1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <stdarg.h> 9 10 #include <linux/atomic.h> 11 #include <linux/refcount.h> 12 #include <linux/compat.h> 13 #include <linux/skbuff.h> 14 #include <linux/linkage.h> 15 #include <linux/printk.h> 16 #include <linux/workqueue.h> 17 #include <linux/sched.h> 18 #include <linux/capability.h> 19 #include <linux/cryptohash.h> 20 #include <linux/set_memory.h> 21 #include <linux/kallsyms.h> 22 #include <linux/if_vlan.h> 23 #include <linux/vmalloc.h> 24 25 #include <net/sch_generic.h> 26 27 #include <asm/byteorder.h> 28 #include <uapi/linux/filter.h> 29 #include <uapi/linux/bpf.h> 30 31 struct sk_buff; 32 struct sock; 33 struct seccomp_data; 34 struct bpf_prog_aux; 35 struct xdp_rxq_info; 36 struct xdp_buff; 37 struct sock_reuseport; 38 struct ctl_table; 39 struct ctl_table_header; 40 41 /* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45 #define BPF_REG_ARG1 BPF_REG_1 46 #define BPF_REG_ARG2 BPF_REG_2 47 #define BPF_REG_ARG3 BPF_REG_3 48 #define BPF_REG_ARG4 BPF_REG_4 49 #define BPF_REG_ARG5 BPF_REG_5 50 #define BPF_REG_CTX BPF_REG_6 51 #define BPF_REG_FP BPF_REG_10 52 53 /* Additional register mappings for converted user programs. */ 54 #define BPF_REG_A BPF_REG_0 55 #define BPF_REG_X BPF_REG_7 56 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60 /* Kernel hidden auxiliary/helper register. */ 61 #define BPF_REG_AX MAX_BPF_REG 62 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65 /* unused opcode to mark special call to bpf_tail_call() helper */ 66 #define BPF_TAIL_CALL 0xf0 67 68 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 69 #define BPF_PROBE_MEM 0x20 70 71 /* unused opcode to mark call to interpreter with arguments */ 72 #define BPF_CALL_ARGS 0xe0 73 74 /* As per nm, we expose JITed images as text (code) section for 75 * kallsyms. That way, tools like perf can find it to match 76 * addresses. 77 */ 78 #define BPF_SYM_ELF_TYPE 't' 79 80 /* BPF program can access up to 512 bytes of stack space. */ 81 #define MAX_BPF_STACK 512 82 83 /* Helper macros for filter block array initializers. */ 84 85 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 86 87 #define BPF_ALU64_REG(OP, DST, SRC) \ 88 ((struct bpf_insn) { \ 89 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 90 .dst_reg = DST, \ 91 .src_reg = SRC, \ 92 .off = 0, \ 93 .imm = 0 }) 94 95 #define BPF_ALU32_REG(OP, DST, SRC) \ 96 ((struct bpf_insn) { \ 97 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 98 .dst_reg = DST, \ 99 .src_reg = SRC, \ 100 .off = 0, \ 101 .imm = 0 }) 102 103 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 104 105 #define BPF_ALU64_IMM(OP, DST, IMM) \ 106 ((struct bpf_insn) { \ 107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 108 .dst_reg = DST, \ 109 .src_reg = 0, \ 110 .off = 0, \ 111 .imm = IMM }) 112 113 #define BPF_ALU32_IMM(OP, DST, IMM) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 116 .dst_reg = DST, \ 117 .src_reg = 0, \ 118 .off = 0, \ 119 .imm = IMM }) 120 121 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 122 123 #define BPF_ENDIAN(TYPE, DST, LEN) \ 124 ((struct bpf_insn) { \ 125 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 126 .dst_reg = DST, \ 127 .src_reg = 0, \ 128 .off = 0, \ 129 .imm = LEN }) 130 131 /* Short form of mov, dst_reg = src_reg */ 132 133 #define BPF_MOV64_REG(DST, SRC) \ 134 ((struct bpf_insn) { \ 135 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 136 .dst_reg = DST, \ 137 .src_reg = SRC, \ 138 .off = 0, \ 139 .imm = 0 }) 140 141 #define BPF_MOV32_REG(DST, SRC) \ 142 ((struct bpf_insn) { \ 143 .code = BPF_ALU | BPF_MOV | BPF_X, \ 144 .dst_reg = DST, \ 145 .src_reg = SRC, \ 146 .off = 0, \ 147 .imm = 0 }) 148 149 /* Short form of mov, dst_reg = imm32 */ 150 151 #define BPF_MOV64_IMM(DST, IMM) \ 152 ((struct bpf_insn) { \ 153 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 154 .dst_reg = DST, \ 155 .src_reg = 0, \ 156 .off = 0, \ 157 .imm = IMM }) 158 159 #define BPF_MOV32_IMM(DST, IMM) \ 160 ((struct bpf_insn) { \ 161 .code = BPF_ALU | BPF_MOV | BPF_K, \ 162 .dst_reg = DST, \ 163 .src_reg = 0, \ 164 .off = 0, \ 165 .imm = IMM }) 166 167 /* Special form of mov32, used for doing explicit zero extension on dst. */ 168 #define BPF_ZEXT_REG(DST) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = DST, \ 173 .off = 0, \ 174 .imm = 1 }) 175 176 static inline bool insn_is_zext(const struct bpf_insn *insn) 177 { 178 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 179 } 180 181 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 182 #define BPF_LD_IMM64(DST, IMM) \ 183 BPF_LD_IMM64_RAW(DST, 0, IMM) 184 185 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 186 ((struct bpf_insn) { \ 187 .code = BPF_LD | BPF_DW | BPF_IMM, \ 188 .dst_reg = DST, \ 189 .src_reg = SRC, \ 190 .off = 0, \ 191 .imm = (__u32) (IMM) }), \ 192 ((struct bpf_insn) { \ 193 .code = 0, /* zero is reserved opcode */ \ 194 .dst_reg = 0, \ 195 .src_reg = 0, \ 196 .off = 0, \ 197 .imm = ((__u64) (IMM)) >> 32 }) 198 199 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 200 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 201 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 202 203 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 204 205 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 208 .dst_reg = DST, \ 209 .src_reg = SRC, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 216 .dst_reg = DST, \ 217 .src_reg = SRC, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 222 223 #define BPF_LD_ABS(SIZE, IMM) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 226 .dst_reg = 0, \ 227 .src_reg = 0, \ 228 .off = 0, \ 229 .imm = IMM }) 230 231 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 232 233 #define BPF_LD_IND(SIZE, SRC, IMM) \ 234 ((struct bpf_insn) { \ 235 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 236 .dst_reg = 0, \ 237 .src_reg = SRC, \ 238 .off = 0, \ 239 .imm = IMM }) 240 241 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 242 243 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 244 ((struct bpf_insn) { \ 245 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 246 .dst_reg = DST, \ 247 .src_reg = SRC, \ 248 .off = OFF, \ 249 .imm = 0 }) 250 251 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 252 253 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 254 ((struct bpf_insn) { \ 255 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 256 .dst_reg = DST, \ 257 .src_reg = SRC, \ 258 .off = OFF, \ 259 .imm = 0 }) 260 261 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 262 263 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 264 ((struct bpf_insn) { \ 265 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 266 .dst_reg = DST, \ 267 .src_reg = SRC, \ 268 .off = OFF, \ 269 .imm = 0 }) 270 271 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 272 273 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 274 ((struct bpf_insn) { \ 275 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 276 .dst_reg = DST, \ 277 .src_reg = 0, \ 278 .off = OFF, \ 279 .imm = IMM }) 280 281 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 282 283 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 284 ((struct bpf_insn) { \ 285 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 286 .dst_reg = DST, \ 287 .src_reg = SRC, \ 288 .off = OFF, \ 289 .imm = 0 }) 290 291 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 292 293 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 294 ((struct bpf_insn) { \ 295 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 296 .dst_reg = DST, \ 297 .src_reg = 0, \ 298 .off = OFF, \ 299 .imm = IMM }) 300 301 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 302 303 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 304 ((struct bpf_insn) { \ 305 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 306 .dst_reg = DST, \ 307 .src_reg = SRC, \ 308 .off = OFF, \ 309 .imm = 0 }) 310 311 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 312 313 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 314 ((struct bpf_insn) { \ 315 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 316 .dst_reg = DST, \ 317 .src_reg = 0, \ 318 .off = OFF, \ 319 .imm = IMM }) 320 321 /* Unconditional jumps, goto pc + off16 */ 322 323 #define BPF_JMP_A(OFF) \ 324 ((struct bpf_insn) { \ 325 .code = BPF_JMP | BPF_JA, \ 326 .dst_reg = 0, \ 327 .src_reg = 0, \ 328 .off = OFF, \ 329 .imm = 0 }) 330 331 /* Relative call */ 332 333 #define BPF_CALL_REL(TGT) \ 334 ((struct bpf_insn) { \ 335 .code = BPF_JMP | BPF_CALL, \ 336 .dst_reg = 0, \ 337 .src_reg = BPF_PSEUDO_CALL, \ 338 .off = 0, \ 339 .imm = TGT }) 340 341 /* Function call */ 342 343 #define BPF_CAST_CALL(x) \ 344 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 345 346 #define BPF_EMIT_CALL(FUNC) \ 347 ((struct bpf_insn) { \ 348 .code = BPF_JMP | BPF_CALL, \ 349 .dst_reg = 0, \ 350 .src_reg = 0, \ 351 .off = 0, \ 352 .imm = ((FUNC) - __bpf_call_base) }) 353 354 /* Raw code statement block */ 355 356 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 357 ((struct bpf_insn) { \ 358 .code = CODE, \ 359 .dst_reg = DST, \ 360 .src_reg = SRC, \ 361 .off = OFF, \ 362 .imm = IMM }) 363 364 /* Program exit */ 365 366 #define BPF_EXIT_INSN() \ 367 ((struct bpf_insn) { \ 368 .code = BPF_JMP | BPF_EXIT, \ 369 .dst_reg = 0, \ 370 .src_reg = 0, \ 371 .off = 0, \ 372 .imm = 0 }) 373 374 /* Internal classic blocks for direct assignment */ 375 376 #define __BPF_STMT(CODE, K) \ 377 ((struct sock_filter) BPF_STMT(CODE, K)) 378 379 #define __BPF_JUMP(CODE, K, JT, JF) \ 380 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 381 382 #define bytes_to_bpf_size(bytes) \ 383 ({ \ 384 int bpf_size = -EINVAL; \ 385 \ 386 if (bytes == sizeof(u8)) \ 387 bpf_size = BPF_B; \ 388 else if (bytes == sizeof(u16)) \ 389 bpf_size = BPF_H; \ 390 else if (bytes == sizeof(u32)) \ 391 bpf_size = BPF_W; \ 392 else if (bytes == sizeof(u64)) \ 393 bpf_size = BPF_DW; \ 394 \ 395 bpf_size; \ 396 }) 397 398 #define bpf_size_to_bytes(bpf_size) \ 399 ({ \ 400 int bytes = -EINVAL; \ 401 \ 402 if (bpf_size == BPF_B) \ 403 bytes = sizeof(u8); \ 404 else if (bpf_size == BPF_H) \ 405 bytes = sizeof(u16); \ 406 else if (bpf_size == BPF_W) \ 407 bytes = sizeof(u32); \ 408 else if (bpf_size == BPF_DW) \ 409 bytes = sizeof(u64); \ 410 \ 411 bytes; \ 412 }) 413 414 #define BPF_SIZEOF(type) \ 415 ({ \ 416 const int __size = bytes_to_bpf_size(sizeof(type)); \ 417 BUILD_BUG_ON(__size < 0); \ 418 __size; \ 419 }) 420 421 #define BPF_FIELD_SIZEOF(type, field) \ 422 ({ \ 423 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 424 BUILD_BUG_ON(__size < 0); \ 425 __size; \ 426 }) 427 428 #define BPF_LDST_BYTES(insn) \ 429 ({ \ 430 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 431 WARN_ON(__size < 0); \ 432 __size; \ 433 }) 434 435 #define __BPF_MAP_0(m, v, ...) v 436 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 437 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 438 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 439 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 440 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 441 442 #define __BPF_REG_0(...) __BPF_PAD(5) 443 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 444 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 445 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 446 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 447 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 448 449 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 450 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 451 452 #define __BPF_CAST(t, a) \ 453 (__force t) \ 454 (__force \ 455 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 456 (unsigned long)0, (t)0))) a 457 #define __BPF_V void 458 #define __BPF_N 459 460 #define __BPF_DECL_ARGS(t, a) t a 461 #define __BPF_DECL_REGS(t, a) u64 a 462 463 #define __BPF_PAD(n) \ 464 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 465 u64, __ur_3, u64, __ur_4, u64, __ur_5) 466 467 #define BPF_CALL_x(x, name, ...) \ 468 static __always_inline \ 469 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 470 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 471 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 472 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 473 { \ 474 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 475 } \ 476 static __always_inline \ 477 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 478 479 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 480 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 481 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 482 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 483 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 484 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 485 486 #define bpf_ctx_range(TYPE, MEMBER) \ 487 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 488 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 489 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 490 #if BITS_PER_LONG == 64 491 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 492 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 493 #else 494 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 495 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 496 #endif /* BITS_PER_LONG == 64 */ 497 498 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 499 ({ \ 500 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 501 *(PTR_SIZE) = (SIZE); \ 502 offsetof(TYPE, MEMBER); \ 503 }) 504 505 #ifdef CONFIG_COMPAT 506 /* A struct sock_filter is architecture independent. */ 