xref: /linux-6.15/include/linux/filter.h (revision 265264b8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/refcount.h>
10 #include <linux/compat.h>
11 #include <linux/skbuff.h>
12 #include <linux/linkage.h>
13 #include <linux/printk.h>
14 #include <linux/workqueue.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17 #include <linux/set_memory.h>
18 #include <linux/kallsyms.h>
19 #include <linux/if_vlan.h>
20 #include <linux/vmalloc.h>
21 #include <linux/sockptr.h>
22 #include <crypto/sha1.h>
23 #include <linux/u64_stats_sync.h>
24 
25 #include <net/sch_generic.h>
26 
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30 
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40 
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1	BPF_REG_1
46 #define BPF_REG_ARG2	BPF_REG_2
47 #define BPF_REG_ARG3	BPF_REG_3
48 #define BPF_REG_ARG4	BPF_REG_4
49 #define BPF_REG_ARG5	BPF_REG_5
50 #define BPF_REG_CTX	BPF_REG_6
51 #define BPF_REG_FP	BPF_REG_10
52 
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A	BPF_REG_0
55 #define BPF_REG_X	BPF_REG_7
56 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
57 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
58 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
59 
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
64 
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL	0xf0
67 
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM	0x20
70 
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS	0xe0
73 
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC	0xc0
78 
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE	't'
84 
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK	512
87 
88 /* Helper macros for filter block array initializers. */
89 
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91 
92 #define BPF_ALU64_REG(OP, DST, SRC)				\
93 	((struct bpf_insn) {					\
94 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
95 		.dst_reg = DST,					\
96 		.src_reg = SRC,					\
97 		.off   = 0,					\
98 		.imm   = 0 })
99 
100 #define BPF_ALU32_REG(OP, DST, SRC)				\
101 	((struct bpf_insn) {					\
102 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
103 		.dst_reg = DST,					\
104 		.src_reg = SRC,					\
105 		.off   = 0,					\
106 		.imm   = 0 })
107 
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109 
110 #define BPF_ALU64_IMM(OP, DST, IMM)				\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
113 		.dst_reg = DST,					\
114 		.src_reg = 0,					\
115 		.off   = 0,					\
116 		.imm   = IMM })
117 
118 #define BPF_ALU32_IMM(OP, DST, IMM)				\
119 	((struct bpf_insn) {					\
120 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
121 		.dst_reg = DST,					\
122 		.src_reg = 0,					\
123 		.off   = 0,					\
124 		.imm   = IMM })
125 
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127 
128 #define BPF_ENDIAN(TYPE, DST, LEN)				\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
131 		.dst_reg = DST,					\
132 		.src_reg = 0,					\
133 		.off   = 0,					\
134 		.imm   = LEN })
135 
136 /* Short form of mov, dst_reg = src_reg */
137 
138 #define BPF_MOV64_REG(DST, SRC)					\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
141 		.dst_reg = DST,					\
142 		.src_reg = SRC,					\
143 		.off   = 0,					\
144 		.imm   = 0 })
145 
146 #define BPF_MOV32_REG(DST, SRC)					\
147 	((struct bpf_insn) {					\
148 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
149 		.dst_reg = DST,					\
150 		.src_reg = SRC,					\
151 		.off   = 0,					\
152 		.imm   = 0 })
153 
154 /* Short form of mov, dst_reg = imm32 */
155 
156 #define BPF_MOV64_IMM(DST, IMM)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
159 		.dst_reg = DST,					\
160 		.src_reg = 0,					\
161 		.off   = 0,					\
162 		.imm   = IMM })
163 
164 #define BPF_MOV32_IMM(DST, IMM)					\
165 	((struct bpf_insn) {					\
166 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
167 		.dst_reg = DST,					\
168 		.src_reg = 0,					\
169 		.off   = 0,					\
170 		.imm   = IMM })
171 
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)					\
174 	((struct bpf_insn) {					\
175 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
176 		.dst_reg = DST,					\
177 		.src_reg = DST,					\
178 		.off   = 0,					\
179 		.imm   = 1 })
180 
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185 
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)					\
188 	BPF_LD_IMM64_RAW(DST, 0, IMM)
189 
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = 0,					\
196 		.imm   = (__u32) (IMM) }),			\
197 	((struct bpf_insn) {					\
198 		.code  = 0, /* zero is reserved opcode */	\
199 		.dst_reg = 0,					\
200 		.src_reg = 0,					\
201 		.off   = 0,					\
202 		.imm   = ((__u64) (IMM)) >> 32 })
203 
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
206 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207 
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209 
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
211 	((struct bpf_insn) {					\
212 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
213 		.dst_reg = DST,					\
214 		.src_reg = SRC,					\
215 		.off   = 0,					\
216 		.imm   = IMM })
217 
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
219 	((struct bpf_insn) {					\
220 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
221 		.dst_reg = DST,					\
222 		.src_reg = SRC,					\
223 		.off   = 0,					\
224 		.imm   = IMM })
225 
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227 
228 #define BPF_LD_ABS(SIZE, IMM)					\
229 	((struct bpf_insn) {					\
230 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
231 		.dst_reg = 0,					\
232 		.src_reg = 0,					\
233 		.off   = 0,					\
234 		.imm   = IMM })
235 
