1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/bpf.h> 10 #include <linux/refcount.h> 11 #include <linux/compat.h> 12 #include <linux/skbuff.h> 13 #include <linux/linkage.h> 14 #include <linux/printk.h> 15 #include <linux/workqueue.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/capability.h> 19 #include <linux/set_memory.h> 20 #include <linux/kallsyms.h> 21 #include <linux/if_vlan.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sockptr.h> 24 #include <crypto/sha1.h> 25 #include <linux/u64_stats_sync.h> 26 27 #include <net/sch_generic.h> 28 29 #include <asm/byteorder.h> 30 #include <uapi/linux/filter.h> 31 32 struct sk_buff; 33 struct sock; 34 struct seccomp_data; 35 struct bpf_prog_aux; 36 struct xdp_rxq_info; 37 struct xdp_buff; 38 struct sock_reuseport; 39 struct ctl_table; 40 struct ctl_table_header; 41 42 /* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46 #define BPF_REG_ARG1 BPF_REG_1 47 #define BPF_REG_ARG2 BPF_REG_2 48 #define BPF_REG_ARG3 BPF_REG_3 49 #define BPF_REG_ARG4 BPF_REG_4 50 #define BPF_REG_ARG5 BPF_REG_5 51 #define BPF_REG_CTX BPF_REG_6 52 #define BPF_REG_FP BPF_REG_10 53 54 /* Additional register mappings for converted user programs. */ 55 #define BPF_REG_A BPF_REG_0 56 #define BPF_REG_X BPF_REG_7 57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61 /* Kernel hidden auxiliary/helper register. */ 62 #define BPF_REG_AX MAX_BPF_REG 63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66 /* unused opcode to mark special call to bpf_tail_call() helper */ 67 #define BPF_TAIL_CALL 0xf0 68 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 70 #define BPF_PROBE_MEM 0x20 71 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73 #define BPF_PROBE_MEMSX 0x40 74 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */ 76 #define BPF_PROBE_MEM32 0xa0 77 78 /* unused opcode to mark special atomic instruction */ 79 #define BPF_PROBE_ATOMIC 0xe0 80 81 /* unused opcode to mark call to interpreter with arguments */ 82 #define BPF_CALL_ARGS 0xe0 83 84 /* unused opcode to mark speculation barrier for mitigating 85 * Speculative Store Bypass 86 */ 87 #define BPF_NOSPEC 0xc0 88 89 /* As per nm, we expose JITed images as text (code) section for 90 * kallsyms. That way, tools like perf can find it to match 91 * addresses. 92 */ 93 #define BPF_SYM_ELF_TYPE 't' 94 95 /* BPF program can access up to 512 bytes of stack space. */ 96 #define MAX_BPF_STACK 512 97 98 /* Helper macros for filter block array initializers. */ 99 100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 101 102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 105 .dst_reg = DST, \ 106 .src_reg = SRC, \ 107 .off = OFF, \ 108 .imm = 0 }) 109 110 #define BPF_ALU64_REG(OP, DST, SRC) \ 111 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 112 113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 116 .dst_reg = DST, \ 117 .src_reg = SRC, \ 118 .off = OFF, \ 119 .imm = 0 }) 120 121 #define BPF_ALU32_REG(OP, DST, SRC) \ 122 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 123 124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 125 126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 127 ((struct bpf_insn) { \ 128 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 129 .dst_reg = DST, \ 130 .src_reg = 0, \ 131 .off = OFF, \ 132 .imm = IMM }) 133 #define BPF_ALU64_IMM(OP, DST, IMM) \ 134 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 135 136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 137 ((struct bpf_insn) { \ 138 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 139 .dst_reg = DST, \ 140 .src_reg = 0, \ 141 .off = OFF, \ 142 .imm = IMM }) 143 #define BPF_ALU32_IMM(OP, DST, IMM) \ 144 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 145 146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 147 148 #define BPF_ENDIAN(TYPE, DST, LEN) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = LEN }) 155 156 /* Byte Swap, bswap16/32/64 */ 157 158 #define BPF_BSWAP(DST, LEN) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 161 .dst_reg = DST, \ 162 .src_reg = 0, \ 163 .off = 0, \ 164 .imm = LEN }) 165 166 /* Short form of mov, dst_reg = src_reg */ 167 168 #define BPF_MOV64_REG(DST, SRC) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = SRC, \ 173 .off = 0, \ 174 .imm = 0 }) 175 176 #define BPF_MOV32_REG(DST, SRC) \ 177 ((struct bpf_insn) { \ 178 .code = BPF_ALU | BPF_MOV | BPF_X, \ 179 .dst_reg = DST, \ 180 .src_reg = SRC, \ 181 .off = 0, \ 182 .imm = 0 }) 183 184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs: 185 * dst_reg = src_reg + <percpu_base_off> 186 * BPF_ADDR_PERCPU is used as a special insn->off value. 187 */ 188 #define BPF_ADDR_PERCPU (-1) 189 190 #define BPF_MOV64_PERCPU_REG(DST, SRC) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = BPF_ADDR_PERCPU, \ 196 .imm = 0 }) 197 198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 199 { 200 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 201 } 202 203 /* Short form of mov, dst_reg = imm32 */ 204 205 #define BPF_MOV64_IMM(DST, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 208 .dst_reg = DST, \ 209 .src_reg = 0, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213 #define BPF_MOV32_IMM(DST, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_K, \ 216 .dst_reg = DST, \ 217 .src_reg = 0, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 222 223 #define BPF_MOVSX64_REG(DST, SRC, OFF) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 226 .dst_reg = DST, \ 227 .src_reg = SRC, \ 228 .off = OFF, \ 229 .imm = 0 }) 230 231 #define BPF_MOVSX32_REG(DST, SRC, OFF) \ 232 ((struct bpf_insn) { \ 233 .code = BPF_ALU | BPF_MOV | BPF_X, \ 234 .dst_reg = DST, \ 235 .src_reg = SRC, \ 236 .off = OFF, \ 237 .imm = 0 }) 238 239 /* Special form of mov32, used for doing explicit zero extension on dst. */ 240 #define BPF_ZEXT_REG(DST) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_ALU | BPF_MOV | BPF_X, \ 243 .dst_reg = DST, \ 244 .src_reg = DST, \ 245 .off = 0, \ 246 .imm = 1 }) 247 248 static inline bool insn_is_zext(const struct bpf_insn *insn) 249 { 250 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 251 } 252 253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 254 * to pointers in user vma. 255 */ 256 static inline bool insn_is_cast_user(const struct bpf_insn *insn) 257 { 258 