xref: /linux-6.15/include/linux/filter.h (revision 509edd95)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha.h>
25 
26 #include <net/sch_generic.h>
27 
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30 #include <uapi/linux/bpf.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark call to interpreter with arguments */
73 #define BPF_CALL_ARGS	0xe0
74 
75 /* As per nm, we expose JITed images as text (code) section for
76  * kallsyms. That way, tools like perf can find it to match
77  * addresses.
78  */
79 #define BPF_SYM_ELF_TYPE	't'
80 
81 /* BPF program can access up to 512 bytes of stack space. */
82 #define MAX_BPF_STACK	512
83 
84 /* Helper macros for filter block array initializers. */
85 
86 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
87 
88 #define BPF_ALU64_REG(OP, DST, SRC)				\
89 	((struct bpf_insn) {					\
90 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
91 		.dst_reg = DST,					\
92 		.src_reg = SRC,					\
93 		.off   = 0,					\
94 		.imm   = 0 })
95 
96 #define BPF_ALU32_REG(OP, DST, SRC)				\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = 0,					\
102 		.imm   = 0 })
103 
104 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
105 
106 #define BPF_ALU64_IMM(OP, DST, IMM)				\
107 	((struct bpf_insn) {					\
108 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
109 		.dst_reg = DST,					\
110 		.src_reg = 0,					\
111 		.off   = 0,					\
112 		.imm   = IMM })
113 
114 #define BPF_ALU32_IMM(OP, DST, IMM)				\
115 	((struct bpf_insn) {					\
116 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
117 		.dst_reg = DST,					\
118 		.src_reg = 0,					\
119 		.off   = 0,					\
120 		.imm   = IMM })
121 
122 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
123 
124 #define BPF_ENDIAN(TYPE, DST, LEN)				\
125 	((struct bpf_insn) {					\
126 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
127 		.dst_reg = DST,					\
128 		.src_reg = 0,					\
129 		.off   = 0,					\
130 		.imm   = LEN })
131 
132 /* Short form of mov, dst_reg = src_reg */
133 
134 #define BPF_MOV64_REG(DST, SRC)					\
135 	((struct bpf_insn) {					\
136 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
137 		.dst_reg = DST,					\
138 		.src_reg = SRC,					\
139 		.off   = 0,					\
140 		.imm   = 0 })
141 
142 #define BPF_MOV32_REG(DST, SRC)					\
143 	((struct bpf_insn) {					\
144 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
145 		.dst_reg = DST,					\
146 		.src_reg = SRC,					\
147 		.off   = 0,					\
148 		.imm   = 0 })
149 
150 /* Short form of mov, dst_reg = imm32 */
151 
152 #define BPF_MOV64_IMM(DST, IMM)					\
153 	((struct bpf_insn) {					\
154 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
155 		.dst_reg = DST,					\
156 		.src_reg = 0,					\
157 		.off   = 0,					\
158 		.imm   = IMM })
159 
160 #define BPF_MOV32_IMM(DST, IMM)					\
161 	((struct bpf_insn) {					\
162 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
163 		.dst_reg = DST,					\
164 		.src_reg = 0,					\
165 		.off   = 0,					\
166 		.imm   = IMM })
167 
168 /* Special form of mov32, used for doing explicit zero extension on dst. */
169 #define BPF_ZEXT_REG(DST)					\
170 	((struct bpf_insn) {					\
171 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
172 		.dst_reg = DST,					\
173 		.src_reg = DST,					\
174 		.off   = 0,					\
175 		.imm   = 1 })
176 
177 static inline bool insn_is_zext(const struct bpf_insn *insn)
178 {
179 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
180 }
181 
182 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
183 #define BPF_LD_IMM64(DST, IMM)					\
184 	BPF_LD_IMM64_RAW(DST, 0, IMM)
185 
186 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
187 	((struct bpf_insn) {					\
188 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
189 		.dst_reg = DST,					\
190 		.src_reg = SRC,					\
191 		.off   = 0,					\
192 		.imm   = (__u32) (IMM) }),			\
193 	((struct bpf_insn) {					\
194 		.code  = 0, /* zero is reserved opcode */	\
195 		.dst_reg = 0,					\
196 		.src_reg = 0,					\
197 		.off   = 0,					\
198 		.imm   = ((__u64) (IMM)) >> 32 })
199 
200 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
201 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
202 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
203 
204 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
205 
206 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
207 	((struct bpf_insn) {					\
208 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
209 		.dst_reg = DST,					\
210 		.src_reg = SRC,					\
211 		.off   = 0,					\
212 		.imm   = IMM })
213 
214 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
215 	((struct bpf_insn) {					\
216 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
217 		.dst_reg = DST,					\
218 		.src_reg = SRC,					\
219 		.off   = 0,					\
220 		.imm   = IMM })
221 
222 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
223 
224 #define BPF_LD_ABS(SIZE, IMM)					\
225 	((struct bpf_insn) {					\
226 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
227 		.dst_reg = 0,					\
228 		.src_reg = 0,					\
229 		.off   = 0,					\
230 		.imm   = IMM })
231 
232 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
233 
234 #define BPF_LD_IND(SIZE, SRC, IMM)				\
235 	((struct bpf_insn) {					\
236 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
237 		.dst_reg = 0,					\
238 		.src_reg = SRC,					\
239 		.off   = 0,					\
240 		.imm   = IMM })
241 
242 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
243 
244 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