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237 
238 #define BPF_LD_IND(SIZE, SRC, IMM)				\
239 	((struct bpf_insn) {					\
240 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
241 		.dst_reg = 0,					\
242 		.src_reg = SRC,					\
243 		.off   = 0,					\
244 		.imm   = IMM })
245 
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247 
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
249 	((struct bpf_insn) {					\
250 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
251 		.dst_reg = DST,					\
252 		.src_reg = SRC,					\
253 		.off   = OFF,					\
254 		.imm   = 0 })
255 
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257 
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
259 	((struct bpf_insn) {					\
260 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
261 		.dst_reg = DST,					\
262 		.src_reg = SRC,					\
263 		.off   = OFF,					\
264 		.imm   = 0 })
265 
266 
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281 
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
283 	((struct bpf_insn) {					\
284 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
285 		.dst_reg = DST,					\
286 		.src_reg = SRC,					\
287 		.off   = OFF,					\
288 		.imm   = OP })
289 
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292 
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294 
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
298 		.dst_reg = DST,					\
299 		.src_reg = 0,					\
300 		.off   = OFF,					\
301 		.imm   = IMM })
302 
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304 
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
308 		.dst_reg = DST,					\
309 		.src_reg = SRC,					\
310 		.off   = OFF,					\
311 		.imm   = 0 })
312 
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314 
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
318 		.dst_reg = DST,					\
319 		.src_reg = 0,					\
320 		.off   = OFF,					\
321 		.imm   = IMM })
322 
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324 
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334 
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
338 		.dst_reg = DST,					\
339 		.src_reg = 0,					\
340 		.off   = OFF,					\
341 		.imm   = IMM })
342 
343 /* Unconditional jumps, goto pc + off16 */
344 
345 #define BPF_JMP_A(OFF)						\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_JMP | BPF_JA,			\
348 		.dst_reg = 0,					\
349 		.src_reg = 0,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 /* Relative call */
354 
355 #define BPF_CALL_REL(TGT)					\
356 	((struct bpf_insn) {					\
357 		.code  = BPF_JMP | BPF_CALL,			\
358 		.dst_reg = 0,					\
359 		.src_reg = BPF_PSEUDO_CALL,			\
360 		.off   = 0,					\
361 		.imm   = TGT })
362 
363 /* Function call */
364 
365 #define BPF_CAST_CALL(x)					\
366 		((u64 (*)(u64, u64, u64, u64, u64))(x))
367 
368 #define BPF_EMIT_CALL(FUNC)					\
369 	((struct bpf_insn) {					\
370 		.code  = BPF_JMP | BPF_CALL,			\
371 		.dst_reg = 0,					\
372 		.src_reg = 0,					\
373 		.off   = 0,					\
374 		.imm   = ((FUNC) - __bpf_call_base) })
375 
376 /* Raw code statement block */
377 
378 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
379 	((struct bpf_insn) {					\
380 		.code  = CODE,					\
381 		.dst_reg = DST,					\
382 		.src_reg = SRC,					\
383 		.off   = OFF,					\
384 		.imm   = IMM })
385 
386 /* Program exit */
387 
388 #define BPF_EXIT_INSN()						\
389 	((struct bpf_insn) {					\
390 		.code  = BPF_JMP | BPF_EXIT,			\
391 		.dst_reg = 0,					\
392 		.src_reg = 0,					\
393 		.off   = 0,					\
394 		.imm   = 0 })
395 
396 /* Speculation barrier */
397 
398 #define BPF_ST_NOSPEC()						\
399 	((struct bpf_insn) {					\
400 		.code  = BPF_ST | BPF_NOSPEC,			\
401 		.dst_reg = 0,					\
402 		.src_reg = 0,					\
403 		.off   = 0,					\
404 		.imm   = 0 })
405 
406 /* Internal classic blocks for direct assignment */
407 
408 #define __BPF_STMT(CODE, K)					\
409 	((struct sock_filter) BPF_STMT(CODE, K))
410 
411 #define __BPF_JUMP(CODE, K, JT, JF)				\
412 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
413 
414 #define bytes_to_bpf_size(bytes)				\
415 ({								\
416 	int bpf_size = -EINVAL;					\
417 								\
418 	if (bytes == sizeof(u8))				\
419 		bpf_size = BPF_B;				\
420 	else if (bytes == sizeof(u16))				\
421 		bpf_size = BPF_H;				\
422 	else if (bytes == sizeof(u32))				\
423 		bpf_size = BPF_W;				\
424 	else if (bytes == sizeof(u64))				\
425 		bpf_size = BPF_DW;				\
426 								\
427 	bpf_size;						\
428 })
429 
430 #define bpf_size_to_bytes(bpf_size)				\
431 ({								\
432 	int bytes = -EINVAL;					\
433 								\
434 	if (bpf_size == BPF_B)					\
435 		bytes = sizeof(u8);				\
436 	else if (bpf_size == BPF_H)				\
437 		bytes = sizeof(u16);				\
438 	else if (bpf_size == BPF_W)				\
439 		bytes = sizeof(u32);				\
440 	else if (bpf_size == BPF_DW)				\
441 		bytes = sizeof(u64);				\
442 								\
443 	bytes;							\
444 })
445 
446 #define BPF_SIZEOF(type)					\
447 	({							\
448 		const int __size = bytes_to_bpf_size(sizeof(type)); \
449 		BUILD_BUG_ON(__size < 0);			\
450 		__size;						\
451 	})
452 
453 #define BPF_FIELD_SIZEOF(type, field)				\
454 	({							\
455 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
456 		BUILD_BUG_ON(__size < 0);			\
457 		__size;						\
458 	})
459 
460 #define BPF_LDST_BYTES(insn)					\
461 	({							\
462 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
463 		WARN_ON(__size < 0);				\
464 		__size;						\
465 	})
466 
467 #define __BPF_MAP_0(m, v, ...) v
468 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
469 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
470 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
471 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
