xref: /linux-6.15/include/linux/filter.h (revision 4e485d06)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 
24 #include <net/sch_generic.h>
25 
26 #include <uapi/linux/filter.h>
27 #include <uapi/linux/bpf.h>
28 
29 struct sk_buff;
30 struct sock;
31 struct seccomp_data;
32 struct bpf_prog_aux;
33 struct xdp_rxq_info;
34 struct xdp_buff;
35 
36 /* ArgX, context and stack frame pointer register positions. Note,
37  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
38  * calls in BPF_CALL instruction.
39  */
40 #define BPF_REG_ARG1	BPF_REG_1
41 #define BPF_REG_ARG2	BPF_REG_2
42 #define BPF_REG_ARG3	BPF_REG_3
43 #define BPF_REG_ARG4	BPF_REG_4
44 #define BPF_REG_ARG5	BPF_REG_5
45 #define BPF_REG_CTX	BPF_REG_6
46 #define BPF_REG_FP	BPF_REG_10
47 
48 /* Additional register mappings for converted user programs. */
49 #define BPF_REG_A	BPF_REG_0
50 #define BPF_REG_X	BPF_REG_7
51 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
52 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
53 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
54 
55 /* Kernel hidden auxiliary/helper register for hardening step.
56  * Only used by eBPF JITs. It's nothing more than a temporary
57  * register that JITs use internally, only that here it's part
58  * of eBPF instructions that have been rewritten for blinding
59  * constants. See JIT pre-step in bpf_jit_blind_constants().
60  */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_JIT_REG		(MAX_BPF_REG + 1)
63 
64 /* unused opcode to mark special call to bpf_tail_call() helper */
65 #define BPF_TAIL_CALL	0xf0
66 
67 /* unused opcode to mark call to interpreter with arguments */
68 #define BPF_CALL_ARGS	0xe0
69 
70 /* As per nm, we expose JITed images as text (code) section for
71  * kallsyms. That way, tools like perf can find it to match
72  * addresses.
73  */
74 #define BPF_SYM_ELF_TYPE	't'
75 
76 /* BPF program can access up to 512 bytes of stack space. */
77 #define MAX_BPF_STACK	512
78 
79 /* Helper macros for filter block array initializers. */
80 
81 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
82 
83 #define BPF_ALU64_REG(OP, DST, SRC)				\
84 	((struct bpf_insn) {					\
85 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
86 		.dst_reg = DST,					\
87 		.src_reg = SRC,					\
88 		.off   = 0,					\
89 		.imm   = 0 })
90 
91 #define BPF_ALU32_REG(OP, DST, SRC)				\
92 	((struct bpf_insn) {					\
93 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
94 		.dst_reg = DST,					\
95 		.src_reg = SRC,					\
96 		.off   = 0,					\
97 		.imm   = 0 })
98 
99 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
100 
101 #define BPF_ALU64_IMM(OP, DST, IMM)				\
102 	((struct bpf_insn) {					\
103 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
104 		.dst_reg = DST,					\
105 		.src_reg = 0,					\
106 		.off   = 0,					\
107 		.imm   = IMM })
108 
109 #define BPF_ALU32_IMM(OP, DST, IMM)				\
110 	((struct bpf_insn) {					\
111 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
112 		.dst_reg = DST,					\
113 		.src_reg = 0,					\
114 		.off   = 0,					\
115 		.imm   = IMM })
116 
117 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
118 
119 #define BPF_ENDIAN(TYPE, DST, LEN)				\
120 	((struct bpf_insn) {					\
121 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
122 		.dst_reg = DST,					\
123 		.src_reg = 0,					\
124 		.off   = 0,					\
125 		.imm   = LEN })
126 
127 /* Short form of mov, dst_reg = src_reg */
128 
129 #define BPF_MOV64_REG(DST, SRC)					\
130 	((struct bpf_insn) {					\
131 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
132 		.dst_reg = DST,					\
133 		.src_reg = SRC,					\
134 		.off   = 0,					\
135 		.imm   = 0 })
136 
137 #define BPF_MOV32_REG(DST, SRC)					\
138 	((struct bpf_insn) {					\
139 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
140 		.dst_reg = DST,					\
141 		.src_reg = SRC,					\
142 		.off   = 0,					\
143 		.imm   = 0 })
144 
145 /* Short form of mov, dst_reg = imm32 */
146 
147 #define BPF_MOV64_IMM(DST, IMM)					\
148 	((struct bpf_insn) {					\
149 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