507 struct compat_sock_fprog { 508 u16 len; 509 compat_uptr_t filter; /* struct sock_filter * */ 510 }; 511 #endif 512 513 struct sock_fprog_kern { 514 u16 len; 515 struct sock_filter *filter; 516 }; 517 518 /* Some arches need doubleword alignment for their instructions and/or data */ 519 #define BPF_IMAGE_ALIGNMENT 8 520 521 struct bpf_binary_header { 522 u32 pages; 523 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 524 }; 525 526 struct bpf_prog { 527 u16 pages; /* Number of allocated pages */ 528 u16 jited:1, /* Is our filter JIT'ed? */ 529 jit_requested:1,/* archs need to JIT the prog */ 530 gpl_compatible:1, /* Is filter GPL compatible? */ 531 cb_access:1, /* Is control block accessed? */ 532 dst_needed:1, /* Do we need dst entry? */ 533 blinded:1, /* Was blinded */ 534 is_func:1, /* program is a bpf function */ 535 kprobe_override:1, /* Do we override a kprobe? */ 536 has_callchain_buf:1, /* callchain buffer allocated? */ 537 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */ 538 enum bpf_prog_type type; /* Type of BPF program */ 539 enum bpf_attach_type expected_attach_type; /* For some prog types */ 540 u32 len; /* Number of filter blocks */ 541 u32 jited_len; /* Size of jited insns in bytes */ 542 u8 tag[BPF_TAG_SIZE]; 543 struct bpf_prog_aux *aux; /* Auxiliary fields */ 544 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 545 unsigned int (*bpf_func)(const void *ctx, 546 const struct bpf_insn *insn); 547 /* Instructions for interpreter */ 548 union { 549 struct sock_filter insns[0]; 550 struct bpf_insn insnsi[0]; 551 }; 552 }; 553 554 struct sk_filter { 555 refcount_t refcnt; 556 struct rcu_head rcu; 557 struct bpf_prog *prog; 558 }; 559 560 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 561 562 #define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \ 563 u32 ret; \ 564 cant_migrate(); \ 565 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 566 struct bpf_prog_stats *stats; \ 567 u64 start = sched_clock(); \ 568 ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 569 stats = this_cpu_ptr(prog->aux->stats); \ 570 u64_stats_update_begin(&stats->syncp); \ 571 stats->cnt++; \ 572 stats->nsecs += sched_clock() - start; \ 573 u64_stats_update_end(&stats->syncp); \ 574 } else { \ 575 ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 576 } \ 577 ret; }) 578 579 #define BPF_PROG_RUN(prog, ctx) \ 580 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func) 581 582 /* 583 * Use in preemptible and therefore migratable context to make sure that 584 * the execution of the BPF program runs on one CPU. 585 * 586 * This uses migrate_disable/enable() explicitly to document that the 587 * invocation of a BPF program does not require reentrancy protection 588 * against a BPF program which is invoked from a preempting task. 589 * 590 * For non RT enabled kernels migrate_disable/enable() maps to 591 * preempt_disable/enable(), i.e. it disables also preemption. 592 */ 593 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 594 const void *ctx) 595 { 596 u32 ret; 597 598 migrate_disable(); 599 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func); 600 migrate_enable(); 601 return ret; 602 } 603 604 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 605 606 struct bpf_skb_data_end { 607 struct qdisc_skb_cb qdisc_cb; 608 void *data_meta; 609 void *data_end; 610 }; 611 612 struct bpf_redirect_info { 613 u32 flags; 614 u32 tgt_index; 615 void *tgt_value; 616 struct bpf_map *map; 617 u32 kern_flags; 618 }; 619 620 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 621 622 /* flags for bpf_redirect_info kern_flags */ 623 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 624 625 /* Compute the linear packet data range [data, data_end) which 626 * will be accessed by various program types (cls_bpf, act_bpf, 627 * lwt, ...). Subsystems allowing direct data access must (!) 628 * ensure that cb[] area can be written to when BPF program is 629 * invoked (otherwise cb[] save/restore is necessary). 630 */ 631 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 632 { 633 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 634 635 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 636 cb->data_meta = skb->data - skb_metadata_len(skb); 637 cb->data_end = skb->data + skb_headlen(skb); 638 } 639 640 /* Similar to bpf_compute_data_pointers(), except that save orginal 641 * data in cb->data and cb->meta_data for restore. 