xref: /linux-6.15/include/linux/filter.h (revision 3af1dfdd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 #include <uapi/linux/bpf.h>
32 
33 struct sk_buff;
34 struct sock;
35 struct seccomp_data;
36 struct bpf_prog_aux;
37 struct xdp_rxq_info;
38 struct xdp_buff;
39 struct sock_reuseport;
40 struct ctl_table;
41 struct ctl_table_header;
42 
43 /* ArgX, context and stack frame pointer register positions. Note,
44  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45  * calls in BPF_CALL instruction.
46  */
47 #define BPF_REG_ARG1	BPF_REG_1
48 #define BPF_REG_ARG2	BPF_REG_2
49 #define BPF_REG_ARG3	BPF_REG_3
50 #define BPF_REG_ARG4	BPF_REG_4
51 #define BPF_REG_ARG5	BPF_REG_5
52 #define BPF_REG_CTX	BPF_REG_6
53 #define BPF_REG_FP	BPF_REG_10
54 
55 /* Additional register mappings for converted user programs. */
56 #define BPF_REG_A	BPF_REG_0
57 #define BPF_REG_X	BPF_REG_7
58 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
59 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
60 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
61 
62 /* Kernel hidden auxiliary/helper register. */
63 #define BPF_REG_AX		MAX_BPF_REG
64 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
65 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
66 
67 /* unused opcode to mark special call to bpf_tail_call() helper */
68 #define BPF_TAIL_CALL	0xf0
69 
70 /* unused opcode to mark special load instruction. Same as BPF_ABS */
71 #define BPF_PROBE_MEM	0x20
72 
73 /* unused opcode to mark call to interpreter with arguments */
74 #define BPF_CALL_ARGS	0xe0
75 
76 /* unused opcode to mark speculation barrier for mitigating
77  * Speculative Store Bypass
78  */
79 #define BPF_NOSPEC	0xc0
80 
81 /* As per nm, we expose JITed images as text (code) section for
82  * kallsyms. That way, tools like perf can find it to match
83  * addresses.
84  */
85 #define BPF_SYM_ELF_TYPE	't'
86 
87 /* BPF program can access up to 512 bytes of stack space. */
88 #define MAX_BPF_STACK	512
89 
90 /* Helper macros for filter block array initializers. */
91 
92 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
93 
94 #define BPF_ALU64_REG(OP, DST, SRC)				\
95 	((struct bpf_insn) {					\
96 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
97 		.dst_reg = DST,					\
98 		.src_reg = SRC,					\
99 		.off   = 0,					\
100 		.imm   = 0 })
101 
102 #define BPF_ALU32_REG(OP, DST, SRC)				\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
105 		.dst_reg = DST,					\
106 		.src_reg = SRC,					\
107 		.off   = 0,					\
108 		.imm   = 0 })
109 
110 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
111 
112 #define BPF_ALU64_IMM(OP, DST, IMM)				\
113 	((struct bpf_insn) {					\
114 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
115 		.dst_reg = DST,					\
116 		.src_reg = 0,					\
117 		.off   = 0,					\
118 		.imm   = IMM })
119 
120 #define BPF_ALU32_IMM(OP, DST, IMM)				\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = 0,					\
126 		.imm   = IMM })
127 
128 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
129 
130 #define BPF_ENDIAN(TYPE, DST, LEN)				\
131 	((struct bpf_insn) {					\
132 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
133 		.dst_reg = DST,					\
134 		.src_reg = 0,					\
135 		.off   = 0,					\
136 		.imm   = LEN })
137 
138 /* Short form of mov, dst_reg = src_reg */
139 
140 #define BPF_MOV64_REG(DST, SRC)					\
141 	((struct bpf_insn) {					\
142 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
143 		.dst_reg = DST,					\
144 		.src_reg = SRC,					\
145 		.off   = 0,					\
146 		.imm   = 0 })
147 
148 #define BPF_MOV32_REG(DST, SRC)					\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
151 		.dst_reg = DST,					\
152 		.src_reg = SRC,					\
153 		.off   = 0,					\
154 		.imm   = 0 })
155 
156 /* Short form of mov, dst_reg = imm32 */
157 
158 #define BPF_MOV64_IMM(DST, IMM)					\
159 	((struct bpf_insn) {					\
160 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
161 		.dst_reg = DST,					\
162 		.src_reg = 0,					\
163 		.off   = 0,					\
164 		.imm   = IMM })
165 
166 #define BPF_MOV32_IMM(DST, IMM)					\
167 	((struct bpf_insn) {					\
168 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
169 		.dst_reg = DST,					\
170 		.src_reg = 0,					\
171 		.off   = 0,					\
172 		.imm   = IMM })
173 
174 /* Special form of mov32, used for doing explicit zero extension on dst. */
175 #define BPF_ZEXT_REG(DST)					\
176 	((struct bpf_insn) {					\
177 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
178 		.dst_reg = DST,					\
179 		.src_reg = DST,					\
180 		.off   = 0,					\
181 		.imm   = 1 })
182 
183 static inline bool insn_is_zext(const struct bpf_insn *insn)
184 {
185 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
186 }
187 
188 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
189 #define BPF_LD_IMM64(DST, IMM)					\
190 	BPF_LD_IMM64_RAW(DST, 0, IMM)
191 
192 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
193 	((struct bpf_insn) {					\
194 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
195 		.dst_reg = DST,					\
196 		.src_reg = SRC,					\
197 		.off   = 0,					\
198 		.imm   = (__u32) (IMM) }),			\
199 	((struct bpf_insn) {					\
200 		.code  = 0, /* zero is reserved opcode */	\
201 		.dst_reg = 0,					\
202 		.src_reg = 0,					\
203 		.off   = 0,					\
204 		.imm   = ((__u64) (IMM)) >> 32 })
205 
206 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
207 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
208 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
209 
210 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
211 
212 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
213 	((struct bpf_insn) {					\
214 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
215 		.dst_reg = DST,					\
216 		.src_reg = SRC,					\
217 		.off   = 0,					\
218 		.imm   = IMM })
219 
220 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
221 	((struct bpf_insn) {					\
222 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
223 		.dst_reg = DST,					\
224 		.src_reg = SRC,					\
225 		.off   = 0,					\
226 		.imm   = IMM })
227 
228 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
229 
230 #define BPF_LD_ABS(SIZE, IMM)					\
231 	((struct bpf_insn) {					\
232 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
233 		.dst_reg = 0,					\
234 		.src_reg = 0,					\