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 259 insn->off == BPF_ADDR_SPACE_CAST && 260 insn->imm == 1U << 16; 261 } 262 263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 264 #define BPF_LD_IMM64(DST, IMM) \ 265 BPF_LD_IMM64_RAW(DST, 0, IMM) 266 267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 268 ((struct bpf_insn) { \ 269 .code = BPF_LD | BPF_DW | BPF_IMM, \ 270 .dst_reg = DST, \ 271 .src_reg = SRC, \ 272 .off = 0, \ 273 .imm = (__u32) (IMM) }), \ 274 ((struct bpf_insn) { \ 275 .code = 0, /* zero is reserved opcode */ \ 276 .dst_reg = 0, \ 277 .src_reg = 0, \ 278 .off = 0, \ 279 .imm = ((__u64) (IMM)) >> 32 }) 280 281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 282 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 283 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 284 285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 286 287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 288 ((struct bpf_insn) { \ 289 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 290 .dst_reg = DST, \ 291 .src_reg = SRC, \ 292 .off = 0, \ 293 .imm = IMM }) 294 295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 298 .dst_reg = DST, \ 299 .src_reg = SRC, \ 300 .off = 0, \ 301 .imm = IMM }) 302 303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 304 305 #define BPF_LD_ABS(SIZE, IMM) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 308 .dst_reg = 0, \ 309 .src_reg = 0, \ 310 .off = 0, \ 311 .imm = IMM }) 312 313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 314 315 #define BPF_LD_IND(SIZE, SRC, IMM) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 318 .dst_reg = 0, \ 319 .src_reg = SRC, \ 320 .off = 0, \ 321 .imm = IMM }) 322 323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 324 325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 334 335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 338 .dst_reg = DST, \ 339 .src_reg = SRC, \ 340 .off = OFF, \ 341 .imm = 0 }) 342 343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 344 345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 348 .dst_reg = DST, \ 349 .src_reg = SRC, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353 354 /* 355 * Atomic operations: 356 * 357 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 358 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 359 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 360 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 361 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 362 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 363 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 364 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 365 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 366 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 367 */ 368 369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 370 ((struct bpf_insn) { \ 371 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 372 .dst_reg = DST, \ 373 .src_reg = SRC, \ 374 .off = OFF, \ 375 .imm = OP }) 376 377 /* Legacy alias */ 378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 379 380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 381 382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 383 ((struct bpf_insn) { \ 384 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 385 .dst_reg = DST, \ 386 .src_reg = 0, \ 387 .off = OFF, \ 388 .imm = IMM }) 389 390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 391 392 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 393 ((struct bpf_insn) { \ 394 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 395 .dst_reg = DST, \ 396 .src_reg = SRC, \ 397 .off = OFF, \ 398 .imm = 0 }) 399 400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 401 402 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 403 ((struct bpf_insn) { \ 404 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 405 .dst_reg = DST, \ 406 .src_reg = 0, \ 407 .off = OFF, \ 408 .imm = IMM }) 409 410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 411 412 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 413 ((struct bpf_insn) { \ 414 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 415 .dst_reg = DST, \ 416 .src_reg = SRC, \ 417 .off = OFF, \ 418 .imm = 0 }) 419 420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 421 422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 423 ((struct bpf_insn) { \ 424 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 425 .dst_reg = DST, \ 426 .src_reg = 0, \ 427 .off = OFF, \ 428 .imm = IMM }) 429 430 /* Unconditional jumps, goto pc + off16 */ 431 432 #define BPF_JMP_A(OFF) \ 433 ((struct bpf_insn) { \ 434 .code = BPF_JMP | BPF_JA, \ 435 .dst_reg = 0, \ 436 .src_reg = 0, \ 437 .off = OFF, \ 438 .imm = 0 }) 439 440 /* Unconditional jumps, gotol pc + imm32 */ 441 442 #define BPF_JMP32_A(IMM) \ 443 ((struct bpf_insn) { \ 444 .code = BPF_JMP32 | BPF_JA, \ 445 .dst_reg = 0, \ 446 .src_reg = 0, \ 447 .off = 0, \ 448 .imm = IMM }) 449 450 /* Relative call */ 451 452 #define BPF_CALL_REL(TGT) \ 453 ((struct bpf_insn) { \ 454 .code = BPF_JMP | BPF_CALL, \ 455 .dst_reg = 0, \ 456 .src_reg = BPF_PSEUDO_CALL, \ 457 .off = 0, \ 458 .imm = TGT }) 459 460 /* Convert function address to BPF immediate */ 461 462 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 463 464 #define BPF_EMIT_CALL(FUNC) \ 465 ((struct bpf_insn) { \ 466 .code = BPF_JMP | BPF_CALL, \ 467 .dst_reg = 0, \ 468 .src_reg = 0, \ 469 .off = 0, \ 470 .imm = BPF_CALL_IMM(FUNC) }) 471 472 /* Kfunc call */ 473 474 #define BPF_CALL_KFUNC(OFF, IMM) \ 475 ((struct bpf_insn) { \ 476 .code = BPF_JMP | BPF_CALL, \ 477 .dst_reg = 0, \ 478 .src_reg = BPF_PSEUDO_KFUNC_CALL, \ 479 .off = OFF, \ 480 .imm = IMM }) 481 482 /* Raw code statement block */ 483 484 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 485 ((struct bpf_insn) { \ 486 .code = CODE, \ 487 .dst_reg = DST, \ 488 .src_reg = SRC, \ 489 .off = OFF, \ 490 .imm = IMM }) 491 492 /* Program exit */ 493 494 #define BPF_EXIT_INSN() \ 495 ((struct bpf_insn) { \ 496 .code = BPF_JMP | BPF_EXIT, \ 497 .dst_reg = 0, \ 498 .src_reg = 0, \ 499 .off = 0, \ 500 .imm = 0 }) 501 502 /* Speculation barrier */ 503 504 #define BPF_ST_NOSPEC() \ 505 ((struct bpf_insn) { \ 506 .code = BPF_ST | BPF_NOSPEC, \ 507 .dst_reg = 0, \ 508 .src_reg = 0, \ 509 .off = 0, \ 510 .imm = 0 }) 511 512 /* Internal classic blocks for direct assignment */ 513 514 #define __BPF_STMT(CODE, K) \ 515 ((struct sock_filter) BPF_STMT(CODE, K)) 516 517 #define __BPF_JUMP(CODE, K, JT, JF) \ 518 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 519 520 #define bytes_to_bpf_size(bytes) \ 521 ({ \ 522 int bpf_size = -EINVAL; \ 523 \ 524 if (bytes == sizeof(u8)) \ 525 bpf_size = BPF_B; \ 526 else if (bytes == sizeof(u16)) \ 527 bpf_size = BPF_H; \ 528 else if (bytes == sizeof(u32)) \ 529 bpf_size = BPF_W; \ 530 else if (bytes == sizeof(u64)) \ 531 bpf_size = BPF_DW; \ 532 \ 533 bpf_size; \ 534 }) 535 536 #define bpf_size_to_bytes(bpf_size) \ 537 ({ \ 538 int bytes = -EINVAL; \ 539 \ 540 if (bpf_size == BPF_B) \ 541 bytes = sizeof(u8); \ 542 else if (bpf_size == BPF_H) \ 543 bytes = sizeof(u16); \ 544 else if (bpf_size == BPF_W) \ 545 bytes = sizeof(u32); \ 546 else if (bpf_size == BPF_DW) \ 547 bytes = sizeof(u64); \ 548 \ 549 bytes; \ 550 }) 551 552 #define BPF_SIZEOF(type) \ 553 ({ \ 554 const int __size = bytes_to_bpf_size(sizeof(type)); \ 555 BUILD_BUG_ON(__size < 0); \ 556 __size; \ 557 }) 558 559 #define BPF_FIELD_SIZEOF(type, field) \ 560 ({ \ 561 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 562 BUILD_BUG_ON(__size < 0); \ 563 __size; \ 564 }) 565 566 #define BPF_LDST_BYTES(insn) \ 567 ({ \ 568 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 569 WARN_ON(__size < 0); \ 570 __size; \ 571 }) 572 573 #define __BPF_MAP_0(m, v, ...) v 574 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 575 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 576 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 577 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 578 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 579 580 #define __BPF_REG_0(...) __BPF_PAD(5) 581 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 582 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 583 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 584 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 585 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 586 587 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 588 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 589 590 #define __BPF_CAST(t, a) \ 591 (__force t) \ 592 (__force \ 593 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 594 (unsigned long)0, (t)0))) a 595 #define __BPF_V void 596 #define __BPF_N 597 598 #define __BPF_DECL_ARGS(t, a) t a 599 #define __BPF_DECL_REGS(t, a) u64 a 600 601 #define __BPF_PAD(n) \ 602 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 603 u64, __ur_3, u64, __ur_4, u64, __ur_5) 604 605 #define BPF_CALL_x(x, attr, name, ...) \ 606 static __always_inline \ 607 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 608 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 609 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 610 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 611 { \ 612 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 613 } \ 614 static __always_inline \ 615 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 616 617 #define __NOATTR 618 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 619 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 620 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 621 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 622 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 623 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 624 625 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 626 627 #define bpf_ctx_range(TYPE, MEMBER) \ 628 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 629 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 630 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 631 #if BITS_PER_LONG == 64 632 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 633 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 634 #else 635 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 636 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 637 #endif /* BITS_PER_LONG == 64 */ 638 639 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 640 ({ \ 641 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 642 *(PTR_SIZE) = (SIZE); \ 643 offsetof(TYPE, MEMBER); \ 644 }) 645 646 /* A struct sock_filter is architecture independent. */ 647 struct compat_sock_fprog { 648 u16 len; 649 compat_uptr_t filter; /* struct sock_filter * */ 650 }; 651 652 struct sock_fprog_kern { 653 u16 len; 654 struct sock_filter *filter; 655 }; 656 657 /* Some arches need doubleword alignment for their instructions and/or data */ 658 #define BPF_IMAGE_ALIGNMENT 8 659 660 struct bpf_binary_header { 661 u32 size; 662 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 663 }; 664 665 struct bpf_prog_stats { 666 u64_stats_t cnt; 667 u64_stats_t nsecs; 668 u64_stats_t misses; 669 struct u64_stats_sync syncp; 670 } __aligned(2 * sizeof(u64)); 671 672 struct sk_filter { 673 refcount_t refcnt; 674 struct rcu_head rcu; 675 struct bpf_prog *prog; 676 }; 677 678 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 679 680 extern struct mutex nf_conn_btf_access_lock; 681 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 682 const struct bpf_reg_state *reg, 683 int off, int size); 684 685 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 686 const struct bpf_insn *insnsi, 687 unsigned int (*bpf_func)(const void *, 688 const struct bpf_insn *)); 689 690 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 691 const void *ctx, 692 bpf_dispatcher_fn dfunc) 693 { 694 u32 ret; 695 696 cant_migrate(); 697 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 698 struct bpf_prog_stats *stats; 699 u64 duration, start = sched_clock(); 700 unsigned long flags; 701 702 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 703 704 duration = sched_clock() - start; 705 stats = this_cpu_ptr(prog->stats); 706 flags = u64_stats_update_begin_irqsave(&stats->syncp); 707 u64_stats_inc(&stats->cnt); 708 u64_stats_add(&stats->nsecs, duration); 709 u64_stats_update_end_irqrestore(&stats->syncp, flags); 710 } else { 711 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 712 } 713 return ret; 714 } 715 716 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 717 { 718 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 719 } 720 721 /* 722 * Use in preemptible and therefore migratable context to make sure that 723 * the execution of the BPF program runs on one CPU. 724 * 725 * This uses migrate_disable/enable() explicitly to document that the 726 * invocation of a BPF program does not require reentrancy protection 727 * against a BPF program which is invoked from a preempting task. 728 */ 729 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 730 const void *ctx) 731 { 732 u32 ret; 733 734 migrate_disable(); 735 ret = bpf_prog_run(prog, ctx); 736 migrate_enable(); 737 return ret; 738 } 739 740 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 741 742 struct bpf_skb_data_end { 743 struct qdisc_skb_cb qdisc_cb; 744 void *data_meta; 745 void *data_end; 746 }; 747 748 struct bpf_nh_params { 749 u32 nh_family; 750 union { 751 u32 ipv4_nh; 752 struct in6_addr ipv6_nh; 753 }; 754 }; 755 756 /* flags for bpf_redirect_info kern_flags */ 757 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 758 #define BPF_RI_F_RI_INIT BIT(1) 759 #define BPF_RI_F_CPU_MAP_INIT BIT(2) 760 #define BPF_RI_F_DEV_MAP_INIT BIT(3) 761 #define BPF_RI_F_XSK_MAP_INIT BIT(4) 762 763 struct bpf_redirect_info { 764 u64 tgt_index; 765 void *tgt_value; 766 struct bpf_map *map; 767 u32 flags; 768 u32 map_id; 769 enum bpf_map_type map_type; 770 struct bpf_nh_params nh; 771 u32 kern_flags; 772 }; 773 774 struct bpf_net_context { 775 struct bpf_redirect_info ri; 776 struct list_head cpu_map_flush_list; 777 struct list_head dev_map_flush_list; 778 struct list_head xskmap_map_flush_list; 779 }; 780 781 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 782 { 783 struct task_struct *tsk = current; 784 785 if (tsk->bpf_net_context != NULL) 786 return NULL; 787 bpf_net_ctx->ri.kern_flags = 0; 788 789 tsk->bpf_net_context = bpf_net_ctx; 790 return bpf_net_ctx; 791 } 792 793 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 794 { 795 if (bpf_net_ctx) 796 current->bpf_net_context = NULL; 797 } 798 799 static inline struct bpf_net_context *bpf_net_ctx_get(void) 800 { 801 return current->bpf_net_context; 802 } 803 804 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 805 { 806 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 807 808 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 809 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 810 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 811 } 812 813 return &bpf_net_ctx->ri; 814 } 815 816 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 817 { 818 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 819 820 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 821 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 822 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 823 } 824 825 return &bpf_net_ctx->cpu_map_flush_list; 826 } 827 828 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 829 { 830 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 831 832 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 833 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 834 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 835 } 836 837 return &bpf_net_ctx->dev_map_flush_list; 838 } 839 840 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 841 { 842 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 843 844 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 845 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 846 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 847 } 848 849 return &bpf_net_ctx->xskmap_map_flush_list; 850 } 851 852 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 853 struct list_head **lh_dev, 854 struct list_head **lh_xsk) 855 { 856 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 857 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 858 struct list_head *lh; 859 860 *lh_map = *lh_dev = *lh_xsk = NULL; 861 862 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 863 return; 864 865 lh = &bpf_net_ctx->dev_map_flush_list; 866 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 867 *lh_dev = lh; 868 869 lh = &bpf_net_ctx->cpu_map_flush_list; 870 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 871 *lh_map = lh; 872 873 lh = &bpf_net_ctx->xskmap_map_flush_list; 874 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 875 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 876 *lh_xsk = lh; 877 } 878 879 /* Compute the linear packet data range [data, data_end) which 880 * will be accessed by various program types (cls_bpf, act_bpf, 881 * lwt, ...). Subsystems allowing direct data access must (!) 882 * ensure that cb[] area can be written to when BPF program is 883 * invoked (otherwise cb[] save/restore is necessary). 884 */ 885 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 886 { 887 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 888 889 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 890 cb->data_meta = skb->data - skb_metadata_len(skb); 891 cb->data_end = skb->data + skb_headlen(skb); 892 } 893 894 /* Similar to bpf_compute_data_pointers(), except that save orginal 895 * data in cb->data and cb->meta_data for restore. 896 */ 897 static inline void bpf_compute_and_save_data_end( 898 struct sk_buff *skb, void **saved_data_end) 899 { 900 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 901 902 *saved_data_end = cb->data_end; 903 cb->data_end = skb->data + skb_headlen(skb); 904 } 905 906 /* Restore data saved by bpf_compute_and_save_data_end(). */ 907 static inline void bpf_restore_data_end( 908 struct sk_buff *skb, void *saved_data_end) 909 { 910 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 911 912 cb->data_end = saved_data_end; 913 } 914 915 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 916 { 917 /* eBPF programs may read/write skb->cb[] area to transfer meta 918 * data between tail calls. Since this also needs to work with 919 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 920 * 921 * In some socket filter cases, the cb unfortunately needs to be 922 * saved/restored so that protocol specific skb->cb[] data won't 923 * be lost. In any case, due to unpriviledged eBPF programs 924 * attached to sockets, we need to clear the bpf_skb_cb() area 925 * to not leak previous contents to user space. 