xref: /linux-6.15/include/linux/filter.h (revision 8ade3356)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark call to interpreter with arguments */
76 #define BPF_CALL_ARGS	0xe0
77 
78 /* unused opcode to mark speculation barrier for mitigating
79  * Speculative Store Bypass
80  */
81 #define BPF_NOSPEC	0xc0
82 
83 /* As per nm, we expose JITed images as text (code) section for
84  * kallsyms. That way, tools like perf can find it to match
85  * addresses.
86  */
87 #define BPF_SYM_ELF_TYPE	't'
88 
89 /* BPF program can access up to 512 bytes of stack space. */
90 #define MAX_BPF_STACK	512
91 
92 /* Helper macros for filter block array initializers. */
93 
94 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
95 
96 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = OFF,					\
102 		.imm   = 0 })
103 
104 #define BPF_ALU64_REG(OP, DST, SRC)				\
105 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
106 
107 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
108 	((struct bpf_insn) {					\
109 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
110 		.dst_reg = DST,					\
111 		.src_reg = SRC,					\
112 		.off   = OFF,					\
113 		.imm   = 0 })
114 
115 #define BPF_ALU32_REG(OP, DST, SRC)				\
116 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
117 
118 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
119 
120 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = OFF,					\
126 		.imm   = IMM })
127 #define BPF_ALU64_IMM(OP, DST, IMM)				\
128 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
129 
130 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
131 	((struct bpf_insn) {					\
132 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
133 		.dst_reg = DST,					\
134 		.src_reg = 0,					\
135 		.off   = OFF,					\
136 		.imm   = IMM })
137 #define BPF_ALU32_IMM(OP, DST, IMM)				\
138 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
139 
140 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
141 
142 #define BPF_ENDIAN(TYPE, DST, LEN)				\
143 	((struct bpf_insn) {					\
144 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
145 		.dst_reg = DST,					\
146 		.src_reg = 0,					\
147 		.off   = 0,					\
148 		.imm   = LEN })
149 
150 /* Byte Swap, bswap16/32/64 */
151 
152 #define BPF_BSWAP(DST, LEN)					\
153 	((struct bpf_insn) {					\
154 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
155 		.dst_reg = DST,					\
156 		.src_reg = 0,					\
157 		.off   = 0,					\
158 		.imm   = LEN })
159 
160 /* Short form of mov, dst_reg = src_reg */
161 
162 #define BPF_MOV64_REG(DST, SRC)					\
163 	((struct bpf_insn) {					\
164 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
165 		.dst_reg = DST,					\
166 		.src_reg = SRC,					\
167 		.off   = 0,					\
168 		.imm   = 0 })
169 
170 #define BPF_MOV32_REG(DST, SRC)					\
171 	((struct bpf_insn) {					\
172 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
173 		.dst_reg = DST,					\
174 		.src_reg = SRC,					\
175 		.off   = 0,					\
176 		.imm   = 0 })
177 
178 /* Short form of mov, dst_reg = imm32 */
179 
180 #define BPF_MOV64_IMM(DST, IMM)					\
181 	((struct bpf_insn) {					\
182 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
183 		.dst_reg = DST,					\
184 		.src_reg = 0,					\
185 		.off   = 0,					\
186 		.imm   = IMM })
187 
188 #define BPF_MOV32_IMM(DST, IMM)					\
189 	((struct bpf_insn) {					\
190 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
191 		.dst_reg = DST,					\
192 		.src_reg = 0,					\
193 		.off   = 0,					\
194 		.imm   = IMM })
195 
196 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
197 
198 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
199 	((struct bpf_insn) {					\
200 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
201 		.dst_reg = DST,					\
202 		.src_reg = SRC,					\
203 		.off   = OFF,					\
204 		.imm   = 0 })
205 
206 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
207 	((struct bpf_insn) {					\
208 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
209 		.dst_reg = DST,					\
210 		.src_reg = SRC,					\
211 		.off   = OFF,					\
212 		.imm   = 0 })
213 
214 /* Special form of mov32, used for doing explicit zero extension on dst. */
215 #define BPF_ZEXT_REG(DST)					\
216 	((struct bpf_insn) {					\
217 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
218 		.dst_reg = DST,					\
219 		.src_reg = DST,					\
220 		.off   = 0,					\
221 		.imm   = 1 })
222 
223 static inline bool insn_is_zext(const struct bpf_insn *insn)
224 {
225 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
226 }
227 
228 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
229 #define BPF_LD_IMM64(DST, IMM)					\
230 	BPF_LD_IMM64_RAW(DST, 0, IMM)
231 
232 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
233 	((struct bpf_insn) {					\
234 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
235 		.dst_reg = DST,					\
236 		.src_reg = SRC,					\
237 		.off   = 0,					\
238 		.imm   = (__u32) (IMM) }),			\
239 	((struct bpf_insn) {					\
240 		.code  = 0, /* zero is reserved opcode */	\
241 		.dst_reg = 0,					\
242 		.src_reg = 0,					\
243 		.off   = 0,					\
244 		.imm   = ((__u64) (IMM)) >> 32 })
245 
246 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
247 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
248 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
249 
250 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
251 
252 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
253 	((struct bpf_insn) {					\
254 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
255 		.dst_reg = DST,					\
256 		.src_reg = SRC,					\
257 		.off   = 0,					\
258 		.imm   = IMM })
259 
260 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
261 	((struct bpf_insn) {					\
262 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
263 		.dst_reg = DST,					\
264 		.src_reg = SRC,					\
265 		.off   = 0,					\
266 		.imm   = IMM })
267 
268 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
269 
270 #define BPF_LD_ABS(SIZE, IMM)					\
271 	((struct bpf_insn) {					\
272 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
273 		.dst_reg = 0,					\
274 		.src_reg = 0,					\
275 		.off   = 0,					\
276 		.imm   = IMM })
277 