472 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
473 
474 #define __BPF_REG_0(...) __BPF_PAD(5)
475 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
476 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
477 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
478 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
479 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
480 
481 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
482 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
483 
484 #define __BPF_CAST(t, a)						       \
485 	(__force t)							       \
486 	(__force							       \
487 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
488 				      (unsigned long)0, (t)0))) a
489 #define __BPF_V void
490 #define __BPF_N
491 
492 #define __BPF_DECL_ARGS(t, a) t   a
493 #define __BPF_DECL_REGS(t, a) u64 a
494 
495 #define __BPF_PAD(n)							       \
496 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
497 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
498 
499 #define BPF_CALL_x(x, name, ...)					       \
500 	static __always_inline						       \
501 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
502 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
503 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
504 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
505 	{								       \
506 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
507 	}								       \
508 	static __always_inline						       \
509 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
510 
511 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
512 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
513 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
514 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
515 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
516 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
517 
518 #define bpf_ctx_range(TYPE, MEMBER)						\
519 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
520 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
521 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
522 #if BITS_PER_LONG == 64
523 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
524 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
525 #else
526 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
527 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
528 #endif /* BITS_PER_LONG == 64 */
529 
530 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
531 	({									\
532 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
533 		*(PTR_SIZE) = (SIZE);						\
534 		offsetof(TYPE, MEMBER);						\
535 	})
536 
537 /* A struct sock_filter is architecture independent. */
538 struct compat_sock_fprog {
539 	u16		len;
540 	compat_uptr_t	filter;	/* struct sock_filter * */
541 };
542 
543 struct sock_fprog_kern {
544 	u16			len;
545 	struct sock_filter	*filter;
546 };
547 
548 /* Some arches need doubleword alignment for their instructions and/or data */
549 #define BPF_IMAGE_ALIGNMENT 8
550 
551 struct bpf_binary_header {
552 	u32 pages;
553 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
554 };
555 
556 struct bpf_prog_stats {
557 	u64 cnt;
558 	u64 nsecs;
559 	u64 misses;
560 	struct u64_stats_sync syncp;
561 } __aligned(2 * sizeof(u64));
562 
563 struct bpf_prog {
564 	u16			pages;		/* Number of allocated pages */
565 	u16			jited:1,	/* Is our filter JIT'ed? */
566 				jit_requested:1,/* archs need to JIT the prog */
567 				gpl_compatible:1, /* Is filter GPL compatible? */
568 				cb_access:1,	/* Is control block accessed? */
569 				dst_needed:1,	/* Do we need dst entry? */
570 				blinded:1,	/* Was blinded */
571 				is_func:1,	/* program is a bpf function */
572 				kprobe_override:1, /* Do we override a kprobe? */
573 				has_callchain_buf:1, /* callchain buffer allocated? */
574 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
575 				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
576 	enum bpf_prog_type	type;		/* Type of BPF program */
577 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
578 	u32			len;		/* Number of filter blocks */
579 	u32			jited_len;	/* Size of jited insns in bytes */
580 	u8			tag[BPF_TAG_SIZE];
581 	struct bpf_prog_stats __percpu *stats;
582 	int __percpu		*active;
583 	unsigned int		(*bpf_func)(const void *ctx,
584 					    const struct bpf_insn *insn);
585 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
586 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
587 	/* Instructions for interpreter */
588 	struct sock_filter	insns[0];
589 	struct bpf_insn		insnsi[];
590 };
591 
592 struct sk_filter {
593 	refcount_t	refcnt;
594 	struct rcu_head	rcu;
595 	struct bpf_prog	*prog;
596 };
597 
598 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
599 
600 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
601 	u32 __ret;							\
602 	cant_migrate();							\
603 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
604 		struct bpf_prog_stats *__stats;				\
605 		u64 __start = sched_clock();				\
606 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
607 		__stats = this_cpu_ptr(prog->stats);			\
608 		u64_stats_update_begin(&__stats->syncp);		\
609 		__stats->cnt++;						\
610 		__stats->nsecs += sched_clock() - __start;		\
611 		u64_stats_update_end(&__stats->syncp);			\
612 	} else {							\
613 		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
614 	}								\
615 	__ret; })
616 
617 #define BPF_PROG_RUN(prog, ctx)						\
618 	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
619 
620 /*
621  * Use in preemptible and therefore migratable context to make sure that
622  * the execution of the BPF program runs on one CPU.