926 */ 927 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 928 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 929 sizeof_field(struct qdisc_skb_cb, data)); 930 931 return qdisc_skb_cb(skb)->data; 932 } 933 934 /* Must be invoked with migration disabled */ 935 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 936 const void *ctx) 937 { 938 const struct sk_buff *skb = ctx; 939 u8 *cb_data = bpf_skb_cb(skb); 940 u8 cb_saved[BPF_SKB_CB_LEN]; 941 u32 res; 942 943 if (unlikely(prog->cb_access)) { 944 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 945 memset(cb_data, 0, sizeof(cb_saved)); 946 } 947 948 res = bpf_prog_run(prog, skb); 949 950 if (unlikely(prog->cb_access)) 951 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 952 953 return res; 954 } 955 956 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 957 struct sk_buff *skb) 958 { 959 u32 res; 960 961 migrate_disable(); 962 res = __bpf_prog_run_save_cb(prog, skb); 963 migrate_enable(); 964 return res; 965 } 966 967 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 968 struct sk_buff *skb) 969 { 970 u8 *cb_data = bpf_skb_cb(skb); 971 u32 res; 972 973 if (unlikely(prog->cb_access)) 974 memset(cb_data, 0, BPF_SKB_CB_LEN); 975 976 res = bpf_prog_run_pin_on_cpu(prog, skb); 977 return res; 978 } 979 980 DECLARE_BPF_DISPATCHER(xdp) 981 982 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 983 984 u32 xdp_master_redirect(struct xdp_buff *xdp); 985 986 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 987 988 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 989 { 990 return prog->len * sizeof(struct bpf_insn); 991 } 992 993 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 994 { 995 return round_up(bpf_prog_insn_size(prog) + 996 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 997 } 998 999 static inline unsigned int bpf_prog_size(unsigned int proglen) 1000 { 1001 return max(sizeof(struct bpf_prog), 1002 offsetof(struct bpf_prog, insns[proglen])); 1003 } 1004 1005 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 1006 { 1007 /* When classic BPF programs have been loaded and the arch 1008 * does not have a classic BPF JIT (anymore), they have been 1009 * converted via bpf_migrate_filter() to eBPF and thus always 1010 * have an unspec program type. 1011 */ 1012 return prog->type == BPF_PROG_TYPE_UNSPEC; 1013 } 1014 1015 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1016 { 1017 const u32 size_machine = sizeof(unsigned long); 1018 1019 if (size > size_machine && size % size_machine == 0) 1020 size = size_machine; 1021 1022 return size; 1023 } 1024 1025 static inline bool 1026 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1027 { 1028 return size <= size_default && (size & (size - 1)) == 0; 1029 } 1030 1031 static inline u8 1032 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1033 { 1034 u8 access_off = off & (size_default - 1); 1035 1036 #ifdef __LITTLE_ENDIAN 1037 return access_off; 1038 #else 1039 return size_default - (access_off + size); 1040 #endif 1041 } 1042 1043 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 1044 (size == sizeof(__u64) && \ 1045 off >= offsetof(type, field) && \ 1046 off + sizeof(__u64) <= offsetofend(type, field) && \ 1047 off % sizeof(__u64) == 0) 1048 1049 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1050 1051 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1052 { 1053 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1054 if (!fp->jited) { 1055 set_vm_flush_reset_perms(fp); 1056 return set_memory_ro((unsigned long)fp, fp->pages); 1057 } 1058 #endif 1059 return 0; 1060 } 1061 1062 static inline int __must_check 1063 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1064 { 1065 set_vm_flush_reset_perms(hdr); 1066 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1067 } 1068 1069 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 1070 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1071 { 1072 return sk_filter_trim_cap(sk, skb, 1); 1073 } 1074 1075 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1076 void bpf_prog_free(struct bpf_prog *fp); 1077 1078 bool bpf_opcode_in_insntable(u8 code); 1079 1080 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1081 const u32 *insn_to_jit_off); 1082 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1083 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1084 1085 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1086 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1087 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1088 gfp_t gfp_extra_flags); 1089 void __bpf_prog_free(struct bpf_prog *fp); 1090 1091 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1092 { 1093 __bpf_prog_free(fp); 1094 } 1095 1096 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1097 unsigned int flen); 1098 1099 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1100 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1101 bpf_aux_classic_check_t trans, bool save_orig); 1102 void bpf_prog_destroy(struct bpf_prog *fp); 1103 1104 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1105 int sk_attach_bpf(u32 ufd, struct sock *sk); 1106 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1107 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1108 void sk_reuseport_prog_free(struct bpf_prog *prog); 1109 int sk_detach_filter(struct sock *sk); 1110 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1111 1112 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1113 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1114 1115 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1116 #define __bpf_call_base_args \ 1117 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1118 (void *)__bpf_call_base) 1119 1120 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1121 void bpf_jit_compile(struct bpf_prog *prog); 1122 bool bpf_jit_needs_zext(void); 1123 bool bpf_jit_inlines_helper_call(s32 imm); 1124 bool bpf_jit_supports_subprog_tailcalls(void); 1125 bool bpf_jit_supports_percpu_insn(void); 1126 bool bpf_jit_supports_kfunc_call(void); 1127 bool bpf_jit_supports_far_kfunc_call(void); 1128 bool bpf_jit_supports_exceptions(void); 1129 bool bpf_jit_supports_ptr_xchg(void); 1130 bool bpf_jit_supports_arena(void); 1131 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1132 bool bpf_jit_supports_private_stack(void); 1133 u64 bpf_arch_uaddress_limit(void); 1134 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1135 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id); 1136 1137 static inline bool bpf_dump_raw_ok(const struct cred *cred) 1138 { 1139 /* Reconstruction of call-sites is dependent on kallsyms, 1140 * thus make dump the same restriction. 