xref: /linux-6.15/include/linux/filter.h (revision 8e44fc85)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 
24 #include <net/sch_generic.h>
25 
26 #include <uapi/linux/filter.h>
27 #include <uapi/linux/bpf.h>
28 
29 struct sk_buff;
30 struct sock;
31 struct seccomp_data;
32 struct bpf_prog_aux;
33 struct xdp_rxq_info;
34 struct xdp_buff;
35 struct sock_reuseport;
36 
37 /* ArgX, context and stack frame pointer register positions. Note,
38  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
39  * calls in BPF_CALL instruction.
40  */
41 #define BPF_REG_ARG1	BPF_REG_1
42 #define BPF_REG_ARG2	BPF_REG_2
43 #define BPF_REG_ARG3	BPF_REG_3
44 #define BPF_REG_ARG4	BPF_REG_4
45 #define BPF_REG_ARG5	BPF_REG_5
46 #define BPF_REG_CTX	BPF_REG_6
47 #define BPF_REG_FP	BPF_REG_10
48 
49 /* Additional register mappings for converted user programs. */
50 #define BPF_REG_A	BPF_REG_0
51 #define BPF_REG_X	BPF_REG_7
52 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
53 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
54 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
55 
56 /* Kernel hidden auxiliary/helper register. */
57 #define BPF_REG_AX		MAX_BPF_REG
58 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
59 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
60 
61 /* unused opcode to mark special call to bpf_tail_call() helper */
62 #define BPF_TAIL_CALL	0xf0
63 
64 /* unused opcode to mark call to interpreter with arguments */
65 #define BPF_CALL_ARGS	0xe0
66 
67 /* As per nm, we expose JITed images as text (code) section for
68  * kallsyms. That way, tools like perf can find it to match
69  * addresses.
70  */
71 #define BPF_SYM_ELF_TYPE	't'
72 
73 /* BPF program can access up to 512 bytes of stack space. */
74 #define MAX_BPF_STACK	512
75 
76 /* Helper macros for filter block array initializers. */
77 
78 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
79 
80 #define BPF_ALU64_REG(OP, DST, SRC)				\
81 	((struct bpf_insn) {					\
82 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
83 		.dst_reg = DST,					\
84 		.src_reg = SRC,					\
85 		.off   = 0,					\
86 		.imm   = 0 })
87 
88 #define BPF_ALU32_REG(OP, DST, SRC)				\
89 	((struct bpf_insn) {					\
90 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
91 		.dst_reg = DST,					\
92 		.src_reg = SRC,					\
93 		.off   = 0,					\
94 		.imm   = 0 })
95 
96 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
97 
98 #define BPF_ALU64_IMM(OP, DST, IMM)				\
99 	((struct bpf_insn) {					\
100 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
101 		.dst_reg = DST,					\
102 		.src_reg = 0,					\
103 		.off   = 0,					\
104 		.imm   = IMM })
105 
106 #define BPF_ALU32_IMM(OP, DST, IMM)				\
107 	((struct bpf_insn) {					\
108 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
109 		.dst_reg = DST,					\
110 		.src_reg = 0,					\
111 		.off   = 0,					\
112 		.imm   = IMM })
113 
114 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
115 
116 #define BPF_ENDIAN(TYPE, DST, LEN)				\
117 	((struct bpf_insn) {					\
118 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
119 		.dst_reg = DST,					\
120 		.src_reg = 0,					\
121 		.off   = 0,					\
122 		.imm   = LEN })
123 
124 /* Short form of mov, dst_reg = src_reg */
125 
126 #define BPF_MOV64_REG(DST, SRC)					\
127 	((struct bpf_insn) {					\
128 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
129 		.dst_reg = DST,					\
130 		.src_reg = SRC,					\
131 		.off   = 0,					\
132 		.imm   = 0 })
133 
134 #define BPF_MOV32_REG(DST, SRC)					\
135 	((struct bpf_insn) {					\
136 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
137 		.dst_reg = DST,					\
138 		.src_reg = SRC,					\
139 		.off   = 0,					\
140 		.imm   = 0 })
141 
142 /* Short form of mov, dst_reg = imm32 */
143 
144 #define BPF_MOV64_IMM(DST, IMM)					\
145 	((struct bpf_insn) {					\
146 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
147 		.dst_reg = DST,					\
148 		.src_reg = 0,					\
149 		.off   = 0,					\
150 		.imm   = IMM })
151 
152 #define BPF_MOV32_IMM(DST, IMM)					\
153 	((struct bpf_insn) {					\
154 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
155 		.dst_reg = DST,					\
