xref: /linux-6.15/include/linux/filter.h (revision 4c236d5d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 
26 #include <net/sch_generic.h>
27 
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30 #include <uapi/linux/bpf.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark call to interpreter with arguments */
73 #define BPF_CALL_ARGS	0xe0
74 
75 /* As per nm, we expose JITed images as text (code) section for
76  * kallsyms. That way, tools like perf can find it to match
77  * addresses.
78  */
79 #define BPF_SYM_ELF_TYPE	't'
80 
81 /* BPF program can access up to 512 bytes of stack space. */
82 #define MAX_BPF_STACK	512
83 
84 /* Helper macros for filter block array initializers. */
85 
86 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
87 
88 #define BPF_ALU64_REG(OP, DST, SRC)				\
89 	((struct bpf_insn) {					\
90 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
91 		.dst_reg = DST,					\
92 		.src_reg = SRC,					\
93 		.off   = 0,					\
94 		.imm   = 0 })
95 
96 #define BPF_ALU32_REG(OP, DST, SRC)				\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = 0,					\
102 		.imm   = 0 })
103 
104 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
105 
106 #define BPF_ALU64_IMM(OP, DST, IMM)				\
107 	((struct bpf_insn) {					\
108 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
109 		.dst_reg = DST,					\
110 		.src_reg = 0,					\
111 		.off   = 0,					\
112 		.imm   = IMM })
113 
114 #define BPF_ALU32_IMM(OP, DST, IMM)				\
115 	((struct bpf_insn) {					\
116 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
117 		.dst_reg = DST,					\
118 		.src_reg = 0,					\
119 		.off   = 0,					\
120 		.imm   = IMM })
121 
122 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
123 
124 #define BPF_ENDIAN(TYPE, DST, LEN)				\
125 	((struct bpf_insn) {					\
126 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
127 		.dst_reg = DST,					\
128 		.src_reg = 0,					\
129 		.off   = 0,					\
130 		.imm   = LEN })
131 
132 /* Short form of mov, dst_reg = src_reg */
133 
134 #define BPF_MOV64_REG(DST, SRC)					\
135 	((struct bpf_insn) {					\
136 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
137 		.dst_reg = DST,					\
138 		.src_reg = SRC,					\
139 		.off   = 0,					\
140 		.imm   = 0 })
141 
142 #define BPF_MOV32_REG(DST, SRC)					\
143 	((struct bpf_insn) {					\
144 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
145 		.dst_reg = DST,					\
146 		.src_reg = SRC,					\
147 		.off   = 0,					\
148 		.imm   = 0 })
149 
150 /* Short form of mov, dst_reg = imm32 */
151 
152 #define BPF_MOV64_IMM(DST, IMM)					\
153 	((struct bpf_insn) {					\
154 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
155 		.dst_reg = DST,					\
156 		.src_reg = 0,					\
157 		.off   = 0,					\
158 		.imm   = IMM })
159 
160 #define BPF_MOV32_IMM(DST, IMM)					\
161 	((struct bpf_insn) {					\
162 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
163 		.dst_reg = DST,					\
164 		.src_reg = 0,					\
165 		.off   = 0,					\
166 		.imm   = IMM })
167 
168 /* Special form of mov32, used for doing explicit zero extension on dst. */
169 #define BPF_ZEXT_REG(DST)					\
170 	((struct bpf_insn) {					\
171 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
172 		.dst_reg = DST,					\
173 		.src_reg = DST,					\
174 		.off   = 0,					\
175 		.imm   = 1 })
176 
177 static inline bool insn_is_zext(const struct bpf_insn *insn)
178 {
179 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
180 }
181 
182 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
183 #define BPF_LD_IMM64(DST, IMM)					\
184 	BPF_LD_IMM64_RAW(DST, 0, IMM)
185 
186 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
187 	((struct bpf_insn) {					\
188 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
189 		.dst_reg = DST,					\
190 		.src_reg = SRC,					\
191 		.off   = 0,					\
192 		.imm   = (__u32) (IMM) }),			\
193 	((struct bpf_insn) {					\
194 		.code  = 0, /* zero is reserved opcode */	\
195 		.dst_reg = 0,					\
196 		.src_reg = 0,					\
197 		.off   = 0,					\
198 		.imm   = ((__u64) (IMM)) >> 32 })
199 
200 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
201 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
202 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
203 
204 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
205 
206 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
207 	((struct bpf_insn) {					\
208 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
209 		.dst_reg = DST,					\
210 		.src_reg = SRC,					\
211 		.off   = 0,					\
212 		.imm   = IMM })
213 
214 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
215 	((struct bpf_insn) {					\
216 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
217 		.dst_reg = DST,					\
218 		.src_reg = SRC,					\
219 		.off   = 0,					\
220 		.imm   = IMM })
221 
222 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
223 
224 #define BPF_LD_ABS(SIZE, IMM)					\
225 	((struct bpf_insn) {					\
226 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
227 		.dst_reg = 0,					\
228 		.src_reg = 0,					\
229 		.off   = 0,					\
230 		.imm   = IMM })
231 
232 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
233 
234 #define BPF_LD_IND(SIZE, SRC, IMM)				\
235 	((struct bpf_insn) {					\
236 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
237 		.dst_reg = 0,					\
238 		.src_reg = SRC,					\
239 		.off   = 0,					\
240 		.imm   = IMM })
241 
242 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
243 
244 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
245 	((struct bpf_insn) {					\
246 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
247 		.dst_reg = DST,					\
248 		.src_reg = SRC,					\
249 		.off   = OFF,					\
250 		.imm   = 0 })
251 
252 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