245 	((struct bpf_insn) {					\
246 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
247 		.dst_reg = DST,					\
248 		.src_reg = SRC,					\
249 		.off   = OFF,					\
250 		.imm   = 0 })
251 
252 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
253 
254 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
255 	((struct bpf_insn) {					\
256 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
257 		.dst_reg = DST,					\
258 		.src_reg = SRC,					\
259 		.off   = OFF,					\
260 		.imm   = 0 })
261 
262 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
263 
264 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
265 	((struct bpf_insn) {					\
266 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
267 		.dst_reg = DST,					\
268 		.src_reg = SRC,					\
269 		.off   = OFF,					\
270 		.imm   = 0 })
271 
272 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
273 
274 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
275 	((struct bpf_insn) {					\
276 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
277 		.dst_reg = DST,					\
278 		.src_reg = 0,					\
279 		.off   = OFF,					\
280 		.imm   = IMM })
281 
282 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
283 
284 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
285 	((struct bpf_insn) {					\
286 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
287 		.dst_reg = DST,					\
288 		.src_reg = SRC,					\
289 		.off   = OFF,					\
290 		.imm   = 0 })
291 
292 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
293 
294 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
295 	((struct bpf_insn) {					\
296 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
297 		.dst_reg = DST,					\
298 		.src_reg = 0,					\
299 		.off   = OFF,					\
300 		.imm   = IMM })
301 
302 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
303 
304 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
305 	((struct bpf_insn) {					\
306 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
307 		.dst_reg = DST,					\
308 		.src_reg = SRC,					\
309 		.off   = OFF,					\
310 		.imm   = 0 })
311 
312 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
313 
314 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
315 	((struct bpf_insn) {					\
316 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
317 		.dst_reg = DST,					\
318 		.src_reg = 0,					\
319 		.off   = OFF,					\
320 		.imm   = IMM })
321 
322 /* Unconditional jumps, goto pc + off16 */
323 
324 #define BPF_JMP_A(OFF)						\
325 	((struct bpf_insn) {					\
326 		.code  = BPF_JMP | BPF_JA,			\
327 		.dst_reg = 0,					\
328 		.src_reg = 0,					\
329 		.off   = OFF,					\
330 		.imm   = 0 })
331 
332 /* Relative call */
333 
334 #define BPF_CALL_REL(TGT)					\
335 	((struct bpf_insn) {					\
336 		.code  = BPF_JMP | BPF_CALL,			\
337 		.dst_reg = 0,					\
338 		.src_reg = BPF_PSEUDO_CALL,			\
339 		.off   = 0,					\
340 		.imm   = TGT })
341 
342 /* Function call */
343 
344 #define BPF_CAST_CALL(x)					\
345 		((u64 (*)(u64, u64, u64, u64, u64))(x))
346 
347 #define BPF_EMIT_CALL(FUNC)					\
348 	((struct bpf_insn) {					\
349 		.code  = BPF_JMP | BPF_CALL,			\
350 		.dst_reg = 0,					\
351 		.src_reg = 0,					\
352 		.off   = 0,					\
353 		.imm   = ((FUNC) - __bpf_call_base) })
354 
355 /* Raw code statement block */
356 
357 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
358 	((struct bpf_insn) {					\
359 		.code  = CODE,					\
360 		.dst_reg = DST,					\
361 		.src_reg = SRC,					\
362 		.off   = OFF,					\
363 		.imm   = IMM })
364 
365 /* Program exit */
366 
367 #define BPF_EXIT_INSN()						\
368 	((struct bpf_insn) {					\
369 		.code  = BPF_JMP | BPF_EXIT,			\
370 		.dst_reg = 0,					\
371 		.src_reg = 0,					\
372 		.off   = 0,					\
373 		.imm   = 0 })
374 
375 /* Internal classic blocks for direct assignment */
376 
377 #define __BPF_STMT(CODE, K)					\
378 	((struct sock_filter) BPF_STMT(CODE, K))
379 
380 #define __BPF_JUMP(CODE, K, JT, JF)				\
381 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
382 
383 #define bytes_to_bpf_size(bytes)				\
384 ({								\
385 	int bpf_size = -EINVAL;					\
386 								\
387 	if (bytes == sizeof(u8))				\
388 		bpf_size = BPF_B;				\
389 	else if (bytes == sizeof(u16))				\
390 		bpf_size = BPF_H;				\
391 	else if (bytes == sizeof(u32))				\
392 		bpf_size = BPF_W;				\
393 	else if (bytes == sizeof(u64))				\
394 		bpf_size = BPF_DW;				\
395 								\
396 	bpf_size;						\
397 })
398 
399 #define bpf_size_to_bytes(bpf_size)				\
400 ({								\
401 	int bytes = -EINVAL;					\
402 								\
403 	if (bpf_size == BPF_B)					\
404 		bytes = sizeof(u8);				\
405 	else if (bpf_size == BPF_H)				\
406 		bytes = sizeof(u16);				\
407 	else if (bpf_size == BPF_W)				\
408 		bytes = sizeof(u32);				\
409 	else if (bpf_size == BPF_DW)				\
410 		bytes = sizeof(u64);				\
411 								\
412 	bytes;							\
413 })
414 
415 #define BPF_SIZEOF(type)					\
416 	({							\
417 		const int __size = bytes_to_bpf_size(sizeof(type)); \
418 		BUILD_BUG_ON(__size < 0);			\
419 		__size;						\
420 	})
421 
422 #define BPF_FIELD_SIZEOF(type, field)				\
423 	({							\
424 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
425 		BUILD_BUG_ON(__size < 0);			\
426 		__size;						\
427 	})
428 
429 #define BPF_LDST_BYTES(insn)					\
430 	({							\
431 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
432 		WARN_ON(__size < 0);				\
433 		__size;						\
434 	})
435 
436 #define __BPF_MAP_0(m, v, ...) v
437 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
438 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