156 		.src_reg = 0,					\
157 		.off   = 0,					\
158 		.imm   = IMM })
159 
160 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
161 #define BPF_LD_IMM64(DST, IMM)					\
162 	BPF_LD_IMM64_RAW(DST, 0, IMM)
163 
164 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
165 	((struct bpf_insn) {					\
166 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
167 		.dst_reg = DST,					\
168 		.src_reg = SRC,					\
169 		.off   = 0,					\
170 		.imm   = (__u32) (IMM) }),			\
171 	((struct bpf_insn) {					\
172 		.code  = 0, /* zero is reserved opcode */	\
173 		.dst_reg = 0,					\
174 		.src_reg = 0,					\
175 		.off   = 0,					\
176 		.imm   = ((__u64) (IMM)) >> 32 })
177 
178 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
179 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
180 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
181 
182 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
183 
184 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
185 	((struct bpf_insn) {					\
186 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
187 		.dst_reg = DST,					\
188 		.src_reg = SRC,					\
189 		.off   = 0,					\
190 		.imm   = IMM })
191 
192 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
193 	((struct bpf_insn) {					\
194 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
195 		.dst_reg = DST,					\
196 		.src_reg = SRC,					\
197 		.off   = 0,					\
198 		.imm   = IMM })
199 
200 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
201 
202 #define BPF_LD_ABS(SIZE, IMM)					\
203 	((struct bpf_insn) {					\
204 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
205 		.dst_reg = 0,					\
206 		.src_reg = 0,					\
207 		.off   = 0,					\
208 		.imm   = IMM })
209 
210 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
211 
212 #define BPF_LD_IND(SIZE, SRC, IMM)				\
213 	((struct bpf_insn) {					\
214 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
215 		.dst_reg = 0,					\
216 		.src_reg = SRC,					\
217 		.off   = 0,					\
218 		.imm   = IMM })
219 
220 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
221 
222 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
223 	((struct bpf_insn) {					\
224 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
225 		.dst_reg = DST,					\
226 		.src_reg = SRC,					\
227 		.off   = OFF,					\
228 		.imm   = 0 })
229 
230 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
231 
232 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
233 	((struct bpf_insn) {					\
234 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
235 		.dst_reg = DST,					\
236 		.src_reg = SRC,					\
237 		.off   = OFF,					\
238 		.imm   = 0 })
239 
240 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
241 
242 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
243 	((struct bpf_insn) {					\
244 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
245 		.dst_reg = DST,					\
246 		.src_reg = SRC,					\
247 		.off   = OFF,					\
248 		.imm   = 0 })
249 
250 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
251 
252 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
253 	((struct bpf_insn) {					\
254 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
255 		.dst_reg = DST,					\
256 		.src_reg = 0,					\
257 		.off   = OFF,					\
258 		.imm   = IMM })
259 
260 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
261 
262 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
263 	((struct bpf_insn) {					\
264 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
265 		.dst_reg = DST,					\
266 		.src_reg = SRC,					\
267 		.off   = OFF,					\
268 		.imm   = 0 })
269 
270 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
271 
272 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
273 	((struct bpf_insn) {					\
274 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
275 		.dst_reg = DST,					\
276 		.src_reg = 0,					\
277 		.off   = OFF,					\
278 		.imm   = IMM })
279 
280 /* Unconditional jumps, goto pc + off16 */
281 
282 #define BPF_JMP_A(OFF)						\
283 	((struct bpf_insn) {					\
284 		.code  = BPF_JMP | BPF_JA,			\
285 		.dst_reg = 0,					\
286 		.src_reg = 0,					\
287 		.off   = OFF,					\
