xref: /linux-6.15/include/linux/filter.h (revision 6015fb90)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/capability.h>
18 #include <linux/set_memory.h>
19 #include <linux/kallsyms.h>
20 #include <linux/if_vlan.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sockptr.h>
23 #include <crypto/sha1.h>
24 #include <linux/u64_stats_sync.h>
25 
26 #include <net/sch_generic.h>
27 
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30 
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40 
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1	BPF_REG_1
46 #define BPF_REG_ARG2	BPF_REG_2
47 #define BPF_REG_ARG3	BPF_REG_3
48 #define BPF_REG_ARG4	BPF_REG_4
49 #define BPF_REG_ARG5	BPF_REG_5
50 #define BPF_REG_CTX	BPF_REG_6
51 #define BPF_REG_FP	BPF_REG_10
52 
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A	BPF_REG_0
55 #define BPF_REG_X	BPF_REG_7
56 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
57 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
58 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
59 
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
64 
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL	0xf0
67 
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM	0x20
70 
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS	0xe0
73 
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC	0xc0
78 
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE	't'
84 
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK	512
87 
88 /* Helper macros for filter block array initializers. */
89 
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91 
92 #define BPF_ALU64_REG(OP, DST, SRC)				\
93 	((struct bpf_insn) {					\
94 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
95 		.dst_reg = DST,					\
96 		.src_reg = SRC,					\
97 		.off   = 0,					\
98 		.imm   = 0 })
99 
100 #define BPF_ALU32_REG(OP, DST, SRC)				\
101 	((struct bpf_insn) {					\
102 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
103 		.dst_reg = DST,					\
104 		.src_reg = SRC,					\
105 		.off   = 0,					\
106 		.imm   = 0 })
107 
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109 
110 #define BPF_ALU64_IMM(OP, DST, IMM)				\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
113 		.dst_reg = DST,					\
114 		.src_reg = 0,					\
115 		.off   = 0,					\
116 		.imm   = IMM })
117 
118 #define BPF_ALU32_IMM(OP, DST, IMM)				\
119 	((struct bpf_insn) {					\
120 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
121 		.dst_reg = DST,					\
122 		.src_reg = 0,					\
123 		.off   = 0,					\
124 		.imm   = IMM })
125 
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127 
128 #define BPF_ENDIAN(TYPE, DST, LEN)				\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
131 		.dst_reg = DST,					\
132 		.src_reg = 0,					\
133 		.off   = 0,					\
134 		.imm   = LEN })
135 
136 /* Short form of mov, dst_reg = src_reg */
137 
138 #define BPF_MOV64_REG(DST, SRC)					\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
141 		.dst_reg = DST,					\
142 		.src_reg = SRC,					\
143 		.off   = 0,					\
144 		.imm   = 0 })
145 
146 #define BPF_MOV32_REG(DST, SRC)					\
147 	((struct bpf_insn) {					\
148 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
149 		.dst_reg = DST,					\
150 		.src_reg = SRC,					\
151 		.off   = 0,					\
152 		.imm   = 0 })
153 
154 /* Short form of mov, dst_reg = imm32 */
155 
156 #define BPF_MOV64_IMM(DST, IMM)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
159 		.dst_reg = DST,					\
160 		.src_reg = 0,					\
161 		.off   = 0,					\
162 		.imm   = IMM })
163 
164 #define BPF_MOV32_IMM(DST, IMM)					\
165 	((struct bpf_insn) {					\
166 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
167 		.dst_reg = DST,					\
168 		.src_reg = 0,					\
169 		.off   = 0,					\
170 		.imm   = IMM })
171 
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)					\
174 	((struct bpf_insn) {					\
175 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
176 		.dst_reg = DST,					\
177 		.src_reg = DST,					\
178 		.off   = 0,					\
179 		.imm   = 1 })
180 
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185 
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)					\
188 	BPF_LD_IMM64_RAW(DST, 0, IMM)
189 
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = 0,					\
196 		.imm   = (__u32) (IMM) }),			\
197 	((struct bpf_insn) {					\
198 		.code  = 0, /* zero is reserved opcode */	\
199 		.dst_reg = 0,					\
200 		.src_reg = 0,					\
201 		.off   = 0,					\
202 		.imm   = ((__u64) (IMM)) >> 32 })
203 
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
206 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207 
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209 
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
211 	((struct bpf_insn) {					\
212 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
213 		.dst_reg = DST,					\
214 		.src_reg = SRC,					\
215 		.off   = 0,					\
216 		.imm   = IMM })
217 
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
219 	((struct bpf_insn) {					\
220 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
221 		.dst_reg = DST,					\
222 		.src_reg = SRC,					\
223 		.off   = 0,					\
224 		.imm   = IMM })
225 
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227 
228 #define BPF_LD_ABS(SIZE, IMM)					\
229 	((struct bpf_insn) {					\
230 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
231 		.dst_reg = 0,					\
232 		.src_reg = 0,					\
233 		.off   = 0,					\
234 		.imm   = IMM })
235 
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237 
238 #define BPF_LD_IND(SIZE, SRC, IMM)				\
239 	((struct bpf_insn) {					\
240 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
241 		.dst_reg = 0,					\
