xref: /linux-6.15/include/linux/filter.h (revision 2d91ecac)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/capability.h>
18 #include <linux/set_memory.h>
19 #include <linux/kallsyms.h>
20 #include <linux/if_vlan.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sockptr.h>
23 #include <crypto/sha1.h>
24 #include <linux/u64_stats_sync.h>
25 
26 #include <net/sch_generic.h>
27 
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30 
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40 
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1	BPF_REG_1
46 #define BPF_REG_ARG2	BPF_REG_2
47 #define BPF_REG_ARG3	BPF_REG_3
48 #define BPF_REG_ARG4	BPF_REG_4
49 #define BPF_REG_ARG5	BPF_REG_5
50 #define BPF_REG_CTX	BPF_REG_6
51 #define BPF_REG_FP	BPF_REG_10
52 
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A	BPF_REG_0
55 #define BPF_REG_X	BPF_REG_7
56 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
57 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
58 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
59 
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
64 
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL	0xf0
67 
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM	0x20
70 
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS	0xe0
73 
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC	0xc0
78 
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE	't'
84 
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK	512
87 
88 /* Helper macros for filter block array initializers. */
89 
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91 
92 #define BPF_ALU64_REG(OP, DST, SRC)				\
93 	((struct bpf_insn) {					\
94 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
95 		.dst_reg = DST,					\
96 		.src_reg = SRC,					\
97 		.off   = 0,					\
98 		.imm   = 0 })
99 
100 #define BPF_ALU32_REG(OP, DST, SRC)				\
101 	((struct bpf_insn) {					\
102 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
103 		.dst_reg = DST,					\
104 		.src_reg = SRC,					\
105 		.off   = 0,					\
106 		.imm   = 0 })
107 
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109 
110 #define BPF_ALU64_IMM(OP, DST, IMM)				\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
113 		.dst_reg = DST,					\
114 		.src_reg = 0,					\
115 		.off   = 0,					\
116 		.imm   = IMM })
117 
118 #define BPF_ALU32_IMM(OP, DST, IMM)				\
119 	((struct bpf_insn) {					\
120 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
121 		.dst_reg = DST,					\
122 		.src_reg = 0,					\
123 		.off   = 0,					\
124 		.imm   = IMM })
125 
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127 
128 #define BPF_ENDIAN(TYPE, DST, LEN)				\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
131 		.dst_reg = DST,					\
132 		.src_reg = 0,					\
133 		.off   = 0,					\
134 		.imm   = LEN })
135 
136 /* Short form of mov, dst_reg = src_reg */
137 
138 #define BPF_MOV64_REG(DST, SRC)					\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
141 		.dst_reg = DST,					\
142 		.src_reg = SRC,					\
143 		.off   = 0,					\
144 		.imm   = 0 })
145 
146 #define BPF_MOV32_REG(DST, SRC)					\
147 	((struct bpf_insn) {					\
148 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
149 		.dst_reg = DST,					\
150 		.src_reg = SRC,					\
151 		.off   = 0,					\
152 		.imm   = 0 })
153 
154 /* Short form of mov, dst_reg = imm32 */
155 
156 #define BPF_MOV64_IMM(DST, IMM)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
159 		.dst_reg = DST,					\
160 		.src_reg = 0,					\
161 		.off   = 0,					\
162 		.imm   = IMM })
163 
164 #define BPF_MOV32_IMM(DST, IMM)					\
165 	((struct bpf_insn) {					\
166 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
167 		.dst_reg = DST,					\
168 		.src_reg = 0,					\
169 		.off   = 0,					\
170 		.imm   = IMM })
171 
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)					\
174 	((struct bpf_insn) {					\
175 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
176 		.dst_reg = DST,					\
177 		.src_reg = DST,					\
178 		.off   = 0,					\
179 		.imm   = 1 })
180 
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185 
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)					\
188 	BPF_LD_IMM64_RAW(DST, 0, IMM)
189 
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = 0,					\
196 		.imm   = (__u32) (IMM) }),			\
197 	((struct bpf_insn) {					\
198 		.code  = 0, /* zero is reserved opcode */	\
199 		.dst_reg = 0,					\
200 		.src_reg = 0,					\
201 		.off   = 0,					\
202 		.imm   = ((__u64) (IMM)) >> 32 })
203 
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
206 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207 
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209 
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
211 	((struct bpf_insn) {					\
212 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
213 		.dst_reg = DST,					\
214 		.src_reg = SRC,					\
215 		.off   = 0,					\
216 		.imm   = IMM })
217 
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
219 	((struct bpf_insn) {					\
220 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
221 		.dst_reg = DST,					\
222 		.src_reg = SRC,					\
223 		.off   = 0,					\
224 		.imm   = IMM })
225 
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227 
228 #define BPF_LD_ABS(SIZE, IMM)					\
229 	((struct bpf_insn) {					\
230 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
231 		.dst_reg = 0,					\
232 		.src_reg = 0,					\
233 		.off   = 0,					\
234 		.imm   = IMM })
235 
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237 
238 #define BPF_LD_IND(SIZE, SRC, IMM)				\
