xref: /linux-6.15/include/linux/filter.h (revision 401cb7da)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80 
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS	0xe0
83 
84 /* unused opcode to mark speculation barrier for mitigating
85  * Speculative Store Bypass
86  */
87 #define BPF_NOSPEC	0xc0
88 
89 /* As per nm, we expose JITed images as text (code) section for
90  * kallsyms. That way, tools like perf can find it to match
91  * addresses.
92  */
93 #define BPF_SYM_ELF_TYPE	't'
94 
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK	512
97 
98 /* Helper macros for filter block array initializers. */
99 
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101 
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
105 		.dst_reg = DST,					\
106 		.src_reg = SRC,					\
107 		.off   = OFF,					\
108 		.imm   = 0 })
109 
110 #define BPF_ALU64_REG(OP, DST, SRC)				\
111 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112 
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
114 	((struct bpf_insn) {					\
115 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
116 		.dst_reg = DST,					\
117 		.src_reg = SRC,					\
118 		.off   = OFF,					\
119 		.imm   = 0 })
120 
121 #define BPF_ALU32_REG(OP, DST, SRC)				\
122 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123 
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125 
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
127 	((struct bpf_insn) {					\
128 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
129 		.dst_reg = DST,					\
130 		.src_reg = 0,					\
131 		.off   = OFF,					\
132 		.imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)				\
134 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135 
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
137 	((struct bpf_insn) {					\
138 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
139 		.dst_reg = DST,					\
140 		.src_reg = 0,					\
141 		.off   = OFF,					\
142 		.imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)				\
144 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145 
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147 
148 #define BPF_ENDIAN(TYPE, DST, LEN)				\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
151 		.dst_reg = DST,					\
152 		.src_reg = 0,					\
153 		.off   = 0,					\
154 		.imm   = LEN })
155 
156 /* Byte Swap, bswap16/32/64 */
157 
158 #define BPF_BSWAP(DST, LEN)					\
159 	((struct bpf_insn) {					\
160 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
161 		.dst_reg = DST,					\
162 		.src_reg = 0,					\
163 		.off   = 0,					\
164 		.imm   = LEN })
165 
166 /* Short form of mov, dst_reg = src_reg */
167 
168 #define BPF_MOV64_REG(DST, SRC)					\
169 	((struct bpf_insn) {					\
170 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
171 		.dst_reg = DST,					\
172 		.src_reg = SRC,					\
173 		.off   = 0,					\
174 		.imm   = 0 })
175 
176 #define BPF_MOV32_REG(DST, SRC)					\
177 	((struct bpf_insn) {					\
178 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
179 		.dst_reg = DST,					\
180 		.src_reg = SRC,					\
181 		.off   = 0,					\
182 		.imm   = 0 })
183 
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU	(-1)
189 
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = BPF_ADDR_PERCPU,			\
196 		.imm   = 0 })
197 
198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202 
203 /* Short form of mov, dst_reg = imm32 */
204 
205 #define BPF_MOV64_IMM(DST, IMM)					\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
208 		.dst_reg = DST,					\
209 		.src_reg = 0,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 #define BPF_MOV32_IMM(DST, IMM)					\
214 	((struct bpf_insn) {					\
215 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
216 		.dst_reg = DST,					\
217 		.src_reg = 0,					\
218 		.off   = 0,					\
219 		.imm   = IMM })
220 
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222 
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
224 	((struct bpf_insn) {					\
225 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
226 		.dst_reg = DST,					\
227 		.src_reg = SRC,					\
228 		.off   = OFF,					\
229 		.imm   = 0 })
230 
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
232 	((struct bpf_insn) {					\
233 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
234 		.dst_reg = DST,					\
235 		.src_reg = SRC,					\
236 		.off   = OFF,					\
237 		.imm   = 0 })
238 
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)					\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
243 		.dst_reg = DST,					\
244 		.src_reg = DST,					\
245 		.off   = 0,					\
246 		.imm   = 1 })
247 
248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252 
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259 			      insn->off == BPF_ADDR_SPACE_CAST &&
260 			      insn->imm == 1U << 16;
261 }
262 
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)					\
265 	BPF_LD_IMM64_RAW(DST, 0, IMM)
266 
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
268 	((struct bpf_insn) {					\
269 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
270 		.dst_reg = DST,					\
271 		.src_reg = SRC,					\
272 		.off   = 0,					\
273 		.imm   = (__u32) (IMM) }),			\
274 	((struct bpf_insn) {					\
275 		.code  = 0, /* zero is reserved opcode */	\
276 		.dst_reg = 0,					\
277 		.src_reg = 0,					\
278 		.off   = 0,					\
279 		.imm   = ((__u64) (IMM)) >> 32 })
280 
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
283 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284 
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286 
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
288 	((struct bpf_insn) {					\
289 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
290 		.dst_reg = DST,					\
291 		.src_reg = SRC,					\
292 		.off   = 0,					\
293 		.imm   = IMM })
294 
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
298 		.dst_reg = DST,					\
299 		.src_reg = SRC,					\
300 		.off   = 0,					\
301 		.imm   = IMM })
302 
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304 
305 #define BPF_LD_ABS(SIZE, IMM)					\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
308 		.dst_reg = 0,					\
309 		.src_reg = 0,					\
310 		.off   = 0,					\
311 		.imm   = IMM })
312 
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314 
315 #define BPF_LD_IND(SIZE, SRC, IMM)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
318 		.dst_reg = 0,					\
319 		.src_reg = SRC,					\
320 		.off   = 0,					\
321 		.imm   = IMM })
322 
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324 