242 		.src_reg = SRC,					\
243 		.off   = 0,					\
244 		.imm   = IMM })
245 
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247 
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
249 	((struct bpf_insn) {					\
250 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
251 		.dst_reg = DST,					\
252 		.src_reg = SRC,					\
253 		.off   = OFF,					\
254 		.imm   = 0 })
255 
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257 
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
259 	((struct bpf_insn) {					\
260 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
261 		.dst_reg = DST,					\
262 		.src_reg = SRC,					\
263 		.off   = OFF,					\
264 		.imm   = 0 })
265 
266 
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281 
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
283 	((struct bpf_insn) {					\
284 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
285 		.dst_reg = DST,					\
286 		.src_reg = SRC,					\
287 		.off   = OFF,					\
288 		.imm   = OP })
289 
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292 
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294 
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
298 		.dst_reg = DST,					\
299 		.src_reg = 0,					\
300 		.off   = OFF,					\
301 		.imm   = IMM })
302 
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304 
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
308 		.dst_reg = DST,					\
309 		.src_reg = SRC,					\
310 		.off   = OFF,					\
311 		.imm   = 0 })
312 
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314 
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
318 		.dst_reg = DST,					\
319 		.src_reg = 0,					\
320 		.off   = OFF,					\
321 		.imm   = IMM })
322 
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324 
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334 
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
338 		.dst_reg = DST,					\
339 		.src_reg = 0,					\
340 		.off   = OFF,					\
341 		.imm   = IMM })
342 
343 /* Unconditional jumps, goto pc + off16 */
344 
345 #define BPF_JMP_A(OFF)						\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_JMP | BPF_JA,			\
348 		.dst_reg = 0,					\
349 		.src_reg = 0,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 /* Relative call */
354 
355 #define BPF_CALL_REL(TGT)					\
356 	((struct bpf_insn) {					\
357 		.code  = BPF_JMP | BPF_CALL,			\
358 		.dst_reg = 0,					\
359 		.src_reg = BPF_PSEUDO_CALL,			\
360 		.off   = 0,					\
361 		.imm   = TGT })
362 
363 /* Convert function address to BPF immediate */
364 
365 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
366 
367 #define BPF_EMIT_CALL(FUNC)					\
368 	((struct bpf_insn) {					\
369 		.code  = BPF_JMP | BPF_CALL,			\
370 		.dst_reg = 0,					\
371 		.src_reg = 0,					\
372 		.off   = 0,					\
373 		.imm   = BPF_CALL_IMM(FUNC) })
374 
375 /* Raw code statement block */
376 
377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
378 	((struct bpf_insn) {					\
379 		.code  = CODE,					\
380 		.dst_reg = DST,					\
381 		.src_reg = SRC,					\
382 		.off   = OFF,					\
383 		.imm   = IMM })
384 
385 /* Program exit */
386 
387 #define BPF_EXIT_INSN()						\
388 	((struct bpf_insn) {					\
389 		.code  = BPF_JMP | BPF_EXIT,			\
390 		.dst_reg = 0,					\
391 		.src_reg = 0,					\
392 		.off   = 0,					\
393 		.imm   = 0 })
394 
395 /* Speculation barrier */
396 
397 #define BPF_ST_NOSPEC()						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_ST | BPF_NOSPEC,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = 0,					\
403 		.imm   = 0 })
404 
405 /* Internal classic blocks for direct assignment */
406 
407 #define __BPF_STMT(CODE, K)					\
408 	((struct sock_filter) BPF_STMT(CODE, K))
409 
410 #define __BPF_JUMP(CODE, K, JT, JF)				\
411 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
412 
413 #define bytes_to_bpf_size(bytes)				\
414 ({								\
415 	int bpf_size = -EINVAL;					\
416 								\
417 	if (bytes == sizeof(u8))				\
418 		bpf_size = BPF_B;				\
419 	else if (bytes == sizeof(u16))				\
420 		bpf_size = BPF_H;				\
421 	else if (bytes == sizeof(u32))				\
422 		bpf_size = BPF_W;				\
423 	else if (bytes == sizeof(u64))				\
424 		bpf_size = BPF_DW;				\
425 								\
426 	bpf_size;						\
427 })
428 
429 #define bpf_size_to_bytes(bpf_size)				\
430 ({								\
431 	int bytes = -EINVAL;					\
432 								\
433 	if (bpf_size == BPF_B)					\
434 		bytes = sizeof(u8);				\
435 	else if (bpf_size == BPF_H)				\
436 		bytes = sizeof(u16);				\
437 	else if (bpf_size == BPF_W)				\
438 		bytes = sizeof(u32);				\
439 	else if (bpf_size == BPF_DW)				\
440 		bytes = sizeof(u64);				\
441 								\
442 	bytes;							\
443 })
444 
445 #define BPF_SIZEOF(type)					\
446 	({							\
447 		const int __size = bytes_to_bpf_size(sizeof(type)); \
448 		BUILD_BUG_ON(__size < 0);			\
449 		__size;						\
450 	})
451 
452 #define BPF_FIELD_SIZEOF(type, field)				\
453 	({							\
454 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
455 		BUILD_BUG_ON(__size < 0);			\
456 		__size;						\
457 	})
458 
459 #define BPF_LDST_BYTES(insn)					\
460 	({							\
461 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
462 		WARN_ON(__size < 0);				\
463 		__size;						\
464 	})
465 
466 #define __BPF_MAP_0(m, v, ...) v
467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
472 
473 #define __BPF_REG_0(...) __BPF_PAD(5)
474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
479 
480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
482 
483 #define __BPF_CAST(t, a)						       \
484 	(__force t)							       \
485 	(__force							       \
486 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