288 		.imm   = 0 })
289 
290 /* Relative call */
291 
292 #define BPF_CALL_REL(TGT)					\
293 	((struct bpf_insn) {					\
294 		.code  = BPF_JMP | BPF_CALL,			\
295 		.dst_reg = 0,					\
296 		.src_reg = BPF_PSEUDO_CALL,			\
297 		.off   = 0,					\
298 		.imm   = TGT })
299 
300 /* Function call */
301 
302 #define BPF_CAST_CALL(x)					\
303 		((u64 (*)(u64, u64, u64, u64, u64))(x))
304 
305 #define BPF_EMIT_CALL(FUNC)					\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_JMP | BPF_CALL,			\
308 		.dst_reg = 0,					\
309 		.src_reg = 0,					\
310 		.off   = 0,					\
311 		.imm   = ((FUNC) - __bpf_call_base) })
312 
313 /* Raw code statement block */
314 
315 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
316 	((struct bpf_insn) {					\
317 		.code  = CODE,					\
318 		.dst_reg = DST,					\
319 		.src_reg = SRC,					\
320 		.off   = OFF,					\
321 		.imm   = IMM })
322 
323 /* Program exit */
324 
325 #define BPF_EXIT_INSN()						\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP | BPF_EXIT,			\
328 		.dst_reg = 0,					\
329 		.src_reg = 0,					\
330 		.off   = 0,					\
331 		.imm   = 0 })
332 
333 /* Internal classic blocks for direct assignment */
334 
335 #define __BPF_STMT(CODE, K)					\
336 	((struct sock_filter) BPF_STMT(CODE, K))
337 
338 #define __BPF_JUMP(CODE, K, JT, JF)				\
339 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
340 
341 #define bytes_to_bpf_size(bytes)				\
342 ({								\
343 	int bpf_size = -EINVAL;					\
344 								\
345 	if (bytes == sizeof(u8))				\
346 		bpf_size = BPF_B;				\
347 	else if (bytes == sizeof(u16))				\
348 		bpf_size = BPF_H;				\
349 	else if (bytes == sizeof(u32))				\
350 		bpf_size = BPF_W;				\
351 	else if (bytes == sizeof(u64))				\
352 		bpf_size = BPF_DW;				\
353 								\
354 	bpf_size;						\
355 })
356 
357 #define bpf_size_to_bytes(bpf_size)				\
358 ({								\
359 	int bytes = -EINVAL;					\
360 								\
361 	if (bpf_size == BPF_B)					\
362 		bytes = sizeof(u8);				\
363 	else if (bpf_size == BPF_H)				\
364 		bytes = sizeof(u16);				\
365 	else if (bpf_size == BPF_W)				\
366 		bytes = sizeof(u32);				\
367 	else if (bpf_size == BPF_DW)				\
368 		bytes = sizeof(u64);				\
369 								\
370 	bytes;							\
371 })
372 
373 #define BPF_SIZEOF(type)					\
374 	({							\
375 		const int __size = bytes_to_bpf_size(sizeof(type)); \
376 		BUILD_BUG_ON(__size < 0);			\
377 		__size;						\
378 	})
379 
380 #define BPF_FIELD_SIZEOF(type, field)				\
381 	({							\
382 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
383 		BUILD_BUG_ON(__size < 0);			\
384 		__size;						\
385 	})
386 
387 #define BPF_LDST_BYTES(insn)					\
388 	({							\
389 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
390 		WARN_ON(__size < 0);				\
391 		__size;						\
392 	})
393 
394 #define __BPF_MAP_0(m, v, ...) v
395 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
396 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
397 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
398 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
399 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
400 
401 #define __BPF_REG_0(...) __BPF_PAD(5)
402 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
403 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
404 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
405 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
406 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
407 
408 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
409 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
410 
411 #define __BPF_CAST(t, a)						       \
412 	(__force t)							       \
413 	(__force							       \
414 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
415 				      (unsigned long)0, (t)0))) a
416 #define __BPF_V void
417 #define __BPF_N
418 
419 #define __BPF_DECL_ARGS(t, a) t   a
420 #define __BPF_DECL_REGS(t, a) u64 a
421 
422 #define __BPF_PAD(n)							       \
423 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
424 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
425 
426 #define BPF_CALL_x(x, name, ...)					       \
427 	static __always_inline						       \