150 		.dst_reg = DST,					\
151 		.src_reg = 0,					\
152 		.off   = 0,					\
153 		.imm   = IMM })
154 
155 #define BPF_MOV32_IMM(DST, IMM)					\
156 	((struct bpf_insn) {					\
157 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
158 		.dst_reg = DST,					\
159 		.src_reg = 0,					\
160 		.off   = 0,					\
161 		.imm   = IMM })
162 
163 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
164 #define BPF_LD_IMM64(DST, IMM)					\
165 	BPF_LD_IMM64_RAW(DST, 0, IMM)
166 
167 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
168 	((struct bpf_insn) {					\
169 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
170 		.dst_reg = DST,					\
171 		.src_reg = SRC,					\
172 		.off   = 0,					\
173 		.imm   = (__u32) (IMM) }),			\
174 	((struct bpf_insn) {					\
175 		.code  = 0, /* zero is reserved opcode */	\
176 		.dst_reg = 0,					\
177 		.src_reg = 0,					\
178 		.off   = 0,					\
179 		.imm   = ((__u64) (IMM)) >> 32 })
180 
181 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
182 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
183 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
184 
185 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
186 
187 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
188 	((struct bpf_insn) {					\
189 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
190 		.dst_reg = DST,					\
191 		.src_reg = SRC,					\
192 		.off   = 0,					\
193 		.imm   = IMM })
194 
195 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
196 	((struct bpf_insn) {					\
197 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
198 		.dst_reg = DST,					\
199 		.src_reg = SRC,					\
200 		.off   = 0,					\
201 		.imm   = IMM })
202 
203 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
204 
205 #define BPF_LD_ABS(SIZE, IMM)					\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
208 		.dst_reg = 0,					\
209 		.src_reg = 0,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
214 
215 #define BPF_LD_IND(SIZE, SRC, IMM)				\
216 	((struct bpf_insn) {					\
217 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
218 		.dst_reg = 0,					\
219 		.src_reg = SRC,					\
220 		.off   = 0,					\
221 		.imm   = IMM })
222 
223 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
224 
225 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
226 	((struct bpf_insn) {					\
227 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
228 		.dst_reg = DST,					\
229 		.src_reg = SRC,					\
230 		.off   = OFF,					\
231 		.imm   = 0 })
232 
233 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
234 
235 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
236 	((struct bpf_insn) {					\
237 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
238 		.dst_reg = DST,					\
239 		.src_reg = SRC,					\
240 		.off   = OFF,					\
241 		.imm   = 0 })
242 
243 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
244 
245 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
246 	((struct bpf_insn) {					\
247 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
248 		.dst_reg = DST,					\
249 		.src_reg = SRC,					\
250 		.off   = OFF,					\
251 		.imm   = 0 })
252 
253 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
254 
255 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
256 	((struct bpf_insn) {					\
257 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
258 		.dst_reg = DST,					\
259 		.src_reg = 0,					\
260 		.off   = OFF,					\
261 		.imm   = IMM })
262 
263 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
264 
265 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
266 	((struct bpf_insn) {					\
267 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
268 		.dst_reg = DST,					\
269 		.src_reg = SRC,					\
270 		.off   = OFF,					\
271 		.imm   = 0 })
272 
273 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
274 
275 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
276 	((struct bpf_insn) {					\
277 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
278 		.dst_reg = DST,					\
279 		.src_reg = 0,					\
280 		.off   = OFF,					\
281 		.imm   = IMM })
282 