439 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
440 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
441 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
442 
443 #define __BPF_REG_0(...) __BPF_PAD(5)
444 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
445 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
446 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
447 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
448 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
449 
450 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
451 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
452 
453 #define __BPF_CAST(t, a)						       \
454 	(__force t)							       \
455 	(__force							       \
456 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
457 				      (unsigned long)0, (t)0))) a
458 #define __BPF_V void
459 #define __BPF_N
460 
461 #define __BPF_DECL_ARGS(t, a) t   a
462 #define __BPF_DECL_REGS(t, a) u64 a
463 
464 #define __BPF_PAD(n)							       \
465 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
466 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
467 
468 #define BPF_CALL_x(x, name, ...)					       \
469 	static __always_inline						       \
470 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
471 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
472 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
473 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
474 	{								       \
475 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
476 	}								       \
477 	static __always_inline						       \
478 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
479 
480 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
481 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
482 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
483 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
484 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
485 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
486 
487 #define bpf_ctx_range(TYPE, MEMBER)						\
488 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
489 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
490 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
491 #if BITS_PER_LONG == 64
492 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
493 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
494 #else
495 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
496 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
497 #endif /* BITS_PER_LONG == 64 */
498 
499 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
500 	({									\
501 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
502 		*(PTR_SIZE) = (SIZE);						\
503 		offsetof(TYPE, MEMBER);						\
504 	})
505 
506 /* A struct sock_filter is architecture independent. */
507 struct compat_sock_fprog {
508 	u16		len;
509 	compat_uptr_t	filter;	/* struct sock_filter * */
510 };
511 
512 struct sock_fprog_kern {
513 	u16			len;
514 	struct sock_filter	*filter;
515 };
516 
517 /* Some arches need doubleword alignment for their instructions and/or data */
518 #define BPF_IMAGE_ALIGNMENT 8
519 
520 struct bpf_binary_header {
521 	u32 pages;
522 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
523 };
524 
525 struct bpf_prog {
526 	u16			pages;		/* Number of allocated pages */
527 	u16			jited:1,	/* Is our filter JIT'ed? */
528 				jit_requested:1,/* archs need to JIT the prog */
529 				gpl_compatible:1, /* Is filter GPL compatible? */
530 				cb_access:1,	/* Is control block accessed? */
531 				dst_needed:1,	/* Do we need dst entry? */
532 				blinded:1,	/* Was blinded */
533 				is_func:1,	/* program is a bpf function */
534 				kprobe_override:1, /* Do we override a kprobe? */
535 				has_callchain_buf:1, /* callchain buffer allocated? */
536 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
537 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
538 	enum bpf_prog_type	type;		/* Type of BPF program */
539 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
540 	u32			len;		/* Number of filter blocks */
541 	u32			jited_len;	/* Size of jited insns in bytes */
542 	u8			tag[BPF_TAG_SIZE];
543 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
544 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
545 	unsigned int		(*bpf_func)(const void *ctx,
546 					    const struct bpf_insn *insn);
547 	/* Instructions for interpreter */
548 	struct sock_filter	insns[0];
549 	struct bpf_insn		insnsi[];
550 };
551 
552 struct sk_filter {
553 	refcount_t	refcnt;
554 	struct rcu_head	rcu;
555 	struct bpf_prog	*prog;
556 };
557 
558 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
559 
560 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
561 	u32 ret;							\
562 	cant_migrate();							\
563 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
564 		struct bpf_prog_stats *stats;				\
565 		u64 start = sched_clock();				\
566 		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
567 		stats = this_cpu_ptr(prog->aux->stats);			\
568 		u64_stats_update_begin(&stats->syncp);			\
569 		stats->cnt++;						\
570 		stats->nsecs += sched_clock() - start;			\
571 		u64_stats_update_end(&stats->syncp);			\
572 	} else {							\
573 		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
574 	}								\
575 	ret; })
576 
577 #define BPF_PROG_RUN(prog, ctx)						\
578 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
579 
580 /*
581  * Use in preemptible and therefore migratable context to make sure that
582  * the execution of the BPF program runs on one CPU.
