1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <stdarg.h> 9 10 #include <linux/atomic.h> 11 #include <linux/refcount.h> 12 #include <linux/compat.h> 13 #include <linux/skbuff.h> 14 #include <linux/linkage.h> 15 #include <linux/printk.h> 16 #include <linux/workqueue.h> 17 #include <linux/sched.h> 18 #include <linux/capability.h> 19 #include <linux/cryptohash.h> 20 #include <linux/set_memory.h> 21 #include <linux/kallsyms.h> 22 #include <linux/if_vlan.h> 23 #include <linux/vmalloc.h> 24 25 #include <net/sch_generic.h> 26 27 #include <asm/byteorder.h> 28 #include <uapi/linux/filter.h> 29 #include <uapi/linux/bpf.h> 30 31 struct sk_buff; 32 struct sock; 33 struct seccomp_data; 34 struct bpf_prog_aux; 35 struct xdp_rxq_info; 36 struct xdp_buff; 37 struct sock_reuseport; 38 struct ctl_table; 39 struct ctl_table_header; 40 41 /* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45 #define BPF_REG_ARG1 BPF_REG_1 46 #define BPF_REG_ARG2 BPF_REG_2 47 #define BPF_REG_ARG3 BPF_REG_3 48 #define BPF_REG_ARG4 BPF_REG_4 49 #define BPF_REG_ARG5 BPF_REG_5 50 #define BPF_REG_CTX BPF_REG_6 51 #define BPF_REG_FP BPF_REG_10 52 53 /* Additional register mappings for converted user programs. */ 54 #define BPF_REG_A BPF_REG_0 55 #define BPF_REG_X BPF_REG_7 56 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60 /* Kernel hidden auxiliary/helper register. */ 61 #define BPF_REG_AX MAX_BPF_REG 62 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65 /* unused opcode to mark special call to bpf_tail_call() helper */ 66 #define BPF_TAIL_CALL 0xf0 67 68 /* unused opcode to mark call to interpreter with arguments */ 69 #define BPF_CALL_ARGS 0xe0 70 71 /* As per nm, we expose JITed images as text (code) section for 72 * kallsyms. That way, tools like perf can find it to match 73 * addresses. 74 */ 75 #define BPF_SYM_ELF_TYPE 't' 76 77 /* BPF program can access up to 512 bytes of stack space. */ 78 #define MAX_BPF_STACK 512 79 80 /* Helper macros for filter block array initializers. */ 81 82 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 83 84 #define BPF_ALU64_REG(OP, DST, SRC) \ 85 ((struct bpf_insn) { \ 86 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 87 .dst_reg = DST, \ 88 .src_reg = SRC, \ 89 .off = 0, \ 90 .imm = 0 }) 91 92 #define BPF_ALU32_REG(OP, DST, SRC) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 95 .dst_reg = DST, \ 96 .src_reg = SRC, \ 97 .off = 0, \ 98 .imm = 0 }) 99 100 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 101 102 #define BPF_ALU64_IMM(OP, DST, IMM) \ 103 ((struct bpf_insn) { \ 104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 105 .dst_reg = DST, \ 106 .src_reg = 0, \ 107 .off = 0, \ 108 .imm = IMM }) 109 110 #define BPF_ALU32_IMM(OP, DST, IMM) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = IMM }) 117 118 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 119 120 #define BPF_ENDIAN(TYPE, DST, LEN) \ 121 ((struct bpf_insn) { \ 122 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 123 .dst_reg = DST, \ 124 .src_reg = 0, \ 125 .off = 0, \ 126 .imm = LEN }) 127 128 /* Short form of mov, dst_reg = src_reg */ 129 130 #define BPF_MOV64_REG(DST, SRC) \ 131 ((struct bpf_insn) { \ 132 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 133 .dst_reg = DST, \ 134 .src_reg = SRC, \ 135 .off = 0, \ 136 .imm = 0 }) 137 138 #define BPF_MOV32_REG(DST, SRC) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU | BPF_MOV | BPF_X, \ 141 .dst_reg = DST, \ 142 .src_reg = SRC, \ 143 .off = 0, \ 144 .imm = 0 }) 145 146 /* Short form of mov, dst_reg = imm32 */ 147 148 #define BPF_MOV64_IMM(DST, IMM) \ 149 ((struct bpf_insn) { \ 150 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 151 .dst_reg = DST, \ 152 .src_reg = 0, \ 153 .off = 0, \ 154 .imm = IMM }) 155 156 #define BPF_MOV32_IMM(DST, IMM) \ 157 ((struct bpf_insn) { \ 158 .code = BPF_ALU | BPF_MOV | BPF_K, \ 159 .dst_reg = DST, \ 160 .src_reg = 0, \ 161 .off = 0, \ 162 .imm = IMM }) 163 164 /* Special form of mov32, used for doing explicit zero extension on dst. */ 165 #define BPF_ZEXT_REG(DST) \ 166 ((struct bpf_insn) { \ 167 .code = BPF_ALU | BPF_MOV | BPF_X, \ 168 .dst_reg = DST, \ 169 .src_reg = DST, \ 170 .off = 0, \ 171 .imm = 1 }) 172 173 static inline bool insn_is_zext(const struct bpf_insn *insn) 174 { 175 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 176 } 177 178 