1141 */ 1142 return kallsyms_show_value(cred); 1143 } 1144 1145 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1146 const struct bpf_insn *patch, u32 len); 1147 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1148 1149 static inline bool xdp_return_frame_no_direct(void) 1150 { 1151 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1152 1153 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1154 } 1155 1156 static inline void xdp_set_return_frame_no_direct(void) 1157 { 1158 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1159 1160 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1161 } 1162 1163 static inline void xdp_clear_return_frame_no_direct(void) 1164 { 1165 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1166 1167 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1168 } 1169 1170 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1171 unsigned int pktlen) 1172 { 1173 unsigned int len; 1174 1175 if (unlikely(!(fwd->flags & IFF_UP))) 1176 return -ENETDOWN; 1177 1178 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1179 if (pktlen > len) 1180 return -EMSGSIZE; 1181 1182 return 0; 1183 } 1184 1185 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1186 * same cpu context. Further for best results no more than a single map 1187 * for the do_redirect/do_flush pair should be used. This limitation is 1188 * because we only track one map and force a flush when the map changes. 1189 * This does not appear to be a real limitation for existing software. 1190 */ 1191 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1192 struct xdp_buff *xdp, const struct bpf_prog *prog); 1193 int xdp_do_redirect(struct net_device *dev, 1194 struct xdp_buff *xdp, 1195 const struct bpf_prog *prog); 1196 int xdp_do_redirect_frame(struct net_device *dev, 1197 struct xdp_buff *xdp, 1198 struct xdp_frame *xdpf, 1199 const struct bpf_prog *prog); 1200 void xdp_do_flush(void); 1201 1202 void bpf_warn_invalid_xdp_action(const struct net_device *dev, 1203 const struct bpf_prog *prog, u32 act); 1204 1205 #ifdef CONFIG_INET 1206 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1207 struct bpf_prog *prog, struct sk_buff *skb, 1208 struct sock *migrating_sk, 1209 u32 hash); 1210 #else 1211 static inline struct sock * 1212 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1213 struct bpf_prog *prog, struct sk_buff *skb, 1214 struct sock *migrating_sk, 1215 u32 hash) 1216 { 1217 return NULL; 1218 } 1219 #endif 1220 1221 #ifdef CONFIG_BPF_JIT 1222 extern int bpf_jit_enable; 1223 extern int bpf_jit_harden; 1224 extern int bpf_jit_kallsyms; 1225 extern long bpf_jit_limit; 1226 extern long bpf_jit_limit_max; 1227 1228 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1229 1230 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1231 1232 struct bpf_binary_header * 1233 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1234 unsigned int alignment, 1235 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1236 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1237 u64 bpf_jit_alloc_exec_limit(void); 1238 void *bpf_jit_alloc_exec(unsigned long size); 1239 void bpf_jit_free_exec(void *addr); 1240 void bpf_jit_free(struct bpf_prog *fp); 1241 struct bpf_binary_header * 1242 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1243 1244 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1245 void bpf_prog_pack_free(void *ptr, u32 size); 1246 1247 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1248 { 1249 return list_empty(&fp->aux->ksym.lnode) || 1250 fp->aux->ksym.lnode.prev == LIST_POISON2; 1251 } 1252 1253 struct bpf_binary_header * 1254 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1255 unsigned int alignment, 1256 struct bpf_binary_header **rw_hdr, 1257 u8 **rw_image, 1258 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1259 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1260 struct bpf_binary_header *rw_header); 1261 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1262 struct bpf_binary_header *rw_header); 1263 1264 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1265 struct bpf_jit_poke_descriptor *poke); 1266 1267 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1268 const struct bpf_insn *insn, bool extra_pass, 1269 u64 *func_addr, bool *func_addr_fixed); 1270 1271 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1272 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1273 1274 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1275 u32 pass, void *image) 1276 { 1277 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1278 proglen, pass, image, current->comm, task_pid_nr(current)); 1279 1280 if (image) 1281 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1282 16, 1, image, proglen, false); 1283 } 1284 1285 static inline bool bpf_jit_is_ebpf(void) 1286 { 1287 # ifdef CONFIG_HAVE_EBPF_JIT 1288 return true; 1289 # else 1290 return false; 1291 # endif 1292 } 1293 1294 static inline bool ebpf_jit_enabled(void) 1295 { 1296 return bpf_jit_enable && bpf_jit_is_ebpf(); 1297 } 1298 1299 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1300 { 1301 return fp->jited && bpf_jit_is_ebpf(); 1302 } 1303 1304 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1305 { 1306 /* These are the prerequisites, should someone ever have the 1307 * idea to call blinding outside of them, we make sure to 1308 * bail out. 1309 */ 1310 if (!bpf_jit_is_ebpf()) 1311 return false; 1312 if (!prog->jit_requested) 1313 return false; 1314 if (!bpf_jit_harden) 1315 return false; 1316 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1317 return false; 1318 1319 return true; 1320 } 1321 1322 static inline bool bpf_jit_kallsyms_enabled(void) 1323 { 1324 /* There are a couple of corner cases where kallsyms should 1325 * not be enabled f.e. on hardening. 