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334 
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344 
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
348 		.dst_reg = DST,					\
349 		.src_reg = SRC,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368 
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
370 	((struct bpf_insn) {					\
371 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
372 		.dst_reg = DST,					\
373 		.src_reg = SRC,					\
374 		.off   = OFF,					\
375 		.imm   = OP })
376 
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379 
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381 
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
383 	((struct bpf_insn) {					\
384 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
385 		.dst_reg = DST,					\
386 		.src_reg = 0,					\
387 		.off   = OFF,					\
388 		.imm   = IMM })
389 
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391 
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
393 	((struct bpf_insn) {					\
394 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
395 		.dst_reg = DST,					\
396 		.src_reg = SRC,					\
397 		.off   = OFF,					\
398 		.imm   = 0 })
399 
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401 
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
403 	((struct bpf_insn) {					\
404 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
405 		.dst_reg = DST,					\
406 		.src_reg = 0,					\
407 		.off   = OFF,					\
408 		.imm   = IMM })
409 
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411 
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
413 	((struct bpf_insn) {					\
414 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
415 		.dst_reg = DST,					\
416 		.src_reg = SRC,					\
417 		.off   = OFF,					\
418 		.imm   = 0 })
419 
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421 
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
423 	((struct bpf_insn) {					\
424 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
425 		.dst_reg = DST,					\
426 		.src_reg = 0,					\
427 		.off   = OFF,					\
428 		.imm   = IMM })
429 
430 /* Unconditional jumps, goto pc + off16 */
431 
432 #define BPF_JMP_A(OFF)						\
433 	((struct bpf_insn) {					\
434 		.code  = BPF_JMP | BPF_JA,			\
435 		.dst_reg = 0,					\
436 		.src_reg = 0,					\
437 		.off   = OFF,					\
438 		.imm   = 0 })
439 
440 /* Relative call */
441 
442 #define BPF_CALL_REL(TGT)					\
443 	((struct bpf_insn) {					\
444 		.code  = BPF_JMP | BPF_CALL,			\
445 		.dst_reg = 0,					\
446 		.src_reg = BPF_PSEUDO_CALL,			\
447 		.off   = 0,					\
448 		.imm   = TGT })
449 
450 /* Convert function address to BPF immediate */
451 
452 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
453 
454 #define BPF_EMIT_CALL(FUNC)					\
455 	((struct bpf_insn) {					\
456 		.code  = BPF_JMP | BPF_CALL,			\
457 		.dst_reg = 0,					\
458 		.src_reg = 0,					\
459 		.off   = 0,					\
460 		.imm   = BPF_CALL_IMM(FUNC) })
461 
462 /* Raw code statement block */
463 
464 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
465 	((struct bpf_insn) {					\
466 		.code  = CODE,					\
467 		.dst_reg = DST,					\
468 		.src_reg = SRC,					\
469 		.off   = OFF,					\
470 		.imm   = IMM })
471 
472 /* Program exit */
473 
474 #define BPF_EXIT_INSN()						\
475 	((struct bpf_insn) {					\
476 		.code  = BPF_JMP | BPF_EXIT,			\
477 		.dst_reg = 0,					\
478 		.src_reg = 0,					\
479 		.off   = 0,					\
480 		.imm   = 0 })
481 
482 /* Speculation barrier */
483 
484 #define BPF_ST_NOSPEC()						\
485 	((struct bpf_insn) {					\
486 		.code  = BPF_ST | BPF_NOSPEC,			\
487 		.dst_reg = 0,					\
488 		.src_reg = 0,					\
489 		.off   = 0,					\
490 		.imm   = 0 })
491 
492 /* Internal classic blocks for direct assignment */
493 
494 #define __BPF_STMT(CODE, K)					\
495 	((struct sock_filter) BPF_STMT(CODE, K))
496 
497 #define __BPF_JUMP(CODE, K, JT, JF)				\
498 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
499 
500 #define bytes_to_bpf_size(bytes)				\
501 ({								\
502 	int bpf_size = -EINVAL;					\
503 								\
504 	if (bytes == sizeof(u8))				\
505 		bpf_size = BPF_B;				\
506 	else if (bytes == sizeof(u16))				\
507 		bpf_size = BPF_H;				\
508 	else if (bytes == sizeof(u32))				\
509 		bpf_size = BPF_W;				\
510 	else if (bytes == sizeof(u64))				\
511 		bpf_size = BPF_DW;				\
512 								\
513 	bpf_size;						\
514 })
515 
516 #define bpf_size_to_bytes(bpf_size)				\
517 ({								\
518 	int bytes = -EINVAL;					\
519 								\
520 	if (bpf_size == BPF_B)					\
521 		bytes = sizeof(u8);				\
522 	else if (bpf_size == BPF_H)				\
523 		bytes = sizeof(u16);				\
524 	else if (bpf_size == BPF_W)				\
525 		bytes = sizeof(u32);				\
526 	else if (bpf_size == BPF_DW)				\
527 		bytes = sizeof(u64);				\
528 								\
529 	bytes;							\
530 })
531 
532 #define BPF_SIZEOF(type)					\
533 	({							\
534 		const int __size = bytes_to_bpf_size(sizeof(type)); \
535 		BUILD_BUG_ON(__size < 0);			\
536 		__size;						\
537 	})
538 
539 #define BPF_FIELD_SIZEOF(type, field)				\
540 	({							\
541 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
542 		BUILD_BUG_ON(__size < 0);			\
543 		__size;						\
544 	})
545 
546 #define BPF_LDST_BYTES(insn)					\
547 	({							\
548 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
549 		WARN_ON(__size < 0);				\
550 		__size;						\
551 	})
552 
553 #define __BPF_MAP_0(m, v, ...) v
554 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
555 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
556 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
557 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
558 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
559 
560 #define __BPF_REG_0(...) __BPF_PAD(5)
561 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
562 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
563 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
564 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
565 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
566 
567 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
568 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
569 
570 #define __BPF_CAST(t, a)						       \
571 	(__force t)							       \
572 	(__force							       \
573 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
574 				      (unsigned long)0, (t)0))) a
575 #define __BPF_V void
576 #define __BPF_N
577 
578 #define __BPF_DECL_ARGS(t, a) t   a