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 179 #define BPF_LD_IMM64(DST, IMM) \ 180 BPF_LD_IMM64_RAW(DST, 0, IMM) 181 182 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 183 ((struct bpf_insn) { \ 184 .code = BPF_LD | BPF_DW | BPF_IMM, \ 185 .dst_reg = DST, \ 186 .src_reg = SRC, \ 187 .off = 0, \ 188 .imm = (__u32) (IMM) }), \ 189 ((struct bpf_insn) { \ 190 .code = 0, /* zero is reserved opcode */ \ 191 .dst_reg = 0, \ 192 .src_reg = 0, \ 193 .off = 0, \ 194 .imm = ((__u64) (IMM)) >> 32 }) 195 196 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 197 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 198 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 199 200 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 201 202 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 203 ((struct bpf_insn) { \ 204 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 205 .dst_reg = DST, \ 206 .src_reg = SRC, \ 207 .off = 0, \ 208 .imm = IMM }) 209 210 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 211 ((struct bpf_insn) { \ 212 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 213 .dst_reg = DST, \ 214 .src_reg = SRC, \ 215 .off = 0, \ 216 .imm = IMM }) 217 218 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 219 220 #define BPF_LD_ABS(SIZE, IMM) \ 221 ((struct bpf_insn) { \ 222 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 223 .dst_reg = 0, \ 224 .src_reg = 0, \ 225 .off = 0, \ 226 .imm = IMM }) 227 228 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 229 230 #define BPF_LD_IND(SIZE, SRC, IMM) \ 231 ((struct bpf_insn) { \ 232 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 233 .dst_reg = 0, \ 234 .src_reg = SRC, \ 235 .off = 0, \ 236 .imm = IMM }) 237 238 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 239 240 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 241 ((struct bpf_insn) { \ 242 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 243 .dst_reg = DST, \ 244 .src_reg = SRC, \ 245 .off = OFF, \ 246 .imm = 0 }) 247 248 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 249 250 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 251 ((struct bpf_insn) { \ 252 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 253 .dst_reg = DST, \ 254 .src_reg = SRC, \ 255 .off = OFF, \ 256 .imm = 0 }) 257 258 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 259 260 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 261 ((struct bpf_insn) { \ 262 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 263 .dst_reg = DST, \ 264 .src_reg = SRC, \ 265 .off = OFF, \ 266 .imm = 0 }) 267 268 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 269 270 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 271 ((struct bpf_insn) { \ 272 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 273 .dst_reg = DST, \ 274 .src_reg = 0, \ 275 .off = OFF, \ 276 .imm = IMM }) 277 278 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 279 280 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 281 ((struct bpf_insn) { \ 282 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 283 .dst_reg = DST, \ 284 .src_reg = SRC, \ 285 .off = OFF, \ 286 .imm = 0 }) 287 288 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 289 290 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 291 ((struct bpf_insn) { \ 292 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 293 .dst_reg = DST, \ 294 .src_reg = 0, \ 295 .off = OFF, \ 296 .imm = IMM }) 297 298 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 299 300 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 301 ((struct bpf_insn) { \ 302 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 303 .dst_reg = DST, \ 304 .src_reg = SRC, \ 305 .off = OFF, \ 306 .imm = 0 }) 307 308 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 309 310 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 311 ((struct bpf_insn) { \ 312 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 313 .dst_reg = DST, \ 314 .src_reg = 0, \ 315 .off = OFF, \ 316 .imm = IMM }) 317 318 /* Unconditional jumps, goto pc + off16 */ 319 320 #define BPF_JMP_A(OFF) \ 321 ((struct bpf_insn) { \ 322 .code = BPF_JMP | BPF_JA, \ 323 .dst_reg = 0, \ 324 .src_reg = 0, \ 325 .off = OFF, \ 326 .imm = 0 }) 327 328 /* Relative call */ 329 330 #define BPF_CALL_REL(TGT) \ 331 ((struct bpf_insn) { \ 332 .code = BPF_JMP | BPF_CALL, \ 333 .dst_reg = 0, \ 334 .src_reg = BPF_PSEUDO_CALL, \ 335 .off = 0, \ 336 .imm = TGT }) 337 338 /* Function call */ 339 340 #define BPF_CAST_CALL(x) \ 341 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 342 343 #define BPF_EMIT_CALL(FUNC) \ 344 ((struct bpf_insn) { \ 345 .code = BPF_JMP | BPF_CALL, \ 346 .dst_reg = 0, \ 347 .src_reg = 0, \ 348 .off = 0, \ 349 .imm = ((FUNC) - __bpf_call_base) }) 350 351 /* Raw code statement block */ 352 353 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 354 ((struct bpf_insn) { \ 355 .code = CODE, \ 356 .dst_reg = DST, \ 357 .src_reg = SRC, \ 358 .off = OFF, \ 359 .imm = IMM }) 360 361 /* Program exit */ 362 363 #define BPF_EXIT_INSN() \ 364 ((struct bpf_insn) { \ 365 .code = BPF_JMP | BPF_EXIT, \ 366 .dst_reg = 0, \ 367 .src_reg = 0, \ 368 .off = 0, \ 369 .imm = 0 }) 370 371 /* Internal classic blocks for direct assignment */ 372 373 #define __BPF_STMT(CODE, K) \ 374 ((struct sock_filter) BPF_STMT(CODE, K)) 375 376 #define __BPF_JUMP(CODE, K, JT, JF) \ 377 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 378 379 #define bytes_to_bpf_size(bytes) \ 380 ({ \ 381 int bpf_size = -EINVAL; \ 382 \ 383 if (bytes == sizeof(u8)) \ 384 bpf_size = BPF_B; \ 385 else if (bytes == sizeof(u16)) \ 386 bpf_size = BPF_H; \ 387 else if (bytes == sizeof(u32)) \ 388 bpf_size = BPF_W; \ 389 else if (bytes == sizeof(u64)) \ 390 bpf_size = BPF_DW; \ 391 \ 392 bpf_size; \ 393 }) 394 395 #define bpf_size_to_bytes(bpf_size) \ 396 ({ \ 397 int bytes = -EINVAL; \ 398 \ 399 if (bpf_size == BPF_B) \ 400 bytes = sizeof(u8); \ 401 else if (bpf_size == BPF_H) \ 402 bytes = sizeof(u16); \ 403 else if (bpf_size == BPF_W) \ 404 bytes = sizeof(u32); \ 405 else if (bpf_size == BPF_DW) \ 406 bytes = sizeof(u64); \ 407 \ 408 bytes; \ 409 }) 410 411 #define BPF_SIZEOF(type) \ 412 ({ \ 413 const int __size = bytes_to_bpf_size(sizeof(type)); \ 414 BUILD_BUG_ON(__size < 0); \ 415 __size; \ 416 }) 417 418 #define BPF_FIELD_SIZEOF(type, field) \ 419 ({ \ 420 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 421 BUILD_BUG_ON(__size < 0); \ 422 __size; \ 423 }) 424 425 #define BPF_LDST_BYTES(insn) \ 426 ({ \ 427 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 428 WARN_ON(__size < 0); \ 429 __size; \ 430 }) 431 432 #define __BPF_MAP_0(m, v, ...) v 433 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 434 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 435 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 436 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 437 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 438 439 #define __BPF_REG_0(...) __BPF_PAD(5) 440 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 441 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 442 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 443 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 444 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 445 446 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 447 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 448 449 #define __BPF_CAST(t, a) \ 450 (__force t) \ 451 (__force \ 452 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 453 (unsigned long)0, (t)0))) a 454 #define __BPF_V void 455 #define __BPF_N 456 457 #define __BPF_DECL_ARGS(t, a) t a 458 #define __BPF_DECL_REGS(t, a) u64 a 459 460 #define __BPF_PAD(n) \ 461 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 462 u64, __ur_3, u64, __ur_4, u64, __ur_5) 463 464 #define BPF_CALL_x(x, name, ...) \ 465 static __always_inline \ 466 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 467 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 468 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 469 { \ 470 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 471 } \ 472 static __always_inline \ 473 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 474 475 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 476 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 477 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 478 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 479 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 480 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 481 482 #define bpf_ctx_range(TYPE, MEMBER) \ 483 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 484 