239 	((struct bpf_insn) {					\
240 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
241 		.dst_reg = 0,					\
242 		.src_reg = SRC,					\
243 		.off   = 0,					\
244 		.imm   = IMM })
245 
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247 
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
249 	((struct bpf_insn) {					\
250 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
251 		.dst_reg = DST,					\
252 		.src_reg = SRC,					\
253 		.off   = OFF,					\
254 		.imm   = 0 })
255 
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257 
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
259 	((struct bpf_insn) {					\
260 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
261 		.dst_reg = DST,					\
262 		.src_reg = SRC,					\
263 		.off   = OFF,					\
264 		.imm   = 0 })
265 
266 
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281 
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
283 	((struct bpf_insn) {					\
284 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
285 		.dst_reg = DST,					\
286 		.src_reg = SRC,					\
287 		.off   = OFF,					\
288 		.imm   = OP })
289 
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292 
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294 
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
298 		.dst_reg = DST,					\
299 		.src_reg = 0,					\
300 		.off   = OFF,					\
301 		.imm   = IMM })
302 
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304 
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
308 		.dst_reg = DST,					\
309 		.src_reg = SRC,					\
310 		.off   = OFF,					\
311 		.imm   = 0 })
312 
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314 
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
318 		.dst_reg = DST,					\
319 		.src_reg = 0,					\
320 		.off   = OFF,					\
321 		.imm   = IMM })
322 
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324 
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334 
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
338 		.dst_reg = DST,					\
339 		.src_reg = 0,					\
340 		.off   = OFF,					\
341 		.imm   = IMM })
342 
343 /* Unconditional jumps, goto pc + off16 */
344 
345 #define BPF_JMP_A(OFF)						\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_JMP | BPF_JA,			\
348 		.dst_reg = 0,					\
349 		.src_reg = 0,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 /* Relative call */
354 
355 #define BPF_CALL_REL(TGT)					\
356 	((struct bpf_insn) {					\
357 		.code  = BPF_JMP | BPF_CALL,			\
358 		.dst_reg = 0,					\
359 		.src_reg = BPF_PSEUDO_CALL,			\
360 		.off   = 0,					\
361 		.imm   = TGT })
362 
363 /* Convert function address to BPF immediate */
364 
365 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
366 
367 #define BPF_EMIT_CALL(FUNC)					\
368 	((struct bpf_insn) {					\
369 		.code  = BPF_JMP | BPF_CALL,			\
370 		.dst_reg = 0,					\
371 		.src_reg = 0,					\
372 		.off   = 0,					\
373 		.imm   = BPF_CALL_IMM(FUNC) })
374 
375 /* Raw code statement block */
376 
377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
378 	((struct bpf_insn) {					\
379 		.code  = CODE,					\
380 		.dst_reg = DST,					\
381 		.src_reg = SRC,					\
382 		.off   = OFF,					\
383 		.imm   = IMM })
384 
385 /* Program exit */
386 
387 #define BPF_EXIT_INSN()						\
388 	((struct bpf_insn) {					\
389 		.code  = BPF_JMP | BPF_EXIT,			\
390 		.dst_reg = 0,					\
391 		.src_reg = 0,					\
392 		.off   = 0,					\
393 		.imm   = 0 })
394 
395 /* Speculation barrier */
396 
397 #define BPF_ST_NOSPEC()						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_ST | BPF_NOSPEC,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = 0,					\
403 		.imm   = 0 })
404 
405 /* Internal classic blocks for direct assignment */
406 
407 #define __BPF_STMT(CODE, K)					\
408 	((struct sock_filter) BPF_STMT(CODE, K))
409 
410 #define __BPF_JUMP(CODE, K, JT, JF)				\
411 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
412 
413 #define bytes_to_bpf_size(bytes)				\
414 ({								\
415 	int bpf_size = -EINVAL;					\
416 								\
417 	if (bytes == sizeof(u8))				\
418 		bpf_size = BPF_B;				\
419 	else if (bytes == sizeof(u16))				\
420 		bpf_size = BPF_H;				\
421 	else if (bytes == sizeof(u32))				\
422 		bpf_size = BPF_W;				\
423 	else if (bytes == sizeof(u64))				\
424 		bpf_size = BPF_DW;				\
425 								\
426 	bpf_size;						\
427 })
428 
429 #define bpf_size_to_bytes(bpf_size)				\
430 ({								\
431 	int bytes = -EINVAL;					\
432 								\
433 	if (bpf_size == BPF_B)					\
434 		bytes = sizeof(u8);				\
435 	else if (bpf_size == BPF_H)				\
436 		bytes = sizeof(u16);				\
437 	else if (bpf_size == BPF_W)				\
438 		bytes = sizeof(u32);				\
439 	else if (bpf_size == BPF_DW)				\
440 		bytes = sizeof(u64);				\
441 								\
442 	bytes;							\
443 })
444 
445 #define BPF_SIZEOF(type)					\
446 	({							\
447 		const int __size = bytes_to_bpf_size(sizeof(type)); \
448 		BUILD_BUG_ON(__size < 0);			\
449 		__size;						\
450 	})
451 
452 #define BPF_FIELD_SIZEOF(type, field)				\
453 	({							\
454 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
455 		BUILD_BUG_ON(__size < 0);			\
456 		__size;						\
457 	})
458 
459 #define BPF_LDST_BYTES(insn)					\
460 	({							\
461 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
462 		WARN_ON(__size < 0);				\
463 		__size;						\
464 	})
465 
466 #define __BPF_MAP_0(m, v, ...) v
467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
472 
473 #define __BPF_REG_0(...) __BPF_PAD(5)
474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