579 #define __BPF_DECL_REGS(t, a) u64 a
580 
581 #define __BPF_PAD(n)							       \
582 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
583 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
584 
585 #define BPF_CALL_x(x, attr, name, ...)					       \
586 	static __always_inline						       \
587 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
588 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
589 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
590 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
591 	{								       \
592 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
593 	}								       \
594 	static __always_inline						       \
595 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
596 
597 #define __NOATTR
598 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
599 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
600 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
601 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
602 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
603 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
604 
605 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
606 
607 #define bpf_ctx_range(TYPE, MEMBER)						\
608 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
609 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
610 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
611 #if BITS_PER_LONG == 64
612 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
613 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
614 #else
615 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
616 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
617 #endif /* BITS_PER_LONG == 64 */
618 
619 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
620 	({									\
621 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
622 		*(PTR_SIZE) = (SIZE);						\
623 		offsetof(TYPE, MEMBER);						\
624 	})
625 
626 /* A struct sock_filter is architecture independent. */
627 struct compat_sock_fprog {
628 	u16		len;
629 	compat_uptr_t	filter;	/* struct sock_filter * */
630 };
631 
632 struct sock_fprog_kern {
633 	u16			len;
634 	struct sock_filter	*filter;
635 };
636 
637 /* Some arches need doubleword alignment for their instructions and/or data */
638 #define BPF_IMAGE_ALIGNMENT 8
639 
640 struct bpf_binary_header {
641 	u32 size;
642 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
643 };
644 
645 struct bpf_prog_stats {
646 	u64_stats_t cnt;
647 	u64_stats_t nsecs;
648 	u64_stats_t misses;
649 	struct u64_stats_sync syncp;
650 } __aligned(2 * sizeof(u64));
651 
652 struct sk_filter {
653 	refcount_t	refcnt;
654 	struct rcu_head	rcu;
655 	struct bpf_prog	*prog;
656 };
657 
658 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
659 
660 extern struct mutex nf_conn_btf_access_lock;
661 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
662 				     const struct bpf_reg_state *reg,
663 				     int off, int size);
664 
665 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
666 					  const struct bpf_insn *insnsi,
667 					  unsigned int (*bpf_func)(const void *,
668 								   const struct bpf_insn *));
669 
670 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
671 					  const void *ctx,
672 					  bpf_dispatcher_fn dfunc)
673 {
674 	u32 ret;
675 
676 	cant_migrate();
677 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
678 		struct bpf_prog_stats *stats;
679 		u64 duration, start = sched_clock();
680 		unsigned long flags;
681 
682 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
683 
684 		duration = sched_clock() - start;
685 		stats = this_cpu_ptr(prog->stats);
686 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
687 		u64_stats_inc(&stats->cnt);
688 		u64_stats_add(&stats->nsecs, duration);
689 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
690 	} else {
691 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
692 	}
693 	return ret;
694 }
695 
696 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
697 {
698 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
699 }
700 
701 /*
702  * Use in preemptible and therefore migratable context to make sure that
703  * the execution of the BPF program runs on one CPU.
704  *
705  * This uses migrate_disable/enable() explicitly to document that the
706  * invocation of a BPF program does not require reentrancy protection
707  * against a BPF program which is invoked from a preempting task.
708  */
709 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
710 					  const void *ctx)
711 {
712 	u32 ret;
713 
714 	migrate_disable();
715 	ret = bpf_prog_run(prog, ctx);
716 	migrate_enable();
717 	return ret;
718 }
719 
720 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
721 
722 struct bpf_skb_data_end {
723 	struct qdisc_skb_cb qdisc_cb;
724 	void *data_meta;
725 	void *data_end;
726 };
727 
728 struct bpf_nh_params {
729 	u32 nh_family;
730 	union {
731 		u32 ipv4_nh;
732 		struct in6_addr ipv6_nh;
733 	};
734 };
735 
736 /* flags for bpf_redirect_info kern_flags */
737 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
738 #define BPF_RI_F_RI_INIT	BIT(1)
739 
740 struct bpf_redirect_info {
741 	u64 tgt_index;
742 	void *tgt_value;
743 	struct bpf_map *map;
744 	u32 flags;
745 	u32 map_id;
746 	enum bpf_map_type map_type;
747 	struct bpf_nh_params nh;
748 	u32 kern_flags;
749 };
750 
751 struct bpf_net_context {
752 	struct bpf_redirect_info ri;
753 };
754 
755 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
756 {
757 	struct task_struct *tsk = current;
758 
759 	if (tsk->bpf_net_context != NULL)
760 		return NULL;
761 	bpf_net_ctx->ri.kern_flags = 0;
762 
763 	tsk->bpf_net_context = bpf_net_ctx;
764 	return bpf_net_ctx;
765 }
766 
767 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
768 {
769 	if (bpf_net_ctx)
770 		current->bpf_net_context = NULL;
771 }
772 
773 static inline struct bpf_net_context *bpf_net_ctx_get(void)
774 {
775 	return current->bpf_net_context;
776 }
777 
778 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
779 {
780 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
781 
782 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
783 		memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
784 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
785 	}
786 
787 	return &bpf_net_ctx->ri;
788 }
789 
790 /* Compute the linear packet data range [data, data_end) which
791  * will be accessed by various program types (cls_bpf, act_bpf,
792  * lwt, ...). Subsystems allowing direct data access must (!)