278 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
279 
280 #define BPF_LD_IND(SIZE, SRC, IMM)				\
281 	((struct bpf_insn) {					\
282 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
283 		.dst_reg = 0,					\
284 		.src_reg = SRC,					\
285 		.off   = 0,					\
286 		.imm   = IMM })
287 
288 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
289 
290 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
291 	((struct bpf_insn) {					\
292 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
293 		.dst_reg = DST,					\
294 		.src_reg = SRC,					\
295 		.off   = OFF,					\
296 		.imm   = 0 })
297 
298 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
299 
300 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
301 	((struct bpf_insn) {					\
302 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
303 		.dst_reg = DST,					\
304 		.src_reg = SRC,					\
305 		.off   = OFF,					\
306 		.imm   = 0 })
307 
308 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
309 
310 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
311 	((struct bpf_insn) {					\
312 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
313 		.dst_reg = DST,					\
314 		.src_reg = SRC,					\
315 		.off   = OFF,					\
316 		.imm   = 0 })
317 
318 
319 /*
320  * Atomic operations:
321  *
322  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
323  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
324  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
325  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
326  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
327  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
328  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
329  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
330  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
331  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
332  */
333 
334 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
335 	((struct bpf_insn) {					\
336 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
337 		.dst_reg = DST,					\
338 		.src_reg = SRC,					\
339 		.off   = OFF,					\
340 		.imm   = OP })
341 
342 /* Legacy alias */
343 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
344 
345 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
346 
347 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
348 	((struct bpf_insn) {					\
349 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
350 		.dst_reg = DST,					\
351 		.src_reg = 0,					\
352 		.off   = OFF,					\
353 		.imm   = IMM })
354 
355 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
356 
357 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
358 	((struct bpf_insn) {					\
359 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
360 		.dst_reg = DST,					\
361 		.src_reg = SRC,					\
362 		.off   = OFF,					\
363 		.imm   = 0 })
364 
365 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
366 
367 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
368 	((struct bpf_insn) {					\
369 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
370 		.dst_reg = DST,					\
371 		.src_reg = 0,					\
372 		.off   = OFF,					\
373 		.imm   = IMM })
374 
375 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
376 
377 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
378 	((struct bpf_insn) {					\
379 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
380 		.dst_reg = DST,					\
381 		.src_reg = SRC,					\
382 		.off   = OFF,					\
383 		.imm   = 0 })
384 
385 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
386 
387 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
388 	((struct bpf_insn) {					\
389 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
390 		.dst_reg = DST,					\
391 		.src_reg = 0,					\
392 		.off   = OFF,					\
393 		.imm   = IMM })
394 
395 /* Unconditional jumps, goto pc + off16 */
396 
397 #define BPF_JMP_A(OFF)						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_JMP | BPF_JA,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = OFF,					\
403 		.imm   = 0 })
404 
405 /* Relative call */
406 
407 #define BPF_CALL_REL(TGT)					\
408 	((struct bpf_insn) {					\
409 		.code  = BPF_JMP | BPF_CALL,			\
410 		.dst_reg = 0,					\
411 		.src_reg = BPF_PSEUDO_CALL,			\
412 		.off   = 0,					\
413 		.imm   = TGT })
414 
415 /* Convert function address to BPF immediate */
416 
417 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
418 
419 #define BPF_EMIT_CALL(FUNC)					\
420 	((struct bpf_insn) {					\
421 		.code  = BPF_JMP | BPF_CALL,			\
422 		.dst_reg = 0,					\
423 		.src_reg = 0,					\
424 		.off   = 0,					\
425 		.imm   = BPF_CALL_IMM(FUNC) })
426 
427 /* Raw code statement block */
428 
429 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
430 	((struct bpf_insn) {					\
431 		.code  = CODE,					\
432 		.dst_reg = DST,					\
433 		.src_reg = SRC,					\
434 		.off   = OFF,					\
435 		.imm   = IMM })
436 
437 /* Program exit */
438 
439 #define BPF_EXIT_INSN()						\
440 	((struct bpf_insn) {					\
441 		.code  = BPF_JMP | BPF_EXIT,			\
442 		.dst_reg = 0,					\
443 		.src_reg = 0,					\
444 		.off   = 0,					\
445 		.imm   = 0 })
446 
447 /* Speculation barrier */
448 
449 #define BPF_ST_NOSPEC()						\
450 	((struct bpf_insn) {					\
451 		.code  = BPF_ST | BPF_NOSPEC,			\
452 		.dst_reg = 0,					\
453 		.src_reg = 0,					\
454 		.off   = 0,					\
455 		.imm   = 0 })
456 
457 /* Internal classic blocks for direct assignment */
458 
459 #define __BPF_STMT(CODE, K)					\
460 	((struct sock_filter) BPF_STMT(CODE, K))
461 
462 #define __BPF_JUMP(CODE, K, JT, JF)				\
463 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
464 
465 #define bytes_to_bpf_size(bytes)				\
466 ({								\
467 	int bpf_size = -EINVAL;					\
468 								\
469 	if (bytes == sizeof(u8))				\
470 		bpf_size = BPF_B;				\
471 	else if (bytes == sizeof(u16))				\
472 		bpf_size = BPF_H;				\
473 	else if (bytes == sizeof(u32))				\
474 		bpf_size = BPF_W;				\
475 	else if (bytes == sizeof(u64))				\
476 		bpf_size = BPF_DW;				\
477 								\
478 	bpf_size;						\
479 })
480 
481 #define bpf_size_to_bytes(bpf_size)				\
482 ({								\
483 	int bytes = -EINVAL;					\
484 								\
485 	if (bpf_size == BPF_B)					\