253 
254 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
255 	((struct bpf_insn) {					\
256 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
257 		.dst_reg = DST,					\
258 		.src_reg = SRC,					\
259 		.off   = OFF,					\
260 		.imm   = 0 })
261 
262 
263 /*
264  * Atomic operations:
265  *
266  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
267  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
268  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
269  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
270  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
271  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
272  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
273  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
274  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
275  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
276  */
277 
278 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
279 	((struct bpf_insn) {					\
280 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
281 		.dst_reg = DST,					\
282 		.src_reg = SRC,					\
283 		.off   = OFF,					\
284 		.imm   = OP })
285 
286 /* Legacy alias */
287 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
288 
289 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
290 
291 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
292 	((struct bpf_insn) {					\
293 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
294 		.dst_reg = DST,					\
295 		.src_reg = 0,					\
296 		.off   = OFF,					\
297 		.imm   = IMM })
298 
299 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
300 
301 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
302 	((struct bpf_insn) {					\
303 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
304 		.dst_reg = DST,					\
305 		.src_reg = SRC,					\
306 		.off   = OFF,					\
307 		.imm   = 0 })
308 
309 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
310 
311 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
312 	((struct bpf_insn) {					\
313 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
314 		.dst_reg = DST,					\
315 		.src_reg = 0,					\
316 		.off   = OFF,					\
317 		.imm   = IMM })
318 
319 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
320 
321 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
322 	((struct bpf_insn) {					\
323 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
324 		.dst_reg = DST,					\
325 		.src_reg = SRC,					\
326 		.off   = OFF,					\
327 		.imm   = 0 })
328 
329 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
330 
331 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
332 	((struct bpf_insn) {					\
333 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
334 		.dst_reg = DST,					\
335 		.src_reg = 0,					\
336 		.off   = OFF,					\
337 		.imm   = IMM })
338 
339 /* Unconditional jumps, goto pc + off16 */
340 
341 #define BPF_JMP_A(OFF)						\
342 	((struct bpf_insn) {					\
343 		.code  = BPF_JMP | BPF_JA,			\
344 		.dst_reg = 0,					\
345 		.src_reg = 0,					\
346 		.off   = OFF,					\
347 		.imm   = 0 })
348 
349 /* Relative call */
350 
351 #define BPF_CALL_REL(TGT)					\
352 	((struct bpf_insn) {					\
353 		.code  = BPF_JMP | BPF_CALL,			\
354 		.dst_reg = 0,					\
355 		.src_reg = BPF_PSEUDO_CALL,			\
356 		.off   = 0,					\
357 		.imm   = TGT })
358 
359 /* Function call */
360 
361 #define BPF_CAST_CALL(x)					\
362 		((u64 (*)(u64, u64, u64, u64, u64))(x))
363 
364 #define BPF_EMIT_CALL(FUNC)					\
365 	((struct bpf_insn) {					\
366 		.code  = BPF_JMP | BPF_CALL,			\
367 		.dst_reg = 0,					\
368 		.src_reg = 0,					\
369 		.off   = 0,					\
370 		.imm   = ((FUNC) - __bpf_call_base) })
371 
372 /* Raw code statement block */
373 
374 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
375 	((struct bpf_insn) {					\
376 		.code  = CODE,					\
377 		.dst_reg = DST,					\
378 		.src_reg = SRC,					\
379 		.off   = OFF,					\
380 		.imm   = IMM })
381 
382 /* Program exit */
383 
384 #define BPF_EXIT_INSN()						\
385 	((struct bpf_insn) {					\
386 		.code  = BPF_JMP | BPF_EXIT,			\
387 		.dst_reg = 0,					\
388 		.src_reg = 0,					\
389 		.off   = 0,					\
390 		.imm   = 0 })
391 
392 /* Internal classic blocks for direct assignment */
393 
394 #define __BPF_STMT(CODE, K)					\
395 	((struct sock_filter) BPF_STMT(CODE, K))
396 
397 #define __BPF_JUMP(CODE, K, JT, JF)				\
398 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
399 
400 #define bytes_to_bpf_size(bytes)				\
401 ({								\
402 	int bpf_size = -EINVAL;					\
403 								\
404 	if (bytes == sizeof(u8))				\
405 		bpf_size = BPF_B;				\
406 	else if (bytes == sizeof(u16))				\
407 		bpf_size = BPF_H;				\
408 	else if (bytes == sizeof(u32))				\
409 		bpf_size = BPF_W;				\
410 	else if (bytes == sizeof(u64))				\
411 		bpf_size = BPF_DW;				\
412 								\
413 	bpf_size;						\
414 })
415 
416 #define bpf_size_to_bytes(bpf_size)				\
417 ({								\
418 	int bytes = -EINVAL;					\
419 								\
420 	if (bpf_size == BPF_B)					\
421 		bytes = sizeof(u8);				\
422 	else if (bpf_size == BPF_H)				\
423 		bytes = sizeof(u16);				\
424 	else if (bpf_size == BPF_W)				\
425 		bytes = sizeof(u32);				\
426 	else if (bpf_size == BPF_DW)				\
427 		bytes = sizeof(u64);				\
428 								\
429 	bytes;							\
430 })
431 
432 #define BPF_SIZEOF(type)					\
433 	({							\
434 		const int __size = bytes_to_bpf_size(sizeof(type)); \
435 		BUILD_BUG_ON(__size < 0);			\
436 		__size;						\
437 	})
438 
439 #define BPF_FIELD_SIZEOF(type, field)				\
440 	({							\
441 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
442 		BUILD_BUG_ON(__size < 0);			\
443 		__size;						\
444 	})
445 
446 #define BPF_LDST_BYTES(insn)					\
447 	({							\
448 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