623  *
624  * This uses migrate_disable/enable() explicitly to document that the
625  * invocation of a BPF program does not require reentrancy protection
626  * against a BPF program which is invoked from a preempting task.
627  *
628  * For non RT enabled kernels migrate_disable/enable() maps to
629  * preempt_disable/enable(), i.e. it disables also preemption.
630  */
631 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
632 					  const void *ctx)
633 {
634 	u32 ret;
635 
636 	migrate_disable();
637 	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
638 	migrate_enable();
639 	return ret;
640 }
641 
642 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
643 
644 struct bpf_skb_data_end {
645 	struct qdisc_skb_cb qdisc_cb;
646 	void *data_meta;
647 	void *data_end;
648 };
649 
650 struct bpf_nh_params {
651 	u32 nh_family;
652 	union {
653 		u32 ipv4_nh;
654 		struct in6_addr ipv6_nh;
655 	};
656 };
657 
658 struct bpf_redirect_info {
659 	u32 flags;
660 	u32 tgt_index;
661 	void *tgt_value;
662 	struct bpf_map *map;
663 	u32 map_id;
664 	enum bpf_map_type map_type;
665 	u32 kern_flags;
666 	struct bpf_nh_params nh;
667 };
668 
669 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
670 
671 /* flags for bpf_redirect_info kern_flags */
672 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
673 
674 /* Compute the linear packet data range [data, data_end) which
675  * will be accessed by various program types (cls_bpf, act_bpf,
676  * lwt, ...). Subsystems allowing direct data access must (!)
677  * ensure that cb[] area can be written to when BPF program is
678  * invoked (otherwise cb[] save/restore is necessary).
679  */
680 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
681 {
682 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
683 
684 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
685 	cb->data_meta = skb->data - skb_metadata_len(skb);
686 	cb->data_end  = skb->data + skb_headlen(skb);
687 }
688 
689 /* Similar to bpf_compute_data_pointers(), except that save orginal
690  * data in cb->data and cb->meta_data for restore.
691  */
692 static inline void bpf_compute_and_save_data_end(
693 	struct sk_buff *skb, void **saved_data_end)
694 {
695 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
696 
697 	*saved_data_end = cb->data_end;
698 	cb->data_end  = skb->data + skb_headlen(skb);
699 }
700 
701 /* Restore data saved by bpf_compute_data_pointers(). */
702 static inline void bpf_restore_data_end(
703 	struct sk_buff *skb, void *saved_data_end)
704 {
705 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
706 
707 	cb->data_end = saved_data_end;
708 }
709 
710 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
711 {
712 	/* eBPF programs may read/write skb->cb[] area to transfer meta
713 	 * data between tail calls. Since this also needs to work with
714 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
715 	 *
716 	 * In some socket filter cases, the cb unfortunately needs to be
717 	 * saved/restored so that protocol specific skb->cb[] data won't
718 	 * be lost. In any case, due to unpriviledged eBPF programs
719 	 * attached to sockets, we need to clear the bpf_skb_cb() area
720 	 * to not leak previous contents to user space.