283 /* Unconditional jumps, goto pc + off16 */
284 
285 #define BPF_JMP_A(OFF)						\
286 	((struct bpf_insn) {					\
287 		.code  = BPF_JMP | BPF_JA,			\
288 		.dst_reg = 0,					\
289 		.src_reg = 0,					\
290 		.off   = OFF,					\
291 		.imm   = 0 })
292 
293 /* Relative call */
294 
295 #define BPF_CALL_REL(TGT)					\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_JMP | BPF_CALL,			\
298 		.dst_reg = 0,					\
299 		.src_reg = BPF_PSEUDO_CALL,			\
300 		.off   = 0,					\
301 		.imm   = TGT })
302 
303 /* Function call */
304 
305 #define BPF_CAST_CALL(x)					\
306 		((u64 (*)(u64, u64, u64, u64, u64))(x))
307 
308 #define BPF_EMIT_CALL(FUNC)					\
309 	((struct bpf_insn) {					\
310 		.code  = BPF_JMP | BPF_CALL,			\
311 		.dst_reg = 0,					\
312 		.src_reg = 0,					\
313 		.off   = 0,					\
314 		.imm   = ((FUNC) - __bpf_call_base) })
315 
316 /* Raw code statement block */
317 
318 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
319 	((struct bpf_insn) {					\
320 		.code  = CODE,					\
321 		.dst_reg = DST,					\
322 		.src_reg = SRC,					\
323 		.off   = OFF,					\
324 		.imm   = IMM })
325 
326 /* Program exit */
327 
328 #define BPF_EXIT_INSN()						\
329 	((struct bpf_insn) {					\
330 		.code  = BPF_JMP | BPF_EXIT,			\
331 		.dst_reg = 0,					\
332 		.src_reg = 0,					\
333 		.off   = 0,					\
334 		.imm   = 0 })
335 
336 /* Internal classic blocks for direct assignment */
337 
338 #define __BPF_STMT(CODE, K)					\
339 	((struct sock_filter) BPF_STMT(CODE, K))
340 
341 #define __BPF_JUMP(CODE, K, JT, JF)				\
342 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
343 
344 #define bytes_to_bpf_size(bytes)				\
345 ({								\
346 	int bpf_size = -EINVAL;					\
347 								\
348 	if (bytes == sizeof(u8))				\
349 		bpf_size = BPF_B;				\
350 	else if (bytes == sizeof(u16))				\
351 		bpf_size = BPF_H;				\
352 	else if (bytes == sizeof(u32))				\
353 		bpf_size = BPF_W;				\
354 	else if (bytes == sizeof(u64))				\
355 		bpf_size = BPF_DW;				\
356 								\
357 	bpf_size;						\
358 })
359 
360 #define bpf_size_to_bytes(bpf_size)				\
361 ({								\
362 	int bytes = -EINVAL;					\
363 								\
364 	if (bpf_size == BPF_B)					\
365 		bytes = sizeof(u8);				\
366 	else if (bpf_size == BPF_H)				\
367 		bytes = sizeof(u16);				\
368 	else if (bpf_size == BPF_W)				\
369 		bytes = sizeof(u32);				\
370 	else if (bpf_size == BPF_DW)				\
371 		bytes = sizeof(u64);				\
372 								\
373 	bytes;							\
374 })
375 
376 #define BPF_SIZEOF(type)					\
377 	({							\
378 		const int __size = bytes_to_bpf_size(sizeof(type)); \
379 		BUILD_BUG_ON(__size < 0);			\
380 		__size;						\
381 	})
382 
383 #define BPF_FIELD_SIZEOF(type, field)				\
384 	({							\
385 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
386 		BUILD_BUG_ON(__size < 0);			\
387 		__size;						\
388 	})
389 
390 #define BPF_LDST_BYTES(insn)					\
391 	({							\
392 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
393 		WARN_ON(__size < 0);				\
394 		__size;						\
395 	})
396 
397 #define __BPF_MAP_0(m, v, ...) v
398 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
399 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
400 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
401 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
402 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
403 
404 #define __BPF_REG_0(...) __BPF_PAD(5)
405 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
406 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
407 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
408 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
409 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
410 
411 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
412 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
413 
414 #define __BPF_CAST(t, a)						       \
415 	(__force t)							       \
416 	(__force							       \
417 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
418 				      (unsigned long)0, (t)0))) a
419 #define __BPF_V void
420 #define __BPF_N
421 
422 #define __BPF_DECL_ARGS(t, a) t   a