235 		.off   = 0,					\
236 		.imm   = IMM })
237 
238 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
239 
240 #define BPF_LD_IND(SIZE, SRC, IMM)				\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
243 		.dst_reg = 0,					\
244 		.src_reg = SRC,					\
245 		.off   = 0,					\
246 		.imm   = IMM })
247 
248 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
249 
250 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
251 	((struct bpf_insn) {					\
252 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
253 		.dst_reg = DST,					\
254 		.src_reg = SRC,					\
255 		.off   = OFF,					\
256 		.imm   = 0 })
257 
258 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
259 
260 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
261 	((struct bpf_insn) {					\
262 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
263 		.dst_reg = DST,					\
264 		.src_reg = SRC,					\
265 		.off   = OFF,					\
266 		.imm   = 0 })
267 
268 
269 /*
270  * Atomic operations:
271  *
272  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
273  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
274  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
275  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
276  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
277  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
278  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
279  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
280  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
281  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
282  */
283 
284 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
285 	((struct bpf_insn) {					\
286 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
287 		.dst_reg = DST,					\
288 		.src_reg = SRC,					\
289 		.off   = OFF,					\
290 		.imm   = OP })
291 
292 /* Legacy alias */
293 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
294 
295 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
296 
297 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
298 	((struct bpf_insn) {					\
299 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
300 		.dst_reg = DST,					\
301 		.src_reg = 0,					\
302 		.off   = OFF,					\
303 		.imm   = IMM })
304 
305 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
306 
307 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
308 	((struct bpf_insn) {					\
309 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
310 		.dst_reg = DST,					\
311 		.src_reg = SRC,					\
312 		.off   = OFF,					\
313 		.imm   = 0 })
314 
315 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
316 
317 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
318 	((struct bpf_insn) {					\
319 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
320 		.dst_reg = DST,					\
321 		.src_reg = 0,					\
322 		.off   = OFF,					\
323 		.imm   = IMM })
324 
325 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
326 
327 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
328 	((struct bpf_insn) {					\
329 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
330 		.dst_reg = DST,					\
331 		.src_reg = SRC,					\
332 		.off   = OFF,					\
333 		.imm   = 0 })
334 
335 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
336 
337 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
338 	((struct bpf_insn) {					\
339 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
340 		.dst_reg = DST,					\
341 		.src_reg = 0,					\
342 		.off   = OFF,					\
343 		.imm   = IMM })
344 
345 /* Unconditional jumps, goto pc + off16 */
346 
347 #define BPF_JMP_A(OFF)						\
348 	((struct bpf_insn) {					\
349 		.code  = BPF_JMP | BPF_JA,			\
350 		.dst_reg = 0,					\
351 		.src_reg = 0,					\
352 		.off   = OFF,					\
353 		.imm   = 0 })
354 
355 /* Relative call */
356 
357 #define BPF_CALL_REL(TGT)					\
358 	((struct bpf_insn) {					\
359 		.code  = BPF_JMP | BPF_CALL,			\
360 		.dst_reg = 0,					\
361 		.src_reg = BPF_PSEUDO_CALL,			\
362 		.off   = 0,					\
363 		.imm   = TGT })
364 
365 /* Function call */
366 
367 #define BPF_CAST_CALL(x)					\
368 		((u64 (*)(u64, u64, u64, u64, u64))(x))
369 
370 #define BPF_EMIT_CALL(FUNC)					\
371 	((struct bpf_insn) {					\
372 		.code  = BPF_JMP | BPF_CALL,			\
373 		.dst_reg = 0,					\
374 		.src_reg = 0,					\
375 		.off   = 0,					\
376 		.imm   = ((FUNC) - __bpf_call_base) })
377 
378 /* Raw code statement block */
379 
380 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
381 	((struct bpf_insn) {					\
382 		.code  = CODE,					\
383 		.dst_reg = DST,					\
384 		.src_reg = SRC,					\
385 		.off   = OFF,					\
386 		.imm   = IMM })
387 
388 /* Program exit */
389 
390 #define BPF_EXIT_INSN()						\
391 	((struct bpf_insn) {					\
392 		.code  = BPF_JMP | BPF_EXIT,			\
393 		.dst_reg = 0,					\
394 		.src_reg = 0,					\
395 		.off   = 0,					\
396 		.imm   = 0 })
397 
398 /* Speculation barrier */
399 
400 #define BPF_ST_NOSPEC()						\
401 	((struct bpf_insn) {					\
402 		.code  = BPF_ST | BPF_NOSPEC,			\
403 		.dst_reg = 0,					\
404 		.src_reg = 0,					\
405 		.off   = 0,					\
406 		.imm   = 0 })
407 
408 /* Internal classic blocks for direct assignment */
409 
410 #define __BPF_STMT(CODE, K)					\
411 	((struct sock_filter) BPF_STMT(CODE, K))
412 
413 #define __BPF_JUMP(CODE, K, JT, JF)				\
414 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
415 
416 #define bytes_to_bpf_size(bytes)				\
417 ({								\
418 	int bpf_size = -EINVAL;					\
419 								\
420 	if (bytes == sizeof(u8))				\
421 		bpf_size = BPF_B;				\
422 	else if (bytes == sizeof(u16))				\
423 		bpf_size = BPF_H;				\
424 	else if (bytes == sizeof(u32))				\
425 		bpf_size = BPF_W;				\
426 	else if (bytes == sizeof(u64))				\
427 		bpf_size = BPF_DW;				\
428 								\
429 	bpf_size;						\
430 })
431 
432 #define bpf_size_to_bytes(bpf_size)				\
433 ({								\
434 	int bytes = -EINVAL;					\
435 								\
436 	if (bpf_size == BPF_B)					\
437 		bytes = sizeof(u8);				\
438 	else if (bpf_size == BPF_H)				\
439 		bytes = sizeof(u16);				\
440 	else if (bpf_size == BPF_W)				\
441 		bytes = sizeof(u32);				\
442 	else if (bpf_size == BPF_DW)				\
443 		bytes = sizeof(u64);				\
444 								\
445 	bytes;							\
446 })
447 
448 #define BPF_SIZEOF(type)					\
449 	({							\
450 		const int __size = bytes_to_bpf_size(sizeof(type)); \
451 		BUILD_BUG_ON(__size < 0);			\