487 				      (unsigned long)0, (t)0))) a
488 #define __BPF_V void
489 #define __BPF_N
490 
491 #define __BPF_DECL_ARGS(t, a) t   a
492 #define __BPF_DECL_REGS(t, a) u64 a
493 
494 #define __BPF_PAD(n)							       \
495 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
496 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
497 
498 #define BPF_CALL_x(x, name, ...)					       \
499 	static __always_inline						       \
500 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
501 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
502 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
503 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
504 	{								       \
505 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
506 	}								       \
507 	static __always_inline						       \
508 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
509 
510 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
511 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
512 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
513 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
514 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
515 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
516 
517 #define bpf_ctx_range(TYPE, MEMBER)						\
518 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
520 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
521 #if BITS_PER_LONG == 64
522 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
523 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
524 #else
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
526 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
527 #endif /* BITS_PER_LONG == 64 */
528 
529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
530 	({									\
531 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
532 		*(PTR_SIZE) = (SIZE);						\
533 		offsetof(TYPE, MEMBER);						\
534 	})
535 
536 /* A struct sock_filter is architecture independent. */
537 struct compat_sock_fprog {
538 	u16		len;
539 	compat_uptr_t	filter;	/* struct sock_filter * */
540 };
541 
542 struct sock_fprog_kern {
543 	u16			len;
544 	struct sock_filter	*filter;
545 };
546 
547 /* Some arches need doubleword alignment for their instructions and/or data */
548 #define BPF_IMAGE_ALIGNMENT 8
549 
550 struct bpf_binary_header {
551 	u32 size;
552 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
553 };
554 
555 struct bpf_prog_stats {
556 	u64_stats_t cnt;
557 	u64_stats_t nsecs;
558 	u64_stats_t misses;
559 	struct u64_stats_sync syncp;
560 } __aligned(2 * sizeof(u64));
561 
562 struct bpf_prog {
563 	u16			pages;		/* Number of allocated pages */
564 	u16			jited:1,	/* Is our filter JIT'ed? */
565 				jit_requested:1,/* archs need to JIT the prog */
566 				gpl_compatible:1, /* Is filter GPL compatible? */
567 				cb_access:1,	/* Is control block accessed? */
568 				dst_needed:1,	/* Do we need dst entry? */
569 				blinded:1,	/* Was blinded */
570 				is_func:1,	/* program is a bpf function */
571 				kprobe_override:1, /* Do we override a kprobe? */
572 				has_callchain_buf:1, /* callchain buffer allocated? */
573 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
574 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
575 				call_get_func_ip:1, /* Do we call get_func_ip() */
576 				delivery_time_access:1; /* Accessed __sk_buff->delivery_time_type */
577 	enum bpf_prog_type	type;		/* Type of BPF program */
578 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
579 	u32			len;		/* Number of filter blocks */
580 	u32			jited_len;	/* Size of jited insns in bytes */
581 	u8			tag[BPF_TAG_SIZE];
582 	struct bpf_prog_stats __percpu *stats;
583 	int __percpu		*active;
584 	unsigned int		(*bpf_func)(const void *ctx,
585 					    const struct bpf_insn *insn);
586 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
587 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
588 	/* Instructions for interpreter */
589 	union {
590 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
591 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
592 	};
593 };
594 
595 struct sk_filter {
596 	refcount_t	refcnt;
597 	struct rcu_head	rcu;
598 	struct bpf_prog	*prog;
599 };
600 
601 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
602 
603 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
604 					  const struct bpf_insn *insnsi,
605 					  unsigned int (*bpf_func)(const void *,
606 								   const struct bpf_insn *));
607 
608 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
609 					  const void *ctx,
610 					  bpf_dispatcher_fn dfunc)
611 {
612 	u32 ret;
613 
614 	cant_migrate();
615 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
616 		struct bpf_prog_stats *stats;
617 		u64 start = sched_clock();
618 		unsigned long flags;
619 
620 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
621 		stats = this_cpu_ptr(prog->stats);
622 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
623 		u64_stats_inc(&stats->cnt);
624 		u64_stats_add(&stats->nsecs, sched_clock() - start);
625 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
626 	} else {
627 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
628 	}
629 	return ret;
630 }
631 
632 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
633 {
634 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
635 }
636 
637 /*
638  * Use in preemptible and therefore migratable context to make sure that
639  * the execution of the BPF program runs on one CPU.
640  *
641  * This uses migrate_disable/enable() explicitly to document that the
642  * invocation of a BPF program does not require reentrancy protection
643  * against a BPF program which is invoked from a preempting task.