479 
480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
482 
483 #define __BPF_CAST(t, a)						       \
484 	(__force t)							       \
485 	(__force							       \
486 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
487 				      (unsigned long)0, (t)0))) a
488 #define __BPF_V void
489 #define __BPF_N
490 
491 #define __BPF_DECL_ARGS(t, a) t   a
492 #define __BPF_DECL_REGS(t, a) u64 a
493 
494 #define __BPF_PAD(n)							       \
495 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
496 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
497 
498 #define BPF_CALL_x(x, name, ...)					       \
499 	static __always_inline						       \
500 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
501 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
502 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
503 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
504 	{								       \
505 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
506 	}								       \
507 	static __always_inline						       \
508 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
509 
510 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
511 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
512 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
513 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
514 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
515 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
516 
517 #define bpf_ctx_range(TYPE, MEMBER)						\
518 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
520 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
521 #if BITS_PER_LONG == 64
522 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
523 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
524 #else
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
526 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
527 #endif /* BITS_PER_LONG == 64 */
528 
529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
530 	({									\
531 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
532 		*(PTR_SIZE) = (SIZE);						\
533 		offsetof(TYPE, MEMBER);						\
534 	})
535 
536 /* A struct sock_filter is architecture independent. */
537 struct compat_sock_fprog {
538 	u16		len;
539 	compat_uptr_t	filter;	/* struct sock_filter * */
540 };
541 
542 struct sock_fprog_kern {
543 	u16			len;
544 	struct sock_filter	*filter;
545 };
546 
547 /* Some arches need doubleword alignment for their instructions and/or data */
548 #define BPF_IMAGE_ALIGNMENT 8
549 
550 struct bpf_binary_header {
551 	u32 size;
552 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
553 };
554 
555 struct bpf_prog_stats {
556 	u64_stats_t cnt;
557 	u64_stats_t nsecs;
558 	u64_stats_t misses;
559 	struct u64_stats_sync syncp;
560 } __aligned(2 * sizeof(u64));
561 
562 struct sk_filter {
563 	refcount_t	refcnt;
564 	struct rcu_head	rcu;
565 	struct bpf_prog	*prog;
566 };
567 
568 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
569 
570 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
571 					  const struct bpf_insn *insnsi,
572 					  unsigned int (*bpf_func)(const void *,
573 								   const struct bpf_insn *));
574 
575 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
576 					  const void *ctx,
577 					  bpf_dispatcher_fn dfunc)
578 {
579 	u32 ret;
580 
581 	cant_migrate();
582 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
583 		struct bpf_prog_stats *stats;
584 		u64 start = sched_clock();
585 		unsigned long flags;
586 
587 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
588 		stats = this_cpu_ptr(prog->stats);
589 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
590 		u64_stats_inc(&stats->cnt);
591 		u64_stats_add(&stats->nsecs, sched_clock() - start);
592 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
593 	} else {
594 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
595 	}
596 	return ret;
597 }
598 
599 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
600 {
601 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
602 }
603 
604 /*
605  * Use in preemptible and therefore migratable context to make sure that
606  * the execution of the BPF program runs on one CPU.
607  *
608  * This uses migrate_disable/enable() explicitly to document that the
609  * invocation of a BPF program does not require reentrancy protection
610  * against a BPF program which is invoked from a preempting task.
611  */
612 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
613 					  const void *ctx)
614 {
615 	u32 ret;
616 
617 	migrate_disable();
618 	ret = bpf_prog_run(prog, ctx);
619 	migrate_enable();
620 	return ret;
621 }
622 
623 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
624 
625 struct bpf_skb_data_end {
626 	struct qdisc_skb_cb qdisc_cb;
627 	void *data_meta;
628 	void *data_end;
629 };
630 
631 struct bpf_nh_params {
632 	u32 nh_family;
633 	union {
634 		u32 ipv4_nh;
635 		struct in6_addr ipv6_nh;
636 	};
637 };
638 
639 struct bpf_redirect_info {
640 	u32 flags;
641 	u32 tgt_index;
642 	void *tgt_value;
643 	struct bpf_map *map;
644 	u32 map_id;
645 	enum bpf_map_type map_type;
646 	u32 kern_flags;
647 	struct bpf_nh_params nh;
648 };
649 
650 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
651 
652 /* flags for bpf_redirect_info kern_flags */
653 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
654 
655 /* Compute the linear packet data range [data, data_end) which
656  * will be accessed by various program types (cls_bpf, act_bpf,
657  * lwt, ...). Subsystems allowing direct data access must (!)