423 #define __BPF_DECL_REGS(t, a) u64 a
424 
425 #define __BPF_PAD(n)							       \
426 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
427 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
428 
429 #define BPF_CALL_x(x, name, ...)					       \
430 	static __always_inline						       \
431 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
432 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
433 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
434 	{								       \
435 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
436 	}								       \
437 	static __always_inline						       \
438 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
439 
440 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
441 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
442 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
443 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
444 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
445 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
446 
447 #define bpf_ctx_range(TYPE, MEMBER)						\
448 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
449 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
450 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
451 
452 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
453 	({									\
454 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
455 		*(PTR_SIZE) = (SIZE);						\
456 		offsetof(TYPE, MEMBER);						\
457 	})
458 
459 #ifdef CONFIG_COMPAT
460 /* A struct sock_filter is architecture independent. */
461 struct compat_sock_fprog {
462 	u16		len;
463 	compat_uptr_t	filter;	/* struct sock_filter * */
464 };
465 #endif
466 
467 struct sock_fprog_kern {
468 	u16			len;
469 	struct sock_filter	*filter;
470 };
471 
472 struct bpf_binary_header {
473 	u16 pages;
474 	u16 locked:1;
475 
476 	/* Some arches need word alignment for their instructions */
477 	u8 image[] __aligned(4);
478 };
479 
480 struct bpf_prog {
481 	u16			pages;		/* Number of allocated pages */
482 	u16			jited:1,	/* Is our filter JIT'ed? */
483 				jit_requested:1,/* archs need to JIT the prog */
484 				locked:1,	/* Program image locked? */
485 				gpl_compatible:1, /* Is filter GPL compatible? */
486 				cb_access:1,	/* Is control block accessed? */
487 				dst_needed:1,	/* Do we need dst entry? */
488 				blinded:1,	/* Was blinded */
489 				is_func:1,	/* program is a bpf function */
490 				kprobe_override:1, /* Do we override a kprobe? */
491 				has_callchain_buf:1; /* callchain buffer allocated? */
492 	enum bpf_prog_type	type;		/* Type of BPF program */
493 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
494 	u32			len;		/* Number of filter blocks */
495 	u32			jited_len;	/* Size of jited insns in bytes */
496 	u8			tag[BPF_TAG_SIZE];
497 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
498 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
499 	unsigned int		(*bpf_func)(const void *ctx,
500 					    const struct bpf_insn *insn);
501 	/* Instructions for interpreter */
502 	union {
503 		struct sock_filter	insns[0];
504 		struct bpf_insn		insnsi[0];
505 	};
506 };
507 
508 struct sk_filter {
509 	refcount_t	refcnt;
510 	struct rcu_head	rcu;
511 	struct bpf_prog	*prog;
512 };
513 
514 #define BPF_PROG_RUN(filter, ctx)  (*(filter)->bpf_func)(ctx, (filter)->insnsi)
515 
516 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
517 
518 struct bpf_skb_data_end {
519 	struct qdisc_skb_cb qdisc_cb;
520 	void *data_meta;
521 	void *data_end;
522 };
523 
524 struct sk_msg_buff {
525 	void *data;
526 	void *data_end;
527 	__u32 apply_bytes;
528 	__u32 cork_bytes;
529 	int sg_copybreak;
530 	int sg_start;
531 	int sg_curr;
532 	int sg_end;
533 	struct scatterlist sg_data[MAX_SKB_FRAGS];
534 	bool sg_copy[MAX_SKB_FRAGS];
535 	__u32 flags;
536 	struct sock *sk_redir;
537 	struct sock *sk;
538 	struct sk_buff *skb;
539 	struct list_head list;
540 };
541 
542 /* Compute the linear packet data range [data, data_end) which
543  * will be accessed by various program types (cls_bpf, act_bpf,
544  * lwt, ...). Subsystems allowing direct data access must (!)