452 		__size;						\
453 	})
454 
455 #define BPF_FIELD_SIZEOF(type, field)				\
456 	({							\
457 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
458 		BUILD_BUG_ON(__size < 0);			\
459 		__size;						\
460 	})
461 
462 #define BPF_LDST_BYTES(insn)					\
463 	({							\
464 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
465 		WARN_ON(__size < 0);				\
466 		__size;						\
467 	})
468 
469 #define __BPF_MAP_0(m, v, ...) v
470 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
471 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
472 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
473 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
474 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
475 
476 #define __BPF_REG_0(...) __BPF_PAD(5)
477 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
478 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
479 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
480 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
481 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
482 
483 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
484 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
485 
486 #define __BPF_CAST(t, a)						       \
487 	(__force t)							       \
488 	(__force							       \
489 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
490 				      (unsigned long)0, (t)0))) a
491 #define __BPF_V void
492 #define __BPF_N
493 
494 #define __BPF_DECL_ARGS(t, a) t   a
495 #define __BPF_DECL_REGS(t, a) u64 a
496 
497 #define __BPF_PAD(n)							       \
498 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
499 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
500 
501 #define BPF_CALL_x(x, name, ...)					       \
502 	static __always_inline						       \
503 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
504 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
505 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
506 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
507 	{								       \
508 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
509 	}								       \
510 	static __always_inline						       \
511 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
512 
513 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
514 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
515 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
516 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
517 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
518 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
519 
520 #define bpf_ctx_range(TYPE, MEMBER)						\
521 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
522 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
523 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
524 #if BITS_PER_LONG == 64
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
526 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
527 #else
528 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
529 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
530 #endif /* BITS_PER_LONG == 64 */
531 
532 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
533 	({									\
534 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
535 		*(PTR_SIZE) = (SIZE);						\
536 		offsetof(TYPE, MEMBER);						\
537 	})
538 
539 /* A struct sock_filter is architecture independent. */
540 struct compat_sock_fprog {
541 	u16		len;
542 	compat_uptr_t	filter;	/* struct sock_filter * */
543 };
544 
545 struct sock_fprog_kern {
546 	u16			len;
547 	struct sock_filter	*filter;
548 };
549 
550 /* Some arches need doubleword alignment for their instructions and/or data */
551 #define BPF_IMAGE_ALIGNMENT 8
552 
553 struct bpf_binary_header {
554 	u32 pages;
555 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
556 };
557 
558 struct bpf_prog_stats {
559 	u64 cnt;
560 	u64 nsecs;
561 	u64 misses;
562 	struct u64_stats_sync syncp;
563 } __aligned(2 * sizeof(u64));
564 
565 struct bpf_prog {
566 	u16			pages;		/* Number of allocated pages */
567 	u16			jited:1,	/* Is our filter JIT'ed? */
568 				jit_requested:1,/* archs need to JIT the prog */
569 				gpl_compatible:1, /* Is filter GPL compatible? */
570 				cb_access:1,	/* Is control block accessed? */
571 				dst_needed:1,	/* Do we need dst entry? */
572 				blinded:1,	/* Was blinded */
573 				is_func:1,	/* program is a bpf function */
574 				kprobe_override:1, /* Do we override a kprobe? */
575 				has_callchain_buf:1, /* callchain buffer allocated? */
576 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
577 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
578 	enum bpf_prog_type	type;		/* Type of BPF program */
579 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
580 	u32			len;		/* Number of filter blocks */
581 	u32			jited_len;	/* Size of jited insns in bytes */
582 	u8			tag[BPF_TAG_SIZE];
583 	struct bpf_prog_stats __percpu *stats;
584 	int __percpu		*active;
585 	unsigned int		(*bpf_func)(const void *ctx,
586 					    const struct bpf_insn *insn);
587 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
588 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
589 	/* Instructions for interpreter */
590 	struct sock_filter	insns[0];
591 	struct bpf_insn		insnsi[];
592 };
593 
594 struct sk_filter {
595 	refcount_t	refcnt;
596 	struct rcu_head	rcu;
597 	struct bpf_prog	*prog;
598 };
599 
600 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
601 
602 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
603 	u32 __ret;							\
604 	cant_migrate();							\
605 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
606 		struct bpf_prog_stats *__stats;				\
607 		u64 __start = sched_clock();				\
608 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
609 		__stats = this_cpu_ptr(prog->stats);			\
610 		u64_stats_update_begin(&__stats->syncp);		\
611 		__stats->cnt++;						\
612 		__stats->nsecs += sched_clock() - __start;		\
613 		u64_stats_update_end(&__stats->syncp);			\
614 	} else {							\
615 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
616 	}								\
617 	__ret; })
618 
619 #define BPF_PROG_RUN(prog, ctx)						\
620 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
621 
622 /*
623  * Use in preemptible and therefore migratable context to make sure that
624  * the execution of the BPF program runs on one CPU.