449 		WARN_ON(__size < 0);				\
450 		__size;						\
451 	})
452 
453 #define __BPF_MAP_0(m, v, ...) v
454 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
455 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
456 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
457 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
458 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
459 
460 #define __BPF_REG_0(...) __BPF_PAD(5)
461 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
462 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
463 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
464 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
465 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
466 
467 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
468 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
469 
470 #define __BPF_CAST(t, a)						       \
471 	(__force t)							       \
472 	(__force							       \
473 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
474 				      (unsigned long)0, (t)0))) a
475 #define __BPF_V void
476 #define __BPF_N
477 
478 #define __BPF_DECL_ARGS(t, a) t   a
479 #define __BPF_DECL_REGS(t, a) u64 a
480 
481 #define __BPF_PAD(n)							       \
482 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
483 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
484 
485 #define BPF_CALL_x(x, name, ...)					       \
486 	static __always_inline						       \
487 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
488 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
489 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
490 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
491 	{								       \
492 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
493 	}								       \
494 	static __always_inline						       \
495 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
496 
497 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
498 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
499 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
500 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
501 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
502 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
503 
504 #define bpf_ctx_range(TYPE, MEMBER)						\
505 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
506 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
507 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
508 #if BITS_PER_LONG == 64
509 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
510 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
511 #else
512 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
513 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
514 #endif /* BITS_PER_LONG == 64 */
515 
516 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
517 	({									\
518 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
519 		*(PTR_SIZE) = (SIZE);						\
520 		offsetof(TYPE, MEMBER);						\
521 	})
522 
523 /* A struct sock_filter is architecture independent. */
524 struct compat_sock_fprog {
525 	u16		len;
526 	compat_uptr_t	filter;	/* struct sock_filter * */
527 };
528 
529 struct sock_fprog_kern {
530 	u16			len;
531 	struct sock_filter	*filter;
532 };
533 
534 /* Some arches need doubleword alignment for their instructions and/or data */
535 #define BPF_IMAGE_ALIGNMENT 8
536 
537 struct bpf_binary_header {
538 	u32 pages;
539 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
540 };
541 
542 struct bpf_prog {
543 	u16			pages;		/* Number of allocated pages */
544 	u16			jited:1,	/* Is our filter JIT'ed? */
545 				jit_requested:1,/* archs need to JIT the prog */
546 				gpl_compatible:1, /* Is filter GPL compatible? */
547 				cb_access:1,	/* Is control block accessed? */
548 				dst_needed:1,	/* Do we need dst entry? */
549 				blinded:1,	/* Was blinded */
550 				is_func:1,	/* program is a bpf function */
551 				kprobe_override:1, /* Do we override a kprobe? */
552 				has_callchain_buf:1, /* callchain buffer allocated? */
553 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
554 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
555 	enum bpf_prog_type	type;		/* Type of BPF program */
556 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
557 	u32			len;		/* Number of filter blocks */
558 	u32			jited_len;	/* Size of jited insns in bytes */
559 	u8			tag[BPF_TAG_SIZE];
560 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
561 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
562 	unsigned int		(*bpf_func)(const void *ctx,
563 					    const struct bpf_insn *insn);
564 	/* Instructions for interpreter */
565 	struct sock_filter	insns[0];
566 	struct bpf_insn		insnsi[];
567 };
568 
569 struct sk_filter {
570 	refcount_t	refcnt;
571 	struct rcu_head	rcu;
572 	struct bpf_prog	*prog;
573 };
574 
575 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
576 
577 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
578 	u32 __ret;							\
579 	cant_migrate();							\
580 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
581 		struct bpf_prog_stats *__stats;				\
582 		u64 __start = sched_clock();				\
583 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
584 		__stats = this_cpu_ptr(prog->aux->stats);		\
585 		u64_stats_update_begin(&__stats->syncp);		\
586 		__stats->cnt++;						\
587 		__stats->nsecs += sched_clock() - __start;		\
588 		u64_stats_update_end(&__stats->syncp);			\
589 	} else {							\
590 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
591 	}								\
592 	__ret; })
593 
594 #define BPF_PROG_RUN(prog, ctx)						\
595 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
596 
597 /*
598  * Use in preemptible and therefore migratable context to make sure that
599  * the execution of the BPF program runs on one CPU.