793  * ensure that cb[] area can be written to when BPF program is
794  * invoked (otherwise cb[] save/restore is necessary).
795  */
796 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
797 {
798 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
799 
800 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
801 	cb->data_meta = skb->data - skb_metadata_len(skb);
802 	cb->data_end  = skb->data + skb_headlen(skb);
803 }
804 
805 /* Similar to bpf_compute_data_pointers(), except that save orginal
806  * data in cb->data and cb->meta_data for restore.
807  */
808 static inline void bpf_compute_and_save_data_end(
809 	struct sk_buff *skb, void **saved_data_end)
810 {
811 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
812 
813 	*saved_data_end = cb->data_end;
814 	cb->data_end  = skb->data + skb_headlen(skb);
815 }
816 
817 /* Restore data saved by bpf_compute_and_save_data_end(). */
818 static inline void bpf_restore_data_end(
819 	struct sk_buff *skb, void *saved_data_end)
820 {
821 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
822 
823 	cb->data_end = saved_data_end;
824 }
825 
826 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
827 {
828 	/* eBPF programs may read/write skb->cb[] area to transfer meta
829 	 * data between tail calls. Since this also needs to work with
830 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
831 	 *
832 	 * In some socket filter cases, the cb unfortunately needs to be
833 	 * saved/restored so that protocol specific skb->cb[] data won't
834 	 * be lost. In any case, due to unpriviledged eBPF programs
835 	 * attached to sockets, we need to clear the bpf_skb_cb() area
836 	 * to not leak previous contents to user space.
837 	 */
838 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
839 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
840 		     sizeof_field(struct qdisc_skb_cb, data));
841 
842 	return qdisc_skb_cb(skb)->data;
843 }
844 
845 /* Must be invoked with migration disabled */
846 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
847 					 const void *ctx)
848 {
849 	const struct sk_buff *skb = ctx;
850 	u8 *cb_data = bpf_skb_cb(skb);
851 	u8 cb_saved[BPF_SKB_CB_LEN];
852 	u32 res;
853 
854 	if (unlikely(prog->cb_access)) {
855 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
856 		memset(cb_data, 0, sizeof(cb_saved));
857 	}
858 
859 	res = bpf_prog_run(prog, skb);
860 
861 	if (unlikely(prog->cb_access))
862 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
863 
864 	return res;
865 }
866 
867 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
868 				       struct sk_buff *skb)
869 {
870 	u32 res;
871 
872 	migrate_disable();
873 	res = __bpf_prog_run_save_cb(prog, skb);
874 	migrate_enable();
875 	return res;
876 }
877 
878 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
879 					struct sk_buff *skb)
880 {
881 	u8 *cb_data = bpf_skb_cb(skb);
882 	u32 res;
883 
884 	if (unlikely(prog->cb_access))
885 		memset(cb_data, 0, BPF_SKB_CB_LEN);
886 
887 	res = bpf_prog_run_pin_on_cpu(prog, skb);
888 	return res;
889 }
890 
891 DECLARE_BPF_DISPATCHER(xdp)
892 
893 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
894 
895 u32 xdp_master_redirect(struct xdp_buff *xdp);
896 
897 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
898 
899 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
900 {
901 	return prog->len * sizeof(struct bpf_insn);
902 }
903 
904 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
905 {
906 	return round_up(bpf_prog_insn_size(prog) +
907 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
908 }
909 
910 static inline unsigned int bpf_prog_size(unsigned int proglen)
911 {
912 	return max(sizeof(struct bpf_prog),
913 		   offsetof(struct bpf_prog, insns[proglen]));
914 }
915 
916 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
917 {
918 	/* When classic BPF programs have been loaded and the arch
919 	 * does not have a classic BPF JIT (anymore), they have been
920 	 * converted via bpf_migrate_filter() to eBPF and thus always
921 	 * have an unspec program type.