658  * ensure that cb[] area can be written to when BPF program is
659  * invoked (otherwise cb[] save/restore is necessary).
660  */
661 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
662 {
663 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
664 
665 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
666 	cb->data_meta = skb->data - skb_metadata_len(skb);
667 	cb->data_end  = skb->data + skb_headlen(skb);
668 }
669 
670 /* Similar to bpf_compute_data_pointers(), except that save orginal
671  * data in cb->data and cb->meta_data for restore.
672  */
673 static inline void bpf_compute_and_save_data_end(
674 	struct sk_buff *skb, void **saved_data_end)
675 {
676 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
677 
678 	*saved_data_end = cb->data_end;
679 	cb->data_end  = skb->data + skb_headlen(skb);
680 }
681 
682 /* Restore data saved by bpf_compute_data_pointers(). */
683 static inline void bpf_restore_data_end(
684 	struct sk_buff *skb, void *saved_data_end)
685 {
686 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
687 
688 	cb->data_end = saved_data_end;
689 }
690 
691 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
692 {
693 	/* eBPF programs may read/write skb->cb[] area to transfer meta
694 	 * data between tail calls. Since this also needs to work with
695 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
696 	 *
697 	 * In some socket filter cases, the cb unfortunately needs to be
698 	 * saved/restored so that protocol specific skb->cb[] data won't
699 	 * be lost. In any case, due to unpriviledged eBPF programs
700 	 * attached to sockets, we need to clear the bpf_skb_cb() area
701 	 * to not leak previous contents to user space.
702 	 */
703 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
704 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
705 		     sizeof_field(struct qdisc_skb_cb, data));
706 
707 	return qdisc_skb_cb(skb)->data;
708 }
709 
710 /* Must be invoked with migration disabled */
711 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
712 					 const void *ctx)
713 {
714 	const struct sk_buff *skb = ctx;
715 	u8 *cb_data = bpf_skb_cb(skb);
716 	u8 cb_saved[BPF_SKB_CB_LEN];
717 	u32 res;
718 
719 	if (unlikely(prog->cb_access)) {
720 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
721 		memset(cb_data, 0, sizeof(cb_saved));
722 	}
723 
724 	res = bpf_prog_run(prog, skb);
725 
726 	if (unlikely(prog->cb_access))
727 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
728 
729 	return res;
730 }
731 
732 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
733 				       struct sk_buff *skb)
734 {
735 	u32 res;
736 
737 	migrate_disable();
738 	res = __bpf_prog_run_save_cb(prog, skb);
739 	migrate_enable();
740 	return res;
741 }
742 
743 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
744 					struct sk_buff *skb)
745 {
746 	u8 *cb_data = bpf_skb_cb(skb);
747 	u32 res;
748 
749 	if (unlikely(prog->cb_access))
750 		memset(cb_data, 0, BPF_SKB_CB_LEN);
751 
752 	res = bpf_prog_run_pin_on_cpu(prog, skb);
753 	return res;
754 }
755 
756 DECLARE_BPF_DISPATCHER(xdp)
757 
758 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
759 
760 u32 xdp_master_redirect(struct xdp_buff *xdp);
761 
762 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
763 					    struct xdp_buff *xdp)
764 {
765 	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
766 	 * under local_bh_disable(), which provides the needed RCU protection
767 	 * for accessing map entries.
768 	 */
769 	u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
770 
771 	if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
772 		if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
773 			act = xdp_master_redirect(xdp);
774 	}
775 
776 	return act;
777 }
778 
779 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
780 
781 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
782 {
783 	return prog->len * sizeof(struct bpf_insn);
784 }
785 
786 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
787 {
788 	return round_up(bpf_prog_insn_size(prog) +
789 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
790 }
791 
792 static inline unsigned int bpf_prog_size(unsigned int proglen)
793 {
794 	return max(sizeof(struct bpf_prog),
795 		   offsetof(struct bpf_prog, insns[proglen]));
796 }
797 
798 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
799 {
800 	/* When classic BPF programs have been loaded and the arch
801 	 * does not have a classic BPF JIT (anymore), they have been
802 	 * converted via bpf_migrate_filter() to eBPF and thus always
803 	 * have an unspec program type.