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 485 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 486 #if BITS_PER_LONG == 64 487 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 488 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 489 #else 490 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 491 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 492 #endif /* BITS_PER_LONG == 64 */ 493 494 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 495 ({ \ 496 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 497 *(PTR_SIZE) = (SIZE); \ 498 offsetof(TYPE, MEMBER); \ 499 }) 500 501 #ifdef CONFIG_COMPAT 502 /* A struct sock_filter is architecture independent. */ 503 struct compat_sock_fprog { 504 u16 len; 505 compat_uptr_t filter; /* struct sock_filter * */ 506 }; 507 #endif 508 509 struct sock_fprog_kern { 510 u16 len; 511 struct sock_filter *filter; 512 }; 513 514 struct bpf_binary_header { 515 u32 pages; 516 /* Some arches need word alignment for their instructions */ 517 u8 image[] __aligned(4); 518 }; 519 520 struct bpf_prog { 521 u16 pages; /* Number of allocated pages */ 522 u16 jited:1, /* Is our filter JIT'ed? */ 523 jit_requested:1,/* archs need to JIT the prog */ 524 gpl_compatible:1, /* Is filter GPL compatible? */ 525 cb_access:1, /* Is control block accessed? */ 526 dst_needed:1, /* Do we need dst entry? */ 527 blinded:1, /* Was blinded */ 528 is_func:1, /* program is a bpf function */ 529 kprobe_override:1, /* Do we override a kprobe? */ 530 has_callchain_buf:1, /* callchain buffer allocated? */ 531 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */ 532 enum bpf_prog_type type; /* Type of BPF program */ 533 enum bpf_attach_type expected_attach_type; /* For some prog types */ 534 u32 len; /* Number of filter blocks */ 535 u32 jited_len; /* Size of jited insns in bytes */ 536 u8 tag[BPF_TAG_SIZE]; 537 struct bpf_prog_aux *aux; /* Auxiliary fields */ 538 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 539 unsigned int (*bpf_func)(const void *ctx, 540 const struct bpf_insn *insn); 541 /* Instructions for interpreter */ 542 union { 543 struct sock_filter insns[0]; 544 struct bpf_insn insnsi[0]; 545 }; 546 }; 547 548 struct sk_filter { 549 refcount_t refcnt; 550 struct rcu_head rcu; 551 struct bpf_prog *prog; 552 }; 553 554 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 555 556 #define BPF_PROG_RUN(prog, ctx) ({ \ 557 u32 ret; \ 558 cant_sleep(); \ 559 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 560 struct bpf_prog_stats *stats; \ 561 u64 start = sched_clock(); \ 562 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 563 stats = this_cpu_ptr(prog->aux->stats); \ 564 u64_stats_update_begin(&stats->syncp); \ 565 stats->cnt++; \ 566 stats->nsecs += sched_clock() - start; \ 567 u64_stats_update_end(&stats->syncp); \ 568 } else { \ 569 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 570 } \ 571 ret; }) 572 573 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 574 575 struct bpf_skb_data_end { 576 struct qdisc_skb_cb qdisc_cb; 577 void *data_meta; 578 void *data_end; 579 }; 580 581 struct bpf_redirect_info { 582 u32 flags; 583 u32 tgt_index; 584 void *tgt_value; 585 struct bpf_map *map; 586 struct bpf_map *map_to_flush; 587 u32 kern_flags; 588 }; 589 590 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 591 592 /* flags for bpf_redirect_info kern_flags */ 593 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 594 595 /* Compute the linear packet data range [data, data_end) which 596 * will be accessed by various program types (cls_bpf, act_bpf, 597 * lwt, ...). Subsystems allowing direct data access must (!) 598 * ensure that cb[] area can be written to when BPF program is 599 * invoked (otherwise cb[] save/restore is necessary). 600 */ 601 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 602 { 603 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 604 605 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 606 cb->data_meta = skb->data - skb_metadata_len(skb); 607 cb->data_end = skb->data + skb_headlen(skb); 608 } 609 610 /* Similar to bpf_compute_data_pointers(), except that save orginal 611 * data in cb->data and cb->meta_data for restore. 