583  *
584  * This uses migrate_disable/enable() explicitly to document that the
585  * invocation of a BPF program does not require reentrancy protection
586  * against a BPF program which is invoked from a preempting task.
587  *
588  * For non RT enabled kernels migrate_disable/enable() maps to
589  * preempt_disable/enable(), i.e. it disables also preemption.
590  */
591 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
592 					  const void *ctx)
593 {
594 	u32 ret;
595 
596 	migrate_disable();
597 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
598 	migrate_enable();
599 	return ret;
600 }
601 
602 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
603 
604 struct bpf_skb_data_end {
605 	struct qdisc_skb_cb qdisc_cb;
606 	void *data_meta;
607 	void *data_end;
608 };
609 
610 struct bpf_redirect_info {
611 	u32 flags;
612 	u32 tgt_index;
613 	void *tgt_value;
614 	struct bpf_map *map;
615 	u32 kern_flags;
616 };
617 
618 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
619 
620 /* flags for bpf_redirect_info kern_flags */
621 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
622 
623 /* Compute the linear packet data range [data, data_end) which
624  * will be accessed by various program types (cls_bpf, act_bpf,
625  * lwt, ...). Subsystems allowing direct data access must (!)
626  * ensure that cb[] area can be written to when BPF program is
627  * invoked (otherwise cb[] save/restore is necessary).
628  */
629 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
630 {
631 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
632 
633 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
634 	cb->data_meta = skb->data - skb_metadata_len(skb);
635 	cb->data_end  = skb->data + skb_headlen(skb);
636 }
637 
638 /* Similar to bpf_compute_data_pointers(), except that save orginal
639  * data in cb->data and cb->meta_data for restore.
640  */
641 static inline void bpf_compute_and_save_data_end(
642 	struct sk_buff *skb, void **saved_data_end)
643 {
644 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
645 
646 	*saved_data_end = cb->data_end;
647 	cb->data_end  = skb->data + skb_headlen(skb);
648 }
649 
650 /* Restore data saved by bpf_compute_data_pointers(). */
651 static inline void bpf_restore_data_end(
652 	struct sk_buff *skb, void *saved_data_end)
653 {
654 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
655 
656 	cb->data_end = saved_data_end;
657 }
658 
659 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
660 {
661 	/* eBPF programs may read/write skb->cb[] area to transfer meta
662 	 * data between tail calls. Since this also needs to work with
663 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
664 	 *
665 	 * In some socket filter cases, the cb unfortunately needs to be
666 	 * saved/restored so that protocol specific skb->cb[] data won't
667 	 * be lost. In any case, due to unpriviledged eBPF programs
668 	 * attached to sockets, we need to clear the bpf_skb_cb() area
669 	 * to not leak previous contents to user space.
670 	 */
671 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
672 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
673 		     sizeof_field(struct qdisc_skb_cb, data));
674 
675 	return qdisc_skb_cb(skb)->data;
676 }
677 
678 /* Must be invoked with migration disabled */
679 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
680 					 struct sk_buff *skb)
681 {
682 	u8 *cb_data = bpf_skb_cb(skb);
683 	u8 cb_saved[BPF_SKB_CB_LEN];
684 	u32 res;
685 
686 	if (unlikely(prog->cb_access)) {
687 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
688 		memset(cb_data, 0, sizeof(cb_saved));
689 	}
690 
691 	res = BPF_PROG_RUN(prog, skb);
692 
693 	if (unlikely(prog->cb_access))
694 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
695 
696 	return res;
697 }
698 
699 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
700 				       struct sk_buff *skb)
701 {
702 	u32 res;
703 
704 	migrate_disable();
705 	res = __bpf_prog_run_save_cb(prog, skb);
706 	migrate_enable();
707 	return res;
708 }
709 
710 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
711 					struct sk_buff *skb)
712 {
713 	u8 *cb_data = bpf_skb_cb(skb);
714 	u32 res;
715 
716 	if (unlikely(prog->cb_access))
717 		memset(cb_data, 0, BPF_SKB_CB_LEN);
718 
719 	res = bpf_prog_run_pin_on_cpu(prog, skb);
720 	return res;
721 }
722 
723 DECLARE_BPF_DISPATCHER(xdp)
724 
725 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
726 					    struct xdp_buff *xdp)
727 {
728 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
729 	 * can be released while still running, or map elements could be
730 	 * freed early while still having concurrent users. XDP fastpath
731 	 * already takes rcu_read_lock() when fetching the program, so
732 	 * it's not necessary here anymore.