625  *
626  * This uses migrate_disable/enable() explicitly to document that the
627  * invocation of a BPF program does not require reentrancy protection
628  * against a BPF program which is invoked from a preempting task.
629  *
630  * For non RT enabled kernels migrate_disable/enable() maps to
631  * preempt_disable/enable(), i.e. it disables also preemption.
632  */
633 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
634 					  const void *ctx)
635 {
636 	u32 ret;
637 
638 	migrate_disable();
639 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
640 	migrate_enable();
641 	return ret;
642 }
643 
644 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
645 
646 struct bpf_skb_data_end {
647 	struct qdisc_skb_cb qdisc_cb;
648 	void *data_meta;
649 	void *data_end;
650 };
651 
652 struct bpf_nh_params {
653 	u32 nh_family;
654 	union {
655 		u32 ipv4_nh;
656 		struct in6_addr ipv6_nh;
657 	};
658 };
659 
660 struct bpf_redirect_info {
661 	u32 flags;
662 	u32 tgt_index;
663 	void *tgt_value;
664 	struct bpf_map *map;
665 	u32 map_id;
666 	enum bpf_map_type map_type;
667 	u32 kern_flags;
668 	struct bpf_nh_params nh;
669 };
670 
671 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
672 
673 /* flags for bpf_redirect_info kern_flags */
674 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
675 
676 /* Compute the linear packet data range [data, data_end) which
677  * will be accessed by various program types (cls_bpf, act_bpf,
678  * lwt, ...). Subsystems allowing direct data access must (!)
679  * ensure that cb[] area can be written to when BPF program is
680  * invoked (otherwise cb[] save/restore is necessary).
681  */
682 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
683 {
684 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
685 
686 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
687 	cb->data_meta = skb->data - skb_metadata_len(skb);
688 	cb->data_end  = skb->data + skb_headlen(skb);
689 }
690 
691 /* Similar to bpf_compute_data_pointers(), except that save orginal
692  * data in cb->data and cb->meta_data for restore.
693  */
694 static inline void bpf_compute_and_save_data_end(
695 	struct sk_buff *skb, void **saved_data_end)
696 {
697 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
698 
699 	*saved_data_end = cb->data_end;
700 	cb->data_end  = skb->data + skb_headlen(skb);
701 }
702 
703 /* Restore data saved by bpf_compute_data_pointers(). */
704 static inline void bpf_restore_data_end(
705 	struct sk_buff *skb, void *saved_data_end)
706 {
707 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
708 
709 	cb->data_end = saved_data_end;
710 }
711 
712 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
713 {
714 	/* eBPF programs may read/write skb->cb[] area to transfer meta
715 	 * data between tail calls. Since this also needs to work with
716 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
717 	 *
718 	 * In some socket filter cases, the cb unfortunately needs to be
719 	 * saved/restored so that protocol specific skb->cb[] data won't
720 	 * be lost. In any case, due to unpriviledged eBPF programs
721 	 * attached to sockets, we need to clear the bpf_skb_cb() area
722 	 * to not leak previous contents to user space.
723 	 */
724 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
725 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
726 		     sizeof_field(struct qdisc_skb_cb, data));
727 
728 	return qdisc_skb_cb(skb)->data;
729 }
730 
731 /* Must be invoked with migration disabled */
732 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
733 					 struct sk_buff *skb)
734 {
735 	u8 *cb_data = bpf_skb_cb(skb);
736 	u8 cb_saved[BPF_SKB_CB_LEN];
737 	u32 res;
738 
739 	if (unlikely(prog->cb_access)) {
740 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
741 		memset(cb_data, 0, sizeof(cb_saved));
742 	}
743 
744 	res = BPF_PROG_RUN(prog, skb);
745 
746 	if (unlikely(prog->cb_access))
747 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
748 
749 	return res;
750 }
751 
752 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
753 				       struct sk_buff *skb)
754 {
755 	u32 res;
756 
757 	migrate_disable();
758 	res = __bpf_prog_run_save_cb(prog, skb);
759 	migrate_enable();
760 	return res;
761 }
762 
763 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
764 					struct sk_buff *skb)
765 {
766 	u8 *cb_data = bpf_skb_cb(skb);
767 	u32 res;
768 
769 	if (unlikely(prog->cb_access))
770 		memset(cb_data, 0, BPF_SKB_CB_LEN);
771 
772 	res = bpf_prog_run_pin_on_cpu(prog, skb);
773 	return res;
774 }
775 
776 DECLARE_BPF_DISPATCHER(xdp)
777 
778 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
779 					    struct xdp_buff *xdp)
780 {
781 	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
782 	 * under local_bh_disable(), which provides the needed RCU protection
783 	 * for accessing map entries.