642 */ 643 static inline void bpf_compute_and_save_data_end( 644 struct sk_buff *skb, void **saved_data_end) 645 { 646 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 647 648 *saved_data_end = cb->data_end; 649 cb->data_end = skb->data + skb_headlen(skb); 650 } 651 652 /* Restore data saved by bpf_compute_data_pointers(). */ 653 static inline void bpf_restore_data_end( 654 struct sk_buff *skb, void *saved_data_end) 655 { 656 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 657 658 cb->data_end = saved_data_end; 659 } 660 661 static inline u8 *bpf_skb_cb(struct sk_buff *skb) 662 { 663 /* eBPF programs may read/write skb->cb[] area to transfer meta 664 * data between tail calls. Since this also needs to work with 665 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 666 * 667 * In some socket filter cases, the cb unfortunately needs to be 668 * saved/restored so that protocol specific skb->cb[] data won't 669 * be lost. In any case, due to unpriviledged eBPF programs 670 * attached to sockets, we need to clear the bpf_skb_cb() area 671 * to not leak previous contents to user space. 672 */ 673 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 674 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 675 sizeof_field(struct qdisc_skb_cb, data)); 676 677 return qdisc_skb_cb(skb)->data; 678 } 679 680 /* Must be invoked with migration disabled */ 681 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 682 struct sk_buff *skb) 683 { 684 u8 *cb_data = bpf_skb_cb(skb); 685 u8 cb_saved[BPF_SKB_CB_LEN]; 686 u32 res; 687 688 if (unlikely(prog->cb_access)) { 689 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 690 memset(cb_data, 0, sizeof(cb_saved)); 691 } 692 693 res = BPF_PROG_RUN(prog, skb); 694 695 if (unlikely(prog->cb_access)) 696 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 697 698 return res; 699 } 700 701 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 702 struct sk_buff *skb) 703 { 704 u32 res; 705 706 migrate_disable(); 707 res = __bpf_prog_run_save_cb(prog, skb); 708 migrate_enable(); 709 return res; 710 } 711 712 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 713 struct sk_buff *skb) 714 { 715 u8 *cb_data = bpf_skb_cb(skb); 716 u32 res; 717 718 if (unlikely(prog->cb_access)) 719 memset(cb_data, 0, BPF_SKB_CB_LEN); 720 721 res = bpf_prog_run_pin_on_cpu(prog, skb); 722 return res; 723 } 724 725 DECLARE_BPF_DISPATCHER(xdp) 726 727 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 728 struct xdp_buff *xdp) 729 { 730 /* Caller needs to hold rcu_read_lock() (!), otherwise program 731 * can be released while still running, or map elements could be 732 * freed early while still having concurrent users. XDP fastpath 733 * already takes rcu_read_lock() when fetching the program, so 734 * it's not necessary here anymore. 735 */ 736 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 737 } 738 739 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 740 741 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 742 { 743 return prog->len * sizeof(struct bpf_insn); 744 } 745 746 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 747 { 748 return round_up(bpf_prog_insn_size(prog) + 749 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 750 } 751 752 static inline unsigned int bpf_prog_size(unsigned int proglen) 753 { 754 return max(sizeof(struct bpf_prog), 755 offsetof(struct bpf_prog, insns[proglen])); 756 } 757 758 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 759 { 760 /* When classic BPF programs have been loaded and the arch 761 * does not have a classic BPF JIT (anymore), they have been 762 * converted via bpf_migrate_filter() to eBPF and thus always 763 * have an unspec program type. 764 */ 765 return prog->type == BPF_PROG_TYPE_UNSPEC; 766 } 767 768 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 769 { 770 const u32 size_machine = sizeof(unsigned long); 771 772 if (size > size_machine && size % size_machine == 0) 773 size = size_machine; 774 775 return size; 776 } 777 778 static inline bool 779 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 780 { 781 return size <= size_default && (size & (size - 1)) == 0; 782 } 783 784 static inline u8 785 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 786 { 787 u8 access_off = off & (size_default - 1); 788 789 #ifdef __LITTLE_ENDIAN 790 return access_off; 791 #else 792 return size_default - (access_off + size); 793 #endif 794 } 795 796 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 797 (size == sizeof(__u64) && \ 798 off >= offsetof(type, field) && \ 799 off + sizeof(__u64) <= offsetofend(type, field) && \ 800 off % sizeof(__u64) == 0) 801 802 