733 	 */
734 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
735 }
736 
737 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
738 
739 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
740 {
741 	return prog->len * sizeof(struct bpf_insn);
742 }
743 
744 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
745 {
746 	return round_up(bpf_prog_insn_size(prog) +
747 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
748 }
749 
750 static inline unsigned int bpf_prog_size(unsigned int proglen)
751 {
752 	return max(sizeof(struct bpf_prog),
753 		   offsetof(struct bpf_prog, insns[proglen]));
754 }
755 
756 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
757 {
758 	/* When classic BPF programs have been loaded and the arch
759 	 * does not have a classic BPF JIT (anymore), they have been
760 	 * converted via bpf_migrate_filter() to eBPF and thus always
761 	 * have an unspec program type.
762 	 */
763 	return prog->type == BPF_PROG_TYPE_UNSPEC;
764 }
765 
766 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
767 {
768 	const u32 size_machine = sizeof(unsigned long);
769 
770 	if (size > size_machine && size % size_machine == 0)
771 		size = size_machine;
772 
773 	return size;
774 }
775 
776 static inline bool
777 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
778 {
779 	return size <= size_default && (size & (size - 1)) == 0;
780 }
781 
782 static inline u8
783 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
784 {
785 	u8 access_off = off & (size_default - 1);
786 
787 #ifdef __LITTLE_ENDIAN
788 	return access_off;
789 #else
790 	return size_default - (access_off + size);
791 #endif
792 }
793 
794 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
795 	(size == sizeof(__u64) &&					\
796 	off >= offsetof(type, field) &&					\
797 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
798 	off % sizeof(__u64) == 0)
799 
800 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
801 
802 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
803 {
804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
805 	if (!fp->jited) {
806 		set_vm_flush_reset_perms(fp);
807 		set_memory_ro((unsigned long)fp, fp->pages);
808 	}
809 #endif
810 }
811 
812 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
813 {
814 	set_vm_flush_reset_perms(hdr);
815 	set_memory_ro((unsigned long)hdr, hdr->pages);
816 	set_memory_x((unsigned long)hdr, hdr->pages);
817 }
818 
819 static inline struct bpf_binary_header *
820 bpf_jit_binary_hdr(const struct bpf_prog *fp)
821 {
822 	unsigned long real_start = (unsigned long)fp->bpf_func;
823 	unsigned long addr = real_start & PAGE_MASK;
824 
825 	return (void *)addr;
826 }
827 
828 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
829 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
830 {
831 	return sk_filter_trim_cap(sk, skb, 1);
832 }
833 
834 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
835 void bpf_prog_free(struct bpf_prog *fp);
836 
837 bool bpf_opcode_in_insntable(u8 code);
838 
839 void bpf_prog_free_linfo(struct bpf_prog *prog);
840 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
841 			       const u32 *insn_to_jit_off);
842 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
843 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
844 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
845 
846 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
847 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
848 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
849 				  gfp_t gfp_extra_flags);
850 void __bpf_prog_free(struct bpf_prog *fp);
851 
852 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
853 {
854 	__bpf_prog_free(fp);
855 }
856 
857 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
858 				       unsigned int flen);
859 
860 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
861 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
862 			      bpf_aux_classic_check_t trans, bool save_orig);
863 void bpf_prog_destroy(struct bpf_prog *fp);
864 
865 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
866 int sk_attach_bpf(u32 ufd, struct sock *sk);
867 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
868 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
869 void sk_reuseport_prog_free(struct bpf_prog *prog);
870 int sk_detach_filter(struct sock *sk);
871 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
872 		  unsigned int len);
873 
874 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
875 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
876 
877 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
878 #define __bpf_call_base_args \
879 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
880 	 __bpf_call_base)
881 
882 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
883 void bpf_jit_compile(struct bpf_prog *prog);
884 bool bpf_jit_needs_zext(void);
885 bool bpf_helper_changes_pkt_data(void *func);
886 
887 static inline bool bpf_dump_raw_ok(const struct cred *cred)
888 {
889 	/* Reconstruction of call-sites is dependent on kallsyms,
890 	 * thus make dump the same restriction.
891 	 */
892 	return kallsyms_show_value(cred);
893 }
894 
895 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
896 				       const struct bpf_insn *patch, u32 len);
897 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
898 
899 void bpf_clear_redirect_map(struct bpf_map *map);
900 
901 static inline bool xdp_return_frame_no_direct(void)
902 {
903 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
904 
905 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
906 }
907 
908 static inline void xdp_set_return_frame_no_direct(void)
909 {
910 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
911 
912 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
913 }
914 
915 static inline void xdp_clear_return_frame_no_direct(void)
916 {
917 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
918 
919 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
920 }
921 
922 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
923 				 unsigned int pktlen)
924 {
925 	unsigned int len;
926 
927 	if (unlikely(!(fwd->flags & IFF_UP)))
928 		return -ENETDOWN;
929 
930 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
931 	if (pktlen > len)
932 		return -EMSGSIZE;
933 
934 	return 0;
935 }
936 
937 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
938  * same cpu context. Further for best results no more than a single map
939  * for the do_redirect/do_flush pair should be used. This limitation is
940  * because we only track one map and force a flush when the map changes.