721 	 */
722 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
723 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
724 		     sizeof_field(struct qdisc_skb_cb, data));
725 
726 	return qdisc_skb_cb(skb)->data;
727 }
728 
729 /* Must be invoked with migration disabled */
730 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
731 					 struct sk_buff *skb)
732 {
733 	u8 *cb_data = bpf_skb_cb(skb);
734 	u8 cb_saved[BPF_SKB_CB_LEN];
735 	u32 res;
736 
737 	if (unlikely(prog->cb_access)) {
738 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
739 		memset(cb_data, 0, sizeof(cb_saved));
740 	}
741 
742 	res = BPF_PROG_RUN(prog, skb);
743 
744 	if (unlikely(prog->cb_access))
745 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
746 
747 	return res;
748 }
749 
750 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
751 				       struct sk_buff *skb)
752 {
753 	u32 res;
754 
755 	migrate_disable();
756 	res = __bpf_prog_run_save_cb(prog, skb);
757 	migrate_enable();
758 	return res;
759 }
760 
761 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
762 					struct sk_buff *skb)
763 {
764 	u8 *cb_data = bpf_skb_cb(skb);
765 	u32 res;
766 
767 	if (unlikely(prog->cb_access))
768 		memset(cb_data, 0, BPF_SKB_CB_LEN);
769 
770 	res = bpf_prog_run_pin_on_cpu(prog, skb);
771 	return res;
772 }
773 
774 DECLARE_BPF_DISPATCHER(xdp)
775 
776 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
777 					    struct xdp_buff *xdp)
778 {
779 	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
780 	 * under local_bh_disable(), which provides the needed RCU protection
781 	 * for accessing map entries.
782 	 */
783 	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
784 }
785 
786 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
787 
788 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
789 {
790 	return prog->len * sizeof(struct bpf_insn);
791 }
792 
793 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
794 {
795 	return round_up(bpf_prog_insn_size(prog) +
796 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
797 }
798 
799 static inline unsigned int bpf_prog_size(unsigned int proglen)
800 {
801 	return max(sizeof(struct bpf_prog),
802 		   offsetof(struct bpf_prog, insns[proglen]));
803 }
804 
805 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
806 {
807 	/* When classic BPF programs have been loaded and the arch
808 	 * does not have a classic BPF JIT (anymore), they have been
809 	 * converted via bpf_migrate_filter() to eBPF and thus always
810 	 * have an unspec program type.
811 	 */
812 	return prog->type == BPF_PROG_TYPE_UNSPEC;
813 }
814 
815 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
816 {
817 	const u32 size_machine = sizeof(unsigned long);
818 
819 	if (size > size_machine && size % size_machine == 0)
820 		size = size_machine;
821 
822 	return size;
823 }
824 
825 static inline bool
826 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
827 {
828 	return size <= size_default && (size & (size - 1)) == 0;
829 }
830 
831 static inline u8
832 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
833 {
834 	u8 access_off = off & (size_default - 1);
835 
836 #ifdef __LITTLE_ENDIAN
837 	return access_off;
838 #else
839 	return size_default - (access_off + size);
840 #endif
841 }
842 
843 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
844 	(size == sizeof(__u64) &&					\
845 	off >= offsetof(type, field) &&					\
846 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
847 	off % sizeof(__u64) == 0)
848 
849 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
850 
851 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
852 {
853 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
854 	if (!fp->jited) {
855 		set_vm_flush_reset_perms(fp);
856 		set_memory_ro((unsigned long)fp, fp->pages);
857 	}
858 #endif
859 }
860 
861 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
862 {
863 	set_vm_flush_reset_perms(hdr);
864 	set_memory_ro((unsigned long)hdr, hdr->pages);
865 	set_memory_x((unsigned long)hdr, hdr->pages);
866 }
867 
868 static inline struct bpf_binary_header *
869 bpf_jit_binary_hdr(const struct bpf_prog *fp)
870 {
871 	unsigned long real_start = (unsigned long)fp->bpf_func;
872 	unsigned long addr = real_start & PAGE_MASK;
873 
874 	return (void *)addr;
875 }
876 
877 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
878 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
879 {
880 	return sk_filter_trim_cap(sk, skb, 1);
881 }
882 
883 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
884 void bpf_prog_free(struct bpf_prog *fp);
885 
886 bool bpf_opcode_in_insntable(u8 code);
887 
888 void bpf_prog_free_linfo(struct bpf_prog *prog);
889 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
890 			       const u32 *insn_to_jit_off);
891 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
892 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
893 
894 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
895 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
896 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
897 				  gfp_t gfp_extra_flags);
898 void __bpf_prog_free(struct bpf_prog *fp);
899 
900 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
901 {
902 	__bpf_prog_free(fp);
903 }
904 
905 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
906 				       unsigned int flen);
907 
908 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
909 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
910 			      bpf_aux_classic_check_t trans, bool save_orig);
911 void bpf_prog_destroy(struct bpf_prog *fp);
912 
913 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
914 int sk_attach_bpf(u32 ufd, struct sock *sk);
915 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
916 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
917 void sk_reuseport_prog_free(struct bpf_prog *prog);
918 int sk_detach_filter(struct sock *sk);
919 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
920 		  unsigned int len);
921 
922 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
923 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
924 
925 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
926 #define __bpf_call_base_args \
927 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
928 	 (void *)__bpf_call_base)
929 
930 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
931 void bpf_jit_compile(struct bpf_prog *prog);
932 bool bpf_jit_needs_zext(void);
933 bool bpf_jit_supports_kfunc_call(void);
934 bool bpf_helper_changes_pkt_data(void *func);
935 
936 static inline bool bpf_dump_raw_ok(const struct cred *cred)
937 {
938 	/* Reconstruction of call-sites is dependent on kallsyms,
939 	 * thus make dump the same restriction.