612 */ 613 static inline void bpf_compute_and_save_data_end( 614 struct sk_buff *skb, void **saved_data_end) 615 { 616 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 617 618 *saved_data_end = cb->data_end; 619 cb->data_end = skb->data + skb_headlen(skb); 620 } 621 622 /* Restore data saved by bpf_compute_data_pointers(). */ 623 static inline void bpf_restore_data_end( 624 struct sk_buff *skb, void *saved_data_end) 625 { 626 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 627 628 cb->data_end = saved_data_end; 629 } 630 631 static inline u8 *bpf_skb_cb(struct sk_buff *skb) 632 { 633 /* eBPF programs may read/write skb->cb[] area to transfer meta 634 * data between tail calls. Since this also needs to work with 635 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 636 * 637 * In some socket filter cases, the cb unfortunately needs to be 638 * saved/restored so that protocol specific skb->cb[] data won't 639 * be lost. In any case, due to unpriviledged eBPF programs 640 * attached to sockets, we need to clear the bpf_skb_cb() area 641 * to not leak previous contents to user space. 642 */ 643 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 644 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 645 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 646 647 return qdisc_skb_cb(skb)->data; 648 } 649 650 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 651 struct sk_buff *skb) 652 { 653 u8 *cb_data = bpf_skb_cb(skb); 654 u8 cb_saved[BPF_SKB_CB_LEN]; 655 u32 res; 656 657 if (unlikely(prog->cb_access)) { 658 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 659 memset(cb_data, 0, sizeof(cb_saved)); 660 } 661 662 res = BPF_PROG_RUN(prog, skb); 663 664 if (unlikely(prog->cb_access)) 665 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 666 667 return res; 668 } 669 670 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 671 struct sk_buff *skb) 672 { 673 u32 res; 674 675 preempt_disable(); 676 res = __bpf_prog_run_save_cb(prog, skb); 677 preempt_enable(); 678 return res; 679 } 680 681 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 682 struct sk_buff *skb) 683 { 684 u8 *cb_data = bpf_skb_cb(skb); 685 u32 res; 686 687 if (unlikely(prog->cb_access)) 688 memset(cb_data, 0, BPF_SKB_CB_LEN); 689 690 preempt_disable(); 691 res = BPF_PROG_RUN(prog, skb); 692 preempt_enable(); 693 return res; 694 } 695 696 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 697 struct xdp_buff *xdp) 698 { 699 /* Caller needs to hold rcu_read_lock() (!), otherwise program 700 * can be released while still running, or map elements could be 701 * freed early while still having concurrent users. XDP fastpath 702 * already takes rcu_read_lock() when fetching the program, so 703 * it's not necessary here anymore. 704 */ 705 return BPF_PROG_RUN(prog, xdp); 706 } 707 708 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 709 { 710 return prog->len * sizeof(struct bpf_insn); 711 } 712 713 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 714 { 715 return round_up(bpf_prog_insn_size(prog) + 716 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 717 } 718 719 static inline unsigned int bpf_prog_size(unsigned int proglen) 720 { 721 return max(sizeof(struct bpf_prog), 722 offsetof(struct bpf_prog, insns[proglen])); 723 } 724 725 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 726 { 727 /* When classic BPF programs have been loaded and the arch 728 * does not have a classic BPF JIT (anymore), they have been 729 * converted via bpf_migrate_filter() to eBPF and thus always 730 * have an unspec program type. 731 */ 732 return prog->type == BPF_PROG_TYPE_UNSPEC; 733 } 734 735 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 736 { 737 const u32 size_machine = sizeof(unsigned long); 738 739 if (size > size_machine && size % size_machine == 0) 740 size = size_machine; 741 742 return size; 743 } 744 745 static inline bool 746 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 747 { 748 return size <= size_default && (size & (size - 1)) == 0; 749 } 750 751 static inline u8 752 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 753 { 754 u8 access_off = off & (size_default - 1); 755 756 #ifdef __LITTLE_ENDIAN 757 return access_off; 758 #else 759 return size_default - (access_off + size); 760 #endif 761 } 762 763 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 764 (size == sizeof(__u64) && \ 765 off >= offsetof(type, field) && \ 766 off + sizeof(__u64) <= offsetofend(type, field) && \ 767 off % sizeof(__u64) == 