922 	 */
923 	return prog->type == BPF_PROG_TYPE_UNSPEC;
924 }
925 
926 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
927 {
928 	const u32 size_machine = sizeof(unsigned long);
929 
930 	if (size > size_machine && size % size_machine == 0)
931 		size = size_machine;
932 
933 	return size;
934 }
935 
936 static inline bool
937 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
938 {
939 	return size <= size_default && (size & (size - 1)) == 0;
940 }
941 
942 static inline u8
943 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
944 {
945 	u8 access_off = off & (size_default - 1);
946 
947 #ifdef __LITTLE_ENDIAN
948 	return access_off;
949 #else
950 	return size_default - (access_off + size);
951 #endif
952 }
953 
954 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
955 	(size == sizeof(__u64) &&					\
956 	off >= offsetof(type, field) &&					\
957 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
958 	off % sizeof(__u64) == 0)
959 
960 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
961 
962 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
963 {
964 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
965 	if (!fp->jited) {
966 		set_vm_flush_reset_perms(fp);
967 		return set_memory_ro((unsigned long)fp, fp->pages);
968 	}
969 #endif
970 	return 0;
971 }
972 
973 static inline int __must_check
974 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
975 {
976 	set_vm_flush_reset_perms(hdr);
977 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
978 }
979 
980 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
981 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
982 {
983 	return sk_filter_trim_cap(sk, skb, 1);
984 }
985 
986 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
987 void bpf_prog_free(struct bpf_prog *fp);
988 
989 bool bpf_opcode_in_insntable(u8 code);
990 
991 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
992 			       const u32 *insn_to_jit_off);
993 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
994 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
995 
996 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
997 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
998 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
999 				  gfp_t gfp_extra_flags);
1000 void __bpf_prog_free(struct bpf_prog *fp);
1001 
1002 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1003 {
1004 	__bpf_prog_free(fp);
1005 }
1006 
1007 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1008 				       unsigned int flen);
1009 
1010 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1011 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1012 			      bpf_aux_classic_check_t trans, bool save_orig);
1013 void bpf_prog_destroy(struct bpf_prog *fp);
1014 
1015 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1016 int sk_attach_bpf(u32 ufd, struct sock *sk);
1017 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1018 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1019 void sk_reuseport_prog_free(struct bpf_prog *prog);
1020 int sk_detach_filter(struct sock *sk);
1021 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1022 
1023 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1024 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1025 
1026 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1027 #define __bpf_call_base_args \
1028 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1029 	 (void *)__bpf_call_base)
1030 
1031 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1032 void bpf_jit_compile(struct bpf_prog *prog);
1033 bool bpf_jit_needs_zext(void);
1034 bool bpf_jit_inlines_helper_call(s32 imm);
1035 bool bpf_jit_supports_subprog_tailcalls(void);
1036 bool bpf_jit_supports_percpu_insn(void);
1037 bool bpf_jit_supports_kfunc_call(void);
1038 bool bpf_jit_supports_far_kfunc_call(void);
1039 bool bpf_jit_supports_exceptions(void);
1040 bool bpf_jit_supports_ptr_xchg(void);
1041 bool bpf_jit_supports_arena(void);
1042 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1043 u64 bpf_arch_uaddress_limit(void);
1044 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1045 bool bpf_helper_changes_pkt_data(void *func);
1046 
1047 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1048 {
1049 	/* Reconstruction of call-sites is dependent on kallsyms,
1050 	 * thus make dump the same restriction.
1051 	 */
1052 	return kallsyms_show_value(cred);
1053 }
1054 
1055 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1056 				       const struct bpf_insn *patch, u32 len);
1057 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1058 
1059 static inline bool xdp_return_frame_no_direct(void)
1060 {
1061 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1062 
1063 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1064 }
1065 
1066 static inline void xdp_set_return_frame_no_direct(void)
1067 {
1068 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1069 
1070 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1071 }
1072 
1073 static inline void xdp_clear_return_frame_no_direct(void)
1074 {
1075 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1076 
1077 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1078 }
1079 
1080 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1081 				 unsigned int pktlen)
1082 {
1083 	unsigned int len;
1084 
1085 	if (unlikely(!(fwd->flags & IFF_UP)))
1086 		return -ENETDOWN;
1087 
1088 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1089 	if (pktlen > len)
1090 		return -EMSGSIZE;
1091 
1092 	return 0;
1093 }
1094 
1095 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1096  * same cpu context. Further for best results no more than a single map
1097  * for the do_redirect/do_flush pair should be used. This limitation is
1098  * because we only track one map and force a flush when the map changes.
1099  * This does not appear to be a real limitation for existing software.
1100  */
1101 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1102 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1103 int xdp_do_redirect(struct net_device *dev,
1104 		    struct xdp_buff *xdp,
1105 		    struct bpf_prog *prog);
1106 int xdp_do_redirect_frame(struct net_device *dev,
1107 			  struct xdp_buff *xdp,
1108 			  struct xdp_frame *xdpf,
1109 			  struct bpf_prog *prog);
1110 void xdp_do_flush(void);
1111 
1112 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1113 
1114 #ifdef CONFIG_INET
1115 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1116 				  struct bpf_prog *prog, struct sk_buff *skb,
1117 				  struct sock *migrating_sk,
1118 				  u32 hash);
1119 #else
1120 static inline struct sock *
1121 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1122 		     struct bpf_prog *prog, struct sk_buff *skb,
1123 		     struct sock *migrating_sk,
1124 		     u32 hash)
1125 {
1126 	return NULL;
1127 }
1128 #endif
1129 
1130 #ifdef CONFIG_BPF_JIT
1131 extern int bpf_jit_enable;
1132 extern int bpf_jit_harden;
1133 extern int bpf_jit_kallsyms;
1134 extern long bpf_jit_limit;
1135 extern long bpf_jit_limit_max;
1136 
1137 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1138 
1139 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1140 
1141 struct bpf_binary_header *
1142 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1143 		     unsigned int alignment,
1144 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1145 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1146 u64 bpf_jit_alloc_exec_limit(void);
1147 void *bpf_jit_alloc_exec(unsigned long size);
1148 void bpf_jit_free_exec(void *addr);
1149 void bpf_jit_free(struct bpf_prog *fp);
1150 struct bpf_binary_header *
1151 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1152 
1153 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1154 void bpf_prog_pack_free(void *ptr, u32 size);
1155 
1156 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1157 {
1158 	return list_empty(&fp->aux->ksym.lnode) ||
1159 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1160 }
1161 
1162 struct bpf_binary_header *
1163 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1164 			  unsigned int alignment,
1165 			  struct bpf_binary_header **rw_hdr,
1166 			  u8 **rw_image,
1167 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1168 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1169 				 struct bpf_binary_header *ro_header,
1170 				 struct bpf_binary_header *rw_header);
1171 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1172 			      struct bpf_binary_header *rw_header);
1173 
1174 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1175 				struct bpf_jit_poke_descriptor *poke);
1176 
1177 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1178 			  const struct bpf_insn *insn, bool extra_pass,
1179 			  u64 *func_addr, bool *func_addr_fixed);
1180 
1181 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1182 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1183 
1184 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1185 				u32 pass, void *image)
1186 {
1187 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1188 	       proglen, pass, image, current->comm, task_pid_nr(current));
1189 
1190 	if (image)
1191 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1192 			       16, 1, image, proglen, false);
1193 }
1194 
1195 static inline bool bpf_jit_is_ebpf(void)
1196 {
1197 # ifdef CONFIG_HAVE_EBPF_JIT
1198 	return true;
1199 # else
1200 	return false;
1201 # endif
1202 }
1203 
1204 static inline bool ebpf_jit_enabled(void)
1205 {
1206 	return bpf_jit_enable && bpf_jit_is_ebpf();
1207 }
1208 
1209 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1210 {
1211 	return fp->jited && bpf_jit_is_ebpf();
1212 }
1213 
1214 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1215 {
1216 	/* These are the prerequisites, should someone ever have the
1217 	 * idea to call blinding outside of them, we make sure to
1218 	 * bail out.