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 803 804 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 805 { 806 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 807 if (!fp->jited) { 808 set_vm_flush_reset_perms(fp); 809 set_memory_ro((unsigned long)fp, fp->pages); 810 } 811 #endif 812 } 813 814 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 815 { 816 set_vm_flush_reset_perms(hdr); 817 set_memory_ro((unsigned long)hdr, hdr->pages); 818 set_memory_x((unsigned long)hdr, hdr->pages); 819 } 820 821 static inline struct bpf_binary_header * 822 bpf_jit_binary_hdr(const struct bpf_prog *fp) 823 { 824 unsigned long real_start = (unsigned long)fp->bpf_func; 825 unsigned long addr = real_start & PAGE_MASK; 826 827 return (void *)addr; 828 } 829 830 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 831 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 832 { 833 return sk_filter_trim_cap(sk, skb, 1); 834 } 835 836 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 837 void bpf_prog_free(struct bpf_prog *fp); 838 839 bool bpf_opcode_in_insntable(u8 code); 840 841 void bpf_prog_free_linfo(struct bpf_prog *prog); 842 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 843 const u32 *insn_to_jit_off); 844 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 845 void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 846 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 847 848 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 849 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 850 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 851 gfp_t gfp_extra_flags); 852 void __bpf_prog_free(struct bpf_prog *fp); 853 854 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 855 { 856 __bpf_prog_free(fp); 857 } 858 859 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 860 unsigned int flen); 861 862 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 863 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 864 bpf_aux_classic_check_t trans, bool save_orig); 865 void bpf_prog_destroy(struct bpf_prog *fp); 866 const struct bpf_func_proto * 867 bpf_base_func_proto(enum bpf_func_id func_id); 868 869 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 870 int sk_attach_bpf(u32 ufd, struct sock *sk); 871 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 872 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 873 void sk_reuseport_prog_free(struct bpf_prog *prog); 874 int sk_detach_filter(struct sock *sk); 875 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 876 unsigned int len); 877 878 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 879 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 880 881 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 882 #define __bpf_call_base_args \ 883 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 884 __bpf_call_base) 885 886 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 887 void bpf_jit_compile(struct bpf_prog *prog); 888 bool bpf_jit_needs_zext(void); 889 bool bpf_helper_changes_pkt_data(void *func); 890 891 static inline bool bpf_dump_raw_ok(void) 892 { 893 /* Reconstruction of call-sites is dependent on kallsyms, 894 * thus make dump the same restriction. 895 */ 896 return kallsyms_show_value() == 1; 897 } 898 899 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 900 const struct bpf_insn *patch, u32 len); 901 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 902 903 void bpf_clear_redirect_map(struct bpf_map *map); 904 905 static inline bool xdp_return_frame_no_direct(void) 906 { 907 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 908 909 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 910 } 911 912 static inline void xdp_set_return_frame_no_direct(void) 913 { 914 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 915 916 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 917 } 918 919 static inline void xdp_clear_return_frame_no_direct(void) 920 { 921 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 922 923 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 924 } 925 926 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 927 unsigned int pktlen) 928 { 929 unsigned int len; 930 931 if (unlikely(!(fwd->flags & IFF_UP))) 932 return -ENETDOWN; 933 934 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 935 if (pktlen > len) 936 return -EMSGSIZE; 937 938 return 0; 939 } 940 941 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 942 * same cpu context. Further for best results no more than a single map 943 * for the do_redirect/do_flush pair should be used. This limitation is 944 * because we only track one map and force a flush when the map changes. 