784 	 */
785 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
786 }
787 
788 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
789 
790 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
791 {
792 	return prog->len * sizeof(struct bpf_insn);
793 }
794 
795 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
796 {
797 	return round_up(bpf_prog_insn_size(prog) +
798 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
799 }
800 
801 static inline unsigned int bpf_prog_size(unsigned int proglen)
802 {
803 	return max(sizeof(struct bpf_prog),
804 		   offsetof(struct bpf_prog, insns[proglen]));
805 }
806 
807 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
808 {
809 	/* When classic BPF programs have been loaded and the arch
810 	 * does not have a classic BPF JIT (anymore), they have been
811 	 * converted via bpf_migrate_filter() to eBPF and thus always
812 	 * have an unspec program type.
813 	 */
814 	return prog->type == BPF_PROG_TYPE_UNSPEC;
815 }
816 
817 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
818 {
819 	const u32 size_machine = sizeof(unsigned long);
820 
821 	if (size > size_machine && size % size_machine == 0)
822 		size = size_machine;
823 
824 	return size;
825 }
826 
827 static inline bool
828 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
829 {
830 	return size <= size_default && (size & (size - 1)) == 0;
831 }
832 
833 static inline u8
834 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
835 {
836 	u8 access_off = off & (size_default - 1);
837 
838 #ifdef __LITTLE_ENDIAN
839 	return access_off;
840 #else
841 	return size_default - (access_off + size);
842 #endif
843 }
844 
845 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
846 	(size == sizeof(__u64) &&					\
847 	off >= offsetof(type, field) &&					\
848 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
849 	off % sizeof(__u64) == 0)
850 
851 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
852 
853 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
854 {
855 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
856 	if (!fp->jited) {
857 		set_vm_flush_reset_perms(fp);
858 		set_memory_ro((unsigned long)fp, fp->pages);
859 	}
860 #endif
861 }
862 
863 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
864 {
865 	set_vm_flush_reset_perms(hdr);
866 	set_memory_ro((unsigned long)hdr, hdr->pages);
867 	set_memory_x((unsigned long)hdr, hdr->pages);
868 }
869 
870 static inline struct bpf_binary_header *
871 bpf_jit_binary_hdr(const struct bpf_prog *fp)
872 {
873 	unsigned long real_start = (unsigned long)fp->bpf_func;
874 	unsigned long addr = real_start & PAGE_MASK;
875 
876 	return (void *)addr;
877 }
878 
879 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
880 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
881 {
882 	return sk_filter_trim_cap(sk, skb, 1);
883 }
884 
885 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
886 void bpf_prog_free(struct bpf_prog *fp);
887 
888 bool bpf_opcode_in_insntable(u8 code);
889 
890 void bpf_prog_free_linfo(struct bpf_prog *prog);
891 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
892 			       const u32 *insn_to_jit_off);
893 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
894 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
895 
896 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
897 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
898 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
899 				  gfp_t gfp_extra_flags);
900 void __bpf_prog_free(struct bpf_prog *fp);
901 
902 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
903 {
904 	__bpf_prog_free(fp);
905 }
906 
907 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
908 				       unsigned int flen);
909 
910 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
911 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
912 			      bpf_aux_classic_check_t trans, bool save_orig);
913 void bpf_prog_destroy(struct bpf_prog *fp);
914 
915 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
916 int sk_attach_bpf(u32 ufd, struct sock *sk);
917 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
918 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
919 void sk_reuseport_prog_free(struct bpf_prog *prog);
920 int sk_detach_filter(struct sock *sk);
921 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
922 		  unsigned int len);
923 
924 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
925 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
926 
927 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
928 #define __bpf_call_base_args \
929 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
930 	 (void *)__bpf_call_base)
931 
932 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
933 void bpf_jit_compile(struct bpf_prog *prog);
934 bool bpf_jit_needs_zext(void);
935 bool bpf_jit_supports_kfunc_call(void);
936 bool bpf_helper_changes_pkt_data(void *func);
937 
938 static inline bool bpf_dump_raw_ok(const struct cred *cred)
939 {
940 	/* Reconstruction of call-sites is dependent on kallsyms,
941 	 * thus make dump the same restriction.
942 	 */
943 	return kallsyms_show_value(cred);
944 }
945 
946 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
947 				       const struct bpf_insn *patch, u32 len);
948 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
949 
950 void bpf_clear_redirect_map(struct bpf_map *map);
951 
952 static inline bool xdp_return_frame_no_direct(void)
953 {
954 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
955 
956 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
957 }
958 
959 static inline void xdp_set_return_frame_no_direct(void)
960 {
961 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
962 
963 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
964 }
965 
966 static inline void xdp_clear_return_frame_no_direct(void)
967 {
968 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
969 
970 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
971 }
972 
973 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
974 				 unsigned int pktlen)
975 {
976 	unsigned int len;
977 
978 	if (unlikely(!(fwd->flags & IFF_UP)))
979 		return -ENETDOWN;
980 
981 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
982 	if (pktlen > len)
983 		return -EMSGSIZE;
984 
985 	return 0;
986 }
987 
988 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
989  * same cpu context. Further for best results no more than a single map
990  * for the do_redirect/do_flush pair should be used. This limitation is
991  * because we only track one map and force a flush when the map changes.