940 	 */
941 	return kallsyms_show_value(cred);
942 }
943 
944 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
945 				       const struct bpf_insn *patch, u32 len);
946 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
947 
948 void bpf_clear_redirect_map(struct bpf_map *map);
949 
950 static inline bool xdp_return_frame_no_direct(void)
951 {
952 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
953 
954 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
955 }
956 
957 static inline void xdp_set_return_frame_no_direct(void)
958 {
959 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
960 
961 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
962 }
963 
964 static inline void xdp_clear_return_frame_no_direct(void)
965 {
966 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
967 
968 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
969 }
970 
971 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
972 				 unsigned int pktlen)
973 {
974 	unsigned int len;
975 
976 	if (unlikely(!(fwd->flags & IFF_UP)))
977 		return -ENETDOWN;
978 
979 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
980 	if (pktlen > len)
981 		return -EMSGSIZE;
982 
983 	return 0;
984 }
985 
986 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
987  * same cpu context. Further for best results no more than a single map
988  * for the do_redirect/do_flush pair should be used. This limitation is
989  * because we only track one map and force a flush when the map changes.
990  * This does not appear to be a real limitation for existing software.
991  */
992 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
993 			    struct xdp_buff *xdp, struct bpf_prog *prog);
994 int xdp_do_redirect(struct net_device *dev,
995 		    struct xdp_buff *xdp,
996 		    struct bpf_prog *prog);
997 void xdp_do_flush(void);
998 
999 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1000  * it is no longer only flushing maps. Keep this define for compatibility
1001  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1002  */
1003 #define xdp_do_flush_map xdp_do_flush
1004 
1005 void bpf_warn_invalid_xdp_action(u32 act);
1006 
1007 #ifdef CONFIG_INET
1008 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1009 				  struct bpf_prog *prog, struct sk_buff *skb,
1010 				  struct sock *migrating_sk,
1011 				  u32 hash);
1012 #else
1013 static inline struct sock *
1014 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1015 		     struct bpf_prog *prog, struct sk_buff *skb,
1016 		     struct sock *migrating_sk,
1017 		     u32 hash)
1018 {
1019 	return NULL;
1020 }
1021 #endif
1022 
1023 #ifdef CONFIG_BPF_JIT
1024 extern int bpf_jit_enable;
1025 extern int bpf_jit_harden;
1026 extern int bpf_jit_kallsyms;
1027 extern long bpf_jit_limit;
1028 
1029 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1030 
1031 struct bpf_binary_header *
1032 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1033 		     unsigned int alignment,
1034 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1035 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1036 u64 bpf_jit_alloc_exec_limit(void);
1037 void *bpf_jit_alloc_exec(unsigned long size);
1038 void bpf_jit_free_exec(void *addr);
1039 void bpf_jit_free(struct bpf_prog *fp);
1040 
1041 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1042 				struct bpf_jit_poke_descriptor *poke);
1043 
1044 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1045 			  const struct bpf_insn *insn, bool extra_pass,
1046 			  u64 *func_addr, bool *func_addr_fixed);
1047 
1048 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1049 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1050 
1051 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1052 				u32 pass, void *image)
1053 {
1054 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1055 	       proglen, pass, image, current->comm, task_pid_nr(current));
1056 
1057 	if (image)
1058 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1059 			       16, 1, image, proglen, false);
1060 }
1061 
1062 static inline bool bpf_jit_is_ebpf(void)
1063 {
1064 # ifdef CONFIG_HAVE_EBPF_JIT
1065 	return true;
1066 # else
1067 	return false;
1068 # endif
1069 }
1070 
1071 static inline bool ebpf_jit_enabled(void)
1072 {
1073 	return bpf_jit_enable && bpf_jit_is_ebpf();
1074 }
1075 
1076 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1077 {
1078 	return fp->jited && bpf_jit_is_ebpf();
1079 }
1080 
1081 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1082 {
1083 	/* These are the prerequisites, should someone ever have the
1084 	 * idea to call blinding outside of them, we make sure to
1085 	 * bail out.