804 	 */
805 	return prog->type == BPF_PROG_TYPE_UNSPEC;
806 }
807 
808 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
809 {
810 	const u32 size_machine = sizeof(unsigned long);
811 
812 	if (size > size_machine && size % size_machine == 0)
813 		size = size_machine;
814 
815 	return size;
816 }
817 
818 static inline bool
819 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
820 {
821 	return size <= size_default && (size & (size - 1)) == 0;
822 }
823 
824 static inline u8
825 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
826 {
827 	u8 access_off = off & (size_default - 1);
828 
829 #ifdef __LITTLE_ENDIAN
830 	return access_off;
831 #else
832 	return size_default - (access_off + size);
833 #endif
834 }
835 
836 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
837 	(size == sizeof(__u64) &&					\
838 	off >= offsetof(type, field) &&					\
839 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
840 	off % sizeof(__u64) == 0)
841 
842 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
843 
844 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
845 {
846 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
847 	if (!fp->jited) {
848 		set_vm_flush_reset_perms(fp);
849 		set_memory_ro((unsigned long)fp, fp->pages);
850 	}
851 #endif
852 }
853 
854 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
855 {
856 	set_vm_flush_reset_perms(hdr);
857 	set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
858 	set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
859 }
860 
861 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
862 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
863 {
864 	return sk_filter_trim_cap(sk, skb, 1);
865 }
866 
867 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
868 void bpf_prog_free(struct bpf_prog *fp);
869 
870 bool bpf_opcode_in_insntable(u8 code);
871 
872 void bpf_prog_free_linfo(struct bpf_prog *prog);
873 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
874 			       const u32 *insn_to_jit_off);
875 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
876 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
877 
878 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
879 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
880 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
881 				  gfp_t gfp_extra_flags);
882 void __bpf_prog_free(struct bpf_prog *fp);
883 
884 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
885 {
886 	__bpf_prog_free(fp);
887 }
888 
889 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
890 				       unsigned int flen);
891 
892 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
893 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
894 			      bpf_aux_classic_check_t trans, bool save_orig);
895 void bpf_prog_destroy(struct bpf_prog *fp);
896 
897 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
898 int sk_attach_bpf(u32 ufd, struct sock *sk);
899 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
900 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
901 void sk_reuseport_prog_free(struct bpf_prog *prog);
902 int sk_detach_filter(struct sock *sk);
903 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
904 		  unsigned int len);
905 
906 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
907 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
908 
909 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
910 #define __bpf_call_base_args \
911 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
912 	 (void *)__bpf_call_base)
913 
914 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
915 void bpf_jit_compile(struct bpf_prog *prog);
916 bool bpf_jit_needs_zext(void);
917 bool bpf_jit_supports_kfunc_call(void);
918 bool bpf_helper_changes_pkt_data(void *func);
919 
920 static inline bool bpf_dump_raw_ok(const struct cred *cred)
921 {
922 	/* Reconstruction of call-sites is dependent on kallsyms,
923 	 * thus make dump the same restriction.
924 	 */
925 	return kallsyms_show_value(cred);
926 }
927 
928 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
929 				       const struct bpf_insn *patch, u32 len);
930 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
931 
932 void bpf_clear_redirect_map(struct bpf_map *map);
933 
934 static inline bool xdp_return_frame_no_direct(void)
935 {
936 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
937 
938 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
939 }
940 
941 static inline void xdp_set_return_frame_no_direct(void)
942 {
943 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
944 
945 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
946 }
947 
948 static inline void xdp_clear_return_frame_no_direct(void)
949 {
950 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
951 
952 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
953 }
954 
955 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
956 				 unsigned int pktlen)
957 {
958 	unsigned int len;
959 
960 	if (unlikely(!(fwd->flags & IFF_UP)))
961 		return -ENETDOWN;
962 
963 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
964 	if (pktlen > len)
965 		return -EMSGSIZE;
966 
967 	return 0;
968 }
969 
970 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
971  * same cpu context. Further for best results no more than a single map
972  * for the do_redirect/do_flush pair should be used. This limitation is
973  * because we only track one map and force a flush when the map changes.
974  * This does not appear to be a real limitation for existing software.
975  */
976 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
977 			    struct xdp_buff *xdp, struct bpf_prog *prog);
978 int xdp_do_redirect(struct net_device *dev,
979 		    struct xdp_buff *xdp,