1219 	 */
1220 	if (!bpf_jit_is_ebpf())
1221 		return false;
1222 	if (!prog->jit_requested)
1223 		return false;
1224 	if (!bpf_jit_harden)
1225 		return false;
1226 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1227 		return false;
1228 
1229 	return true;
1230 }
1231 
1232 static inline bool bpf_jit_kallsyms_enabled(void)
1233 {
1234 	/* There are a couple of corner cases where kallsyms should
1235 	 * not be enabled f.e. on hardening.
1236 	 */
1237 	if (bpf_jit_harden)
1238 		return false;
1239 	if (!bpf_jit_kallsyms)
1240 		return false;
1241 	if (bpf_jit_kallsyms == 1)
1242 		return true;
1243 
1244 	return false;
1245 }
1246 
1247 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1248 				 unsigned long *off, char *sym);
1249 bool is_bpf_text_address(unsigned long addr);
1250 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1251 		    char *sym);
1252 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1253 
1254 static inline const char *
1255 bpf_address_lookup(unsigned long addr, unsigned long *size,
1256 		   unsigned long *off, char **modname, char *sym)
1257 {
1258 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1259 
1260 	if (ret && modname)
1261 		*modname = NULL;
1262 	return ret;
1263 }
1264 
1265 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1266 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1267 
1268 #else /* CONFIG_BPF_JIT */
1269 
1270 static inline bool ebpf_jit_enabled(void)
1271 {
1272 	return false;
1273 }
1274 
1275 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1276 {
1277 	return false;
1278 }
1279 
1280 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1281 {
1282 	return false;
1283 }
1284 
1285 static inline int
1286 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1287 			    struct bpf_jit_poke_descriptor *poke)
1288 {
1289 	return -ENOTSUPP;
1290 }
1291 
1292 static inline void bpf_jit_free(struct bpf_prog *fp)
1293 {
1294 	bpf_prog_unlock_free(fp);
1295 }
1296 
1297 static inline bool bpf_jit_kallsyms_enabled(void)
1298 {
1299 	return false;
1300 }
1301 
1302 static inline const char *
1303 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1304 		     unsigned long *off, char *sym)
1305 {
1306 	return NULL;
1307 }
1308 
1309 static inline bool is_bpf_text_address(unsigned long addr)
1310 {
1311 	return false;
1312 }
1313 
1314 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1315 				  char *type, char *sym)
1316 {
1317 	return -ERANGE;
1318 }
1319 
1320 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1321 {
1322 	return NULL;
1323 }
1324 
1325 static inline const char *
1326 bpf_address_lookup(unsigned long addr, unsigned long *size,
1327 		   unsigned long *off, char **modname, char *sym)
1328 {
1329 	return NULL;
1330 }
1331 
1332 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1333 {
1334 }
1335 
1336 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1337 {
1338 }
1339 
1340 #endif /* CONFIG_BPF_JIT */
1341 
1342 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1343 
1344 #define BPF_ANC		BIT(15)
1345 
1346 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1347 {
1348 	switch (first->code) {
1349 	case BPF_RET | BPF_K:
1350 	case BPF_LD | BPF_W | BPF_LEN:
1351 		return false;
1352 
1353 	case BPF_LD | BPF_W | BPF_ABS:
1354 	case BPF_LD | BPF_H | BPF_ABS:
1355 	case BPF_LD | BPF_B | BPF_ABS:
1356 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1357 			return true;
1358 		return false;
1359 
1360 	default:
1361 		return true;
1362 	}
1363 }
1364 
1365 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1366 {
1367 	BUG_ON(ftest->code & BPF_ANC);
1368 
1369 	switch (ftest->code) {
1370 	case BPF_LD | BPF_W | BPF_ABS:
1371 	case BPF_LD | BPF_H | BPF_ABS:
1372 	case BPF_LD | BPF_B | BPF_ABS:
1373 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1374 				return BPF_ANC | SKF_AD_##CODE
1375 		switch (ftest->k) {
1376 		BPF_ANCILLARY(PROTOCOL);
1377 		BPF_ANCILLARY(PKTTYPE);
1378 		BPF_ANCILLARY(IFINDEX);
1379 		BPF_ANCILLARY(NLATTR);
1380 		BPF_ANCILLARY(NLATTR_NEST);