992  * This does not appear to be a real limitation for existing software.
993  */
994 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
995 			    struct xdp_buff *xdp, struct bpf_prog *prog);
996 int xdp_do_redirect(struct net_device *dev,
997 		    struct xdp_buff *xdp,
998 		    struct bpf_prog *prog);
999 void xdp_do_flush(void);
1000 
1001 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1002  * it is no longer only flushing maps. Keep this define for compatibility
1003  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1004  */
1005 #define xdp_do_flush_map xdp_do_flush
1006 
1007 void bpf_warn_invalid_xdp_action(u32 act);
1008 
1009 #ifdef CONFIG_INET
1010 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1011 				  struct bpf_prog *prog, struct sk_buff *skb,
1012 				  struct sock *migrating_sk,
1013 				  u32 hash);
1014 #else
1015 static inline struct sock *
1016 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1017 		     struct bpf_prog *prog, struct sk_buff *skb,
1018 		     struct sock *migrating_sk,
1019 		     u32 hash)
1020 {
1021 	return NULL;
1022 }
1023 #endif
1024 
1025 #ifdef CONFIG_BPF_JIT
1026 extern int bpf_jit_enable;
1027 extern int bpf_jit_harden;
1028 extern int bpf_jit_kallsyms;
1029 extern long bpf_jit_limit;
1030 
1031 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1032 
1033 struct bpf_binary_header *
1034 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035 		     unsigned int alignment,
1036 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1037 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1038 u64 bpf_jit_alloc_exec_limit(void);
1039 void *bpf_jit_alloc_exec(unsigned long size);
1040 void bpf_jit_free_exec(void *addr);
1041 void bpf_jit_free(struct bpf_prog *fp);
1042 
1043 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1044 				struct bpf_jit_poke_descriptor *poke);
1045 
1046 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1047 			  const struct bpf_insn *insn, bool extra_pass,
1048 			  u64 *func_addr, bool *func_addr_fixed);
1049 
1050 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1051 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1052 
1053 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1054 				u32 pass, void *image)
1055 {
1056 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1057 	       proglen, pass, image, current->comm, task_pid_nr(current));
1058 
1059 	if (image)
1060 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1061 			       16, 1, image, proglen, false);
1062 }
1063 
1064 static inline bool bpf_jit_is_ebpf(void)
1065 {
1066 # ifdef CONFIG_HAVE_EBPF_JIT
1067 	return true;
1068 # else
1069 	return false;
1070 # endif
1071 }
1072 
1073 static inline bool ebpf_jit_enabled(void)
1074 {
1075 	return bpf_jit_enable && bpf_jit_is_ebpf();
1076 }
1077 
1078 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1079 {
1080 	return fp->jited && bpf_jit_is_ebpf();
1081 }
1082 
1083 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1084 {
1085 	/* These are the prerequisites, should someone ever have the
1086 	 * idea to call blinding outside of them, we make sure to
1087 	 * bail out.
1088 	 */
1089 	if (!bpf_jit_is_ebpf())
1090 		return false;
1091 	if (!prog->jit_requested)
1092 		return false;
1093 	if (!bpf_jit_harden)
1094 		return false;
1095 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1096 		return false;
1097 
1098 	return true;
1099 }
1100 
1101 static inline bool bpf_jit_kallsyms_enabled(void)
1102 {
1103 	/* There are a couple of corner cases where kallsyms should
1104 	 * not be enabled f.e. on hardening.
1105 	 */
1106 	if (bpf_jit_harden)
1107 		return false;
1108 	if (!bpf_jit_kallsyms)
1109 		return false;
1110 	if (bpf_jit_kallsyms == 1)
1111 		return true;
1112 
1113 	return false;
1114 }
1115 
1116 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1117 				 unsigned long *off, char *sym);
1118 bool is_bpf_text_address(unsigned long addr);
1119 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1120 		    char *sym);
1121 
1122 static inline const char *
1123 bpf_address_lookup(unsigned long addr, unsigned long *size,
1124 		   unsigned long *off, char **modname, char *sym)
1125 {
1126 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1127 
1128 	if (ret && modname)
1129 		*modname = NULL;
1130 	return ret;
1131 }
1132 
1133 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1134 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1135 
1136 #else /* CONFIG_BPF_JIT */
1137 
1138 static inline bool ebpf_jit_enabled(void)
1139 {
1140 	return false;
1141 }
1142 
1143 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1144 {
1145 	return false;
1146 }
1147 
1148 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1149 {
1150 	return false;
1151 }
1152 
1153 static inline int
1154 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1155 			    struct bpf_jit_poke_descriptor *poke)
1156 {
1157 	return -ENOTSUPP;
1158 }
1159 
1160 static inline void bpf_jit_free(struct bpf_prog *fp)
1161 {
1162 	bpf_prog_unlock_free(fp);
1163 }
1164 
1165 static inline bool bpf_jit_kallsyms_enabled(void)
1166 {
1167 	return false;
1168 }
1169 
1170 static inline const char *
1171 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1172 		     unsigned long *off, char *sym)