980 		    struct bpf_prog *prog);
981 int xdp_do_redirect_frame(struct net_device *dev,
982 			  struct xdp_buff *xdp,
983 			  struct xdp_frame *xdpf,
984 			  struct bpf_prog *prog);
985 void xdp_do_flush(void);
986 
987 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
988  * it is no longer only flushing maps. Keep this define for compatibility
989  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
990  */
991 #define xdp_do_flush_map xdp_do_flush
992 
993 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
994 
995 #ifdef CONFIG_INET
996 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
997 				  struct bpf_prog *prog, struct sk_buff *skb,
998 				  struct sock *migrating_sk,
999 				  u32 hash);
1000 #else
1001 static inline struct sock *
1002 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1003 		     struct bpf_prog *prog, struct sk_buff *skb,
1004 		     struct sock *migrating_sk,
1005 		     u32 hash)
1006 {
1007 	return NULL;
1008 }
1009 #endif
1010 
1011 #ifdef CONFIG_BPF_JIT
1012 extern int bpf_jit_enable;
1013 extern int bpf_jit_harden;
1014 extern int bpf_jit_kallsyms;
1015 extern long bpf_jit_limit;
1016 extern long bpf_jit_limit_max;
1017 
1018 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1019 
1020 struct bpf_binary_header *
1021 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1022 		     unsigned int alignment,
1023 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1024 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1025 u64 bpf_jit_alloc_exec_limit(void);
1026 void *bpf_jit_alloc_exec(unsigned long size);
1027 void bpf_jit_free_exec(void *addr);
1028 void bpf_jit_free(struct bpf_prog *fp);
1029 
1030 struct bpf_binary_header *
1031 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1032 			  unsigned int alignment,
1033 			  struct bpf_binary_header **rw_hdr,
1034 			  u8 **rw_image,
1035 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1036 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1037 				 struct bpf_binary_header *ro_header,
1038 				 struct bpf_binary_header *rw_header);
1039 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1040 			      struct bpf_binary_header *rw_header);
1041 
1042 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1043 				struct bpf_jit_poke_descriptor *poke);
1044 
1045 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1046 			  const struct bpf_insn *insn, bool extra_pass,
1047 			  u64 *func_addr, bool *func_addr_fixed);
1048 
1049 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1050 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1051 
1052 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1053 				u32 pass, void *image)
1054 {
1055 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1056 	       proglen, pass, image, current->comm, task_pid_nr(current));
1057 
1058 	if (image)
1059 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1060 			       16, 1, image, proglen, false);
1061 }
1062 
1063 static inline bool bpf_jit_is_ebpf(void)
1064 {
1065 # ifdef CONFIG_HAVE_EBPF_JIT
1066 	return true;
1067 # else
1068 	return false;
1069 # endif
1070 }
1071 
1072 static inline bool ebpf_jit_enabled(void)
1073 {
1074 	return bpf_jit_enable && bpf_jit_is_ebpf();
1075 }
1076 
1077 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1078 {
1079 	return fp->jited && bpf_jit_is_ebpf();
1080 }
1081 
1082 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1083 {
1084 	/* These are the prerequisites, should someone ever have the
1085 	 * idea to call blinding outside of them, we make sure to
1086 	 * bail out.
1087 	 */
1088 	if (!bpf_jit_is_ebpf())
1089 		return false;
1090 	if (!prog->jit_requested)
1091 		return false;
1092 	if (!bpf_jit_harden)
1093 		return false;
1094 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
1100 static inline bool bpf_jit_kallsyms_enabled(void)
1101 {
1102 	/* There are a couple of corner cases where kallsyms should
1103 	 * not be enabled f.e. on hardening.
1104 	 */
1105 	if (bpf_jit_harden)
1106 		return false;
1107 	if (!bpf_jit_kallsyms)
1108 		return false;
1109 	if (bpf_jit_kallsyms == 1)
1110 		return true;
1111 
1112 	return false;
1113 }
1114 
1115 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1116 				 unsigned long *off, char *sym);
1117 bool is_bpf_text_address(unsigned long addr);
1118 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1119 		    char *sym);
1120 
1121 static inline const char *
1122 bpf_address_lookup(unsigned long addr, unsigned long *size,
1123 		   unsigned long *off, char **modname, char *sym)
1124 {
1125 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1126 
1127 	if (ret && modname)
1128 		*modname = NULL;
1129 	return ret;
1130 }
1131 
1132 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1133 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1134 
1135 #else /* CONFIG_BPF_JIT */
1136 
1137 static inline bool ebpf_jit_enabled(void)
1138 {
1139 	return false;
1140 }
1141 
1142 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1143 {
1144 	return false;
1145 }
1146 
1147 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1148 {
1149 	return false;
1150 }
1151 
1152 static inline int
1153 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1154 			    struct bpf_jit_poke_descriptor *poke)
1155 {
1156 	return -ENOTSUPP;
1157 }
1158 
1159 static inline void bpf_jit_free(struct bpf_prog *fp)
1160 {
1161 	bpf_prog_unlock_free(fp);
1162 }
1163 
1164 static inline bool bpf_jit_kallsyms_enabled(void)
1165 {
1166 	return false;
1167 }
1168 
1169 static inline const char *
1170 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1171 		     unsigned long *off, char *sym)
1172 {
1173 	return NULL;
1174 }
1175 