600  *
601  * This uses migrate_disable/enable() explicitly to document that the
602  * invocation of a BPF program does not require reentrancy protection
603  * against a BPF program which is invoked from a preempting task.
604  *
605  * For non RT enabled kernels migrate_disable/enable() maps to
606  * preempt_disable/enable(), i.e. it disables also preemption.
607  */
608 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
609 					  const void *ctx)
610 {
611 	u32 ret;
612 
613 	migrate_disable();
614 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
615 	migrate_enable();
616 	return ret;
617 }
618 
619 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
620 
621 struct bpf_skb_data_end {
622 	struct qdisc_skb_cb qdisc_cb;
623 	void *data_meta;
624 	void *data_end;
625 };
626 
627 struct bpf_nh_params {
628 	u32 nh_family;
629 	union {
630 		u32 ipv4_nh;
631 		struct in6_addr ipv6_nh;
632 	};
633 };
634 
635 struct bpf_redirect_info {
636 	u32 flags;
637 	u32 tgt_index;
638 	void *tgt_value;
639 	struct bpf_map *map;
640 	u32 kern_flags;
641 	struct bpf_nh_params nh;
642 };
643 
644 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
645 
646 /* flags for bpf_redirect_info kern_flags */
647 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
648 
649 /* Compute the linear packet data range [data, data_end) which
650  * will be accessed by various program types (cls_bpf, act_bpf,
651  * lwt, ...). Subsystems allowing direct data access must (!)
652  * ensure that cb[] area can be written to when BPF program is
653  * invoked (otherwise cb[] save/restore is necessary).
654  */
655 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
656 {
657 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
658 
659 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
660 	cb->data_meta = skb->data - skb_metadata_len(skb);
661 	cb->data_end  = skb->data + skb_headlen(skb);
662 }
663 
664 /* Similar to bpf_compute_data_pointers(), except that save orginal
665  * data in cb->data and cb->meta_data for restore.
666  */
667 static inline void bpf_compute_and_save_data_end(
668 	struct sk_buff *skb, void **saved_data_end)
669 {
670 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
671 
672 	*saved_data_end = cb->data_end;
673 	cb->data_end  = skb->data + skb_headlen(skb);
674 }
675 
676 /* Restore data saved by bpf_compute_data_pointers(). */
677 static inline void bpf_restore_data_end(
678 	struct sk_buff *skb, void *saved_data_end)
679 {
680 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
681 
682 	cb->data_end = saved_data_end;
683 }
684 
685 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
686 {
687 	/* eBPF programs may read/write skb->cb[] area to transfer meta
688 	 * data between tail calls. Since this also needs to work with
689 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
690 	 *
691 	 * In some socket filter cases, the cb unfortunately needs to be
692 	 * saved/restored so that protocol specific skb->cb[] data won't
693 	 * be lost. In any case, due to unpriviledged eBPF programs
694 	 * attached to sockets, we need to clear the bpf_skb_cb() area
695 	 * to not leak previous contents to user space.
696 	 */
697 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
698 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
699 		     sizeof_field(struct qdisc_skb_cb, data));
700 
701 	return qdisc_skb_cb(skb)->data;
702 }
703 
704 /* Must be invoked with migration disabled */
705 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
706 					 struct sk_buff *skb)
707 {
708 	u8 *cb_data = bpf_skb_cb(skb);
709 	u8 cb_saved[BPF_SKB_CB_LEN];
710 	u32 res;
711 
712 	if (unlikely(prog->cb_access)) {
713 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
714 		memset(cb_data, 0, sizeof(cb_saved));
715 	}
716 
717 	res = BPF_PROG_RUN(prog, skb);
718 
719 	if (unlikely(prog->cb_access))
720 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
721 
722 	return res;
723 }
724 
725 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
726 				       struct sk_buff *skb)
727 {
728 	u32 res;
729 
730 	migrate_disable();
731 	res = __bpf_prog_run_save_cb(prog, skb);
732 	migrate_enable();
733 	return res;
734 }
735 
736 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
737 					struct sk_buff *skb)
738 {
739 	u8 *cb_data = bpf_skb_cb(skb);
740 	u32 res;
741 
742 	if (unlikely(prog->cb_access))
743 		memset(cb_data, 0, BPF_SKB_CB_LEN);
744 
745 	res = bpf_prog_run_pin_on_cpu(prog, skb);
746 	return res;
747 }
748 
749 DECLARE_BPF_DISPATCHER(xdp)
750 
751 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
752 					    struct xdp_buff *xdp)
753 {
754 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
755 	 * can be released while still running, or map elements could be
756 	 * freed early while still having concurrent users. XDP fastpath
757 	 * already takes rcu_read_lock() when fetching the program, so
758 	 * it's not necessary here anymore.