486 		bytes = sizeof(u8);				\
487 	else if (bpf_size == BPF_H)				\
488 		bytes = sizeof(u16);				\
489 	else if (bpf_size == BPF_W)				\
490 		bytes = sizeof(u32);				\
491 	else if (bpf_size == BPF_DW)				\
492 		bytes = sizeof(u64);				\
493 								\
494 	bytes;							\
495 })
496 
497 #define BPF_SIZEOF(type)					\
498 	({							\
499 		const int __size = bytes_to_bpf_size(sizeof(type)); \
500 		BUILD_BUG_ON(__size < 0);			\
501 		__size;						\
502 	})
503 
504 #define BPF_FIELD_SIZEOF(type, field)				\
505 	({							\
506 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
507 		BUILD_BUG_ON(__size < 0);			\
508 		__size;						\
509 	})
510 
511 #define BPF_LDST_BYTES(insn)					\
512 	({							\
513 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
514 		WARN_ON(__size < 0);				\
515 		__size;						\
516 	})
517 
518 #define __BPF_MAP_0(m, v, ...) v
519 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
520 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
521 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
522 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
523 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
524 
525 #define __BPF_REG_0(...) __BPF_PAD(5)
526 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
527 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
528 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
529 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
530 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
531 
532 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
533 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
534 
535 #define __BPF_CAST(t, a)						       \
536 	(__force t)							       \
537 	(__force							       \
538 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
539 				      (unsigned long)0, (t)0))) a
540 #define __BPF_V void
541 #define __BPF_N
542 
543 #define __BPF_DECL_ARGS(t, a) t   a
544 #define __BPF_DECL_REGS(t, a) u64 a
545 
546 #define __BPF_PAD(n)							       \
547 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
548 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
549 
550 #define BPF_CALL_x(x, name, ...)					       \
551 	static __always_inline						       \
552 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
553 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
554 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
555 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
556 	{								       \
557 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
558 	}								       \
559 	static __always_inline						       \
560 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
561 
562 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
563 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
564 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
565 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
566 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
567 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
568 
569 #define bpf_ctx_range(TYPE, MEMBER)						\
570 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
571 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
572 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
573 #if BITS_PER_LONG == 64
574 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
575 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
576 #else
577 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
578 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
579 #endif /* BITS_PER_LONG == 64 */
580 
581 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
582 	({									\
583 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
584 		*(PTR_SIZE) = (SIZE);						\
585 		offsetof(TYPE, MEMBER);						\
586 	})
587 
588 /* A struct sock_filter is architecture independent. */
589 struct compat_sock_fprog {
590 	u16		len;
591 	compat_uptr_t	filter;	/* struct sock_filter * */
592 };
593 
594 struct sock_fprog_kern {
595 	u16			len;
596 	struct sock_filter	*filter;
597 };
598 
599 /* Some arches need doubleword alignment for their instructions and/or data */
600 #define BPF_IMAGE_ALIGNMENT 8
601 
602 struct bpf_binary_header {
603 	u32 size;
604 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
605 };
606 
607 struct bpf_prog_stats {
608 	u64_stats_t cnt;
609 	u64_stats_t nsecs;
610 	u64_stats_t misses;
611 	struct u64_stats_sync syncp;
612 } __aligned(2 * sizeof(u64));
613 
614 struct sk_filter {
615 	refcount_t	refcnt;
616 	struct rcu_head	rcu;
617 	struct bpf_prog	*prog;
618 };
619 
620 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
621 
622 extern struct mutex nf_conn_btf_access_lock;
623 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
624 				     const struct bpf_reg_state *reg,
625 				     int off, int size);
626 
627 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
628 					  const struct bpf_insn *insnsi,
629 					  unsigned int (*bpf_func)(const void *,
630 								   const struct bpf_insn *));
631 
632 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
633 					  const void *ctx,
634 					  bpf_dispatcher_fn dfunc)
635 {
636 	u32 ret;
637 
638 	cant_migrate();
639 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
640 		struct bpf_prog_stats *stats;
641 		u64 start = sched_clock();
642 		unsigned long flags;
643 
644 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
645 		stats = this_cpu_ptr(prog->stats);
646 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
647 		u64_stats_inc(&stats->cnt);
648 		u64_stats_add(&stats->nsecs, sched_clock() - start);
649 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
650 	} else {
651 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
652 	}
653 	return ret;
654 }
655 
656 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
657 {
658 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
659 }
660 
661 /*
662  * Use in preemptible and therefore migratable context to make sure that
663  * the execution of the BPF program runs on one CPU.
664  *
665  * This uses migrate_disable/enable() explicitly to document that the
666  * invocation of a BPF program does not require reentrancy protection
667  * against a BPF program which is invoked from a preempting task.