545  * ensure that cb[] area can be written to when BPF program is
546  * invoked (otherwise cb[] save/restore is necessary).
547  */
548 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
549 {
550 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
551 
552 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
553 	cb->data_meta = skb->data - skb_metadata_len(skb);
554 	cb->data_end  = skb->data + skb_headlen(skb);
555 }
556 
557 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
558 {
559 	/* eBPF programs may read/write skb->cb[] area to transfer meta
560 	 * data between tail calls. Since this also needs to work with
561 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
562 	 *
563 	 * In some socket filter cases, the cb unfortunately needs to be
564 	 * saved/restored so that protocol specific skb->cb[] data won't
565 	 * be lost. In any case, due to unpriviledged eBPF programs
566 	 * attached to sockets, we need to clear the bpf_skb_cb() area
567 	 * to not leak previous contents to user space.
568 	 */
569 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
570 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
571 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
572 
573 	return qdisc_skb_cb(skb)->data;
574 }
575 
576 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
577 				       struct sk_buff *skb)
578 {
579 	u8 *cb_data = bpf_skb_cb(skb);
580 	u8 cb_saved[BPF_SKB_CB_LEN];
581 	u32 res;
582 
583 	if (unlikely(prog->cb_access)) {
584 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
585 		memset(cb_data, 0, sizeof(cb_saved));
586 	}
587 
588 	res = BPF_PROG_RUN(prog, skb);
589 
590 	if (unlikely(prog->cb_access))
591 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
592 
593 	return res;
594 }
595 
596 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
597 					struct sk_buff *skb)
598 {
599 	u8 *cb_data = bpf_skb_cb(skb);
600 
601 	if (unlikely(prog->cb_access))
602 		memset(cb_data, 0, BPF_SKB_CB_LEN);
603 
604 	return BPF_PROG_RUN(prog, skb);
605 }
606 
607 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
608 					    struct xdp_buff *xdp)
609 {
610 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
611 	 * can be released while still running, or map elements could be
612 	 * freed early while still having concurrent users. XDP fastpath
613 	 * already takes rcu_read_lock() when fetching the program, so
614 	 * it's not necessary here anymore.
615 	 */
616 	return BPF_PROG_RUN(prog, xdp);
617 }
618 
619 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
620 {
621 	return prog->len * sizeof(struct bpf_insn);
622 }
623 
624 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
625 {
626 	return round_up(bpf_prog_insn_size(prog) +
627 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
628 }
629 
630 static inline unsigned int bpf_prog_size(unsigned int proglen)
631 {
632 	return max(sizeof(struct bpf_prog),
633 		   offsetof(struct bpf_prog, insns[proglen]));
634 }
635 
636 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
637 {
638 	/* When classic BPF programs have been loaded and the arch
639 	 * does not have a classic BPF JIT (anymore), they have been
640 	 * converted via bpf_migrate_filter() to eBPF and thus always
641 	 * have an unspec program type.
642 	 */
643 	return prog->type == BPF_PROG_TYPE_UNSPEC;
644 }
645 
646 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
647 {
648 	const u32 size_machine = sizeof(unsigned long);
649 
650 	if (size > size_machine && size % size_machine == 0)
651 		size = size_machine;
652 
653 	return size;
654 }
655 
656 static inline bool bpf_ctx_narrow_align_ok(u32 off, u32 size_access,
657 					   u32 size_default)
658 {
659 	size_default = bpf_ctx_off_adjust_machine(size_default);
660 	size_access  = bpf_ctx_off_adjust_machine(size_access);
661 
662 #ifdef __LITTLE_ENDIAN
663 	return (off & (size_default - 1)) == 0;
664 #else
665 	return (off & (size_default - 1)) + size_access == size_default;
666 #endif
667 }
668 
669 static inline bool
670 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
671 {
672 	return bpf_ctx_narrow_align_ok(off, size, size_default) &&
673 	       size <= size_default && (size & (size - 1)) == 0;
674 }
675 
676 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
677 
678 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
679 {
680 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
681 	fp->locked = 1;
682 	if (set_memory_ro((unsigned long)fp, fp->pages))
683 		fp->locked = 0;
684 #endif
685 }
686 
687 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
688 {
689 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
690 	if (fp->locked) {
691 		WARN_ON_ONCE(set_memory_rw((unsigned long)fp, fp->pages));
692 		/* In case set_memory_rw() fails, we want to be the first
693 		 * to crash here instead of some random place later on.