1176 static inline bool is_bpf_text_address(unsigned long addr)
1177 {
1178 	return false;
1179 }
1180 
1181 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1182 				  char *type, char *sym)
1183 {
1184 	return -ERANGE;
1185 }
1186 
1187 static inline const char *
1188 bpf_address_lookup(unsigned long addr, unsigned long *size,
1189 		   unsigned long *off, char **modname, char *sym)
1190 {
1191 	return NULL;
1192 }
1193 
1194 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1195 {
1196 }
1197 
1198 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1199 {
1200 }
1201 
1202 #endif /* CONFIG_BPF_JIT */
1203 
1204 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1205 
1206 #define BPF_ANC		BIT(15)
1207 
1208 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1209 {
1210 	switch (first->code) {
1211 	case BPF_RET | BPF_K:
1212 	case BPF_LD | BPF_W | BPF_LEN:
1213 		return false;
1214 
1215 	case BPF_LD | BPF_W | BPF_ABS:
1216 	case BPF_LD | BPF_H | BPF_ABS:
1217 	case BPF_LD | BPF_B | BPF_ABS:
1218 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1219 			return true;
1220 		return false;
1221 
1222 	default:
1223 		return true;
1224 	}
1225 }
1226 
1227 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1228 {
1229 	BUG_ON(ftest->code & BPF_ANC);
1230 
1231 	switch (ftest->code) {
1232 	case BPF_LD | BPF_W | BPF_ABS:
1233 	case BPF_LD | BPF_H | BPF_ABS:
1234 	case BPF_LD | BPF_B | BPF_ABS:
1235 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1236 				return BPF_ANC | SKF_AD_##CODE
1237 		switch (ftest->k) {
1238 		BPF_ANCILLARY(PROTOCOL);
1239 		BPF_ANCILLARY(PKTTYPE);
1240 		BPF_ANCILLARY(IFINDEX);
1241 		BPF_ANCILLARY(NLATTR);
1242 		BPF_ANCILLARY(NLATTR_NEST);
1243 		BPF_ANCILLARY(MARK);
1244 		BPF_ANCILLARY(QUEUE);
1245 		BPF_ANCILLARY(HATYPE);
1246 		BPF_ANCILLARY(RXHASH);
1247 		BPF_ANCILLARY(CPU);
1248 		BPF_ANCILLARY(ALU_XOR_X);
1249 		BPF_ANCILLARY(VLAN_TAG);
1250 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1251 		BPF_ANCILLARY(PAY_OFFSET);
1252 		BPF_ANCILLARY(RANDOM);
1253 		BPF_ANCILLARY(VLAN_TPID);
1254 		}
1255 		fallthrough;
1256 	default:
1257 		return ftest->code;
1258 	}
1259 }
1260 
1261 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1262 					   int k, unsigned int size);
1263 
1264 static inline int bpf_tell_extensions(void)
1265 {
1266 	return SKF_AD_MAX;
1267 }
1268 
1269 struct bpf_sock_addr_kern {
1270 	struct sock *sk;
1271 	struct sockaddr *uaddr;
1272 	/* Temporary "register" to make indirect stores to nested structures
1273 	 * defined above. We need three registers to make such a store, but
1274 	 * only two (src and dst) are available at convert_ctx_access time
1275 	 */
1276 	u64 tmp_reg;
1277 	void *t_ctx;	/* Attach type specific context. */
1278 };
1279 
1280 struct bpf_sock_ops_kern {
1281 	struct	sock *sk;
1282 	union {
1283 		u32 args[4];
1284 		u32 reply;
1285 		u32 replylong[4];
1286 	};
1287 	struct sk_buff	*syn_skb;
1288 	struct sk_buff	*skb;
1289 	void	*skb_data_end;
1290 	u8	op;
1291 	u8	is_fullsock;
1292 	u8	remaining_opt_len;
1293 	u64	temp;			/* temp and everything after is not
1294 					 * initialized to 0 before calling
1295 					 * the BPF program. New fields that
1296 					 * should be initialized to 0 should
1297 					 * be inserted before temp.
1298 					 * temp is scratch storage used by
1299 					 * sock_ops_convert_ctx_access
1300 					 * as temporary storage of a register.
1301 					 */
1302 };
1303 
1304 struct bpf_sysctl_kern {
1305 	struct ctl_table_header *head;
1306 	struct ctl_table *table;
1307 	void *cur_val;
1308 	size_t cur_len;
1309 	void *new_val;
1310 	size_t new_len;
1311 	int new_updated;
1312 	int write;
1313 	loff_t *ppos;
1314 	/* Temporary "register" for indirect stores to ppos. */
1315 	u64 tmp_reg;
1316 };
1317 
1318 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1319 struct bpf_sockopt_buf {
1320 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1321 };
1322 
1323 struct bpf_sockopt_kern {
1324 	struct sock	*sk;
1325 	u8		*optval;
1326 	u8		*optval_end;
1327 	s32		level;
1328 	s32		optname;
1329 	s32		optlen;
1330 	/* for retval in struct bpf_cg_run_ctx */
1331 	struct task_struct *current_task;
1332 	/* Temporary "register" for indirect stores to ppos. */
1333 	u64		tmp_reg;
1334 };
1335 
1336 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1337 
1338 struct bpf_sk_lookup_kern {
1339 	u16		family;
1340 	u16		protocol;
1341 	__be16		sport;
1342 	u16		dport;
1343 	struct {
1344 		__be32 saddr;
1345 		__be32 daddr;
1346 	} v4;
1347 	struct {
1348 		const struct in6_addr *saddr;
1349 		const struct in6_addr *daddr;
1350 	} v6;
1351 	struct sock	*selected_sk;
1352 	u32		ingress_ifindex;
1353 	bool		no_reuseport;
1354 };
1355 
1356 extern struct static_key_false bpf_sk_lookup_enabled;
1357 
1358 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1359  *
1360  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1361  * SK_DROP. Their meaning is as follows:
1362  *
1363  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1364  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1365  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1366  *
1367  * This macro aggregates return values and selected sockets from
1368  * multiple BPF programs according to following rules in order:
1369  *
1370  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1371  *     macro result is SK_PASS and last ctx.selected_sk is used.
1372  *  2. If any program returned SK_DROP return value,
1373  *     macro result is SK_DROP.
1374  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1375  *
1376  * Caller must ensure that the prog array is non-NULL, and that the
1377  * array as well as the programs it contains remain valid.