668  */
669 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
670 					  const void *ctx)
671 {
672 	u32 ret;
673 
674 	migrate_disable();
675 	ret = bpf_prog_run(prog, ctx);
676 	migrate_enable();
677 	return ret;
678 }
679 
680 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
681 
682 struct bpf_skb_data_end {
683 	struct qdisc_skb_cb qdisc_cb;
684 	void *data_meta;
685 	void *data_end;
686 };
687 
688 struct bpf_nh_params {
689 	u32 nh_family;
690 	union {
691 		u32 ipv4_nh;
692 		struct in6_addr ipv6_nh;
693 	};
694 };
695 
696 struct bpf_redirect_info {
697 	u64 tgt_index;
698 	void *tgt_value;
699 	struct bpf_map *map;
700 	u32 flags;
701 	u32 kern_flags;
702 	u32 map_id;
703 	enum bpf_map_type map_type;
704 	struct bpf_nh_params nh;
705 };
706 
707 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
708 
709 /* flags for bpf_redirect_info kern_flags */
710 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
711 
712 /* Compute the linear packet data range [data, data_end) which
713  * will be accessed by various program types (cls_bpf, act_bpf,
714  * lwt, ...). Subsystems allowing direct data access must (!)
715  * ensure that cb[] area can be written to when BPF program is
716  * invoked (otherwise cb[] save/restore is necessary).
717  */
718 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
719 {
720 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
721 
722 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
723 	cb->data_meta = skb->data - skb_metadata_len(skb);
724 	cb->data_end  = skb->data + skb_headlen(skb);
725 }
726 
727 /* Similar to bpf_compute_data_pointers(), except that save orginal
728  * data in cb->data and cb->meta_data for restore.
729  */
730 static inline void bpf_compute_and_save_data_end(
731 	struct sk_buff *skb, void **saved_data_end)
732 {
733 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
734 
735 	*saved_data_end = cb->data_end;
736 	cb->data_end  = skb->data + skb_headlen(skb);
737 }
738 
739 /* Restore data saved by bpf_compute_and_save_data_end(). */
740 static inline void bpf_restore_data_end(
741 	struct sk_buff *skb, void *saved_data_end)
742 {
743 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
744 
745 	cb->data_end = saved_data_end;
746 }
747 
748 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
749 {
750 	/* eBPF programs may read/write skb->cb[] area to transfer meta
751 	 * data between tail calls. Since this also needs to work with
752 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
753 	 *
754 	 * In some socket filter cases, the cb unfortunately needs to be
755 	 * saved/restored so that protocol specific skb->cb[] data won't
756 	 * be lost. In any case, due to unpriviledged eBPF programs
757 	 * attached to sockets, we need to clear the bpf_skb_cb() area
758 	 * to not leak previous contents to user space.
759 	 */
760 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
761 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
762 		     sizeof_field(struct qdisc_skb_cb, data));
763 
764 	return qdisc_skb_cb(skb)->data;
765 }
766 
767 /* Must be invoked with migration disabled */
768 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
769 					 const void *ctx)
770 {
771 	const struct sk_buff *skb = ctx;
772 	u8 *cb_data = bpf_skb_cb(skb);
773 	u8 cb_saved[BPF_SKB_CB_LEN];
774 	u32 res;
775 
776 	if (unlikely(prog->cb_access)) {
777 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
778 		memset(cb_data, 0, sizeof(cb_saved));
779 	}
780 
781 	res = bpf_prog_run(prog, skb);
782 
783 	if (unlikely(prog->cb_access))
784 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
785 
786 	return res;
787 }
788 
789 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
790 				       struct sk_buff *skb)
791 {
792 	u32 res;
793 
794 	migrate_disable();
795 	res = __bpf_prog_run_save_cb(prog, skb);
796 	migrate_enable();
797 	return res;
798 }
799 
800 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
801 					struct sk_buff *skb)
802 {
803 	u8 *cb_data = bpf_skb_cb(skb);
804 	u32 res;
805 
806 	if (unlikely(prog->cb_access))
807 		memset(cb_data, 0, BPF_SKB_CB_LEN);
808 
809 	res = bpf_prog_run_pin_on_cpu(prog, skb);
810 	return res;
811 }
812 
813 DECLARE_BPF_DISPATCHER(xdp)
814 
815 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
816 
817 u32 xdp_master_redirect(struct xdp_buff *xdp);
818 
819 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
820 
821 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
822 {
823 	return prog->len * sizeof(struct bpf_insn);
824 }
825 
826 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
827 {
828 	return round_up(bpf_prog_insn_size(prog) +
829 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
830 }
831 
832 static inline unsigned int bpf_prog_size(unsigned int proglen)
833 {
834 	return max(sizeof(struct bpf_prog),
835 		   offsetof(struct bpf_prog, insns[proglen]));
836 }
837 
838 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
839 {
840 	/* When classic BPF programs have been loaded and the arch
841 	 * does not have a classic BPF JIT (anymore), they have been
842 	 * converted via bpf_migrate_filter() to eBPF and thus always
843 	 * have an unspec program type.