428 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
429 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
430 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
431 	{								       \
432 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
433 	}								       \
434 	static __always_inline						       \
435 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
436 
437 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
438 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
439 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
440 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
441 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
442 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
443 
444 #define bpf_ctx_range(TYPE, MEMBER)						\
445 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
446 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
447 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
448 #if BITS_PER_LONG == 64
449 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
450 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
451 #else
452 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
453 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
454 #endif /* BITS_PER_LONG == 64 */
455 
456 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
457 	({									\
458 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
459 		*(PTR_SIZE) = (SIZE);						\
460 		offsetof(TYPE, MEMBER);						\
461 	})
462 
463 #ifdef CONFIG_COMPAT
464 /* A struct sock_filter is architecture independent. */
465 struct compat_sock_fprog {
466 	u16		len;
467 	compat_uptr_t	filter;	/* struct sock_filter * */
468 };
469 #endif
470 
471 struct sock_fprog_kern {
472 	u16			len;
473 	struct sock_filter	*filter;
474 };
475 
476 struct bpf_binary_header {
477 	u32 pages;
478 	/* Some arches need word alignment for their instructions */
479 	u8 image[] __aligned(4);
480 };
481 
482 struct bpf_prog {
483 	u16			pages;		/* Number of allocated pages */
484 	u16			jited:1,	/* Is our filter JIT'ed? */
485 				jit_requested:1,/* archs need to JIT the prog */
486 				undo_set_mem:1,	/* Passed set_memory_ro() checkpoint */
487 				gpl_compatible:1, /* Is filter GPL compatible? */
488 				cb_access:1,	/* Is control block accessed? */
489 				dst_needed:1,	/* Do we need dst entry? */
490 				blinded:1,	/* Was blinded */
491 				is_func:1,	/* program is a bpf function */
492 				kprobe_override:1, /* Do we override a kprobe? */
493 				has_callchain_buf:1; /* callchain buffer allocated? */
494 	enum bpf_prog_type	type;		/* Type of BPF program */
495 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
496 	u32			len;		/* Number of filter blocks */
497 	u32			jited_len;	/* Size of jited insns in bytes */
498 	u8			tag[BPF_TAG_SIZE];
499 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
500 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
501 	unsigned int		(*bpf_func)(const void *ctx,
502 					    const struct bpf_insn *insn);
503 	/* Instructions for interpreter */
504 	union {
505 		struct sock_filter	insns[0];
506 		struct bpf_insn		insnsi[0];
507 	};
508 };
509 
510 struct sk_filter {
511 	refcount_t	refcnt;
512 	struct rcu_head	rcu;
513 	struct bpf_prog	*prog;
514 };
515 
516 #define BPF_PROG_RUN(filter, ctx)  (*(filter)->bpf_func)(ctx, (filter)->insnsi)
517 
518 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
519 
520 struct bpf_skb_data_end {
521 	struct qdisc_skb_cb qdisc_cb;
522 	void *data_meta;
523 	void *data_end;
524 };
525 
526 struct bpf_redirect_info {
527 	u32 ifindex;
528 	u32 flags;
529 	struct bpf_map *map;
530 	struct bpf_map *map_to_flush;
531 	u32 kern_flags;
532 };
533 
534 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
535 
536 /* flags for bpf_redirect_info kern_flags */
537 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
538 
539 /* Compute the linear packet data range [data, data_end) which
540  * will be accessed by various program types (cls_bpf, act_bpf,
541  * lwt, ...). Subsystems allowing direct data access must (!)
542  * ensure that cb[] area can be written to when BPF program is
543  * invoked (otherwise cb[] save/restore is necessary).