644  */
645 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
646 					  const void *ctx)
647 {
648 	u32 ret;
649 
650 	migrate_disable();
651 	ret = bpf_prog_run(prog, ctx);
652 	migrate_enable();
653 	return ret;
654 }
655 
656 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
657 
658 struct bpf_skb_data_end {
659 	struct qdisc_skb_cb qdisc_cb;
660 	void *data_meta;
661 	void *data_end;
662 };
663 
664 struct bpf_nh_params {
665 	u32 nh_family;
666 	union {
667 		u32 ipv4_nh;
668 		struct in6_addr ipv6_nh;
669 	};
670 };
671 
672 struct bpf_redirect_info {
673 	u32 flags;
674 	u32 tgt_index;
675 	void *tgt_value;
676 	struct bpf_map *map;
677 	u32 map_id;
678 	enum bpf_map_type map_type;
679 	u32 kern_flags;
680 	struct bpf_nh_params nh;
681 };
682 
683 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
684 
685 /* flags for bpf_redirect_info kern_flags */
686 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
687 
688 /* Compute the linear packet data range [data, data_end) which
689  * will be accessed by various program types (cls_bpf, act_bpf,
690  * lwt, ...). Subsystems allowing direct data access must (!)
691  * ensure that cb[] area can be written to when BPF program is
692  * invoked (otherwise cb[] save/restore is necessary).
693  */
694 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
695 {
696 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
697 
698 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
699 	cb->data_meta = skb->data - skb_metadata_len(skb);
700 	cb->data_end  = skb->data + skb_headlen(skb);
701 }
702 
703 /* Similar to bpf_compute_data_pointers(), except that save orginal
704  * data in cb->data and cb->meta_data for restore.
705  */
706 static inline void bpf_compute_and_save_data_end(
707 	struct sk_buff *skb, void **saved_data_end)
708 {
709 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
710 
711 	*saved_data_end = cb->data_end;
712 	cb->data_end  = skb->data + skb_headlen(skb);
713 }
714 
715 /* Restore data saved by bpf_compute_data_pointers(). */
716 static inline void bpf_restore_data_end(
717 	struct sk_buff *skb, void *saved_data_end)
718 {
719 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
720 
721 	cb->data_end = saved_data_end;
722 }
723 
724 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
725 {
726 	/* eBPF programs may read/write skb->cb[] area to transfer meta
727 	 * data between tail calls. Since this also needs to work with
728 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
729 	 *
730 	 * In some socket filter cases, the cb unfortunately needs to be
731 	 * saved/restored so that protocol specific skb->cb[] data won't
732 	 * be lost. In any case, due to unpriviledged eBPF programs
733 	 * attached to sockets, we need to clear the bpf_skb_cb() area
734 	 * to not leak previous contents to user space.
735 	 */
736 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
737 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
738 		     sizeof_field(struct qdisc_skb_cb, data));
739 
740 	return qdisc_skb_cb(skb)->data;
741 }
742 
743 /* Must be invoked with migration disabled */
744 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
745 					 const void *ctx)
746 {
747 	const struct sk_buff *skb = ctx;
748 	u8 *cb_data = bpf_skb_cb(skb);
749 	u8 cb_saved[BPF_SKB_CB_LEN];
750 	u32 res;
751 
752 	if (unlikely(prog->cb_access)) {
753 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
754 		memset(cb_data, 0, sizeof(cb_saved));
755 	}
756 
757 	res = bpf_prog_run(prog, skb);
758 
759 	if (unlikely(prog->cb_access))
760 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
761 
762 	return res;
763 }
764 
765 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
766 				       struct sk_buff *skb)
767 {
768 	u32 res;
769 
770 	migrate_disable();
771 	res = __bpf_prog_run_save_cb(prog, skb);
772 	migrate_enable();
773 	return res;
774 }
775 
776 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
777 					struct sk_buff *skb)
778 {
779 	u8 *cb_data = bpf_skb_cb(skb);
780 	u32 res;
781 
782 	if (unlikely(prog->cb_access))
783 		memset(cb_data, 0, BPF_SKB_CB_LEN);
784 
785 	res = bpf_prog_run_pin_on_cpu(prog, skb);
786 	return res;
787 }
788 
789 DECLARE_BPF_DISPATCHER(xdp)
790 
791 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
792 
793 u32 xdp_master_redirect(struct xdp_buff *xdp);
794 
795 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
796 					    struct xdp_buff *xdp)
797 {
798 	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
799 	 * under local_bh_disable(), which provides the needed RCU protection
800 	 * for accessing map entries.
801 	 */
802 	u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
803 
804 	if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
805 		if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
806 			act = xdp_master_redirect(xdp);
807 	}
808 
809 	return act;
810 }
811 
812 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
813 
814 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
815 {
816 	return prog->len * sizeof(struct bpf_insn);
817 }
818 
819 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
820 {
821 	return round_up(bpf_prog_insn_size(prog) +
822 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
823 }
824 
825 static inline unsigned int bpf_prog_size(unsigned int proglen)
826 {
827 	return max(sizeof(struct bpf_prog),
828 		   offsetof(struct bpf_prog, insns[proglen]));
829 }
830 
831 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
832 {
833 	/* When classic BPF programs have been loaded and the arch
834 	 * does not have a classic BPF JIT (anymore), they have been
835 	 * converted via bpf_migrate_filter() to eBPF and thus always
836 	 * have an unspec program type.