1086 	 */
1087 	if (!bpf_jit_is_ebpf())
1088 		return false;
1089 	if (!prog->jit_requested)
1090 		return false;
1091 	if (!bpf_jit_harden)
1092 		return false;
1093 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1094 		return false;
1095 
1096 	return true;
1097 }
1098 
1099 static inline bool bpf_jit_kallsyms_enabled(void)
1100 {
1101 	/* There are a couple of corner cases where kallsyms should
1102 	 * not be enabled f.e. on hardening.
1103 	 */
1104 	if (bpf_jit_harden)
1105 		return false;
1106 	if (!bpf_jit_kallsyms)
1107 		return false;
1108 	if (bpf_jit_kallsyms == 1)
1109 		return true;
1110 
1111 	return false;
1112 }
1113 
1114 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1115 				 unsigned long *off, char *sym);
1116 bool is_bpf_text_address(unsigned long addr);
1117 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1118 		    char *sym);
1119 
1120 static inline const char *
1121 bpf_address_lookup(unsigned long addr, unsigned long *size,
1122 		   unsigned long *off, char **modname, char *sym)
1123 {
1124 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1125 
1126 	if (ret && modname)
1127 		*modname = NULL;
1128 	return ret;
1129 }
1130 
1131 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1132 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1133 
1134 #else /* CONFIG_BPF_JIT */
1135 
1136 static inline bool ebpf_jit_enabled(void)
1137 {
1138 	return false;
1139 }
1140 
1141 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1142 {
1143 	return false;
1144 }
1145 
1146 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1147 {
1148 	return false;
1149 }
1150 
1151 static inline int
1152 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1153 			    struct bpf_jit_poke_descriptor *poke)
1154 {
1155 	return -ENOTSUPP;
1156 }
1157 
1158 static inline void bpf_jit_free(struct bpf_prog *fp)
1159 {
1160 	bpf_prog_unlock_free(fp);
1161 }
1162 
1163 static inline bool bpf_jit_kallsyms_enabled(void)
1164 {
1165 	return false;
1166 }
1167 
1168 static inline const char *
1169 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1170 		     unsigned long *off, char *sym)
1171 {
1172 	return NULL;
1173 }
1174 
1175 static inline bool is_bpf_text_address(unsigned long addr)
1176 {
1177 	return false;
1178 }
1179 
1180 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1181 				  char *type, char *sym)
1182 {
1183 	return -ERANGE;
1184 }
1185 
1186 static inline const char *
1187 bpf_address_lookup(unsigned long addr, unsigned long *size,
1188 		   unsigned long *off, char **modname, char *sym)
1189 {
1190 	return NULL;
1191 }
1192 
1193 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1194 {
1195 }
1196 
1197 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1198 {
1199 }
1200 
1201 #endif /* CONFIG_BPF_JIT */
1202 
1203 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1204 
1205 #define BPF_ANC		BIT(15)
1206 
1207 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1208 {
1209 	switch (first->code) {
1210 	case BPF_RET | BPF_K:
1211 	case BPF_LD | BPF_W | BPF_LEN:
1212 		return false;
1213 
1214 	case BPF_LD | BPF_W | BPF_ABS:
1215 	case BPF_LD | BPF_H | BPF_ABS:
1216 	case BPF_LD | BPF_B | BPF_ABS:
1217 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1218 			return true;
1219 		return false;
1220 
1221 	default:
1222 		return true;
1223 	}
1224 }
1225 
1226 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1227 {
1228 	BUG_ON(ftest->code & BPF_ANC);
1229 
1230 	switch (ftest->code) {
1231 	case BPF_LD | BPF_W | BPF_ABS:
1232 	case BPF_LD | BPF_H | BPF_ABS:
1233 	case BPF_LD | BPF_B | BPF_ABS:
1234 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1235 				return BPF_ANC | SKF_AD_##CODE
1236 		switch (ftest->k) {
1237 		BPF_ANCILLARY(PROTOCOL);
1238 		BPF_ANCILLARY(PKTTYPE);
1239 		BPF_ANCILLARY(IFINDEX);
1240 		BPF_ANCILLARY(NLATTR);
1241 		BPF_ANCILLARY(NLATTR_NEST);
1242 		BPF_ANCILLARY(MARK);
1243 		BPF_ANCILLARY(QUEUE);
1244 		BPF_ANCILLARY(HATYPE);
1245 		BPF_ANCILLARY(RXHASH);
1246 		BPF_ANCILLARY(CPU);
1247 		BPF_ANCILLARY(ALU_XOR_X);
1248 		BPF_ANCILLARY(VLAN_TAG);
1249 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1250 		BPF_ANCILLARY(PAY_OFFSET);
1251 		BPF_ANCILLARY(RANDOM);
1252 		BPF_ANCILLARY(VLAN_TPID);
1253 		}
1254 		fallthrough;
1255 	default:
1256 		return ftest->code;
1257 	}
1258 }
1259 
1260 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1261 					   int k, unsigned int size);
1262 
1263 static inline int bpf_tell_extensions(void)
1264 {
1265 	return SKF_AD_MAX;
1266 }
1267 
1268 struct bpf_sock_addr_kern {
1269 	struct sock *sk;
1270 	struct sockaddr *uaddr;
1271 	/* Temporary "register" to make indirect stores to nested structures
1272 	 * defined above. We need three registers to make such a store, but
1273 	 * only two (src and dst) are available at convert_ctx_access time
1274 	 */
1275 	u64 tmp_reg;
1276 	void *t_ctx;	/* Attach type specific context. */
1277 };
1278 
1279 struct bpf_sock_ops_kern {
1280 	struct	sock *sk;
1281 	union {
1282 		u32 args[4];
1283 		u32 reply;
1284 		u32 replylong[4];
1285 	};
1286 	struct sk_buff	*syn_skb;
1287 	struct sk_buff	*skb;
1288 	void	*skb_data_end;
1289 	u8	op;
1290 	u8	is_fullsock;
1291 	u8	remaining_opt_len;
1292 	u64	temp;			/* temp and everything after is not
1293 					 * initialized to 0 before calling
1294 					 * the BPF program. New fields that
1295 					 * should be initialized to 0 should
1296 					 * be inserted before temp.