1326 */ 1327 if (bpf_jit_harden) 1328 return false; 1329 if (!bpf_jit_kallsyms) 1330 return false; 1331 if (bpf_jit_kallsyms == 1) 1332 return true; 1333 1334 return false; 1335 } 1336 1337 int __bpf_address_lookup(unsigned long addr, unsigned long *size, 1338 unsigned long *off, char *sym); 1339 bool is_bpf_text_address(unsigned long addr); 1340 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1341 char *sym); 1342 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1343 1344 static inline int 1345 bpf_address_lookup(unsigned long addr, unsigned long *size, 1346 unsigned long *off, char **modname, char *sym) 1347 { 1348 int ret = __bpf_address_lookup(addr, size, off, sym); 1349 1350 if (ret && modname) 1351 *modname = NULL; 1352 return ret; 1353 } 1354 1355 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1356 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1357 1358 #else /* CONFIG_BPF_JIT */ 1359 1360 static inline bool ebpf_jit_enabled(void) 1361 { 1362 return false; 1363 } 1364 1365 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1366 { 1367 return false; 1368 } 1369 1370 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1371 { 1372 return false; 1373 } 1374 1375 static inline int 1376 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1377 struct bpf_jit_poke_descriptor *poke) 1378 { 1379 return -ENOTSUPP; 1380 } 1381 1382 static inline void bpf_jit_free(struct bpf_prog *fp) 1383 { 1384 bpf_prog_unlock_free(fp); 1385 } 1386 1387 static inline bool bpf_jit_kallsyms_enabled(void) 1388 { 1389 return false; 1390 } 1391 1392 static inline int 1393 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1394 unsigned long *off, char *sym) 1395 { 1396 return 0; 1397 } 1398 1399 static inline bool is_bpf_text_address(unsigned long addr) 1400 { 1401 return false; 1402 } 1403 1404 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1405 char *type, char *sym) 1406 { 1407 return -ERANGE; 1408 } 1409 1410 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1411 { 1412 return NULL; 1413 } 1414 1415 static inline int 1416 bpf_address_lookup(unsigned long addr, unsigned long *size, 1417 unsigned long *off, char **modname, char *sym) 1418 { 1419 return 0; 1420 } 1421 1422 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1423 { 1424 } 1425 1426 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1427 { 1428 } 1429 1430 #endif /* CONFIG_BPF_JIT */ 1431 1432 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1433 1434 #define BPF_ANC BIT(15) 1435 1436 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1437 { 1438 switch (first->code) { 1439 case BPF_RET | BPF_K: 1440 case BPF_LD | BPF_W | BPF_LEN: 1441 return false; 1442 1443 case BPF_LD | BPF_W | BPF_ABS: 1444 case BPF_LD | BPF_H | BPF_ABS: 1445 case BPF_LD | BPF_B | BPF_ABS: 1446 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1447 return true; 1448 return false; 1449 1450 default: 1451 return true; 1452 } 1453 } 1454 1455 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1456 { 1457 BUG_ON(ftest->code & BPF_ANC); 1458 1459 switch (ftest->code) { 1460 case BPF_LD | BPF_W | BPF_ABS: 1461 case BPF_LD | BPF_H | BPF_ABS: 1462 case BPF_LD | BPF_B | BPF_ABS: 1463 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1464 return BPF_ANC | SKF_AD_##CODE 1465 switch (ftest->k) { 1466 BPF_ANCILLARY(PROTOCOL); 1467 BPF_ANCILLARY(PKTTYPE); 1468 BPF_ANCILLARY(IFINDEX); 1469 BPF_ANCILLARY(NLATTR); 1470 BPF_ANCILLARY(NLATTR_NEST); 1471 BPF_ANCILLARY(MARK); 1472 BPF_ANCILLARY(QUEUE); 1473 BPF_ANCILLARY(HATYPE); 1474 BPF_ANCILLARY(RXHASH); 1475 BPF_ANCILLARY(CPU); 1476 BPF_ANCILLARY(ALU_XOR_X); 1477 BPF_ANCILLARY(VLAN_TAG); 1478 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1479 BPF_ANCILLARY(PAY_OFFSET); 1480 BPF_ANCILLARY(RANDOM); 1481 BPF_ANCILLARY(VLAN_TPID); 1482 } 1483 fallthrough; 1484 default: 1485 return ftest->code; 1486 } 1487 } 1488 1489 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1490 int k, unsigned int size); 1491 1492 static inline int bpf_tell_extensions(void) 1493 { 1494 return SKF_AD_MAX; 1495 } 1496 1497 struct bpf_sock_addr_kern { 1498 struct sock *sk; 1499 struct sockaddr *uaddr; 1500 /* Temporary "register" to make indirect stores to nested structures 1501 * defined above. We need three registers to make such a store, but 1502 * only two (src and dst) are available at convert_ctx_access time 1503 */ 1504 u64 tmp_reg; 1505 void *t_ctx; /* Attach type specific context. */ 1506 u32 uaddrlen; 1507 }; 1508 1509 struct bpf_sock_ops_kern { 1510 struct sock *sk; 1511 union { 1512 u32 args[4]; 1513 u32 reply; 1514 u32 replylong[4]; 1515 }; 1516 struct sk_buff *syn_skb; 1517 struct sk_buff *skb; 1518 void *skb_data_end; 1519 u8 op; 1520 u8 is_fullsock; 1521 u8 remaining_opt_len; 1522 u64 temp; /* temp and everything after is not 1523 * initialized to 0 before calling 1524 * the BPF program. New fields that 1525 * should be initialized to 0 should 1526 * be inserted before temp. 1527 * temp is scratch storage used by 1528 * sock_ops_convert_ctx_access 1529 * as temporary storage of a register. 1530 */ 1531 }; 1532 1533 struct bpf_sysctl_kern { 1534 struct ctl_table_header *head; 1535 const struct ctl_table *table; 1536 void *cur_val; 1537 size_t cur_len; 1538 void *new_val; 1539 size_t new_len; 1540 int new_updated; 1541 int write; 1542 loff_t *ppos; 1543 /* Temporary "register" for indirect stores to ppos. */ 1544 u64 tmp_reg; 1545 }; 1546 1547 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1548 struct bpf_sockopt_buf { 1549 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1550 }; 1551 1552 struct bpf_sockopt_kern { 1553 struct sock *sk; 1554 u8 *optval; 1555 u8 *optval_end; 1556 s32 level; 1557 s32 optname; 1558 s32 optlen; 1559 /* for retval in struct bpf_cg_run_ctx */ 1560 struct task_struct *current_task; 1561 /* Temporary "register" for indirect stores to ppos. */ 1562 u64 tmp_reg; 1563 }; 1564 1565 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1566 1567 struct bpf_sk_lookup_kern { 1568 u16 family; 1569 u16 protocol; 1570 __be16 sport; 1571 u16 dport; 1572 struct { 1573 __be32 saddr; 1574 __be32 daddr; 1575 } v4; 1576 struct { 1577 const struct in6_addr *saddr; 1578 const struct in6_addr *daddr; 1579 } v6; 1580 struct sock *selected_sk; 1581 u32 ingress_ifindex; 1582 bool no_reuseport; 1583 }; 1584 1585 extern struct static_key_false bpf_sk_lookup_enabled; 1586 1587 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1588 * 1589 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1590 * SK_DROP. Their meaning is as follows: 1591 * 1592 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1593 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1594 * SK_DROP : terminate lookup with -ECONNREFUSED 1595 * 1596 * This macro aggregates return values and selected sockets from 1597 * multiple BPF programs according to following rules in order: 1598 * 1599 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1600 * macro result is SK_PASS and last ctx.selected_sk is used. 1601 * 2. If any program returned SK_DROP return value, 1602 * macro result is SK_DROP. 1603 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1604 * 1605 * Caller must ensure that the prog array is non-NULL, and that the 1606 * array as well as the programs it contains remain valid. 