837 	 */
838 	return prog->type == BPF_PROG_TYPE_UNSPEC;
839 }
840 
841 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
842 {
843 	const u32 size_machine = sizeof(unsigned long);
844 
845 	if (size > size_machine && size % size_machine == 0)
846 		size = size_machine;
847 
848 	return size;
849 }
850 
851 static inline bool
852 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
853 {
854 	return size <= size_default && (size & (size - 1)) == 0;
855 }
856 
857 static inline u8
858 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
859 {
860 	u8 access_off = off & (size_default - 1);
861 
862 #ifdef __LITTLE_ENDIAN
863 	return access_off;
864 #else
865 	return size_default - (access_off + size);
866 #endif
867 }
868 
869 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
870 	(size == sizeof(__u64) &&					\
871 	off >= offsetof(type, field) &&					\
872 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
873 	off % sizeof(__u64) == 0)
874 
875 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
876 
877 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
878 {
879 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
880 	if (!fp->jited) {
881 		set_vm_flush_reset_perms(fp);
882 		set_memory_ro((unsigned long)fp, fp->pages);
883 	}
884 #endif
885 }
886 
887 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
888 {
889 	set_vm_flush_reset_perms(hdr);
890 	set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
891 	set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
892 }
893 
894 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
895 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
896 {
897 	return sk_filter_trim_cap(sk, skb, 1);
898 }
899 
900 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
901 void bpf_prog_free(struct bpf_prog *fp);
902 
903 bool bpf_opcode_in_insntable(u8 code);
904 
905 void bpf_prog_free_linfo(struct bpf_prog *prog);
906 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
907 			       const u32 *insn_to_jit_off);
908 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
909 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
910 
911 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
912 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
913 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
914 				  gfp_t gfp_extra_flags);
915 void __bpf_prog_free(struct bpf_prog *fp);
916 
917 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
918 {
919 	__bpf_prog_free(fp);
920 }
921 
922 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
923 				       unsigned int flen);
924 
925 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
926 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
927 			      bpf_aux_classic_check_t trans, bool save_orig);
928 void bpf_prog_destroy(struct bpf_prog *fp);
929 
930 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
931 int sk_attach_bpf(u32 ufd, struct sock *sk);
932 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
933 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
934 void sk_reuseport_prog_free(struct bpf_prog *prog);
935 int sk_detach_filter(struct sock *sk);
936 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
937 		  unsigned int len);
938 
939 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
940 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
941 
942 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
943 #define __bpf_call_base_args \
944 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
945 	 (void *)__bpf_call_base)
946 
947 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
948 void bpf_jit_compile(struct bpf_prog *prog);
949 bool bpf_jit_needs_zext(void);
950 bool bpf_jit_supports_kfunc_call(void);
951 bool bpf_helper_changes_pkt_data(void *func);
952 
953 static inline bool bpf_dump_raw_ok(const struct cred *cred)
954 {
955 	/* Reconstruction of call-sites is dependent on kallsyms,
956 	 * thus make dump the same restriction.
957 	 */
958 	return kallsyms_show_value(cred);
959 }
960 
961 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
962 				       const struct bpf_insn *patch, u32 len);
963 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
964 
965 void bpf_clear_redirect_map(struct bpf_map *map);
966 
967 static inline bool xdp_return_frame_no_direct(void)
968 {
969 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
970 
971 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
972 }
973 
974 static inline void xdp_set_return_frame_no_direct(void)
975 {
976 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
977 
978 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
979 }
980 
981 static inline void xdp_clear_return_frame_no_direct(void)
982 {
983 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
984 
985 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
986 }
987 
988 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
989 				 unsigned int pktlen)
990 {
991 	unsigned int len;
992 
993 	if (unlikely(!(fwd->flags & IFF_UP)))
994 		return -ENETDOWN;
995 
996 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
997 	if (pktlen > len)
998 		return -EMSGSIZE;
999 
1000 	return 0;
1001 }
1002 
1003 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1004  * same cpu context. Further for best results no more than a single map
1005  * for the do_redirect/do_flush pair should be used. This limitation is
1006  * because we only track one map and force a flush when the map changes.
1007  * This does not appear to be a real limitation for existing software.