544  */
545 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
546 {
547 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
548 
549 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
550 	cb->data_meta = skb->data - skb_metadata_len(skb);
551 	cb->data_end  = skb->data + skb_headlen(skb);
552 }
553 
554 /* Similar to bpf_compute_data_pointers(), except that save orginal
555  * data in cb->data and cb->meta_data for restore.
556  */
557 static inline void bpf_compute_and_save_data_end(
558 	struct sk_buff *skb, void **saved_data_end)
559 {
560 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
561 
562 	*saved_data_end = cb->data_end;
563 	cb->data_end  = skb->data + skb_headlen(skb);
564 }
565 
566 /* Restore data saved by bpf_compute_data_pointers(). */
567 static inline void bpf_restore_data_end(
568 	struct sk_buff *skb, void *saved_data_end)
569 {
570 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
571 
572 	cb->data_end = saved_data_end;
573 }
574 
575 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
576 {
577 	/* eBPF programs may read/write skb->cb[] area to transfer meta
578 	 * data between tail calls. Since this also needs to work with
579 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
580 	 *
581 	 * In some socket filter cases, the cb unfortunately needs to be
582 	 * saved/restored so that protocol specific skb->cb[] data won't
583 	 * be lost. In any case, due to unpriviledged eBPF programs
584 	 * attached to sockets, we need to clear the bpf_skb_cb() area
585 	 * to not leak previous contents to user space.
586 	 */
587 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
588 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
589 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
590 
591 	return qdisc_skb_cb(skb)->data;
592 }
593 
594 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
595 					 struct sk_buff *skb)
596 {
597 	u8 *cb_data = bpf_skb_cb(skb);
598 	u8 cb_saved[BPF_SKB_CB_LEN];
599 	u32 res;
600 
601 	if (unlikely(prog->cb_access)) {
602 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
603 		memset(cb_data, 0, sizeof(cb_saved));
604 	}
605 
606 	res = BPF_PROG_RUN(prog, skb);
607 
608 	if (unlikely(prog->cb_access))
609 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
610 
611 	return res;
612 }
613 
614 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
615 				       struct sk_buff *skb)
616 {
617 	u32 res;
618 
619 	preempt_disable();
620 	res = __bpf_prog_run_save_cb(prog, skb);
621 	preempt_enable();
622 	return res;
623 }
624 
625 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
626 					struct sk_buff *skb)
627 {
628 	u8 *cb_data = bpf_skb_cb(skb);
629 	u32 res;
630 
631 	if (unlikely(prog->cb_access))
632 		memset(cb_data, 0, BPF_SKB_CB_LEN);
633 
634 	preempt_disable();
635 	res = BPF_PROG_RUN(prog, skb);
636 	preempt_enable();
637 	return res;
638 }
639 
640 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
641 					    struct xdp_buff *xdp)
642 {
643 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
644 	 * can be released while still running, or map elements could be
645 	 * freed early while still having concurrent users. XDP fastpath
646 	 * already takes rcu_read_lock() when fetching the program, so
647 	 * it's not necessary here anymore.
648 	 */
649 	return BPF_PROG_RUN(prog, xdp);
650 }
651 
652 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
653 {
654 	return prog->len * sizeof(struct bpf_insn);
655 }
656 
657 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
658 {
659 	return round_up(bpf_prog_insn_size(prog) +
660 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
661 }
662 
663 static inline unsigned int bpf_prog_size(unsigned int proglen)
664 {
665 	return max(sizeof(struct bpf_prog),
666 		   offsetof(struct bpf_prog, insns[proglen]));
667 }
668 
669 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
670 {
671 	/* When classic BPF programs have been loaded and the arch
672 	 * does not have a classic BPF JIT (anymore), they have been
673 	 * converted via bpf_migrate_filter() to eBPF and thus always
674 	 * have an unspec program type.