1381 		BPF_ANCILLARY(MARK);
1382 		BPF_ANCILLARY(QUEUE);
1383 		BPF_ANCILLARY(HATYPE);
1384 		BPF_ANCILLARY(RXHASH);
1385 		BPF_ANCILLARY(CPU);
1386 		BPF_ANCILLARY(ALU_XOR_X);
1387 		BPF_ANCILLARY(VLAN_TAG);
1388 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1389 		BPF_ANCILLARY(PAY_OFFSET);
1390 		BPF_ANCILLARY(RANDOM);
1391 		BPF_ANCILLARY(VLAN_TPID);
1392 		}
1393 		fallthrough;
1394 	default:
1395 		return ftest->code;
1396 	}
1397 }
1398 
1399 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1400 					   int k, unsigned int size);
1401 
1402 static inline int bpf_tell_extensions(void)
1403 {
1404 	return SKF_AD_MAX;
1405 }
1406 
1407 struct bpf_sock_addr_kern {
1408 	struct sock *sk;
1409 	struct sockaddr *uaddr;
1410 	/* Temporary "register" to make indirect stores to nested structures
1411 	 * defined above. We need three registers to make such a store, but
1412 	 * only two (src and dst) are available at convert_ctx_access time
1413 	 */
1414 	u64 tmp_reg;
1415 	void *t_ctx;	/* Attach type specific context. */
1416 	u32 uaddrlen;
1417 };
1418 
1419 struct bpf_sock_ops_kern {
1420 	struct	sock *sk;
1421 	union {
1422 		u32 args[4];
1423 		u32 reply;
1424 		u32 replylong[4];
1425 	};
1426 	struct sk_buff	*syn_skb;
1427 	struct sk_buff	*skb;
1428 	void	*skb_data_end;
1429 	u8	op;
1430 	u8	is_fullsock;
1431 	u8	remaining_opt_len;
1432 	u64	temp;			/* temp and everything after is not
1433 					 * initialized to 0 before calling
1434 					 * the BPF program. New fields that
1435 					 * should be initialized to 0 should
1436 					 * be inserted before temp.
1437 					 * temp is scratch storage used by
1438 					 * sock_ops_convert_ctx_access
1439 					 * as temporary storage of a register.
1440 					 */
1441 };
1442 
1443 struct bpf_sysctl_kern {
1444 	struct ctl_table_header *head;
1445 	const struct ctl_table *table;
1446 	void *cur_val;
1447 	size_t cur_len;
1448 	void *new_val;
1449 	size_t new_len;
1450 	int new_updated;
1451 	int write;
1452 	loff_t *ppos;
1453 	/* Temporary "register" for indirect stores to ppos. */
1454 	u64 tmp_reg;
1455 };
1456 
1457 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1458 struct bpf_sockopt_buf {
1459 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1460 };
1461 
1462 struct bpf_sockopt_kern {
1463 	struct sock	*sk;
1464 	u8		*optval;
1465 	u8		*optval_end;
1466 	s32		level;
1467 	s32		optname;
1468 	s32		optlen;
1469 	/* for retval in struct bpf_cg_run_ctx */
1470 	struct task_struct *current_task;
1471 	/* Temporary "register" for indirect stores to ppos. */
1472 	u64		tmp_reg;
1473 };
1474 
1475 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1476 
1477 struct bpf_sk_lookup_kern {
1478 	u16		family;
1479 	u16		protocol;
1480 	__be16		sport;
1481 	u16		dport;
1482 	struct {
1483 		__be32 saddr;
1484 		__be32 daddr;
1485 	} v4;
1486 	struct {
1487 		const struct in6_addr *saddr;
1488 		const struct in6_addr *daddr;
1489 	} v6;
1490 	struct sock	*selected_sk;
1491 	u32		ingress_ifindex;
1492 	bool		no_reuseport;
1493 };
1494 
1495 extern struct static_key_false bpf_sk_lookup_enabled;
1496 
1497 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1498  *
1499  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1500  * SK_DROP. Their meaning is as follows:
1501  *
1502  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1503  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1504  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1505  *
1506  * This macro aggregates return values and selected sockets from
1507  * multiple BPF programs according to following rules in order:
1508  *
1509  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1510  *     macro result is SK_PASS and last ctx.selected_sk is used.
1511  *  2. If any program returned SK_DROP return value,
1512  *     macro result is SK_DROP.
1513  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1514  *
1515  * Caller must ensure that the prog array is non-NULL, and that the
1516  * array as well as the programs it contains remain valid.