1008  */
1009 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1010 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1011 int xdp_do_redirect(struct net_device *dev,
1012 		    struct xdp_buff *xdp,
1013 		    struct bpf_prog *prog);
1014 int xdp_do_redirect_frame(struct net_device *dev,
1015 			  struct xdp_buff *xdp,
1016 			  struct xdp_frame *xdpf,
1017 			  struct bpf_prog *prog);
1018 void xdp_do_flush(void);
1019 
1020 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1021  * it is no longer only flushing maps. Keep this define for compatibility
1022  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1023  */
1024 #define xdp_do_flush_map xdp_do_flush
1025 
1026 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1027 
1028 #ifdef CONFIG_INET
1029 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1030 				  struct bpf_prog *prog, struct sk_buff *skb,
1031 				  struct sock *migrating_sk,
1032 				  u32 hash);
1033 #else
1034 static inline struct sock *
1035 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1036 		     struct bpf_prog *prog, struct sk_buff *skb,
1037 		     struct sock *migrating_sk,
1038 		     u32 hash)
1039 {
1040 	return NULL;
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_BPF_JIT
1045 extern int bpf_jit_enable;
1046 extern int bpf_jit_harden;
1047 extern int bpf_jit_kallsyms;
1048 extern long bpf_jit_limit;
1049 extern long bpf_jit_limit_max;
1050 
1051 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1052 
1053 struct bpf_binary_header *
1054 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1055 		     unsigned int alignment,
1056 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1057 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1058 u64 bpf_jit_alloc_exec_limit(void);
1059 void *bpf_jit_alloc_exec(unsigned long size);
1060 void bpf_jit_free_exec(void *addr);
1061 void bpf_jit_free(struct bpf_prog *fp);
1062 
1063 struct bpf_binary_header *
1064 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1065 			  unsigned int alignment,
1066 			  struct bpf_binary_header **rw_hdr,
1067 			  u8 **rw_image,
1068 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1069 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1070 				 struct bpf_binary_header *ro_header,
1071 				 struct bpf_binary_header *rw_header);
1072 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1073 			      struct bpf_binary_header *rw_header);
1074 
1075 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1076 				struct bpf_jit_poke_descriptor *poke);
1077 
1078 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1079 			  const struct bpf_insn *insn, bool extra_pass,
1080 			  u64 *func_addr, bool *func_addr_fixed);
1081 
1082 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1083 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1084 
1085 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1086 				u32 pass, void *image)
1087 {
1088 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1089 	       proglen, pass, image, current->comm, task_pid_nr(current));
1090 
1091 	if (image)
1092 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1093 			       16, 1, image, proglen, false);
1094 }
1095 
1096 static inline bool bpf_jit_is_ebpf(void)
1097 {
1098 # ifdef CONFIG_HAVE_EBPF_JIT
1099 	return true;
1100 # else
1101 	return false;
1102 # endif
1103 }
1104 
1105 static inline bool ebpf_jit_enabled(void)
1106 {
1107 	return bpf_jit_enable && bpf_jit_is_ebpf();
1108 }
1109 
1110 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1111 {
1112 	return fp->jited && bpf_jit_is_ebpf();
1113 }
1114 
1115 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1116 {
1117 	/* These are the prerequisites, should someone ever have the
1118 	 * idea to call blinding outside of them, we make sure to
1119 	 * bail out.
1120 	 */
1121 	if (!bpf_jit_is_ebpf())
1122 		return false;
1123 	if (!prog->jit_requested)
1124 		return false;
1125 	if (!bpf_jit_harden)
1126 		return false;
1127 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1128 		return false;
1129 
1130 	return true;
1131 }
1132 
1133 static inline bool bpf_jit_kallsyms_enabled(void)
1134 {
1135 	/* There are a couple of corner cases where kallsyms should
1136 	 * not be enabled f.e. on hardening.
1137 	 */
1138 	if (bpf_jit_harden)
1139 		return false;
1140 	if (!bpf_jit_kallsyms)
1141 		return false;
1142 	if (bpf_jit_kallsyms == 1)
1143 		return true;
1144 
1145 	return false;
1146 }
1147 
1148 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1149 				 unsigned long *off, char *sym);
1150 bool is_bpf_text_address(unsigned long addr);
1151 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1152 		    char *sym);
1153 
1154 static inline const char *
1155 bpf_address_lookup(unsigned long addr, unsigned long *size,
1156 		   unsigned long *off, char **modname, char *sym)
1157 {
1158 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1159 
1160 	if (ret && modname)
1161 		*modname = NULL;
1162 	return ret;
1163 }
1164 
1165 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1166 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1167 
1168 #else /* CONFIG_BPF_JIT */
1169 
1170 static inline bool ebpf_jit_enabled(void)
1171 {
1172 	return false;
1173 }
1174 
1175 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1176 {
1177 	return false;
1178 }
1179 
1180 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1181 {
1182 	return false;
1183 }
1184 
1185 static inline int
1186 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1187 			    struct bpf_jit_poke_descriptor *poke)
1188 {
1189 	return -ENOTSUPP;
1190 }
1191 
1192 static inline void bpf_jit_free(struct bpf_prog *fp)
1193 {
1194 	bpf_prog_unlock_free(fp);
1195 }
1196 
1197 static inline bool bpf_jit_kallsyms_enabled(void)
1198 {
1199 	return false;
1200 }
1201 
1202 static inline const char *