694 		 */
695 		fp->locked = 0;
696 	}
697 #endif
698 }
699 
700 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
701 {
702 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
703 	hdr->locked = 1;
704 	if (set_memory_ro((unsigned long)hdr, hdr->pages))
705 		hdr->locked = 0;
706 #endif
707 }
708 
709 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
710 {
711 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
712 	if (hdr->locked) {
713 		WARN_ON_ONCE(set_memory_rw((unsigned long)hdr, hdr->pages));
714 		/* In case set_memory_rw() fails, we want to be the first
715 		 * to crash here instead of some random place later on.
716 		 */
717 		hdr->locked = 0;
718 	}
719 #endif
720 }
721 
722 static inline struct bpf_binary_header *
723 bpf_jit_binary_hdr(const struct bpf_prog *fp)
724 {
725 	unsigned long real_start = (unsigned long)fp->bpf_func;
726 	unsigned long addr = real_start & PAGE_MASK;
727 
728 	return (void *)addr;
729 }
730 
731 #ifdef CONFIG_ARCH_HAS_SET_MEMORY
732 static inline int bpf_prog_check_pages_ro_single(const struct bpf_prog *fp)
733 {
734 	if (!fp->locked)
735 		return -ENOLCK;
736 	if (fp->jited) {
737 		const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
738 
739 		if (!hdr->locked)
740 			return -ENOLCK;
741 	}
742 
743 	return 0;
744 }
745 #endif
746 
747 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
748 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
749 {
750 	return sk_filter_trim_cap(sk, skb, 1);
751 }
752 
753 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
754 void bpf_prog_free(struct bpf_prog *fp);
755 
756 bool bpf_opcode_in_insntable(u8 code);
757 
758 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
759 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
760 				  gfp_t gfp_extra_flags);
761 void __bpf_prog_free(struct bpf_prog *fp);
762 
763 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
764 {
765 	bpf_prog_unlock_ro(fp);
766 	__bpf_prog_free(fp);
767 }
768 
769 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
770 				       unsigned int flen);
771 
772 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
773 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
774 			      bpf_aux_classic_check_t trans, bool save_orig);
775 void bpf_prog_destroy(struct bpf_prog *fp);
776 
777 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
778 int sk_attach_bpf(u32 ufd, struct sock *sk);
779 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
780 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
781 int sk_detach_filter(struct sock *sk);
782 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
783 		  unsigned int len);
784 
785 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
786 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
787 
788 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
789 #define __bpf_call_base_args \
790 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
791 	 __bpf_call_base)
792 
793 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
794 void bpf_jit_compile(struct bpf_prog *prog);
795 bool bpf_helper_changes_pkt_data(void *func);
796 
797 static inline bool bpf_dump_raw_ok(void)
798 {
799 	/* Reconstruction of call-sites is dependent on kallsyms,
800 	 * thus make dump the same restriction.
801 	 */
802 	return kallsyms_show_value() == 1;
803 }
804 
805 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
806 				       const struct bpf_insn *patch, u32 len);
807 
808 static inline int __xdp_generic_ok_fwd_dev(struct sk_buff *skb,
809 					   struct net_device *fwd)
810 {
811 	unsigned int len;
812 
813 	if (unlikely(!(fwd->flags & IFF_UP)))
814 		return -ENETDOWN;
815 
816 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
817 	if (skb->len > len)
818 		return -EMSGSIZE;
819 
820 	return 0;
821 }
822 
823 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
824  * same cpu context. Further for best results no more than a single map
825  * for the do_redirect/do_flush pair should be used. This limitation is
826  * because we only track one map and force a flush when the map changes.