759 	 */
760 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
761 }
762 
763 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
764 
765 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
766 {
767 	return prog->len * sizeof(struct bpf_insn);
768 }
769 
770 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
771 {
772 	return round_up(bpf_prog_insn_size(prog) +
773 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
774 }
775 
776 static inline unsigned int bpf_prog_size(unsigned int proglen)
777 {
778 	return max(sizeof(struct bpf_prog),
779 		   offsetof(struct bpf_prog, insns[proglen]));
780 }
781 
782 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
783 {
784 	/* When classic BPF programs have been loaded and the arch
785 	 * does not have a classic BPF JIT (anymore), they have been
786 	 * converted via bpf_migrate_filter() to eBPF and thus always
787 	 * have an unspec program type.
788 	 */
789 	return prog->type == BPF_PROG_TYPE_UNSPEC;
790 }
791 
792 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
793 {
794 	const u32 size_machine = sizeof(unsigned long);
795 
796 	if (size > size_machine && size % size_machine == 0)
797 		size = size_machine;
798 
799 	return size;
800 }
801 
802 static inline bool
803 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
804 {
805 	return size <= size_default && (size & (size - 1)) == 0;
806 }
807 
808 static inline u8
809 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
810 {
811 	u8 access_off = off & (size_default - 1);
812 
813 #ifdef __LITTLE_ENDIAN
814 	return access_off;
815 #else
816 	return size_default - (access_off + size);
817 #endif
818 }
819 
820 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
821 	(size == sizeof(__u64) &&					\
822 	off >= offsetof(type, field) &&					\
823 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
824 	off % sizeof(__u64) == 0)
825 
826 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
827 
828 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
829 {
830 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
831 	if (!fp->jited) {
832 		set_vm_flush_reset_perms(fp);
833 		set_memory_ro((unsigned long)fp, fp->pages);
834 	}
835 #endif
836 }
837 
838 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
839 {
840 	set_vm_flush_reset_perms(hdr);
841 	set_memory_ro((unsigned long)hdr, hdr->pages);
842 	set_memory_x((unsigned long)hdr, hdr->pages);
843 }
844 
845 static inline struct bpf_binary_header *
846 bpf_jit_binary_hdr(const struct bpf_prog *fp)
847 {
848 	unsigned long real_start = (unsigned long)fp->bpf_func;
849 	unsigned long addr = real_start & PAGE_MASK;
850 
851 	return (void *)addr;
852 }
853 
854 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
855 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
856 {
857 	return sk_filter_trim_cap(sk, skb, 1);
858 }
859 
860 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
861 void bpf_prog_free(struct bpf_prog *fp);
862 
863 bool bpf_opcode_in_insntable(u8 code);
864 
865 void bpf_prog_free_linfo(struct bpf_prog *prog);
866 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
867 			       const u32 *insn_to_jit_off);
868 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
869 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
870 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
871 
872 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
873 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
874 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
875 				  gfp_t gfp_extra_flags);
876 void __bpf_prog_free(struct bpf_prog *fp);
877 
878 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
879 {
880 	__bpf_prog_free(fp);
881 }
882 
883 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
884 				       unsigned int flen);
885 
886 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
887 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
888 			      bpf_aux_classic_check_t trans, bool save_orig);
889 void bpf_prog_destroy(struct bpf_prog *fp);
890 
891 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
892 int sk_attach_bpf(u32 ufd, struct sock *sk);
893 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
894 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
895 void sk_reuseport_prog_free(struct bpf_prog *prog);
896 int sk_detach_filter(struct sock *sk);
897 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
898 		  unsigned int len);
899 
900 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
901 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
902 
903 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
904 #define __bpf_call_base_args \
905 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
906 	 (void *)__bpf_call_base)
907 
908 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
909 void bpf_jit_compile(struct bpf_prog *prog);
910 bool bpf_jit_needs_zext(void);
911 bool bpf_helper_changes_pkt_data(void *func);
912 
913 static inline bool bpf_dump_raw_ok(const struct cred *cred)
914 {
915 	/* Reconstruction of call-sites is dependent on kallsyms,
916 	 * thus make dump the same restriction.
917 	 */
918 	return kallsyms_show_value(cred);
919 }
920 
921 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
922 				       const struct bpf_insn *patch, u32 len);
923 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
924 
925 void bpf_clear_redirect_map(struct bpf_map *map);
926 
927 static inline bool xdp_return_frame_no_direct(void)
928 {
929 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
930 
931 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
932 }
933 
934 static inline void xdp_set_return_frame_no_direct(void)
935 {
936 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
937 
938 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
939 }
940 
941 static inline void xdp_clear_return_frame_no_direct(void)
942 {
943 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
944 
945 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
946 }
947 
948 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
949 				 unsigned int pktlen)
950 {
951 	unsigned int len;
952 
953 	if (unlikely(!(fwd->flags & IFF_UP)))
954 		return -ENETDOWN;
955 
956 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
957 	if (pktlen > len)
958 		return -EMSGSIZE;
959 
960 	return 0;
961 }
962 
963 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
964  * same cpu context. Further for best results no more than a single map
965  * for the do_redirect/do_flush pair should be used. This limitation is
966  * because we only track one map and force a flush when the map changes.