844 	 */
845 	return prog->type == BPF_PROG_TYPE_UNSPEC;
846 }
847 
848 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
849 {
850 	const u32 size_machine = sizeof(unsigned long);
851 
852 	if (size > size_machine && size % size_machine == 0)
853 		size = size_machine;
854 
855 	return size;
856 }
857 
858 static inline bool
859 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
860 {
861 	return size <= size_default && (size & (size - 1)) == 0;
862 }
863 
864 static inline u8
865 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
866 {
867 	u8 access_off = off & (size_default - 1);
868 
869 #ifdef __LITTLE_ENDIAN
870 	return access_off;
871 #else
872 	return size_default - (access_off + size);
873 #endif
874 }
875 
876 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
877 	(size == sizeof(__u64) &&					\
878 	off >= offsetof(type, field) &&					\
879 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
880 	off % sizeof(__u64) == 0)
881 
882 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
883 
884 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
885 {
886 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
887 	if (!fp->jited) {
888 		set_vm_flush_reset_perms(fp);
889 		set_memory_ro((unsigned long)fp, fp->pages);
890 	}
891 #endif
892 }
893 
894 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
895 {
896 	set_vm_flush_reset_perms(hdr);
897 	set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
898 }
899 
900 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
901 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
902 {
903 	return sk_filter_trim_cap(sk, skb, 1);
904 }
905 
906 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
907 void bpf_prog_free(struct bpf_prog *fp);
908 
909 bool bpf_opcode_in_insntable(u8 code);
910 
911 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
912 			       const u32 *insn_to_jit_off);
913 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
914 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
915 
916 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
917 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
918 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
919 				  gfp_t gfp_extra_flags);
920 void __bpf_prog_free(struct bpf_prog *fp);
921 
922 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
923 {
924 	__bpf_prog_free(fp);
925 }
926 
927 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
928 				       unsigned int flen);
929 
930 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
931 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
932 			      bpf_aux_classic_check_t trans, bool save_orig);
933 void bpf_prog_destroy(struct bpf_prog *fp);
934 
935 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
936 int sk_attach_bpf(u32 ufd, struct sock *sk);
937 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
938 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
939 void sk_reuseport_prog_free(struct bpf_prog *prog);
940 int sk_detach_filter(struct sock *sk);
941 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
942 
943 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
944 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
945 
946 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
947 #define __bpf_call_base_args \
948 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
949 	 (void *)__bpf_call_base)
950 
951 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
952 void bpf_jit_compile(struct bpf_prog *prog);
953 bool bpf_jit_needs_zext(void);
954 bool bpf_jit_supports_subprog_tailcalls(void);
955 bool bpf_jit_supports_kfunc_call(void);
956 bool bpf_jit_supports_far_kfunc_call(void);
957 bool bpf_jit_supports_exceptions(void);
958 bool bpf_jit_supports_ptr_xchg(void);
959 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
960 bool bpf_helper_changes_pkt_data(void *func);
961 
962 static inline bool bpf_dump_raw_ok(const struct cred *cred)
963 {
964 	/* Reconstruction of call-sites is dependent on kallsyms,
965 	 * thus make dump the same restriction.
966 	 */
967 	return kallsyms_show_value(cred);
968 }
969 
970 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
971 				       const struct bpf_insn *patch, u32 len);
972 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
973 
974 void bpf_clear_redirect_map(struct bpf_map *map);
975 
976 static inline bool xdp_return_frame_no_direct(void)
977 {
978 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
979 
980 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
981 }
982 
983 static inline void xdp_set_return_frame_no_direct(void)
984 {
985 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
986 
987 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
988 }
989 
990 static inline void xdp_clear_return_frame_no_direct(void)
991 {
992 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
993 
994 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
995 }
996 
997 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
998 				 unsigned int pktlen)
999 {
1000 	unsigned int len;
1001 
1002 	if (unlikely(!(fwd->flags & IFF_UP)))
1003 		return -ENETDOWN;
1004 
1005 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1006 	if (pktlen > len)
1007 		return -EMSGSIZE;
1008 
1009 	return 0;
1010 }
1011 
1012 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1013  * same cpu context. Further for best results no more than a single map
1014  * for the do_redirect/do_flush pair should be used. This limitation is
1015  * because we only track one map and force a flush when the map changes.
1016  * This does not appear to be a real limitation for existing software.
1017  */
1018 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1019 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1020 int xdp_do_redirect(struct net_device *dev,
1021 		    struct xdp_buff *xdp,
1022 		    struct bpf_prog *prog);
1023 int xdp_do_redirect_frame(struct net_device *dev,
1024 			  struct xdp_buff *xdp,
1025 			  struct xdp_frame *xdpf,
1026 			  struct bpf_prog *prog);
1027 void xdp_do_flush(void);
1028 
1029 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1030 
1031 #ifdef CONFIG_INET
1032 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1033 				  struct bpf_prog *prog, struct sk_buff *skb,
1034 				  struct sock *migrating_sk,
1035 				  u32 hash);
1036 #else
1037 static inline struct sock *
1038 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1039 		     struct bpf_prog *prog, struct sk_buff *skb,
1040 		     struct sock *migrating_sk,
1041 		     u32 hash)
1042 {
1043 	return NULL;
1044 }
1045 #endif
1046 
1047 #ifdef CONFIG_BPF_JIT
1048 extern int bpf_jit_enable;
1049 extern int bpf_jit_harden;
1050 extern int bpf_jit_kallsyms;
1051 extern long bpf_jit_limit;
1052 extern long bpf_jit_limit_max;
1053 
1054 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1055 
1056 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1057 
1058 struct bpf_binary_header *
1059 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1060 		     unsigned int alignment,
1061 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1062 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1063 u64 bpf_jit_alloc_exec_limit(void);
1064 void *bpf_jit_alloc_exec(unsigned long size);
1065 void bpf_jit_free_exec(void *addr);
1066 void bpf_jit_free(struct bpf_prog *fp);
1067 struct bpf_binary_header *
1068 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1069 
1070 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1071 void bpf_prog_pack_free(void *ptr, u32 size);
1072 
1073 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1074 {
1075 	return list_empty(&fp->aux->ksym.lnode) ||
1076 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1077 }
1078 
1079 struct bpf_binary_header *
1080 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1081 			  unsigned int alignment,
1082 			  struct bpf_binary_header **rw_hdr,
1083 			  u8 **rw_image,
1084 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1085 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1086 				 struct bpf_binary_header *ro_header,
1087 				 struct bpf_binary_header *rw_header);
1088 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1089 			      struct bpf_binary_header *rw_header);
1090 
1091 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1092 				struct bpf_jit_poke_descriptor *poke);
1093 
1094 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1095 			  const struct bpf_insn *insn, bool extra_pass,
1096 			  u64 *func_addr, bool *func_addr_fixed);
1097 
1098 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1099 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1100 
1101 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1102 				u32 pass, void *image)
1103 {
1104 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1105 	       proglen, pass, image, current->comm, task_pid_nr(current));
1106 
1107 	if (image)
1108 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1109 			       16, 1, image, proglen, false);
1110 }
1111 
1112 static inline bool bpf_jit_is_ebpf(void)
1113 {
1114 # ifdef CONFIG_HAVE_EBPF_JIT
1115 	return true;
1116 # else
1117 	return false;
1118 # endif
1119 }
1120 
1121 static inline bool ebpf_jit_enabled(void)
1122 {
1123 	return bpf_jit_enable && bpf_jit_is_ebpf();
1124 }
1125 
1126 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1127 {
1128 	return fp->jited && bpf_jit_is_ebpf();
1129 }
1130 
1131 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1132 {
1133 	/* These are the prerequisites, should someone ever have the
1134 	 * idea to call blinding outside of them, we make sure to
1135 	 * bail out.