1173 {
1174 	return NULL;
1175 }
1176 
1177 static inline bool is_bpf_text_address(unsigned long addr)
1178 {
1179 	return false;
1180 }
1181 
1182 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1183 				  char *type, char *sym)
1184 {
1185 	return -ERANGE;
1186 }
1187 
1188 static inline const char *
1189 bpf_address_lookup(unsigned long addr, unsigned long *size,
1190 		   unsigned long *off, char **modname, char *sym)
1191 {
1192 	return NULL;
1193 }
1194 
1195 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1196 {
1197 }
1198 
1199 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1200 {
1201 }
1202 
1203 #endif /* CONFIG_BPF_JIT */
1204 
1205 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1206 
1207 #define BPF_ANC		BIT(15)
1208 
1209 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1210 {
1211 	switch (first->code) {
1212 	case BPF_RET | BPF_K:
1213 	case BPF_LD | BPF_W | BPF_LEN:
1214 		return false;
1215 
1216 	case BPF_LD | BPF_W | BPF_ABS:
1217 	case BPF_LD | BPF_H | BPF_ABS:
1218 	case BPF_LD | BPF_B | BPF_ABS:
1219 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1220 			return true;
1221 		return false;
1222 
1223 	default:
1224 		return true;
1225 	}
1226 }
1227 
1228 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1229 {
1230 	BUG_ON(ftest->code & BPF_ANC);
1231 
1232 	switch (ftest->code) {
1233 	case BPF_LD | BPF_W | BPF_ABS:
1234 	case BPF_LD | BPF_H | BPF_ABS:
1235 	case BPF_LD | BPF_B | BPF_ABS:
1236 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1237 				return BPF_ANC | SKF_AD_##CODE
1238 		switch (ftest->k) {
1239 		BPF_ANCILLARY(PROTOCOL);
1240 		BPF_ANCILLARY(PKTTYPE);
1241 		BPF_ANCILLARY(IFINDEX);
1242 		BPF_ANCILLARY(NLATTR);
1243 		BPF_ANCILLARY(NLATTR_NEST);
1244 		BPF_ANCILLARY(MARK);
1245 		BPF_ANCILLARY(QUEUE);
1246 		BPF_ANCILLARY(HATYPE);
1247 		BPF_ANCILLARY(RXHASH);
1248 		BPF_ANCILLARY(CPU);
1249 		BPF_ANCILLARY(ALU_XOR_X);
1250 		BPF_ANCILLARY(VLAN_TAG);
1251 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1252 		BPF_ANCILLARY(PAY_OFFSET);
1253 		BPF_ANCILLARY(RANDOM);
1254 		BPF_ANCILLARY(VLAN_TPID);
1255 		}
1256 		fallthrough;
1257 	default:
1258 		return ftest->code;
1259 	}
1260 }
1261 
1262 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1263 					   int k, unsigned int size);
1264 
1265 static inline int bpf_tell_extensions(void)
1266 {
1267 	return SKF_AD_MAX;
1268 }
1269 
1270 struct bpf_sock_addr_kern {
1271 	struct sock *sk;
1272 	struct sockaddr *uaddr;
1273 	/* Temporary "register" to make indirect stores to nested structures
1274 	 * defined above. We need three registers to make such a store, but
1275 	 * only two (src and dst) are available at convert_ctx_access time
1276 	 */
1277 	u64 tmp_reg;
1278 	void *t_ctx;	/* Attach type specific context. */
1279 };
1280 
1281 struct bpf_sock_ops_kern {
1282 	struct	sock *sk;
1283 	union {
1284 		u32 args[4];
1285 		u32 reply;
1286 		u32 replylong[4];
1287 	};
1288 	struct sk_buff	*syn_skb;
1289 	struct sk_buff	*skb;
1290 	void	*skb_data_end;
1291 	u8	op;
1292 	u8	is_fullsock;
1293 	u8	remaining_opt_len;
1294 	u64	temp;			/* temp and everything after is not
1295 					 * initialized to 0 before calling
1296 					 * the BPF program. New fields that
1297 					 * should be initialized to 0 should
1298 					 * be inserted before temp.
1299 					 * temp is scratch storage used by
1300 					 * sock_ops_convert_ctx_access
1301 					 * as temporary storage of a register.
1302 					 */
1303 };
1304 
1305 struct bpf_sysctl_kern {
1306 	struct ctl_table_header *head;
1307 	struct ctl_table *table;
1308 	void *cur_val;
1309 	size_t cur_len;
1310 	void *new_val;
1311 	size_t new_len;
1312 	int new_updated;
1313 	int write;
1314 	loff_t *ppos;
1315 	/* Temporary "register" for indirect stores to ppos. */
1316 	u64 tmp_reg;
1317 };
1318 
1319 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1320 struct bpf_sockopt_buf {
1321 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1322 };
1323 
1324 struct bpf_sockopt_kern {
1325 	struct sock	*sk;
1326 	u8		*optval;
1327 	u8		*optval_end;
1328 	s32		level;
1329 	s32		optname;
1330 	s32		optlen;
1331 	s32		retval;
1332 };
1333 
1334 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1335 
1336 struct bpf_sk_lookup_kern {
1337 	u16		family;
1338 	u16		protocol;
1339 	__be16		sport;
1340 	u16		dport;
1341 	struct {
1342 		__be32 saddr;
1343 		__be32 daddr;
1344 	} v4;
1345 	struct {
1346 		const struct in6_addr *saddr;
1347 		const struct in6_addr *daddr;
1348 	} v6;
1349 	struct sock	*selected_sk;
1350 	bool		no_reuseport;
1351 };
1352 
1353 extern struct static_key_false bpf_sk_lookup_enabled;
1354 
1355 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1356  *
1357  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1358  * SK_DROP. Their meaning is as follows:
1359  *
1360  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1361  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1362  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1363  *
1364  * This macro aggregates return values and selected sockets from
1365  * multiple BPF programs according to following rules in order:
1366  *
1367  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1368  *     macro result is SK_PASS and last ctx.selected_sk is used.