967  * This does not appear to be a real limitation for existing software.
968  */
969 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
970 			    struct xdp_buff *xdp, struct bpf_prog *prog);
971 int xdp_do_redirect(struct net_device *dev,
972 		    struct xdp_buff *xdp,
973 		    struct bpf_prog *prog);
974 void xdp_do_flush(void);
975 
976 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
977  * it is no longer only flushing maps. Keep this define for compatibility
978  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
979  */
980 #define xdp_do_flush_map xdp_do_flush
981 
982 void bpf_warn_invalid_xdp_action(u32 act);
983 
984 #ifdef CONFIG_INET
985 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
986 				  struct bpf_prog *prog, struct sk_buff *skb,
987 				  u32 hash);
988 #else
989 static inline struct sock *
990 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
991 		     struct bpf_prog *prog, struct sk_buff *skb,
992 		     u32 hash)
993 {
994 	return NULL;
995 }
996 #endif
997 
998 #ifdef CONFIG_BPF_JIT
999 extern int bpf_jit_enable;
1000 extern int bpf_jit_harden;
1001 extern int bpf_jit_kallsyms;
1002 extern long bpf_jit_limit;
1003 
1004 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1005 
1006 struct bpf_binary_header *
1007 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1008 		     unsigned int alignment,
1009 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1010 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1011 u64 bpf_jit_alloc_exec_limit(void);
1012 void *bpf_jit_alloc_exec(unsigned long size);
1013 void bpf_jit_free_exec(void *addr);
1014 void bpf_jit_free(struct bpf_prog *fp);
1015 
1016 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1017 				struct bpf_jit_poke_descriptor *poke);
1018 
1019 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1020 			  const struct bpf_insn *insn, bool extra_pass,
1021 			  u64 *func_addr, bool *func_addr_fixed);
1022 
1023 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1024 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1025 
1026 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1027 				u32 pass, void *image)
1028 {
1029 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1030 	       proglen, pass, image, current->comm, task_pid_nr(current));
1031 
1032 	if (image)
1033 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1034 			       16, 1, image, proglen, false);
1035 }
1036 
1037 static inline bool bpf_jit_is_ebpf(void)
1038 {
1039 # ifdef CONFIG_HAVE_EBPF_JIT
1040 	return true;
1041 # else
1042 	return false;
1043 # endif
1044 }
1045 
1046 static inline bool ebpf_jit_enabled(void)
1047 {
1048 	return bpf_jit_enable && bpf_jit_is_ebpf();
1049 }
1050 
1051 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1052 {
1053 	return fp->jited && bpf_jit_is_ebpf();
1054 }
1055 
1056 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1057 {
1058 	/* These are the prerequisites, should someone ever have the
1059 	 * idea to call blinding outside of them, we make sure to
1060 	 * bail out.
1061 	 */
1062 	if (!bpf_jit_is_ebpf())
1063 		return false;
1064 	if (!prog->jit_requested)
1065 		return false;
1066 	if (!bpf_jit_harden)
1067 		return false;
1068 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1069 		return false;
1070 
1071 	return true;
1072 }
1073 
1074 static inline bool bpf_jit_kallsyms_enabled(void)
1075 {
1076 	/* There are a couple of corner cases where kallsyms should
1077 	 * not be enabled f.e. on hardening.
1078 	 */
1079 	if (bpf_jit_harden)
1080 		return false;
1081 	if (!bpf_jit_kallsyms)
1082 		return false;
1083 	if (bpf_jit_kallsyms == 1)
1084 		return true;
1085 
1086 	return false;
1087 }
1088 
1089 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1090 				 unsigned long *off, char *sym);
1091 bool is_bpf_text_address(unsigned long addr);
1092 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1093 		    char *sym);
1094 
1095 static inline const char *
1096 bpf_address_lookup(unsigned long addr, unsigned long *size,
1097 		   unsigned long *off, char **modname, char *sym)
1098 {
1099 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1100 
1101 	if (ret && modname)
1102 		*modname = NULL;
1103 	return ret;
1104 }
1105 
1106 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1107 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1108 
1109 #else /* CONFIG_BPF_JIT */
1110 
1111 static inline bool ebpf_jit_enabled(void)
1112 {
