111 case BPF_LD | BPF_W | BPF_ABS: 1112 case BPF_LD | BPF_H | BPF_ABS: 1113 case BPF_LD | BPF_B | BPF_ABS: 1114 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1115 return BPF_ANC | SKF_AD_##CODE 1116 switch (ftest->k) { 1117 BPF_ANCILLARY(PROTOCOL); 1118 BPF_ANCILLARY(PKTTYPE); 1119 BPF_ANCILLARY(IFINDEX); 1120 BPF_ANCILLARY(NLATTR); 1121 BPF_ANCILLARY(NLATTR_NEST); 1122 BPF_ANCILLARY(MARK); 1123 BPF_ANCILLARY(QUEUE); 1124 BPF_ANCILLARY(HATYPE); 1125 BPF_ANCILLARY(RXHASH); 1126 BPF_ANCILLARY(CPU); 1127 BPF_ANCILLARY(ALU_XOR_X); 1128 BPF_ANCILLARY(VLAN_TAG); 1129 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1130 BPF_ANCILLARY(PAY_OFFSET); 1131 BPF_ANCILLARY(RANDOM); 1132 BPF_ANCILLARY(VLAN_TPID); 1133 } 1134 /* Fallthrough. */ 1135 default: 1136 return ftest->code; 1137 } 1138 } 1139 1140 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1141 int k, unsigned int size); 1142 1143 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1144 unsigned int size, void *buffer) 1145 { 1146 if (k >= 0) 1147 return skb_header_pointer(skb, k, size, buffer); 1148 1149 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1150 } 1151 1152 static inline int bpf_tell_extensions(void) 1153 { 1154 return SKF_AD_MAX; 1155 } 1156 1157 struct bpf_sock_addr_kern { 1158 struct sock *sk; 1159 struct sockaddr *uaddr; 1160 /* Temporary "register" to make indirect stores to nested structures 1161 * defined above. We need three registers to make such a store, but 1162 * only two (src and dst) are available at convert_ctx_access time 1163 */ 1164 u64 tmp_reg; 1165 void *t_ctx; /* Attach type specific context. */ 1166 }; 1167 1168 struct bpf_sock_ops_kern { 1169 struct sock *sk; 1170 u32 op; 1171 union { 1172 u32 args[4]; 1173 u32 reply; 1174 u32 replylong[4]; 1175 }; 1176 u32 is_fullsock; 1177 u64 temp; /* temp and everything after is not 1178 * initialized to 0 before calling 1179 * the BPF program. New fields that 1180 * should be initialized to 0 should 1181 * be inserted before temp. 1182 * temp is scratch storage used by 1183 * sock_ops_convert_ctx_access 1184 * as temporary storage of a register. 1185 */ 1186 }; 1187 1188 struct bpf_sysctl_kern { 1189 struct ctl_table_header *head; 1190 struct ctl_table *table; 1191 void *cur_val; 1192 size_t cur_len; 1193 void *new_val; 1194 size_t new_len; 1195 int new_updated; 1196 int write; 1197 loff_t *ppos; 1198 /* Temporary "register" for indirect stores to ppos. */ 1199 u64 tmp_reg; 1200 }; 1201 1202 #endif /* __LINUX_FILTER_H__ */ 1203