1203 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1204 		     unsigned long *off, char *sym)
1205 {
1206 	return NULL;
1207 }
1208 
1209 static inline bool is_bpf_text_address(unsigned long addr)
1210 {
1211 	return false;
1212 }
1213 
1214 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1215 				  char *type, char *sym)
1216 {
1217 	return -ERANGE;
1218 }
1219 
1220 static inline const char *
1221 bpf_address_lookup(unsigned long addr, unsigned long *size,
1222 		   unsigned long *off, char **modname, char *sym)
1223 {
1224 	return NULL;
1225 }
1226 
1227 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1228 {
1229 }
1230 
1231 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1232 {
1233 }
1234 
1235 #endif /* CONFIG_BPF_JIT */
1236 
1237 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1238 
1239 #define BPF_ANC		BIT(15)
1240 
1241 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1242 {
1243 	switch (first->code) {
1244 	case BPF_RET | BPF_K:
1245 	case BPF_LD | BPF_W | BPF_LEN:
1246 		return false;
1247 
1248 	case BPF_LD | BPF_W | BPF_ABS:
1249 	case BPF_LD | BPF_H | BPF_ABS:
1250 	case BPF_LD | BPF_B | BPF_ABS:
1251 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1252 			return true;
1253 		return false;
1254 
1255 	default:
1256 		return true;
1257 	}
1258 }
1259 
1260 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1261 {
1262 	BUG_ON(ftest->code & BPF_ANC);
1263 
1264 	switch (ftest->code) {
1265 	case BPF_LD | BPF_W | BPF_ABS:
1266 	case BPF_LD | BPF_H | BPF_ABS:
1267 	case BPF_LD | BPF_B | BPF_ABS:
1268 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1269 				return BPF_ANC | SKF_AD_##CODE
1270 		switch (ftest->k) {
1271 		BPF_ANCILLARY(PROTOCOL);
1272 		BPF_ANCILLARY(PKTTYPE);
1273 		BPF_ANCILLARY(IFINDEX);
1274 		BPF_ANCILLARY(NLATTR);
1275 		BPF_ANCILLARY(NLATTR_NEST);
1276 		BPF_ANCILLARY(MARK);
1277 		BPF_ANCILLARY(QUEUE);
1278 		BPF_ANCILLARY(HATYPE);
1279 		BPF_ANCILLARY(RXHASH);
1280 		BPF_ANCILLARY(CPU);
1281 		BPF_ANCILLARY(ALU_XOR_X);
1282 		BPF_ANCILLARY(VLAN_TAG);
1283 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1284 		BPF_ANCILLARY(PAY_OFFSET);
1285 		BPF_ANCILLARY(RANDOM);
1286 		BPF_ANCILLARY(VLAN_TPID);
1287 		}
1288 		fallthrough;
1289 	default:
1290 		return ftest->code;
1291 	}
1292 }
1293 
1294 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1295 					   int k, unsigned int size);
1296 
1297 static inline int bpf_tell_extensions(void)
1298 {
1299 	return SKF_AD_MAX;
1300 }
1301 
1302 struct bpf_sock_addr_kern {
1303 	struct sock *sk;
1304 	struct sockaddr *uaddr;
1305 	/* Temporary "register" to make indirect stores to nested structures
1306 	 * defined above. We need three registers to make such a store, but
1307 	 * only two (src and dst) are available at convert_ctx_access time
1308 	 */
1309 	u64 tmp_reg;
1310 	void *t_ctx;	/* Attach type specific context. */
1311 };
1312 
1313 struct bpf_sock_ops_kern {
1314 	struct	sock *sk;
1315 	union {
1316 		u32 args[4];
1317 		u32 reply;
1318 		u32 replylong[4];
1319 	};
1320 	struct sk_buff	*syn_skb;
1321 	struct sk_buff	*skb;
1322 	void	*skb_data_end;
1323 	u8	op;
1324 	u8	is_fullsock;
1325 	u8	remaining_opt_len;
1326 	u64	temp;			/* temp and everything after is not
1327 					 * initialized to 0 before calling
1328 					 * the BPF program. New fields that
1329 					 * should be initialized to 0 should
1330 					 * be inserted before temp.
1331 					 * temp is scratch storage used by
1332 					 * sock_ops_convert_ctx_access
1333 					 * as temporary storage of a register.
1334 					 */
1335 };
1336 
1337 struct bpf_sysctl_kern {
1338 	struct ctl_table_header *head;
1339 	struct ctl_table *table;
1340 	void *cur_val;
1341 	size_t cur_len;
1342 	void *new_val;
1343 	size_t new_len;
1344 	int new_updated;
1345 	int write;
1346 	loff_t *ppos;
1347 	/* Temporary "register" for indirect stores to ppos. */
1348 	u64 tmp_reg;
1349 };
1350 
1351 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1352 struct bpf_sockopt_buf {
1353 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1354 };
1355 
1356 struct bpf_sockopt_kern {
1357 	struct sock	*sk;
1358 	u8		*optval;
1359 	u8		*optval_end;
1360 	s32		level;
1361 	s32		optname;
1362 	s32		optlen;
1363 	/* for retval in struct bpf_cg_run_ctx */
1364 	struct task_struct *current_task;
1365 	/* Temporary "register" for indirect stores to ppos. */
1366 	u64		tmp_reg;
1367 };
1368 
1369 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1370 
1371 struct bpf_sk_lookup_kern {
1372 	u16		family;
1373 	u16		protocol;
1374 	__be16		sport;
1375 	u16		dport;
1376 	struct {
1377 		__be32 saddr;
1378 		__be32 daddr;
1379 	} v4;
1380 	struct {
1381 		const struct in6_addr *saddr;
1382 		const struct in6_addr *daddr;
1383 	} v6;
1384 	struct sock	*selected_sk;
1385 	u32		ingress_ifindex;
1386 	bool		no_reuseport;
1387 };
1388 
1389 extern struct static_key_false bpf_sk_lookup_enabled;
1390 
1391 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1392  *
1393  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1394  * SK_DROP. Their meaning is as follows:
1395  *
1396  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1397  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1398  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1399  *
1400  * This macro aggregates return values and selected sockets from
1401  * multiple BPF programs according to following rules in order:
1402  *
1403  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1404  *     macro result is SK_PASS and last ctx.selected_sk is used.
1405  *  2. If any program returned SK_DROP return value,
1406  *     macro result is SK_DROP.
1407  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1408  *
1409  * Caller must ensure that the prog array is non-NULL, and that the
1410  * array as well as the programs it contains remain valid.