0) 768 769 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 770 771 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 772 { 773 set_vm_flush_reset_perms(fp); 774 set_memory_ro((unsigned long)fp, fp->pages); 775 } 776 777 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 778 { 779 set_vm_flush_reset_perms(hdr); 780 set_memory_ro((unsigned long)hdr, hdr->pages); 781 set_memory_x((unsigned long)hdr, hdr->pages); 782 } 783 784 static inline struct bpf_binary_header * 785 bpf_jit_binary_hdr(const struct bpf_prog *fp) 786 { 787 unsigned long real_start = (unsigned long)fp->bpf_func; 788 unsigned long addr = real_start & PAGE_MASK; 789 790 return (void *)addr; 791 } 792 793 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 794 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 795 { 796 return sk_filter_trim_cap(sk, skb, 1); 797 } 798 799 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 800 void bpf_prog_free(struct bpf_prog *fp); 801 802 bool bpf_opcode_in_insntable(u8 code); 803 804 void bpf_prog_free_linfo(struct bpf_prog *prog); 805 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 806 const u32 *insn_to_jit_off); 807 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 808 void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 809 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 810 811 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 812 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 813 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 814 gfp_t gfp_extra_flags); 815 void __bpf_prog_free(struct bpf_prog *fp); 816 817 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 818 { 819 __bpf_prog_free(fp); 820 } 821 822 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 823 unsigned int flen); 824 825 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 826 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 827 bpf_aux_classic_check_t trans, bool save_orig); 828 void bpf_prog_destroy(struct bpf_prog *fp); 829 830 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 831 int sk_attach_bpf(u32 ufd, struct sock *sk); 832 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 833 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 834 void sk_reuseport_prog_free(struct bpf_prog *prog); 835 int sk_detach_filter(struct sock *sk); 836 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 837 unsigned int len); 838 839 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 840 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 841 842 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 843 #define __bpf_call_base_args \ 844 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 845 __bpf_call_base) 846 847 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 848 void bpf_jit_compile(struct bpf_prog *prog); 849 bool bpf_jit_needs_zext(void); 850 bool bpf_helper_changes_pkt_data(void *func); 851 852 static inline bool bpf_dump_raw_ok(void) 853 { 854 /* Reconstruction of call-sites is dependent on kallsyms, 855 * thus make dump the same restriction. 856 */ 857 return kallsyms_show_value() == 1; 858 } 859 860 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 861 const struct bpf_insn *patch, u32 len); 862 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 863 864 void bpf_clear_redirect_map(struct bpf_map *map); 865 866 static inline bool xdp_return_frame_no_direct(void) 867 { 868 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 869 870 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 871 } 872 873 static inline void xdp_set_return_frame_no_direct(void) 874 { 875 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 876 877 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 878 } 879 880 static inline void xdp_clear_return_frame_no_direct(void) 881 { 882 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 883 884 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 885 } 886 887 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 888 unsigned int pktlen) 889 { 890 unsigned int len; 891 892 if (unlikely(!(fwd->flags & IFF_UP))) 893 return -ENETDOWN; 894 895 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 896 if (pktlen > len) 897 return -EMSGSIZE; 898 899 return 0; 900 } 901 902 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 903 * same cpu context. Further for best results no more than a single map 904 * for the do_redirect/do_flush pair should be used. This limitation is 905 * because we only track one map and force a flush when the map changes. 