941  * This does not appear to be a real limitation for existing software.
942  */
943 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
944 			    struct xdp_buff *xdp, struct bpf_prog *prog);
945 int xdp_do_redirect(struct net_device *dev,
946 		    struct xdp_buff *xdp,
947 		    struct bpf_prog *prog);
948 void xdp_do_flush(void);
949 
950 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
951  * it is no longer only flushing maps. Keep this define for compatibility
952  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
953  */
954 #define xdp_do_flush_map xdp_do_flush
955 
956 void bpf_warn_invalid_xdp_action(u32 act);
957 
958 #ifdef CONFIG_INET
959 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
960 				  struct bpf_prog *prog, struct sk_buff *skb,
961 				  u32 hash);
962 #else
963 static inline struct sock *
964 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
965 		     struct bpf_prog *prog, struct sk_buff *skb,
966 		     u32 hash)
967 {
968 	return NULL;
969 }
970 #endif
971 
972 #ifdef CONFIG_BPF_JIT
973 extern int bpf_jit_enable;
974 extern int bpf_jit_harden;
975 extern int bpf_jit_kallsyms;
976 extern long bpf_jit_limit;
977 
978 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
979 
980 struct bpf_binary_header *
981 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
982 		     unsigned int alignment,
983 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
984 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
985 u64 bpf_jit_alloc_exec_limit(void);
986 void *bpf_jit_alloc_exec(unsigned long size);
987 void bpf_jit_free_exec(void *addr);
988 void bpf_jit_free(struct bpf_prog *fp);
989 
990 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
991 				struct bpf_jit_poke_descriptor *poke);
992 
993 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
994 			  const struct bpf_insn *insn, bool extra_pass,
995 			  u64 *func_addr, bool *func_addr_fixed);
996 
997 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
998 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
999 
1000 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1001 				u32 pass, void *image)
1002 {
1003 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1004 	       proglen, pass, image, current->comm, task_pid_nr(current));
1005 
1006 	if (image)
1007 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1008 			       16, 1, image, proglen, false);
1009 }
1010 
1011 static inline bool bpf_jit_is_ebpf(void)
1012 {
1013 # ifdef CONFIG_HAVE_EBPF_JIT
1014 	return true;
1015 # else
1016 	return false;
1017 # endif
1018 }
1019 
1020 static inline bool ebpf_jit_enabled(void)
1021 {
1022 	return bpf_jit_enable && bpf_jit_is_ebpf();
1023 }
1024 
1025 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1026 {
1027 	return fp->jited && bpf_jit_is_ebpf();
1028 }
1029 
1030 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1031 {
1032 	/* These are the prerequisites, should someone ever have the
1033 	 * idea to call blinding outside of them, we make sure to
1034 	 * bail out.
1035 	 */
1036 	if (!bpf_jit_is_ebpf())
1037 		return false;
1038 	if (!prog->jit_requested)
1039 		return false;
1040 	if (!bpf_jit_harden)
1041 		return false;
1042 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1043 		return false;
1044 
1045 	return true;
1046 }
1047 
1048 static inline bool bpf_jit_kallsyms_enabled(void)
1049 {
1050 	/* There are a couple of corner cases where kallsyms should
1051 	 * not be enabled f.e. on hardening.
1052 	 */
1053 	if (bpf_jit_harden)
1054 		return false;
1055 	if (!bpf_jit_kallsyms)
1056 		return false;
1057 	if (bpf_jit_kallsyms == 1)
1058 		return true;
1059 
1060 	return false;
1061 }
1062 
1063 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1064 				 unsigned long *off, char *sym);
1065 bool is_bpf_text_address(unsigned long addr);
1066 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1067 		    char *sym);
1068 
1069 static inline const char *
1070 bpf_address_lookup(unsigned long addr, unsigned long *size,
1071 		   unsigned long *off, char **modname, char *sym)
1072 {
1073 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1074 
1075 	if (ret && modname)
1076 		*modname = NULL;
1077 	return ret;
1078 }
1079 
1080 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1081 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1082 
1083 #else /* CONFIG_BPF_JIT */
1084 