945 * This does not appear to be a real limitation for existing software. 946 */ 947 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 948 struct xdp_buff *xdp, struct bpf_prog *prog); 949 int xdp_do_redirect(struct net_device *dev, 950 struct xdp_buff *xdp, 951 struct bpf_prog *prog); 952 void xdp_do_flush(void); 953 954 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 955 * it is no longer only flushing maps. Keep this define for compatibility 956 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 957 */ 958 #define xdp_do_flush_map xdp_do_flush 959 960 void bpf_warn_invalid_xdp_action(u32 act); 961 962 #ifdef CONFIG_INET 963 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 964 struct bpf_prog *prog, struct sk_buff *skb, 965 u32 hash); 966 #else 967 static inline struct sock * 968 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 969 struct bpf_prog *prog, struct sk_buff *skb, 970 u32 hash) 971 { 972 return NULL; 973 } 974 #endif 975 976 #ifdef CONFIG_BPF_JIT 977 extern int bpf_jit_enable; 978 extern int bpf_jit_harden; 979 extern int bpf_jit_kallsyms; 980 extern long bpf_jit_limit; 981 982 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 983 984 struct bpf_binary_header * 985 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 986 unsigned int alignment, 987 bpf_jit_fill_hole_t bpf_fill_ill_insns); 988 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 989 u64 bpf_jit_alloc_exec_limit(void); 990 void *bpf_jit_alloc_exec(unsigned long size); 991 void bpf_jit_free_exec(void *addr); 992 void bpf_jit_free(struct bpf_prog *fp); 993 994 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 995 struct bpf_jit_poke_descriptor *poke); 996 997 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 998 const struct bpf_insn *insn, bool extra_pass, 999 u64 *func_addr, bool *func_addr_fixed); 1000 1001 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1002 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1003 1004 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1005 u32 pass, void *image) 1006 { 1007 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1008 proglen, pass, image, current->comm, task_pid_nr(current)); 1009 1010 if (image) 1011 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1012 16, 1, image, proglen, false); 1013 } 1014 1015 static inline bool bpf_jit_is_ebpf(void) 1016 { 1017 # ifdef CONFIG_HAVE_EBPF_JIT 1018 return true; 1019 # else 1020 return false; 1021 # endif 1022 } 1023 1024 static inline bool ebpf_jit_enabled(void) 1025 { 1026 return bpf_jit_enable && bpf_jit_is_ebpf(); 1027 } 1028 1029 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1030 { 1031 return fp->jited && bpf_jit_is_ebpf(); 1032 } 1033 1034 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1035 { 1036 /* These are the prerequisites, should someone ever have the 1037 * idea to call blinding outside of them, we make sure to 1038 * bail out. 1039 */ 1040 if (!bpf_jit_is_ebpf()) 1041 return false; 1042 if (!prog->jit_requested) 1043 return false; 1044 if (!bpf_jit_harden) 1045 return false; 1046 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1047 return false; 1048 1049 return true; 1050 } 1051 1052 static inline bool bpf_jit_kallsyms_enabled(void) 1053 { 1054 /* There are a couple of corner cases where kallsyms should 1055 * not be enabled f.e. on hardening. 1056 */ 1057 if (bpf_jit_harden) 1058 return false; 1059 if (!bpf_jit_kallsyms) 1060 return false; 1061 if (bpf_jit_kallsyms == 1) 1062 return true; 1063 1064 return false; 1065 } 1066 1067 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1068 unsigned long *off, char *sym); 1069 bool is_bpf_text_address(unsigned long addr); 1070 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1071 char *sym); 1072 1073 static inline const char * 1074 bpf_address_lookup(unsigned long addr, unsigned long *size, 1075 unsigned long *off, char **modname, char *sym) 1076 { 1077 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1078 1079 if (ret && modname) 1080 *modname = NULL; 1081 return ret; 1082 } 1083 1084 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1085 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1086 1087 #else /* CONFIG_BPF_JIT */ 1088 1089 static inline bool ebpf_jit_enabled(void) 1090 { 1091 return false; 1092 } 1093 1094 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1095 { 1096 return false; 1097 } 1098 1099 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1100 { 1101 return false; 1102 } 1103 1104 static inline int 1105 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1106 struct bpf_jit_poke_descriptor *poke) 1107 { 1108 return -ENOTSUPP; 1109 } 1110 1111 static inline void bpf_jit_free(struct bpf_prog *fp) 1112 { 1113 bpf_prog_unlock_free(fp); 1114 } 1115 1116 static inline bool bpf_jit_kallsyms_enabled(void) 1117 { 1118 return false; 1119 } 1120 1121 static inline const char * 1122 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1123 unsigned long *off, char *sym) 1124 { 1125 return NULL; 1126 } 1127 1128 static inline bool is_bpf_text_address(unsigned long addr) 1129 { 1130 return false; 1131 } 1132 1133 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1134 char *type, char *sym) 1135 { 1136 return -ERANGE; 1137 } 1138 1139 static inline const char * 1140 bpf_address_lookup(unsigned long addr, unsigned long *size, 1141 unsigned long *off, char **modname, char *sym) 1142 { 1143 return NULL; 1144 } 1145 1146 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1147 { 1148 } 1149 1150 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1151 { 1152 } 1153 1154 #endif /* CONFIG_BPF_JIT */ 1155 1156 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1157 1158 #define BPF_ANC BIT(15) 1159 1160 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1161 { 1162 switch (first->code) { 1163 case BPF_RET | BPF_K: 1164 case BPF_LD | BPF_W | BPF_LEN: 1165 return false; 1166 1167 case BPF_LD | BPF_W | BPF_ABS: 1168 case BPF_LD | BPF_H | BPF_ABS: 1169 case BPF_LD | BPF_B | BPF_ABS: 1170 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1171 return true; 1172 return false; 1173 1174 default: 1175 return true; 1176 } 1177 } 1178 1179 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1180 { 1181 BUG_ON(ftest->code & BPF_ANC); 1182 1183 switch (ftest->code) { 1184 case BPF_LD | BPF_W | BPF_ABS: 1185 case BPF_LD | BPF_H | BPF_ABS: 1186 case BPF_LD | BPF_B | BPF_ABS: 1187 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1188 return BPF_ANC | SKF_AD_##CODE 1189 switch (ftest->k) { 1190 BPF_ANCILLARY(PROTOCOL); 1191 BPF_ANCILLARY(PKTTYPE); 1192 BPF_ANCILLARY(IFINDEX); 1193 BPF_ANCILLARY(NLATTR); 1194 BPF_ANCILLARY(NLATTR_NEST); 1195 BPF_ANCILLARY(MARK); 1196 BPF_ANCILLARY(QUEUE); 1197 BPF_ANCILLARY(HATYPE); 1198 BPF_ANCILLARY(RXHASH); 1199 BPF_ANCILLARY(CPU); 1200 BPF_ANCILLARY(ALU_XOR_X); 1201 BPF_ANCILLARY(VLAN_TAG); 1202 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1203 BPF_ANCILLARY(PAY_OFFSET); 1204 BPF_ANCILLARY(RANDOM); 1205 BPF_ANCILLARY(VLAN_TPID); 1206 } 1207 /* Fallthrough. */ 1208 default: 1209 return ftest->code; 1210 } 1211 } 1212 1213 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1214 int k, unsigned int size); 1215 1216 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1217 unsigned int size, void *buffer) 1218 { 1219 if (k >= 0) 1220 return skb_header_pointer(skb, k, size, buffer); 1221 1222 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1223 } 1224 1225 static inline int bpf_tell_extensions(void) 1226 { 1227 return SKF_AD_MAX; 1228 } 1229 1230 struct bpf_sock_addr_kern { 1231 struct sock *sk; 1232 struct sockaddr *uaddr; 1233 /* Temporary "register" to make indirect stores to nested structures 1234 * defined above. We need three registers to make such a store, but 1235 * only two (src and dst) are available at convert_ctx_access time 1236 */ 1237 u64 tmp_reg; 1238 void *t_ctx; /* Attach type specific context. */ 1239 }; 1240 1241 struct bpf_sock_ops_kern { 1242 struct sock *sk; 1243 u32 op; 1244 union { 1245 u32 args[4]; 1246 u32 reply; 1247 u32 replylong[4]; 1248 }; 1249 u32 is_fullsock; 1250 u64 temp; /* temp and everything after is not 1251 * initialized to 0 before calling 1252 * the BPF program. New fields that 1253 * should be initialized to 0 should 1254 * be inserted before temp. 1255 * temp is scratch storage used by 1256 * sock_ops_convert_ctx_access 1257 * as temporary storage of a register. 1258 */ 1259 }; 1260 1261 struct bpf_sysctl_kern { 1262 struct ctl_table_header *head; 1263 struct ctl_table *table; 1264 void *cur_val; 1265 size_t cur_len; 1266 void *new_val; 1267 size_t new_len; 1268 int new_updated; 1269 int write; 1270 loff_t *ppos; 1271 /* Temporary "register" for indirect stores to ppos. */ 1272 u64 tmp_reg; 1273 }; 1274 1275 struct bpf_sockopt_kern { 1276 struct sock *sk; 1277 u8 *optval; 1278 u8 *optval_end; 1279 s32 level; 1280 s32 optname; 1281 s32 optlen; 1282 s32 retval; 1283 }; 1284 1285 #endif /* __LINUX_FILTER_H__ */ 1286