1136 	 */
1137 	if (!bpf_jit_is_ebpf())
1138 		return false;
1139 	if (!prog->jit_requested)
1140 		return false;
1141 	if (!bpf_jit_harden)
1142 		return false;
1143 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1144 		return false;
1145 
1146 	return true;
1147 }
1148 
1149 static inline bool bpf_jit_kallsyms_enabled(void)
1150 {
1151 	/* There are a couple of corner cases where kallsyms should
1152 	 * not be enabled f.e. on hardening.
1153 	 */
1154 	if (bpf_jit_harden)
1155 		return false;
1156 	if (!bpf_jit_kallsyms)
1157 		return false;
1158 	if (bpf_jit_kallsyms == 1)
1159 		return true;
1160 
1161 	return false;
1162 }
1163 
1164 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1165 				 unsigned long *off, char *sym);
1166 bool is_bpf_text_address(unsigned long addr);
1167 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1168 		    char *sym);
1169 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1170 
1171 static inline const char *
1172 bpf_address_lookup(unsigned long addr, unsigned long *size,
1173 		   unsigned long *off, char **modname, char *sym)
1174 {
1175 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1176 
1177 	if (ret && modname)
1178 		*modname = NULL;
1179 	return ret;
1180 }
1181 
1182 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1183 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1184 
1185 #else /* CONFIG_BPF_JIT */
1186 
1187 static inline bool ebpf_jit_enabled(void)
1188 {
1189 	return false;
1190 }
1191 
1192 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1193 {
1194 	return false;
1195 }
1196 
1197 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1198 {
1199 	return false;
1200 }
1201 
1202 static inline int
1203 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1204 			    struct bpf_jit_poke_descriptor *poke)
1205 {
1206 	return -ENOTSUPP;
1207 }
1208 
1209 static inline void bpf_jit_free(struct bpf_prog *fp)
1210 {
1211 	bpf_prog_unlock_free(fp);
1212 }
1213 
1214 static inline bool bpf_jit_kallsyms_enabled(void)
1215 {
1216 	return false;
1217 }
1218 
1219 static inline const char *
1220 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1221 		     unsigned long *off, char *sym)
1222 {
1223 	return NULL;
1224 }
1225 
1226 static inline bool is_bpf_text_address(unsigned long addr)
1227 {
1228 	return false;
1229 }
1230 
1231 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1232 				  char *type, char *sym)
1233 {
1234 	return -ERANGE;
1235 }
1236 
1237 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1238 {
1239 	return NULL;
1240 }
1241 
1242 static inline const char *
1243 bpf_address_lookup(unsigned long addr, unsigned long *size,
1244 		   unsigned long *off, char **modname, char *sym)
1245 {
1246 	return NULL;
1247 }
1248 
1249 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1250 {
1251 }
1252 
1253 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1254 {
1255 }
1256 
1257 #endif /* CONFIG_BPF_JIT */
1258 
1259 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1260 
1261 #define BPF_ANC		BIT(15)
1262 
1263 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1264 {
1265 	switch (first->code) {
1266 	case BPF_RET | BPF_K:
1267 	case BPF_LD | BPF_W | BPF_LEN:
1268 		return false;
1269 
1270 	case BPF_LD | BPF_W | BPF_ABS:
1271 	case BPF_LD | BPF_H | BPF_ABS:
1272 	case BPF_LD | BPF_B | BPF_ABS:
1273 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1274 			return true;
1275 		return false;
1276 
1277 	default:
1278 		return true;
1279 	}
1280 }
1281 
1282 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1283 {
1284 	BUG_ON(ftest->code & BPF_ANC);
1285 
1286 	switch (ftest->code) {
1287 	case BPF_LD | BPF_W | BPF_ABS:
1288 	case BPF_LD | BPF_H | BPF_ABS:
1289 	case BPF_LD | BPF_B | BPF_ABS:
1290 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1291 				return BPF_ANC | SKF_AD_##CODE
1292 		switch (ftest->k) {
1293 		BPF_ANCILLARY(PROTOCOL);
1294 		BPF_ANCILLARY(PKTTYPE);
1295 		BPF_ANCILLARY(IFINDEX);
1296 		BPF_ANCILLARY(NLATTR);
1297 		BPF_ANCILLARY(NLATTR_NEST);