675 	 */
676 	return prog->type == BPF_PROG_TYPE_UNSPEC;
677 }
678 
679 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
680 {
681 	const u32 size_machine = sizeof(unsigned long);
682 
683 	if (size > size_machine && size % size_machine == 0)
684 		size = size_machine;
685 
686 	return size;
687 }
688 
689 static inline bool
690 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
691 {
692 	return size <= size_default && (size & (size - 1)) == 0;
693 }
694 
695 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
696 
697 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
698 {
699 	fp->undo_set_mem = 1;
700 	set_memory_ro((unsigned long)fp, fp->pages);
701 }
702 
703 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
704 {
705 	if (fp->undo_set_mem)
706 		set_memory_rw((unsigned long)fp, fp->pages);
707 }
708 
709 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
710 {
711 	set_memory_ro((unsigned long)hdr, hdr->pages);
712 }
713 
714 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
715 {
716 	set_memory_rw((unsigned long)hdr, hdr->pages);
717 }
718 
719 static inline struct bpf_binary_header *
720 bpf_jit_binary_hdr(const struct bpf_prog *fp)
721 {
722 	unsigned long real_start = (unsigned long)fp->bpf_func;
723 	unsigned long addr = real_start & PAGE_MASK;
724 
725 	return (void *)addr;
726 }
727 
728 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
729 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
730 {
731 	return sk_filter_trim_cap(sk, skb, 1);
732 }
733 
734 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
735 void bpf_prog_free(struct bpf_prog *fp);
736 
737 bool bpf_opcode_in_insntable(u8 code);
738 
739 void bpf_prog_free_linfo(struct bpf_prog *prog);
740 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
741 			       const u32 *insn_to_jit_off);
742 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
743 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
744 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
745 
746 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
747 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
748 				  gfp_t gfp_extra_flags);
749 void __bpf_prog_free(struct bpf_prog *fp);
750 
751 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
752 {
753 	bpf_prog_unlock_ro(fp);
754 	__bpf_prog_free(fp);
755 }
756 
757 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
758 				       unsigned int flen);
759 
760 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
761 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
762 			      bpf_aux_classic_check_t trans, bool save_orig);
763 void bpf_prog_destroy(struct bpf_prog *fp);
764 
765 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
766 int sk_attach_bpf(u32 ufd, struct sock *sk);
767 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
768 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
769 void sk_reuseport_prog_free(struct bpf_prog *prog);
770 int sk_detach_filter(struct sock *sk);
771 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
772 		  unsigned int len);
773 
774 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
775 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
776 
777 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
778 #define __bpf_call_base_args \
779 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
780 	 __bpf_call_base)
781 
782 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
783 void bpf_jit_compile(struct bpf_prog *prog);
784 bool bpf_helper_changes_pkt_data(void *func);
785 
786 static inline bool bpf_dump_raw_ok(void)
787 {
788 	/* Reconstruction of call-sites is dependent on kallsyms,
789 	 * thus make dump the same restriction.
790 	 */
791 	return kallsyms_show_value() == 1;
792 }
793 
794 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
795 				       const struct bpf_insn *patch, u32 len);
796 
797 void bpf_clear_redirect_map(struct bpf_map *map);
798 
799 static inline bool xdp_return_frame_no_direct(void)
800 {
801 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
802 
803 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
804 }
805 
806 static inline void xdp_set_return_frame_no_direct(void)
807 {
808 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
809 
810 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
811 }
812 
813 static inline void xdp_clear_return_frame_no_direct(void)
814 {
815 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
816 
817 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
818 }
819 
820 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
821 				 unsigned int pktlen)
822 {
823 	unsigned int len;
824 
825 	if (unlikely(!(fwd->flags & IFF_UP)))
826 		return -ENETDOWN;
827 
828 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
829 	if (pktlen > len)
830 		return -EMSGSIZE;
831 
832 	return 0;
833 }
834 
835 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
836  * same cpu context. Further for best results no more than a single map
837  * for the do_redirect/do_flush pair should be used. This limitation is
838  * because we only track one map and force a flush when the map changes.
839  * This does not appear to be a real limitation for existing software.