906 * This does not appear to be a real limitation for existing software. 907 */ 908 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 909 struct xdp_buff *xdp, struct bpf_prog *prog); 910 int xdp_do_redirect(struct net_device *dev, 911 struct xdp_buff *xdp, 912 struct bpf_prog *prog); 913 void xdp_do_flush_map(void); 914 915 void bpf_warn_invalid_xdp_action(u32 act); 916 917 #ifdef CONFIG_INET 918 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 919 struct bpf_prog *prog, struct sk_buff *skb, 920 u32 hash); 921 #else 922 static inline struct sock * 923 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 924 struct bpf_prog *prog, struct sk_buff *skb, 925 u32 hash) 926 { 927 return NULL; 928 } 929 #endif 930 931 #ifdef CONFIG_BPF_JIT 932 extern int bpf_jit_enable; 933 extern int bpf_jit_harden; 934 extern int bpf_jit_kallsyms; 935 extern long bpf_jit_limit; 936 937 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 938 939 struct bpf_binary_header * 940 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 941 unsigned int alignment, 942 bpf_jit_fill_hole_t bpf_fill_ill_insns); 943 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 944 u64 bpf_jit_alloc_exec_limit(void); 945 void *bpf_jit_alloc_exec(unsigned long size); 946 void bpf_jit_free_exec(void *addr); 947 void bpf_jit_free(struct bpf_prog *fp); 948 949 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 950 const struct bpf_insn *insn, bool extra_pass, 951 u64 *func_addr, bool *func_addr_fixed); 952 953 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 954 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 955 956 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 957 u32 pass, void *image) 958 { 959 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 960 proglen, pass, image, current->comm, task_pid_nr(current)); 961 962 if (image) 963 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 964 16, 1, image, proglen, false); 965 } 966 967 static inline bool bpf_jit_is_ebpf(void) 968 { 969 # ifdef CONFIG_HAVE_EBPF_JIT 970 return true; 971 # else 972 return false; 973 # endif 974 } 975 976 static inline bool ebpf_jit_enabled(void) 977 { 978 return bpf_jit_enable && bpf_jit_is_ebpf(); 979 } 980 981 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 982 { 983 return fp->jited && bpf_jit_is_ebpf(); 984 } 985 986 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 987 { 988 /* These are the prerequisites, should someone ever have the 989 * idea to call blinding outside of them, we make sure to 990 * bail out. 991 */ 992 if (!bpf_jit_is_ebpf()) 993 return false; 994 if (!prog->jit_requested) 995 return false; 996 if (!bpf_jit_harden) 997 return false; 998 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 999 return false; 1000 1001 return true; 1002 } 1003 1004 static inline bool bpf_jit_kallsyms_enabled(void) 1005 { 1006 /* There are a couple of corner cases where kallsyms should 1007 * not be enabled f.e. on hardening. 1008 */ 1009 if (bpf_jit_harden) 1010 return false; 1011 if (!bpf_jit_kallsyms) 1012 return false; 1013 if (bpf_jit_kallsyms == 1) 1014 return true; 1015 1016 return false; 1017 } 1018 1019 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1020 unsigned long *off, char *sym); 1021 bool is_bpf_text_address(unsigned long addr); 1022 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1023 char *sym); 1024 1025 static inline const char * 1026 bpf_address_lookup(unsigned long addr, unsigned long *size, 1027 unsigned long *off, char **modname, char *sym) 1028 { 1029 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1030 1031 if (ret && modname) 1032 *modname = NULL; 1033 return ret; 1034 } 1035 1036 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1037 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1038 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1039 1040 #else /* CONFIG_BPF_JIT */ 1041 1042 static inline bool ebpf_jit_enabled(void) 1043 { 1044 return false; 1045 } 1046 1047 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1048 { 1049 return false; 1050 } 1051 1052 static inline void bpf_jit_free(struct bpf_prog *fp) 1053 { 1054 bpf_prog_unlock_free(fp); 1055 } 1056 1057 static inline