1085 static inline bool ebpf_jit_enabled(void)
1086 {
1087 	return false;
1088 }
1089 
1090 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1091 {
1092 	return false;
1093 }
1094 
1095 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1096 {
1097 	return false;
1098 }
1099 
1100 static inline int
1101 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1102 			    struct bpf_jit_poke_descriptor *poke)
1103 {
1104 	return -ENOTSUPP;
1105 }
1106 
1107 static inline void bpf_jit_free(struct bpf_prog *fp)
1108 {
1109 	bpf_prog_unlock_free(fp);
1110 }
1111 
1112 static inline bool bpf_jit_kallsyms_enabled(void)
1113 {
1114 	return false;
1115 }
1116 
1117 static inline const char *
1118 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1119 		     unsigned long *off, char *sym)
1120 {
1121 	return NULL;
1122 }
1123 
1124 static inline bool is_bpf_text_address(unsigned long addr)
1125 {
1126 	return false;
1127 }
1128 
1129 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1130 				  char *type, char *sym)
1131 {
1132 	return -ERANGE;
1133 }
1134 
1135 static inline const char *
1136 bpf_address_lookup(unsigned long addr, unsigned long *size,
1137 		   unsigned long *off, char **modname, char *sym)
1138 {
1139 	return NULL;
1140 }
1141 
1142 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1143 {
1144 }
1145 
1146 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1147 {
1148 }
1149 
1150 #endif /* CONFIG_BPF_JIT */
1151 
1152 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1153 
1154 #define BPF_ANC		BIT(15)
1155 
1156 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1157 {
1158 	switch (first->code) {
1159 	case BPF_RET | BPF_K:
1160 	case BPF_LD | BPF_W | BPF_LEN:
1161 		return false;
1162 
1163 	case BPF_LD | BPF_W | BPF_ABS:
1164 	case BPF_LD | BPF_H | BPF_ABS:
1165 	case BPF_LD | BPF_B | BPF_ABS:
1166 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1167 			return true;
1168 		return false;
1169 
1170 	default:
1171 		return true;
1172 	}
1173 }
1174 
1175 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1176 {
1177 	BUG_ON(ftest->code & BPF_ANC);
1178 
1179 	switch (ftest->code) {
1180 	case BPF_LD | BPF_W | BPF_ABS:
1181 	case BPF_LD | BPF_H | BPF_ABS:
1182 	case BPF_LD | BPF_B | BPF_ABS:
1183 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1184 				return BPF_ANC | SKF_AD_##CODE
1185 		switch (ftest->k) {
1186 		BPF_ANCILLARY(PROTOCOL);
1187 		BPF_ANCILLARY(PKTTYPE);
1188 		BPF_ANCILLARY(IFINDEX);
1189 		BPF_ANCILLARY(NLATTR);
1190 		BPF_ANCILLARY(NLATTR_NEST);
1191 		BPF_ANCILLARY(MARK);
1192 		BPF_ANCILLARY(QUEUE);
1193 		BPF_ANCILLARY(HATYPE);
1194 		BPF_ANCILLARY(RXHASH);
1195 		BPF_ANCILLARY(CPU);
1196 		BPF_ANCILLARY(ALU_XOR_X);
1197 		BPF_ANCILLARY(VLAN_TAG);
1198 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1199 		BPF_ANCILLARY(PAY_OFFSET);
1200 		BPF_ANCILLARY(RANDOM);
1201 		BPF_ANCILLARY(VLAN_TPID);
1202 		}
1203 		fallthrough;
1204 	default:
1205 		return ftest->code;
1206 	}
1207 }
1208 
1209 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1210 					   int k, unsigned int size);
1211 
1212 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1213 				     unsigned int size, void *buffer)
1214 {
1215 	if (k >= 0)
1216 		return skb_header_pointer(skb, k, size, buffer);
1217 
1218 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1219 }
1220 
1221 static inline int bpf_tell_extensions(void)
1222 {
1223 	return SKF_AD_MAX;
1224 }
1225 
1226 struct bpf_sock_addr_kern {
1227 	struct sock *sk;
1228 	struct sockaddr *uaddr;
1229 	/* Temporary "register" to make indirect stores to nested structures
1230 	 * defined above. We need three registers to make such a store, but
1231 	 * only two (src and dst) are available at convert_ctx_access time
1232 	 */
1233 	u64 tmp_reg;
1234 	void *t_ctx;	/* Attach type specific context. */
1235 };
1236 
1237 struct bpf_sock_ops_kern {
1238 	struct	sock *sk;
1239 	u32	op;
1240 	union {
1241 		u32 args[4];
1242 		u32 reply;
1243 		u32 replylong[4];
1244 	};
1245 	u32	is_fullsock;
1246 	u64	temp;			/* temp and everything after is not
1247 					 * initialized to 0 before calling
1248 					 * the BPF program. New fields that
1249 					 * should be initialized to 0 should
1250 					 * be inserted before temp.
1251 					 * temp is scratch storage used by
1252 					 * sock_ops_convert_ctx_access
1253 					 * as temporary storage of a register.