1378  */
1379 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1380 	({								\
1381 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1382 		struct bpf_prog_array_item *_item;			\
1383 		struct sock *_selected_sk = NULL;			\
1384 		bool _no_reuseport = false;				\
1385 		struct bpf_prog *_prog;					\
1386 		bool _all_pass = true;					\
1387 		u32 _ret;						\
1388 									\
1389 		migrate_disable();					\
1390 		_item = &(array)->items[0];				\
1391 		while ((_prog = READ_ONCE(_item->prog))) {		\
1392 			/* restore most recent selection */		\
1393 			_ctx->selected_sk = _selected_sk;		\
1394 			_ctx->no_reuseport = _no_reuseport;		\
1395 									\
1396 			_ret = func(_prog, _ctx);			\
1397 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1398 				/* remember last non-NULL socket */	\
1399 				_selected_sk = _ctx->selected_sk;	\
1400 				_no_reuseport = _ctx->no_reuseport;	\
1401 			} else if (_ret == SK_DROP && _all_pass) {	\
1402 				_all_pass = false;			\
1403 			}						\
1404 			_item++;					\
1405 		}							\
1406 		_ctx->selected_sk = _selected_sk;			\
1407 		_ctx->no_reuseport = _no_reuseport;			\
1408 		migrate_enable();					\
1409 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1410 	 })
1411 
1412 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1413 					const __be32 saddr, const __be16 sport,
1414 					const __be32 daddr, const u16 dport,
1415 					const int ifindex, struct sock **psk)
1416 {
1417 	struct bpf_prog_array *run_array;
1418 	struct sock *selected_sk = NULL;
1419 	bool no_reuseport = false;
1420 
1421 	rcu_read_lock();
1422 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1423 	if (run_array) {
1424 		struct bpf_sk_lookup_kern ctx = {
1425 			.family		= AF_INET,
1426 			.protocol	= protocol,
1427 			.v4.saddr	= saddr,
1428 			.v4.daddr	= daddr,
1429 			.sport		= sport,
1430 			.dport		= dport,
1431 			.ingress_ifindex	= ifindex,
1432 		};
1433 		u32 act;
1434 
1435 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1436 		if (act == SK_PASS) {
1437 			selected_sk = ctx.selected_sk;
1438 			no_reuseport = ctx.no_reuseport;
1439 		} else {
1440 			selected_sk = ERR_PTR(-ECONNREFUSED);
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 	*psk = selected_sk;
1445 	return no_reuseport;
1446 }
1447 
1448 #if IS_ENABLED(CONFIG_IPV6)
1449 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1450 					const struct in6_addr *saddr,
1451 					const __be16 sport,
1452 					const struct in6_addr *daddr,
1453 					const u16 dport,
1454 					const int ifindex, struct sock **psk)
1455 {
1456 	struct bpf_prog_array *run_array;
1457 	struct sock *selected_sk = NULL;
1458 	bool no_reuseport = false;
1459 
1460 	rcu_read_lock();
1461 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1462 	if (run_array) {
1463 		struct bpf_sk_lookup_kern ctx = {
1464 			.family		= AF_INET6,
1465 			.protocol	= protocol,
1466 			.v6.saddr	= saddr,
1467 			.v6.daddr	= daddr,
1468 			.sport		= sport,
1469 			.dport		= dport,
1470 			.ingress_ifindex	= ifindex,
1471 		};
1472 		u32 act;
1473 
1474 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1475 		if (act == SK_PASS) {
1476 			selected_sk = ctx.selected_sk;
1477 			no_reuseport = ctx.no_reuseport;
1478 		} else {
1479 			selected_sk = ERR_PTR(-ECONNREFUSED);
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 	*psk = selected_sk;
1484 	return no_reuseport;
1485 }
1486 #endif /* IS_ENABLED(CONFIG_IPV6) */
1487 
1488 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1489 						  u64 flags, const u64 flag_mask,
1490 						  void *lookup_elem(struct bpf_map *map, u32 key))
1491 {
1492 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1493 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1494 
1495 	/* Lower bits of the flags are used as return code on lookup failure */
1496 	if (unlikely(flags & ~(action_mask | flag_mask)))
1497 		return XDP_ABORTED;
1498 
1499 	ri->tgt_value = lookup_elem(map, ifindex);
1500 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1501 		/* If the lookup fails we want to clear out the state in the
1502 		 * redirect_info struct completely, so that if an eBPF program
1503 		 * performs multiple lookups, the last one always takes
1504 		 * precedence.
1505 		 */
1506 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1507 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1508 		return flags & action_mask;
1509 	}
1510 
1511 	ri->tgt_index = ifindex;
1512 	ri->map_id = map->id;
1513 	ri->map_type = map->map_type;
1514 
1515 	if (flags & BPF_F_BROADCAST) {
1516 		WRITE_ONCE(ri->map, map);
1517 		ri->flags = flags;
1518 	} else {
1519 		WRITE_ONCE(ri->map, NULL);
1520 		ri->flags = 0;
1521 	}
1522 
1523 	return XDP_REDIRECT;
1524 }
1525 
1526 #endif /* __LINUX_FILTER_H__ */
1527