1298 		BPF_ANCILLARY(MARK);
1299 		BPF_ANCILLARY(QUEUE);
1300 		BPF_ANCILLARY(HATYPE);
1301 		BPF_ANCILLARY(RXHASH);
1302 		BPF_ANCILLARY(CPU);
1303 		BPF_ANCILLARY(ALU_XOR_X);
1304 		BPF_ANCILLARY(VLAN_TAG);
1305 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1306 		BPF_ANCILLARY(PAY_OFFSET);
1307 		BPF_ANCILLARY(RANDOM);
1308 		BPF_ANCILLARY(VLAN_TPID);
1309 		}
1310 		fallthrough;
1311 	default:
1312 		return ftest->code;
1313 	}
1314 }
1315 
1316 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1317 					   int k, unsigned int size);
1318 
1319 static inline int bpf_tell_extensions(void)
1320 {
1321 	return SKF_AD_MAX;
1322 }
1323 
1324 struct bpf_sock_addr_kern {
1325 	struct sock *sk;
1326 	struct sockaddr *uaddr;
1327 	/* Temporary "register" to make indirect stores to nested structures
1328 	 * defined above. We need three registers to make such a store, but
1329 	 * only two (src and dst) are available at convert_ctx_access time
1330 	 */
1331 	u64 tmp_reg;
1332 	void *t_ctx;	/* Attach type specific context. */
1333 	u32 uaddrlen;
1334 };
1335 
1336 struct bpf_sock_ops_kern {
1337 	struct	sock *sk;
1338 	union {
1339 		u32 args[4];
1340 		u32 reply;
1341 		u32 replylong[4];
1342 	};
1343 	struct sk_buff	*syn_skb;
1344 	struct sk_buff	*skb;
1345 	void	*skb_data_end;
1346 	u8	op;
1347 	u8	is_fullsock;
1348 	u8	remaining_opt_len;
1349 	u64	temp;			/* temp and everything after is not
1350 					 * initialized to 0 before calling
1351 					 * the BPF program. New fields that
1352 					 * should be initialized to 0 should
1353 					 * be inserted before temp.
1354 					 * temp is scratch storage used by
1355 					 * sock_ops_convert_ctx_access
1356 					 * as temporary storage of a register.
1357 					 */
1358 };
1359 
1360 struct bpf_sysctl_kern {
1361 	struct ctl_table_header *head;
1362 	struct ctl_table *table;
1363 	void *cur_val;
1364 	size_t cur_len;
1365 	void *new_val;
1366 	size_t new_len;
1367 	int new_updated;
1368 	int write;
1369 	loff_t *ppos;
1370 	/* Temporary "register" for indirect stores to ppos. */
1371 	u64 tmp_reg;
1372 };
1373 
1374 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1375 struct bpf_sockopt_buf {
1376 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1377 };
1378 
1379 struct bpf_sockopt_kern {
1380 	struct sock	*sk;
1381 	u8		*optval;
1382 	u8		*optval_end;
1383 	s32		level;
1384 	s32		optname;
1385 	s32		optlen;
1386 	/* for retval in struct bpf_cg_run_ctx */
1387 	struct task_struct *current_task;
1388 	/* Temporary "register" for indirect stores to ppos. */
1389 	u64		tmp_reg;
1390 };
1391 
1392 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1393 
1394 struct bpf_sk_lookup_kern {
1395 	u16		family;
1396 	u16		protocol;
1397 	__be16		sport;
1398 	u16		dport;
1399 	struct {
1400 		__be32 saddr;
1401 		__be32 daddr;
1402 	} v4;
1403 	struct {
1404 		const struct in6_addr *saddr;
1405 		const struct in6_addr *daddr;
1406 	} v6;
1407 	struct sock	*selected_sk;
1408 	u32		ingress_ifindex;
1409 	bool		no_reuseport;
1410 };
1411 
1412 extern struct static_key_false bpf_sk_lookup_enabled;
1413 
1414 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1415  *
1416  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1417  * SK_DROP. Their meaning is as follows:
1418  *
1419  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1420  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1421  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1422  *
1423  * This macro aggregates return values and selected sockets from
1424  * multiple BPF programs according to following rules in order:
1425  *
1426  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1427  *     macro result is SK_PASS and last ctx.selected_sk is used.
1428  *  2. If any program returned SK_DROP return value,
1429  *     macro result is SK_DROP.
1430  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1431  *
1432  * Caller must ensure that the prog array is non-NULL, and that the
1433  * array as well as the programs it contains remain valid.