1411  */
1412 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1413 	({								\
1414 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1415 		struct bpf_prog_array_item *_item;			\
1416 		struct sock *_selected_sk = NULL;			\
1417 		bool _no_reuseport = false;				\
1418 		struct bpf_prog *_prog;					\
1419 		bool _all_pass = true;					\
1420 		u32 _ret;						\
1421 									\
1422 		migrate_disable();					\
1423 		_item = &(array)->items[0];				\
1424 		while ((_prog = READ_ONCE(_item->prog))) {		\
1425 			/* restore most recent selection */		\
1426 			_ctx->selected_sk = _selected_sk;		\
1427 			_ctx->no_reuseport = _no_reuseport;		\
1428 									\
1429 			_ret = func(_prog, _ctx);			\
1430 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1431 				/* remember last non-NULL socket */	\
1432 				_selected_sk = _ctx->selected_sk;	\
1433 				_no_reuseport = _ctx->no_reuseport;	\
1434 			} else if (_ret == SK_DROP && _all_pass) {	\
1435 				_all_pass = false;			\
1436 			}						\
1437 			_item++;					\
1438 		}							\
1439 		_ctx->selected_sk = _selected_sk;			\
1440 		_ctx->no_reuseport = _no_reuseport;			\
1441 		migrate_enable();					\
1442 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1443 	 })
1444 
1445 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1446 					const __be32 saddr, const __be16 sport,
1447 					const __be32 daddr, const u16 dport,
1448 					const int ifindex, struct sock **psk)
1449 {
1450 	struct bpf_prog_array *run_array;
1451 	struct sock *selected_sk = NULL;
1452 	bool no_reuseport = false;
1453 
1454 	rcu_read_lock();
1455 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1456 	if (run_array) {
1457 		struct bpf_sk_lookup_kern ctx = {
1458 			.family		= AF_INET,
1459 			.protocol	= protocol,
1460 			.v4.saddr	= saddr,
1461 			.v4.daddr	= daddr,
1462 			.sport		= sport,
1463 			.dport		= dport,
1464 			.ingress_ifindex	= ifindex,
1465 		};
1466 		u32 act;
1467 
1468 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1469 		if (act == SK_PASS) {
1470 			selected_sk = ctx.selected_sk;
1471 			no_reuseport = ctx.no_reuseport;
1472 		} else {
1473 			selected_sk = ERR_PTR(-ECONNREFUSED);
1474 		}
1475 	}
1476 	rcu_read_unlock();
1477 	*psk = selected_sk;
1478 	return no_reuseport;
1479 }
1480 
1481 #if IS_ENABLED(CONFIG_IPV6)
1482 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1483 					const struct in6_addr *saddr,
1484 					const __be16 sport,
1485 					const struct in6_addr *daddr,
1486 					const u16 dport,
1487 					const int ifindex, struct sock **psk)
1488 {
1489 	struct bpf_prog_array *run_array;
1490 	struct sock *selected_sk = NULL;
1491 	bool no_reuseport = false;
1492 
1493 	rcu_read_lock();
1494 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1495 	if (run_array) {
1496 		struct bpf_sk_lookup_kern ctx = {
1497 			.family		= AF_INET6,
1498 			.protocol	= protocol,
1499 			.v6.saddr	= saddr,
1500 			.v6.daddr	= daddr,
1501 			.sport		= sport,
1502 			.dport		= dport,
1503 			.ingress_ifindex	= ifindex,
1504 		};
1505 		u32 act;
1506 
1507 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1508 		if (act == SK_PASS) {
1509 			selected_sk = ctx.selected_sk;
1510 			no_reuseport = ctx.no_reuseport;
1511 		} else {
1512 			selected_sk = ERR_PTR(-ECONNREFUSED);
1513 		}
1514 	}
1515 	rcu_read_unlock();
1516 	*psk = selected_sk;
1517 	return no_reuseport;
1518 }
1519 #endif /* IS_ENABLED(CONFIG_IPV6) */
1520 
1521 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1522 						  u64 flags, const u64 flag_mask,
1523 						  void *lookup_elem(struct bpf_map *map, u32 key))
1524 {
1525 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1526 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1527 
1528 	/* Lower bits of the flags are used as return code on lookup failure */
1529 	if (unlikely(flags & ~(action_mask | flag_mask)))
1530 		return XDP_ABORTED;
1531 
1532 	ri->tgt_value = lookup_elem(map, ifindex);
1533 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1534 		/* If the lookup fails we want to clear out the state in the
1535 		 * redirect_info struct completely, so that if an eBPF program
1536 		 * performs multiple lookups, the last one always takes
1537 		 * precedence.
1538 		 */
1539 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1540 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1541 		return flags & action_mask;
1542 	}
1543 
1544 	ri->tgt_index = ifindex;
1545 	ri->map_id = map->id;
1546 	ri->map_type = map->map_type;
1547 
1548 	if (flags & BPF_F_BROADCAST) {
1549 		WRITE_ONCE(ri->map, map);
1550 		ri->flags = flags;
1551 	} else {
1552 		WRITE_ONCE(ri->map, NULL);
1553 		ri->flags = 0;
1554 	}
1555 
1556 	return XDP_REDIRECT;
1557 }
1558 
1559 #endif /* __LINUX_FILTER_H__ */
1560