1607 */ 1608 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1609 ({ \ 1610 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1611 struct bpf_prog_array_item *_item; \ 1612 struct sock *_selected_sk = NULL; \ 1613 bool _no_reuseport = false; \ 1614 struct bpf_prog *_prog; \ 1615 bool _all_pass = true; \ 1616 u32 _ret; \ 1617 \ 1618 migrate_disable(); \ 1619 _item = &(array)->items[0]; \ 1620 while ((_prog = READ_ONCE(_item->prog))) { \ 1621 /* restore most recent selection */ \ 1622 _ctx->selected_sk = _selected_sk; \ 1623 _ctx->no_reuseport = _no_reuseport; \ 1624 \ 1625 _ret = func(_prog, _ctx); \ 1626 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1627 /* remember last non-NULL socket */ \ 1628 _selected_sk = _ctx->selected_sk; \ 1629 _no_reuseport = _ctx->no_reuseport; \ 1630 } else if (_ret == SK_DROP && _all_pass) { \ 1631 _all_pass = false; \ 1632 } \ 1633 _item++; \ 1634 } \ 1635 _ctx->selected_sk = _selected_sk; \ 1636 _ctx->no_reuseport = _no_reuseport; \ 1637 migrate_enable(); \ 1638 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1639 }) 1640 1641 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1642 const __be32 saddr, const __be16 sport, 1643 const __be32 daddr, const u16 dport, 1644 const int ifindex, struct sock **psk) 1645 { 1646 struct bpf_prog_array *run_array; 1647 struct sock *selected_sk = NULL; 1648 bool no_reuseport = false; 1649 1650 rcu_read_lock(); 1651 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1652 if (run_array) { 1653 struct bpf_sk_lookup_kern ctx = { 1654 .family = AF_INET, 1655 .protocol = protocol, 1656 .v4.saddr = saddr, 1657 .v4.daddr = daddr, 1658 .sport = sport, 1659 .dport = dport, 1660 .ingress_ifindex = ifindex, 1661 }; 1662 u32 act; 1663 1664 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1665 if (act == SK_PASS) { 1666 selected_sk = ctx.selected_sk; 1667 no_reuseport = ctx.no_reuseport; 1668 } else { 1669 selected_sk = ERR_PTR(-ECONNREFUSED); 1670 } 1671 } 1672 rcu_read_unlock(); 1673 *psk = selected_sk; 1674 return no_reuseport; 1675 } 1676 1677 #if IS_ENABLED(CONFIG_IPV6) 1678 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1679 const struct in6_addr *saddr, 1680 const __be16 sport, 1681 const struct in6_addr *daddr, 1682 const u16 dport, 1683 const int ifindex, struct sock **psk) 1684 { 1685 struct bpf_prog_array *run_array; 1686 struct sock *selected_sk = NULL; 1687 bool no_reuseport = false; 1688 1689 rcu_read_lock(); 1690 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1691 if (run_array) { 1692 struct bpf_sk_lookup_kern ctx = { 1693 .family = AF_INET6, 1694 .protocol = protocol, 1695 .v6.saddr = saddr, 1696 .v6.daddr = daddr, 1697 .sport = sport, 1698 .dport = dport, 1699 .ingress_ifindex = ifindex, 1700 }; 1701 u32 act; 1702 1703 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1704 if (act == SK_PASS) { 1705 selected_sk = ctx.selected_sk; 1706 no_reuseport = ctx.no_reuseport; 1707 } else { 1708 selected_sk = ERR_PTR(-ECONNREFUSED); 1709 } 1710 } 1711 rcu_read_unlock(); 1712 *psk = selected_sk; 1713 return no_reuseport; 1714 } 1715 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1716 1717 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1718 u64 flags, const u64 flag_mask, 1719 void *lookup_elem(struct bpf_map *map, u32 key)) 1720 { 1721 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1722 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1723 1724 /* Lower bits of the flags are used as return code on lookup failure */ 1725 if (unlikely(flags & ~(action_mask | flag_mask))) 1726 return XDP_ABORTED; 1727 1728 ri->tgt_value = lookup_elem(map, index); 1729 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1730 /* If the lookup fails we want to clear out the state in the 1731 * redirect_info struct completely, so that if an eBPF program 1732 * performs multiple lookups, the last one always takes 1733 * precedence. 1734 */ 1735 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1736 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1737 return flags & action_mask; 1738 } 1739 1740 ri->tgt_index = index; 1741 ri->map_id = map->id; 1742 ri->map_type = map->map_type; 1743 1744 if (flags & BPF_F_BROADCAST) { 1745 WRITE_ONCE(ri->map, map); 1746 ri->flags = flags; 1747 } else { 1748 WRITE_ONCE(ri->map, NULL); 1749 ri->flags = 0; 1750 } 1751 1752 return XDP_REDIRECT; 1753 } 1754 1755 #ifdef CONFIG_NET 1756 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1757 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1758 u32 len, u64 flags); 1759 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1760 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1761 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1762 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1763 void *buf, unsigned long len, bool flush); 1764 #else /* CONFIG_NET */ 1765 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1766 void *to, u32 len) 1767 { 1768 return -EOPNOTSUPP; 1769 } 1770 1771 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1772 const void *from, u32 len, u64 flags) 1773 { 1774 return -EOPNOTSUPP; 1775 } 1776 1777 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1778 void *buf, u32 len) 1779 { 1780 return -EOPNOTSUPP; 1781 } 1782 1783 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1784 void *buf, u32 len) 1785 { 1786 return -EOPNOTSUPP; 1787 } 1788 1789 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1790 { 1791 return NULL; 1792 } 1793 1794 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1795 unsigned long len, bool flush) 1796 { 1797 } 1798 #endif /* CONFIG_NET */ 1799 1800 #endif /* __LINUX_FILTER_H__ */ 1801