827  * This does not appear to be a real limitation for existing software.
828  */
829 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
830 			    struct xdp_buff *xdp, struct bpf_prog *prog);
831 int xdp_do_redirect(struct net_device *dev,
832 		    struct xdp_buff *xdp,
833 		    struct bpf_prog *prog);
834 void xdp_do_flush_map(void);
835 
836 void bpf_warn_invalid_xdp_action(u32 act);
837 
838 struct sock *do_sk_redirect_map(struct sk_buff *skb);
839 struct sock *do_msg_redirect_map(struct sk_msg_buff *md);
840 
841 #ifdef CONFIG_BPF_JIT
842 extern int bpf_jit_enable;
843 extern int bpf_jit_harden;
844 extern int bpf_jit_kallsyms;
845 
846 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
847 
848 struct bpf_binary_header *
849 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
850 		     unsigned int alignment,
851 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
852 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
853 
854 void bpf_jit_free(struct bpf_prog *fp);
855 
856 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
857 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
858 
859 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
860 				u32 pass, void *image)
861 {
862 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
863 	       proglen, pass, image, current->comm, task_pid_nr(current));
864 
865 	if (image)
866 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
867 			       16, 1, image, proglen, false);
868 }
869 
870 static inline bool bpf_jit_is_ebpf(void)
871 {
872 # ifdef CONFIG_HAVE_EBPF_JIT
873 	return true;
874 # else
875 	return false;
876 # endif
877 }
878 
879 static inline bool ebpf_jit_enabled(void)
880 {
881 	return bpf_jit_enable && bpf_jit_is_ebpf();
882 }
883 
884 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
885 {
886 	return fp->jited && bpf_jit_is_ebpf();
887 }
888 
889 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
890 {
891 	/* These are the prerequisites, should someone ever have the
892 	 * idea to call blinding outside of them, we make sure to
893 	 * bail out.
894 	 */
895 	if (!bpf_jit_is_ebpf())
896 		return false;
897 	if (!prog->jit_requested)
898 		return false;
899 	if (!bpf_jit_harden)
900 		return false;
901 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
902 		return false;
903 
904 	return true;
905 }
906 
907 static inline bool bpf_jit_kallsyms_enabled(void)
908 {
909 	/* There are a couple of corner cases where kallsyms should
910 	 * not be enabled f.e. on hardening.
911 	 */
912 	if (bpf_jit_harden)
913 		return false;
914 	if (!bpf_jit_kallsyms)
915 		return false;
916 	if (bpf_jit_kallsyms == 1)
917 		return true;
918 
919 	return false;
920 }
921 
922 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
923 				 unsigned long *off, char *sym);
924 bool is_bpf_text_address(unsigned long addr);
925 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
926 		    char *sym);
927 
928 static inline const char *
929 bpf_address_lookup(unsigned long addr, unsigned long *size,
930 		   unsigned long *off, char **modname, char *sym)
931 {
932 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
933 
934 	if (ret && modname)
935 		*modname = NULL;
936 	return ret;
937 }
938 
939 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
940 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
941 
942 #else /* CONFIG_BPF_JIT */
943 
944 static inline bool ebpf_jit_enabled(void)
945 {
946 	return false;
947 }
948 
949 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
950 {
951 	return false;
952 }
953 
954 static inline void bpf_jit_free(struct bpf_prog *fp)
955 {
956 	bpf_prog_unlock_free(fp);
957 }
958 
959 static inline bool bpf_jit_kallsyms_enabled(void)
960 {
961 	return false;
962 }
963 
964 static inline const char *