1517  */
1518 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1519 	({								\
1520 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1521 		struct bpf_prog_array_item *_item;			\
1522 		struct sock *_selected_sk = NULL;			\
1523 		bool _no_reuseport = false;				\
1524 		struct bpf_prog *_prog;					\
1525 		bool _all_pass = true;					\
1526 		u32 _ret;						\
1527 									\
1528 		migrate_disable();					\
1529 		_item = &(array)->items[0];				\
1530 		while ((_prog = READ_ONCE(_item->prog))) {		\
1531 			/* restore most recent selection */		\
1532 			_ctx->selected_sk = _selected_sk;		\
1533 			_ctx->no_reuseport = _no_reuseport;		\
1534 									\
1535 			_ret = func(_prog, _ctx);			\
1536 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1537 				/* remember last non-NULL socket */	\
1538 				_selected_sk = _ctx->selected_sk;	\
1539 				_no_reuseport = _ctx->no_reuseport;	\
1540 			} else if (_ret == SK_DROP && _all_pass) {	\
1541 				_all_pass = false;			\
1542 			}						\
1543 			_item++;					\
1544 		}							\
1545 		_ctx->selected_sk = _selected_sk;			\
1546 		_ctx->no_reuseport = _no_reuseport;			\
1547 		migrate_enable();					\
1548 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1549 	 })
1550 
1551 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1552 					const __be32 saddr, const __be16 sport,
1553 					const __be32 daddr, const u16 dport,
1554 					const int ifindex, struct sock **psk)
1555 {
1556 	struct bpf_prog_array *run_array;
1557 	struct sock *selected_sk = NULL;
1558 	bool no_reuseport = false;
1559 
1560 	rcu_read_lock();
1561 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1562 	if (run_array) {
1563 		struct bpf_sk_lookup_kern ctx = {
1564 			.family		= AF_INET,
1565 			.protocol	= protocol,
1566 			.v4.saddr	= saddr,
1567 			.v4.daddr	= daddr,
1568 			.sport		= sport,
1569 			.dport		= dport,
1570 			.ingress_ifindex	= ifindex,
1571 		};
1572 		u32 act;
1573 
1574 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1575 		if (act == SK_PASS) {
1576 			selected_sk = ctx.selected_sk;
1577 			no_reuseport = ctx.no_reuseport;
1578 		} else {
1579 			selected_sk = ERR_PTR(-ECONNREFUSED);
1580 		}
1581 	}
1582 	rcu_read_unlock();
1583 	*psk = selected_sk;
1584 	return no_reuseport;
1585 }
1586 
1587 #if IS_ENABLED(CONFIG_IPV6)
1588 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1589 					const struct in6_addr *saddr,
1590 					const __be16 sport,
1591 					const struct in6_addr *daddr,
1592 					const u16 dport,
1593 					const int ifindex, struct sock **psk)
1594 {
1595 	struct bpf_prog_array *run_array;
1596 	struct sock *selected_sk = NULL;
1597 	bool no_reuseport = false;
1598 
1599 	rcu_read_lock();
1600 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1601 	if (run_array) {
1602 		struct bpf_sk_lookup_kern ctx = {
1603 			.family		= AF_INET6,
1604 			.protocol	= protocol,
1605 			.v6.saddr	= saddr,
1606 			.v6.daddr	= daddr,
1607 			.sport		= sport,
1608 			.dport		= dport,
1609 			.ingress_ifindex	= ifindex,
1610 		};
1611 		u32 act;
1612 
1613 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1614 		if (act == SK_PASS) {
1615 			selected_sk = ctx.selected_sk;
1616 			no_reuseport = ctx.no_reuseport;
1617 		} else {
1618 			selected_sk = ERR_PTR(-ECONNREFUSED);
1619 		}
1620 	}
1621 	rcu_read_unlock();
1622 	*psk = selected_sk;
1623 	return no_reuseport;
1624 }
1625 #endif /* IS_ENABLED(CONFIG_IPV6) */
1626 
1627 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1628 						   u64 flags, const u64 flag_mask,
1629 						   void *lookup_elem(struct bpf_map *map, u32 key))
1630 {
1631 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1632 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1633 
1634 	/* Lower bits of the flags are used as return code on lookup failure */
1635 	if (unlikely(flags & ~(action_mask | flag_mask)))
1636 		return XDP_ABORTED;
1637 
1638 	ri->tgt_value = lookup_elem(map, index);
1639 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1640 		/* If the lookup fails we want to clear out the state in the
1641 		 * redirect_info struct completely, so that if an eBPF program
1642 		 * performs multiple lookups, the last one always takes
1643 		 * precedence.
1644 		 */
1645 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1646 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1647 		return flags & action_mask;
1648 	}
1649 
1650 	ri->tgt_index = index;
1651 	ri->map_id = map->id;
1652 	ri->map_type = map->map_type;
1653 
1654 	if (flags & BPF_F_BROADCAST) {
1655 		WRITE_ONCE(ri->map, map);
1656 		ri->flags = flags;
1657 	} else {
1658 		WRITE_ONCE(ri->map, NULL);
1659 		ri->flags = 0;
1660 	}
1661 
1662 	return XDP_REDIRECT;
1663 }
1664 
1665 #ifdef CONFIG_NET
1666 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1667 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1668 			  u32 len, u64 flags);
1669 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1670 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1671 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1672 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1673 		      void *buf, unsigned long len, bool flush);
1674 #else /* CONFIG_NET */
1675 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1676 				       void *to, u32 len)
1677 {
1678 	return -EOPNOTSUPP;
1679 }
1680 
1681 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1682 					const void *from, u32 len, u64 flags)
1683 {
1684 	return -EOPNOTSUPP;
1685 }
1686 
1687 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1688 				       void *buf, u32 len)
1689 {
1690 	return -EOPNOTSUPP;
1691 }
1692 
1693 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1694 					void *buf, u32 len)
1695 {
1696 	return -EOPNOTSUPP;
1697 }
1698 
1699 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1700 {
1701 	return NULL;
1702 }
1703 
1704 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1705 				    unsigned long len, bool flush)
1706 {
1707 }
1708 #endif /* CONFIG_NET */
1709 
1710 #endif /* __LINUX_FILTER_H__ */
1711