840  */
841 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
842 			    struct xdp_buff *xdp, struct bpf_prog *prog);
843 int xdp_do_redirect(struct net_device *dev,
844 		    struct xdp_buff *xdp,
845 		    struct bpf_prog *prog);
846 void xdp_do_flush_map(void);
847 
848 void bpf_warn_invalid_xdp_action(u32 act);
849 
850 #ifdef CONFIG_INET
851 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
852 				  struct bpf_prog *prog, struct sk_buff *skb,
853 				  u32 hash);
854 #else
855 static inline struct sock *
856 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
857 		     struct bpf_prog *prog, struct sk_buff *skb,
858 		     u32 hash)
859 {
860 	return NULL;
861 }
862 #endif
863 
864 #ifdef CONFIG_BPF_JIT
865 extern int bpf_jit_enable;
866 extern int bpf_jit_harden;
867 extern int bpf_jit_kallsyms;
868 extern long bpf_jit_limit;
869 
870 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
871 
872 struct bpf_binary_header *
873 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
874 		     unsigned int alignment,
875 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
876 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
877 
878 void bpf_jit_free(struct bpf_prog *fp);
879 
880 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
881 			  const struct bpf_insn *insn, bool extra_pass,
882 			  u64 *func_addr, bool *func_addr_fixed);
883 
884 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
885 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
886 
887 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
888 				u32 pass, void *image)
889 {
890 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
891 	       proglen, pass, image, current->comm, task_pid_nr(current));
892 
893 	if (image)
894 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
895 			       16, 1, image, proglen, false);
896 }
897 
898 static inline bool bpf_jit_is_ebpf(void)
899 {
900 # ifdef CONFIG_HAVE_EBPF_JIT
901 	return true;
902 # else
903 	return false;
904 # endif
905 }
906 
907 static inline bool ebpf_jit_enabled(void)
908 {
909 	return bpf_jit_enable && bpf_jit_is_ebpf();
910 }
911 
912 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
913 {
914 	return fp->jited && bpf_jit_is_ebpf();
915 }
916 
917 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
918 {
919 	/* These are the prerequisites, should someone ever have the
920 	 * idea to call blinding outside of them, we make sure to
921 	 * bail out.
922 	 */
923 	if (!bpf_jit_is_ebpf())
924 		return false;
925 	if (!prog->jit_requested)
926 		return false;
927 	if (!bpf_jit_harden)
928 		return false;
929 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
930 		return false;
931 
932 	return true;
933 }
934 
935 static inline bool bpf_jit_kallsyms_enabled(void)
936 {
937 	/* There are a couple of corner cases where kallsyms should
938 	 * not be enabled f.e. on hardening.
939 	 */
940 	if (bpf_jit_harden)
941 		return false;
942 	if (!bpf_jit_kallsyms)
943 		return false;
944 	if (bpf_jit_kallsyms == 1)
945 		return true;
946 
947 	return false;
948 }
949 
950 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
951 				 unsigned long *off, char *sym);
952 bool is_bpf_text_address(unsigned long addr);
953 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
954 		    char *sym);
955 
956 static inline const char *
957 bpf_address_lookup(unsigned long addr, unsigned long *size,
958 		   unsigned long *off, char **modname, char *sym)
959 {
960 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
961 
962 	if (ret && modname)
963 		*modname = NULL;
964 	return ret;
965 }
966 
967 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
968 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
969 
970 #else /* CONFIG_BPF_JIT */
971 
972 static inline bool ebpf_jit_enabled(void)
973 {
974 	return false;
975 }
976 
977 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
978 {
979 	return false;
980 }
981 
982 static inline void bpf_jit_free(struct bpf_prog *fp)
983 {