1434  */
1435 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1436 	({								\
1437 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1438 		struct bpf_prog_array_item *_item;			\
1439 		struct sock *_selected_sk = NULL;			\
1440 		bool _no_reuseport = false;				\
1441 		struct bpf_prog *_prog;					\
1442 		bool _all_pass = true;					\
1443 		u32 _ret;						\
1444 									\
1445 		migrate_disable();					\
1446 		_item = &(array)->items[0];				\
1447 		while ((_prog = READ_ONCE(_item->prog))) {		\
1448 			/* restore most recent selection */		\
1449 			_ctx->selected_sk = _selected_sk;		\
1450 			_ctx->no_reuseport = _no_reuseport;		\
1451 									\
1452 			_ret = func(_prog, _ctx);			\
1453 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1454 				/* remember last non-NULL socket */	\
1455 				_selected_sk = _ctx->selected_sk;	\
1456 				_no_reuseport = _ctx->no_reuseport;	\
1457 			} else if (_ret == SK_DROP && _all_pass) {	\
1458 				_all_pass = false;			\
1459 			}						\
1460 			_item++;					\
1461 		}							\
1462 		_ctx->selected_sk = _selected_sk;			\
1463 		_ctx->no_reuseport = _no_reuseport;			\
1464 		migrate_enable();					\
1465 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1466 	 })
1467 
1468 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1469 					const __be32 saddr, const __be16 sport,
1470 					const __be32 daddr, const u16 dport,
1471 					const int ifindex, struct sock **psk)
1472 {
1473 	struct bpf_prog_array *run_array;
1474 	struct sock *selected_sk = NULL;
1475 	bool no_reuseport = false;
1476 
1477 	rcu_read_lock();
1478 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1479 	if (run_array) {
1480 		struct bpf_sk_lookup_kern ctx = {
1481 			.family		= AF_INET,
1482 			.protocol	= protocol,
1483 			.v4.saddr	= saddr,
1484 			.v4.daddr	= daddr,
1485 			.sport		= sport,
1486 			.dport		= dport,
1487 			.ingress_ifindex	= ifindex,
1488 		};
1489 		u32 act;
1490 
1491 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1492 		if (act == SK_PASS) {
1493 			selected_sk = ctx.selected_sk;
1494 			no_reuseport = ctx.no_reuseport;
1495 		} else {
1496 			selected_sk = ERR_PTR(-ECONNREFUSED);
1497 		}
1498 	}
1499 	rcu_read_unlock();
1500 	*psk = selected_sk;
1501 	return no_reuseport;
1502 }
1503 
1504 #if IS_ENABLED(CONFIG_IPV6)
1505 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1506 					const struct in6_addr *saddr,
1507 					const __be16 sport,
1508 					const struct in6_addr *daddr,
1509 					const u16 dport,
1510 					const int ifindex, struct sock **psk)
1511 {
1512 	struct bpf_prog_array *run_array;
1513 	struct sock *selected_sk = NULL;
1514 	bool no_reuseport = false;
1515 
1516 	rcu_read_lock();
1517 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1518 	if (run_array) {
1519 		struct bpf_sk_lookup_kern ctx = {
1520 			.family		= AF_INET6,
1521 			.protocol	= protocol,
1522 			.v6.saddr	= saddr,
1523 			.v6.daddr	= daddr,
1524 			.sport		= sport,
1525 			.dport		= dport,
1526 			.ingress_ifindex	= ifindex,
1527 		};
1528 		u32 act;
1529 
1530 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1531 		if (act == SK_PASS) {
1532 			selected_sk = ctx.selected_sk;
1533 			no_reuseport = ctx.no_reuseport;
1534 		} else {
1535 			selected_sk = ERR_PTR(-ECONNREFUSED);
1536 		}
1537 	}
1538 	rcu_read_unlock();
1539 	*psk = selected_sk;
1540 	return no_reuseport;
1541 }
1542 #endif /* IS_ENABLED(CONFIG_IPV6) */
1543 
1544 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1545 						   u64 flags, const u64 flag_mask,
1546 						   void *lookup_elem(struct bpf_map *map, u32 key))
1547 {
1548 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1549 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1550 
1551 	/* Lower bits of the flags are used as return code on lookup failure */
1552 	if (unlikely(flags & ~(action_mask | flag_mask)))
1553 		return XDP_ABORTED;
1554 
1555 	ri->tgt_value = lookup_elem(map, index);
1556 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1557 		/* If the lookup fails we want to clear out the state in the
1558 		 * redirect_info struct completely, so that if an eBPF program
1559 		 * performs multiple lookups, the last one always takes
1560 		 * precedence.
1561 		 */
1562 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1563 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1564 		return flags & action_mask;
1565 	}
1566 
1567 	ri->tgt_index = index;
1568 	ri->map_id = map->id;
1569 	ri->map_type = map->map_type;
1570 
1571 	if (flags & BPF_F_BROADCAST) {
1572 		WRITE_ONCE(ri->map, map);
1573 		ri->flags = flags;
1574 	} else {
1575 		WRITE_ONCE(ri->map, NULL);
1576 		ri->flags = 0;
1577 	}
1578 
1579 	return XDP_REDIRECT;
1580 }
1581 
1582 #ifdef CONFIG_NET
1583 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1584 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1585 			  u32 len, u64 flags);
1586 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1587 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1588 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1589 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1590 		      void *buf, unsigned long len, bool flush);
1591 #else /* CONFIG_NET */
1592 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1593 				       void *to, u32 len)
1594 {
1595 	return -EOPNOTSUPP;
1596 }
1597 
1598 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1599 					const void *from, u32 len, u64 flags)
1600 {
1601 	return -EOPNOTSUPP;
1602 }
1603 
1604 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1605 				       void *buf, u32 len)
1606 {
1607 	return -EOPNOTSUPP;
1608 }
1609 
1610 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1611 					void *buf, u32 len)
1612 {
1613 	return -EOPNOTSUPP;
1614 }
1615 
1616 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1617 {
1618 	return NULL;
1619 }
1620 
1621 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1622 				    unsigned long len, bool flush)
1623 {
1624 }
1625 #endif /* CONFIG_NET */
1626 
1627 #endif /* __LINUX_FILTER_H__ */
1628