bool bpf_jit_kallsyms_enabled(void) 1058 { 1059 return false; 1060 } 1061 1062 static inline const char * 1063 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1064 unsigned long *off, char *sym) 1065 { 1066 return NULL; 1067 } 1068 1069 static inline bool is_bpf_text_address(unsigned long addr) 1070 { 1071 return false; 1072 } 1073 1074 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1075 char *type, char *sym) 1076 { 1077 return -ERANGE; 1078 } 1079 1080 static inline const char * 1081 bpf_address_lookup(unsigned long addr, unsigned long *size, 1082 unsigned long *off, char **modname, char *sym) 1083 { 1084 return NULL; 1085 } 1086 1087 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1088 { 1089 } 1090 1091 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1092 { 1093 } 1094 1095 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1096 { 1097 sym[0] = '\0'; 1098 } 1099 1100 #endif /* CONFIG_BPF_JIT */ 1101 1102 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp); 1103 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1104 1105 #define BPF_ANC BIT(15) 1106 1107 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1108 { 1109 switch (first->code) { 1110 case BPF_RET | BPF_K: 1111 case BPF_LD | BPF_W | BPF_LEN: 1112 return false; 1113 1114 case BPF_LD | BPF_W | BPF_ABS: 1115 case BPF_LD | BPF_H | BPF_ABS: 1116 case BPF_LD | BPF_B | BPF_ABS: 1117 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1118 return true; 1119 return false; 1120 1121 default: 1122 return true; 1123 } 1124 } 1125 1126 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1127 { 1128 BUG_ON(ftest->code & BPF_ANC); 1129 1130 switch (ftest->code) { 1131 case BPF_LD | BPF_W | BPF_ABS: 1132 case BPF_LD | BPF_H | BPF_ABS: 1133 case BPF_LD | BPF_B | BPF_ABS: 1134 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1135 return BPF_ANC | SKF_AD_##CODE 1136 switch (ftest->k) { 1137 BPF_ANCILLARY(PROTOCOL); 1138 BPF_ANCILLARY(PKTTYPE); 1139 BPF_ANCILLARY(IFINDEX); 1140 BPF_ANCILLARY(NLATTR); 1141 BPF_ANCILLARY(NLATTR_NEST); 1142 BPF_ANCILLARY(MARK); 1143 BPF_ANCILLARY(QUEUE); 1144 BPF_ANCILLARY(HATYPE); 1145 BPF_ANCILLARY(RXHASH); 1146 BPF_ANCILLARY(CPU); 1147 BPF_ANCILLARY(ALU_XOR_X); 1148 BPF_ANCILLARY(VLAN_TAG); 1149 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1150 BPF_ANCILLARY(PAY_OFFSET); 1151 BPF_ANCILLARY(RANDOM); 1152 BPF_ANCILLARY(VLAN_TPID); 1153 } 1154 /* Fallthrough. */ 1155 default: 1156 return ftest->code; 1157 } 1158 } 1159 1160 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1161 int k, unsigned int size); 1162 1163 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1164 unsigned int size, void *buffer) 1165 { 1166 if (k >= 0) 1167 return skb_header_pointer(skb, k, size, buffer); 1168 1169 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1170 } 1171 1172 static inline int bpf_tell_extensions(void) 1173 { 1174 return SKF_AD_MAX; 1175 } 1176 1177 struct bpf_sock_addr_kern { 1178 struct sock *sk; 1179 struct sockaddr *uaddr; 1180 /* Temporary "register" to make indirect stores to nested structures 1181 * defined above. We need three registers to make such a store, but 1182 * only two (src and dst) are available at convert_ctx_access time 1183 */ 1184 u64 tmp_reg; 1185 void *t_ctx; /* Attach type specific context. */ 1186 }; 1187 1188 struct bpf_sock_ops_kern { 1189 struct sock *sk; 1190 u32 op; 1191 union { 1192 u32 args[4]; 1193 u32 reply; 1194 u32 replylong[4]; 1195 }; 1196 u32 is_fullsock; 1197 u64 temp; /* temp and everything after is not 1198 * initialized to 0 before calling 1199 * the BPF program. New fields that 1200 * should be initialized to 0 should 1201 * be inserted before temp. 1202 * temp is scratch storage used by 1203 * sock_ops_convert_ctx_access 1204 * as temporary storage of a register. 1205 */ 1206 }; 1207 1208 struct bpf_sysctl_kern { 1209 struct ctl_table_header *head; 1210 struct ctl_table *table; 1211 void *cur_val; 1212 size_t cur_len; 1213 void *new_val; 1214 size_t new_len; 1215 int new_updated; 1216 int write; 1217 loff_t *ppos; 1218 /* Temporary "register" for indirect stores to ppos. */ 1219 u64 tmp_reg; 1220 }; 1221 1222 struct bpf_sockopt_kern { 1223 struct sock *sk; 1224 u8 *optval; 1225 u8 *optval_end; 1226 s32 level; 1227 s32 optname; 1228 s32 optlen; 1229 s32 retval; 1230 }; 1231 1232 #endif /* __LINUX_FILTER_H__ */ 1233