1113 	return false;
1114 }
1115 
1116 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1117 {
1118 	return false;
1119 }
1120 
1121 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1122 {
1123 	return false;
1124 }
1125 
1126 static inline int
1127 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1128 			    struct bpf_jit_poke_descriptor *poke)
1129 {
1130 	return -ENOTSUPP;
1131 }
1132 
1133 static inline void bpf_jit_free(struct bpf_prog *fp)
1134 {
1135 	bpf_prog_unlock_free(fp);
1136 }
1137 
1138 static inline bool bpf_jit_kallsyms_enabled(void)
1139 {
1140 	return false;
1141 }
1142 
1143 static inline const char *
1144 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1145 		     unsigned long *off, char *sym)
1146 {
1147 	return NULL;
1148 }
1149 
1150 static inline bool is_bpf_text_address(unsigned long addr)
1151 {
1152 	return false;
1153 }
1154 
1155 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1156 				  char *type, char *sym)
1157 {
1158 	return -ERANGE;
1159 }
1160 
1161 static inline const char *
1162 bpf_address_lookup(unsigned long addr, unsigned long *size,
1163 		   unsigned long *off, char **modname, char *sym)
1164 {
1165 	return NULL;
1166 }
1167 
1168 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1169 {
1170 }
1171 
1172 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1173 {
1174 }
1175 
1176 #endif /* CONFIG_BPF_JIT */
1177 
1178 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1179 
1180 #define BPF_ANC		BIT(15)
1181 
1182 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1183 {
1184 	switch (first->code) {
1185 	case BPF_RET | BPF_K:
1186 	case BPF_LD | BPF_W | BPF_LEN:
1187 		return false;
1188 
1189 	case BPF_LD | BPF_W | BPF_ABS:
1190 	case BPF_LD | BPF_H | BPF_ABS:
1191 	case BPF_LD | BPF_B | BPF_ABS:
1192 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1193 			return true;
1194 		return false;
1195 
1196 	default:
1197 		return true;
1198 	}
1199 }
1200 
1201 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1202 {
1203 	BUG_ON(ftest->code & BPF_ANC);
1204 
1205 	switch (ftest->code) {
1206 	case BPF_LD | BPF_W | BPF_ABS:
1207 	case BPF_LD | BPF_H | BPF_ABS:
1208 	case BPF_LD | BPF_B | BPF_ABS:
1209 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1210 				return BPF_ANC | SKF_AD_##CODE
1211 		switch (ftest->k) {
1212 		BPF_ANCILLARY(PROTOCOL);
1213 		BPF_ANCILLARY(PKTTYPE);
1214 		BPF_ANCILLARY(IFINDEX);
1215 		BPF_ANCILLARY(NLATTR);
1216 		BPF_ANCILLARY(NLATTR_NEST);
1217 		BPF_ANCILLARY(MARK);
1218 		BPF_ANCILLARY(QUEUE);
1219 		BPF_ANCILLARY(HATYPE);
1220 		BPF_ANCILLARY(RXHASH);
1221 		BPF_ANCILLARY(CPU);
1222 		BPF_ANCILLARY(ALU_XOR_X);
1223 		BPF_ANCILLARY(VLAN_TAG);
1224 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1225 		BPF_ANCILLARY(PAY_OFFSET);
1226 		BPF_ANCILLARY(RANDOM);
1227 		BPF_ANCILLARY(VLAN_TPID);
1228 		}
1229 		fallthrough;
1230 	default:
1231 		return ftest->code;
1232 	}
1233 }
1234 
1235 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1236 					   int k, unsigned int size);
1237 
1238 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1239 				     unsigned int size, void *buffer)
1240 {
1241 	if (k >= 0)
1242 		return skb_header_pointer(skb, k, size, buffer);
1243 
1244 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1245 }
1246 
1247 static inline int bpf_tell_extensions(void)
1248 {
1249 	return SKF_AD_MAX;
1250 }
1251 
1252 struct bpf_sock_addr_kern {
1253 	struct sock *sk;
1254 	struct sockaddr *uaddr;
1255 	/* Temporary "register" to make indirect stores to nested structures
1256 	 * defined above. We need three registers to make such a store, but
1257 	 * only two (src and dst) are available at convert_ctx_access time
1258 	 */
1259 	u64 tmp_reg;
1260 	void *t_ctx;	/* Attach type specific context. */
1261 };
1262 
1263 struct bpf_sock_ops_kern {
1264 	struct	sock *sk;
1265 	union {
1266 		u32 args[4];
1267 		u32 reply;
1268 		u32 replylong[4];
1269 	};
1270 	struct sk_buff	*syn_skb;
1271 	struct sk_buff	*skb;
1272 	void	*skb_data_end;
1273 	u8	op;
1274 	u8	is_fullsock;
1275 	u8	remaining_opt_len;
1276 	u64	temp;			/* temp and everything after is not
1277 					 * initialized to 0 before calling
1278 					 * the BPF program. New fields that
1279 					 * should be initialized to 0 should
1280 					 * be inserted before temp.
1281 					 * temp is scratch storage used by
1282 					 * sock_ops_convert_ctx_access
1283 					 * as temporary storage of a register.