965 __bpf_address_lookup(unsigned long addr, unsigned long *size,
966 		     unsigned long *off, char *sym)
967 {
968 	return NULL;
969 }
970 
971 static inline bool is_bpf_text_address(unsigned long addr)
972 {
973 	return false;
974 }
975 
976 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
977 				  char *type, char *sym)
978 {
979 	return -ERANGE;
980 }
981 
982 static inline const char *
983 bpf_address_lookup(unsigned long addr, unsigned long *size,
984 		   unsigned long *off, char **modname, char *sym)
985 {
986 	return NULL;
987 }
988 
989 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
990 {
991 }
992 
993 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
994 {
995 }
996 #endif /* CONFIG_BPF_JIT */
997 
998 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
999 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1000 
1001 #define BPF_ANC		BIT(15)
1002 
1003 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1004 {
1005 	switch (first->code) {
1006 	case BPF_RET | BPF_K:
1007 	case BPF_LD | BPF_W | BPF_LEN:
1008 		return false;
1009 
1010 	case BPF_LD | BPF_W | BPF_ABS:
1011 	case BPF_LD | BPF_H | BPF_ABS:
1012 	case BPF_LD | BPF_B | BPF_ABS:
1013 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1014 			return true;
1015 		return false;
1016 
1017 	default:
1018 		return true;
1019 	}
1020 }
1021 
1022 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1023 {
1024 	BUG_ON(ftest->code & BPF_ANC);
1025 
1026 	switch (ftest->code) {
1027 	case BPF_LD | BPF_W | BPF_ABS:
1028 	case BPF_LD | BPF_H | BPF_ABS:
1029 	case BPF_LD | BPF_B | BPF_ABS:
1030 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1031 				return BPF_ANC | SKF_AD_##CODE
1032 		switch (ftest->k) {
1033 		BPF_ANCILLARY(PROTOCOL);
1034 		BPF_ANCILLARY(PKTTYPE);
1035 		BPF_ANCILLARY(IFINDEX);
1036 		BPF_ANCILLARY(NLATTR);
1037 		BPF_ANCILLARY(NLATTR_NEST);
1038 		BPF_ANCILLARY(MARK);
1039 		BPF_ANCILLARY(QUEUE);
1040 		BPF_ANCILLARY(HATYPE);
1041 		BPF_ANCILLARY(RXHASH);
1042 		BPF_ANCILLARY(CPU);
1043 		BPF_ANCILLARY(ALU_XOR_X);
1044 		BPF_ANCILLARY(VLAN_TAG);
1045 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1046 		BPF_ANCILLARY(PAY_OFFSET);
1047 		BPF_ANCILLARY(RANDOM);
1048 		BPF_ANCILLARY(VLAN_TPID);
1049 		}
1050 		/* Fallthrough. */
1051 	default:
1052 		return ftest->code;
1053 	}
1054 }
1055 
1056 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1057 					   int k, unsigned int size);
1058 
1059 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1060 				     unsigned int size, void *buffer)
1061 {
1062 	if (k >= 0)
1063 		return skb_header_pointer(skb, k, size, buffer);
1064 
1065 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1066 }
1067 
1068 static inline int bpf_tell_extensions(void)
1069 {
1070 	return SKF_AD_MAX;
1071 }
1072 
1073 struct bpf_sock_addr_kern {
1074 	struct sock *sk;
1075 	struct sockaddr *uaddr;
1076 	/* Temporary "register" to make indirect stores to nested structures
1077 	 * defined above. We need three registers to make such a store, but
1078 	 * only two (src and dst) are available at convert_ctx_access time
1079 	 */
1080 	u64 tmp_reg;
1081 	void *t_ctx;	/* Attach type specific context. */
1082 };
1083 
1084 struct bpf_sock_ops_kern {
1085 	struct	sock *sk;
1086 	u32	op;
1087 	union {
1088 		u32 args[4];
1089 		u32 reply;
1090 		u32 replylong[4];
1091 	};
1092 	u32	is_fullsock;
1093 	u64	temp;			/* temp and everything after is not
1094 					 * initialized to 0 before calling
1095 					 * the BPF program. New fields that
1096 					 * should be initialized to 0 should
1097 					 * be inserted before temp.
1098 					 * temp is scratch storage used by
1099 					 * sock_ops_convert_ctx_access
1100 					 * as temporary storage of a register.
1101 					 */
1102 };
1103 
1104 #endif /* __LINUX_FILTER_H__ */
1105