1369  *  2. If any program returned SK_DROP return value,
1370  *     macro result is SK_DROP.
1371  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1372  *
1373  * Caller must ensure that the prog array is non-NULL, and that the
1374  * array as well as the programs it contains remain valid.
1375  */
1376 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1377 	({								\
1378 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1379 		struct bpf_prog_array_item *_item;			\
1380 		struct sock *_selected_sk = NULL;			\
1381 		bool _no_reuseport = false;				\
1382 		struct bpf_prog *_prog;					\
1383 		bool _all_pass = true;					\
1384 		u32 _ret;						\
1385 									\
1386 		migrate_disable();					\
1387 		_item = &(array)->items[0];				\
1388 		while ((_prog = READ_ONCE(_item->prog))) {		\
1389 			/* restore most recent selection */		\
1390 			_ctx->selected_sk = _selected_sk;		\
1391 			_ctx->no_reuseport = _no_reuseport;		\
1392 									\
1393 			_ret = func(_prog, _ctx);			\
1394 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1395 				/* remember last non-NULL socket */	\
1396 				_selected_sk = _ctx->selected_sk;	\
1397 				_no_reuseport = _ctx->no_reuseport;	\
1398 			} else if (_ret == SK_DROP && _all_pass) {	\
1399 				_all_pass = false;			\
1400 			}						\
1401 			_item++;					\
1402 		}							\
1403 		_ctx->selected_sk = _selected_sk;			\
1404 		_ctx->no_reuseport = _no_reuseport;			\
1405 		migrate_enable();					\
1406 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1407 	 })
1408 
1409 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1410 					const __be32 saddr, const __be16 sport,
1411 					const __be32 daddr, const u16 dport,
1412 					struct sock **psk)
1413 {
1414 	struct bpf_prog_array *run_array;
1415 	struct sock *selected_sk = NULL;
1416 	bool no_reuseport = false;
1417 
1418 	rcu_read_lock();
1419 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1420 	if (run_array) {
1421 		struct bpf_sk_lookup_kern ctx = {
1422 			.family		= AF_INET,
1423 			.protocol	= protocol,
1424 			.v4.saddr	= saddr,
1425 			.v4.daddr	= daddr,
1426 			.sport		= sport,
1427 			.dport		= dport,
1428 		};
1429 		u32 act;
1430 
1431 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1432 		if (act == SK_PASS) {
1433 			selected_sk = ctx.selected_sk;
1434 			no_reuseport = ctx.no_reuseport;
1435 		} else {
1436 			selected_sk = ERR_PTR(-ECONNREFUSED);
1437 		}
1438 	}
1439 	rcu_read_unlock();
1440 	*psk = selected_sk;
1441 	return no_reuseport;
1442 }
1443 
1444 #if IS_ENABLED(CONFIG_IPV6)
1445 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1446 					const struct in6_addr *saddr,
1447 					const __be16 sport,
1448 					const struct in6_addr *daddr,
1449 					const u16 dport,
1450 					struct sock **psk)
1451 {
1452 	struct bpf_prog_array *run_array;
1453 	struct sock *selected_sk = NULL;
1454 	bool no_reuseport = false;
1455 
1456 	rcu_read_lock();
1457 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1458 	if (run_array) {
1459 		struct bpf_sk_lookup_kern ctx = {
1460 			.family		= AF_INET6,
1461 			.protocol	= protocol,
1462 			.v6.saddr	= saddr,
1463 			.v6.daddr	= daddr,
1464 			.sport		= sport,
1465 			.dport		= dport,
1466 		};
1467 		u32 act;
1468 
1469 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1470 		if (act == SK_PASS) {
1471 			selected_sk = ctx.selected_sk;
1472 			no_reuseport = ctx.no_reuseport;
1473 		} else {
1474 			selected_sk = ERR_PTR(-ECONNREFUSED);
1475 		}
1476 	}
1477 	rcu_read_unlock();
1478 	*psk = selected_sk;
1479 	return no_reuseport;
1480 }
1481 #endif /* IS_ENABLED(CONFIG_IPV6) */
1482 
1483 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1484 						  u64 flags, const u64 flag_mask,
1485 						  void *lookup_elem(struct bpf_map *map, u32 key))
1486 {
1487 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1488 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1489 
1490 	/* Lower bits of the flags are used as return code on lookup failure */
1491 	if (unlikely(flags & ~(action_mask | flag_mask)))
1492 		return XDP_ABORTED;
1493 
1494 	ri->tgt_value = lookup_elem(map, ifindex);
1495 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1496 		/* If the lookup fails we want to clear out the state in the
1497 		 * redirect_info struct completely, so that if an eBPF program
1498 		 * performs multiple lookups, the last one always takes
1499 		 * precedence.
1500 		 */
1501 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1502 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1503 		return flags & action_mask;
1504 	}
1505 
1506 	ri->tgt_index = ifindex;
1507 	ri->map_id = map->id;
1508 	ri->map_type = map->map_type;
1509 
1510 	if (flags & BPF_F_BROADCAST) {
1511 		WRITE_ONCE(ri->map, map);
1512 		ri->flags = flags;
1513 	} else {
1514 		WRITE_ONCE(ri->map, NULL);
1515 		ri->flags = 0;
1516 	}
1517 
1518 	return XDP_REDIRECT;
1519 }
1520 
1521 #endif /* __LINUX_FILTER_H__ */
1522