1284 					 */
1285 };
1286 
1287 struct bpf_sysctl_kern {
1288 	struct ctl_table_header *head;
1289 	struct ctl_table *table;
1290 	void *cur_val;
1291 	size_t cur_len;
1292 	void *new_val;
1293 	size_t new_len;
1294 	int new_updated;
1295 	int write;
1296 	loff_t *ppos;
1297 	/* Temporary "register" for indirect stores to ppos. */
1298 	u64 tmp_reg;
1299 };
1300 
1301 struct bpf_sockopt_kern {
1302 	struct sock	*sk;
1303 	u8		*optval;
1304 	u8		*optval_end;
1305 	s32		level;
1306 	s32		optname;
1307 	s32		optlen;
1308 	s32		retval;
1309 };
1310 
1311 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1312 
1313 struct bpf_sk_lookup_kern {
1314 	u16		family;
1315 	u16		protocol;
1316 	__be16		sport;
1317 	u16		dport;
1318 	struct {
1319 		__be32 saddr;
1320 		__be32 daddr;
1321 	} v4;
1322 	struct {
1323 		const struct in6_addr *saddr;
1324 		const struct in6_addr *daddr;
1325 	} v6;
1326 	struct sock	*selected_sk;
1327 	bool		no_reuseport;
1328 };
1329 
1330 extern struct static_key_false bpf_sk_lookup_enabled;
1331 
1332 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1333  *
1334  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1335  * SK_DROP. Their meaning is as follows:
1336  *
1337  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1338  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1339  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1340  *
1341  * This macro aggregates return values and selected sockets from
1342  * multiple BPF programs according to following rules in order:
1343  *
1344  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1345  *     macro result is SK_PASS and last ctx.selected_sk is used.
1346  *  2. If any program returned SK_DROP return value,
1347  *     macro result is SK_DROP.
1348  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1349  *
1350  * Caller must ensure that the prog array is non-NULL, and that the
1351  * array as well as the programs it contains remain valid.
1352  */
1353 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1354 	({								\
1355 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1356 		struct bpf_prog_array_item *_item;			\
1357 		struct sock *_selected_sk = NULL;			\
1358 		bool _no_reuseport = false;				\
1359 		struct bpf_prog *_prog;					\
1360 		bool _all_pass = true;					\
1361 		u32 _ret;						\
1362 									\
1363 		migrate_disable();					\
1364 		_item = &(array)->items[0];				\
1365 		while ((_prog = READ_ONCE(_item->prog))) {		\
1366 			/* restore most recent selection */		\
1367 			_ctx->selected_sk = _selected_sk;		\
1368 			_ctx->no_reuseport = _no_reuseport;		\
1369 									\
1370 			_ret = func(_prog, _ctx);			\
1371 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1372 				/* remember last non-NULL socket */	\
1373 				_selected_sk = _ctx->selected_sk;	\
1374 				_no_reuseport = _ctx->no_reuseport;	\
1375 			} else if (_ret == SK_DROP && _all_pass) {	\
1376 				_all_pass = false;			\
1377 			}						\
1378 			_item++;					\
1379 		}							\
1380 		_ctx->selected_sk = _selected_sk;			\
1381 		_ctx->no_reuseport = _no_reuseport;			\
1382 		migrate_enable();					\
1383 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1384 	 })
1385 
1386 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1387 					const __be32 saddr, const __be16 sport,
1388 					const __be32 daddr, const u16 dport,
1389 					struct sock **psk)
1390 {
1391 	struct bpf_prog_array *run_array;
1392 	struct sock *selected_sk = NULL;
1393 	bool no_reuseport = false;
1394 
1395 	rcu_read_lock();
1396 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1397 	if (run_array) {
1398 		struct bpf_sk_lookup_kern ctx = {
1399 			.family		= AF_INET,
1400 			.protocol	= protocol,
1401 			.v4.saddr	= saddr,
1402 			.v4.daddr	= daddr,
1403 			.sport		= sport,
1404 			.dport		= dport,
1405 		};
1406 		u32 act;
1407 
1408 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1409 		if (act == SK_PASS) {
1410 			selected_sk = ctx.selected_sk;
1411 			no_reuseport = ctx.no_reuseport;
1412 		} else {
1413 			selected_sk = ERR_PTR(-ECONNREFUSED);
1414 		}
1415 	}
1416 	rcu_read_unlock();
1417 	*psk = selected_sk;
1418 	return no_reuseport;
1419 }
1420 
1421 #if IS_ENABLED(CONFIG_IPV6)
1422 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1423 					const struct in6_addr *saddr,
1424 					const __be16 sport,
1425 					const struct in6_addr *daddr,
1426 					const u16 dport,
1427 					struct sock **psk)
1428 {
1429 	struct bpf_prog_array *run_array;
1430 	struct sock *selected_sk = NULL;
1431 	bool no_reuseport = false;
1432 
1433 	rcu_read_lock();
1434 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1435 	if (run_array) {
1436 		struct bpf_sk_lookup_kern ctx = {
1437 			.family		= AF_INET6,
1438 			.protocol	= protocol,
1439 			.v6.saddr	= saddr,
1440 			.v6.daddr	= daddr,
1441 			.sport		= sport,
1442 			.dport		= dport,
1443 		};
1444 		u32 act;
1445 
1446 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1447 		if (act == SK_PASS) {
1448 			selected_sk = ctx.selected_sk;
1449 			no_reuseport = ctx.no_reuseport;
1450 		} else {
1451 			selected_sk = ERR_PTR(-ECONNREFUSED);
1452 		}
1453 	}
1454 	rcu_read_unlock();
1455 	*psk = selected_sk;
1456 	return no_reuseport;
1457 }
1458 #endif /* IS_ENABLED(CONFIG_IPV6) */
1459 
1460 #endif /* __LINUX_FILTER_H__ */
1461