984 	bpf_prog_unlock_free(fp);
985 }
986 
987 static inline bool bpf_jit_kallsyms_enabled(void)
988 {
989 	return false;
990 }
991 
992 static inline const char *
993 __bpf_address_lookup(unsigned long addr, unsigned long *size,
994 		     unsigned long *off, char *sym)
995 {
996 	return NULL;
997 }
998 
999 static inline bool is_bpf_text_address(unsigned long addr)
1000 {
1001 	return false;
1002 }
1003 
1004 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1005 				  char *type, char *sym)
1006 {
1007 	return -ERANGE;
1008 }
1009 
1010 static inline const char *
1011 bpf_address_lookup(unsigned long addr, unsigned long *size,
1012 		   unsigned long *off, char **modname, char *sym)
1013 {
1014 	return NULL;
1015 }
1016 
1017 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1018 {
1019 }
1020 
1021 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1022 {
1023 }
1024 #endif /* CONFIG_BPF_JIT */
1025 
1026 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
1027 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1028 
1029 #define BPF_ANC		BIT(15)
1030 
1031 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1032 {
1033 	switch (first->code) {
1034 	case BPF_RET | BPF_K:
1035 	case BPF_LD | BPF_W | BPF_LEN:
1036 		return false;
1037 
1038 	case BPF_LD | BPF_W | BPF_ABS:
1039 	case BPF_LD | BPF_H | BPF_ABS:
1040 	case BPF_LD | BPF_B | BPF_ABS:
1041 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1042 			return true;
1043 		return false;
1044 
1045 	default:
1046 		return true;
1047 	}
1048 }
1049 
1050 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1051 {
1052 	BUG_ON(ftest->code & BPF_ANC);
1053 
1054 	switch (ftest->code) {
1055 	case BPF_LD | BPF_W | BPF_ABS:
1056 	case BPF_LD | BPF_H | BPF_ABS:
1057 	case BPF_LD | BPF_B | BPF_ABS:
1058 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1059 				return BPF_ANC | SKF_AD_##CODE
1060 		switch (ftest->k) {
1061 		BPF_ANCILLARY(PROTOCOL);
1062 		BPF_ANCILLARY(PKTTYPE);
1063 		BPF_ANCILLARY(IFINDEX);
1064 		BPF_ANCILLARY(NLATTR);
1065 		BPF_ANCILLARY(NLATTR_NEST);
1066 		BPF_ANCILLARY(MARK);
1067 		BPF_ANCILLARY(QUEUE);
1068 		BPF_ANCILLARY(HATYPE);
1069 		BPF_ANCILLARY(RXHASH);
1070 		BPF_ANCILLARY(CPU);
1071 		BPF_ANCILLARY(ALU_XOR_X);
1072 		BPF_ANCILLARY(VLAN_TAG);
1073 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1074 		BPF_ANCILLARY(PAY_OFFSET);
1075 		BPF_ANCILLARY(RANDOM);
1076 		BPF_ANCILLARY(VLAN_TPID);
1077 		}
1078 		/* Fallthrough. */
1079 	default:
1080 		return ftest->code;
1081 	}
1082 }
1083 
1084 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1085 					   int k, unsigned int size);
1086 
1087 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1088 				     unsigned int size, void *buffer)
1089 {
1090 	if (k >= 0)
1091 		return skb_header_pointer(skb, k, size, buffer);
1092 
1093 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1094 }
1095 
1096 static inline int bpf_tell_extensions(void)
1097 {
1098 	return SKF_AD_MAX;
1099 }
1100 
1101 struct bpf_sock_addr_kern {
1102 	struct sock *sk;
1103 	struct sockaddr *uaddr;
1104 	/* Temporary "register" to make indirect stores to nested structures
1105 	 * defined above. We need three registers to make such a store, but
1106 	 * only two (src and dst) are available at convert_ctx_access time
1107 	 */
1108 	u64 tmp_reg;
1109 	void *t_ctx;	/* Attach type specific context. */
1110 };
1111 
1112 struct bpf_sock_ops_kern {
1113 	struct	sock *sk;
1114 	u32	op;
1115 	union {
1116 		u32 args[4];
1117 		u32 reply;
1118 		u32 replylong[4];
1119 	};
1120 	u32	is_fullsock;
1121 	u64	temp;			/* temp and everything after is not
1122 					 * initialized to 0 before calling
1123 					 * the BPF program. New fields that
1124 					 * should be initialized to 0 should
1125 					 * be inserted before temp.
1126 					 * temp is scratch storage used by
1127 					 * sock_ops_convert_ctx_access
1128 					 * as temporary storage of a register.
1129 					 */
1130 };
1131 
1132 #endif /* __LINUX_FILTER_H__ */
1133