1254 					 */
1255 };
1256 
1257 struct bpf_sysctl_kern {
1258 	struct ctl_table_header *head;
1259 	struct ctl_table *table;
1260 	void *cur_val;
1261 	size_t cur_len;
1262 	void *new_val;
1263 	size_t new_len;
1264 	int new_updated;
1265 	int write;
1266 	loff_t *ppos;
1267 	/* Temporary "register" for indirect stores to ppos. */
1268 	u64 tmp_reg;
1269 };
1270 
1271 struct bpf_sockopt_kern {
1272 	struct sock	*sk;
1273 	u8		*optval;
1274 	u8		*optval_end;
1275 	s32		level;
1276 	s32		optname;
1277 	s32		optlen;
1278 	s32		retval;
1279 };
1280 
1281 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1282 
1283 struct bpf_sk_lookup_kern {
1284 	u16		family;
1285 	u16		protocol;
1286 	struct {
1287 		__be32 saddr;
1288 		__be32 daddr;
1289 	} v4;
1290 	struct {
1291 		const struct in6_addr *saddr;
1292 		const struct in6_addr *daddr;
1293 	} v6;
1294 	__be16		sport;
1295 	u16		dport;
1296 	struct sock	*selected_sk;
1297 	bool		no_reuseport;
1298 };
1299 
1300 extern struct static_key_false bpf_sk_lookup_enabled;
1301 
1302 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1303  *
1304  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1305  * SK_DROP. Their meaning is as follows:
1306  *
1307  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1308  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1309  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1310  *
1311  * This macro aggregates return values and selected sockets from
1312  * multiple BPF programs according to following rules in order:
1313  *
1314  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1315  *     macro result is SK_PASS and last ctx.selected_sk is used.
1316  *  2. If any program returned SK_DROP return value,
1317  *     macro result is SK_DROP.
1318  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1319  *
1320  * Caller must ensure that the prog array is non-NULL, and that the
1321  * array as well as the programs it contains remain valid.
1322  */
1323 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1324 	({								\
1325 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1326 		struct bpf_prog_array_item *_item;			\
1327 		struct sock *_selected_sk = NULL;			\
1328 		bool _no_reuseport = false;				\
1329 		struct bpf_prog *_prog;					\
1330 		bool _all_pass = true;					\
1331 		u32 _ret;						\
1332 									\
1333 		migrate_disable();					\
1334 		_item = &(array)->items[0];				\
1335 		while ((_prog = READ_ONCE(_item->prog))) {		\
1336 			/* restore most recent selection */		\
1337 			_ctx->selected_sk = _selected_sk;		\
1338 			_ctx->no_reuseport = _no_reuseport;		\
1339 									\
1340 			_ret = func(_prog, _ctx);			\
1341 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1342 				/* remember last non-NULL socket */	\
1343 				_selected_sk = _ctx->selected_sk;	\
1344 				_no_reuseport = _ctx->no_reuseport;	\
1345 			} else if (_ret == SK_DROP && _all_pass) {	\
1346 				_all_pass = false;			\
1347 			}						\
1348 			_item++;					\
1349 		}							\
1350 		_ctx->selected_sk = _selected_sk;			\
1351 		_ctx->no_reuseport = _no_reuseport;			\
1352 		migrate_enable();					\
1353 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1354 	 })
1355 
1356 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1357 					const __be32 saddr, const __be16 sport,
1358 					const __be32 daddr, const u16 dport,
1359 					struct sock **psk)
1360 {
1361 	struct bpf_prog_array *run_array;
1362 	struct sock *selected_sk = NULL;
1363 	bool no_reuseport = false;
1364 
1365 	rcu_read_lock();
1366 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1367 	if (run_array) {
1368 		struct bpf_sk_lookup_kern ctx = {
1369 			.family		= AF_INET,
1370 			.protocol	= protocol,
1371 			.v4.saddr	= saddr,
1372 			.v4.daddr	= daddr,
1373 			.sport		= sport,
1374 			.dport		= dport,
1375 		};
1376 		u32 act;
1377 
1378 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1379 		if (act == SK_PASS) {
1380 			selected_sk = ctx.selected_sk;
1381 			no_reuseport = ctx.no_reuseport;
1382 		} else {
1383 			selected_sk = ERR_PTR(-ECONNREFUSED);
1384 		}
1385 	}
1386 	rcu_read_unlock();
1387 	*psk = selected_sk;
1388 	return no_reuseport;
1389 }
1390 
1391 #if IS_ENABLED(CONFIG_IPV6)
1392 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1393 					const struct in6_addr *saddr,
1394 					const __be16 sport,
1395 					const struct in6_addr *daddr,
1396 					const u16 dport,
1397 					struct sock **psk)
1398 {
1399 	struct bpf_prog_array *run_array;
1400 	struct sock *selected_sk = NULL;
1401 	bool no_reuseport = false;
1402 
1403 	rcu_read_lock();
1404 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1405 	if (run_array) {
1406 		struct bpf_sk_lookup_kern ctx = {
1407 			.family		= AF_INET6,
1408 			.protocol	= protocol,
1409 			.v6.saddr	= saddr,
1410 			.v6.daddr	= daddr,
1411 			.sport		= sport,
1412 			.dport		= dport,
1413 		};
1414 		u32 act;
1415 
1416 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1417 		if (act == SK_PASS) {
1418 			selected_sk = ctx.selected_sk;
1419 			no_reuseport = ctx.no_reuseport;
1420 		} else {
1421 			selected_sk = ERR_PTR(-ECONNREFUSED);
1422 		}
1423 	}
1424 	rcu_read_unlock();
1425 	*psk = selected_sk;
1426 	return no_reuseport;
1427 }
1428 #endif /* IS_ENABLED(CONFIG_IPV6) */
1429 
1430 #endif /* __LINUX_FILTER_H__ */
1431