1297 					 * temp is scratch storage used by
1298 					 * sock_ops_convert_ctx_access
1299 					 * as temporary storage of a register.
1300 					 */
1301 };
1302 
1303 struct bpf_sysctl_kern {
1304 	struct ctl_table_header *head;
1305 	struct ctl_table *table;
1306 	void *cur_val;
1307 	size_t cur_len;
1308 	void *new_val;
1309 	size_t new_len;
1310 	int new_updated;
1311 	int write;
1312 	loff_t *ppos;
1313 	/* Temporary "register" for indirect stores to ppos. */
1314 	u64 tmp_reg;
1315 };
1316 
1317 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1318 struct bpf_sockopt_buf {
1319 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1320 };
1321 
1322 struct bpf_sockopt_kern {
1323 	struct sock	*sk;
1324 	u8		*optval;
1325 	u8		*optval_end;
1326 	s32		level;
1327 	s32		optname;
1328 	s32		optlen;
1329 	s32		retval;
1330 };
1331 
1332 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1333 
1334 struct bpf_sk_lookup_kern {
1335 	u16		family;
1336 	u16		protocol;
1337 	__be16		sport;
1338 	u16		dport;
1339 	struct {
1340 		__be32 saddr;
1341 		__be32 daddr;
1342 	} v4;
1343 	struct {
1344 		const struct in6_addr *saddr;
1345 		const struct in6_addr *daddr;
1346 	} v6;
1347 	struct sock	*selected_sk;
1348 	bool		no_reuseport;
1349 };
1350 
1351 extern struct static_key_false bpf_sk_lookup_enabled;
1352 
1353 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1354  *
1355  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1356  * SK_DROP. Their meaning is as follows:
1357  *
1358  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1359  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1360  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1361  *
1362  * This macro aggregates return values and selected sockets from
1363  * multiple BPF programs according to following rules in order:
1364  *
1365  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1366  *     macro result is SK_PASS and last ctx.selected_sk is used.
1367  *  2. If any program returned SK_DROP return value,
1368  *     macro result is SK_DROP.
1369  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1370  *
1371  * Caller must ensure that the prog array is non-NULL, and that the
1372  * array as well as the programs it contains remain valid.
1373  */
1374 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1375 	({								\
1376 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1377 		struct bpf_prog_array_item *_item;			\
1378 		struct sock *_selected_sk = NULL;			\
1379 		bool _no_reuseport = false;				\
1380 		struct bpf_prog *_prog;					\
1381 		bool _all_pass = true;					\
1382 		u32 _ret;						\
1383 									\
1384 		migrate_disable();					\
1385 		_item = &(array)->items[0];				\
1386 		while ((_prog = READ_ONCE(_item->prog))) {		\
1387 			/* restore most recent selection */		\
1388 			_ctx->selected_sk = _selected_sk;		\
1389 			_ctx->no_reuseport = _no_reuseport;		\
1390 									\
1391 			_ret = func(_prog, _ctx);			\
1392 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1393 				/* remember last non-NULL socket */	\
1394 				_selected_sk = _ctx->selected_sk;	\
1395 				_no_reuseport = _ctx->no_reuseport;	\
1396 			} else if (_ret == SK_DROP && _all_pass) {	\
1397 				_all_pass = false;			\
1398 			}						\
1399 			_item++;					\
1400 		}							\
1401 		_ctx->selected_sk = _selected_sk;			\
1402 		_ctx->no_reuseport = _no_reuseport;			\
1403 		migrate_enable();					\
1404 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1405 	 })
1406 
1407 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1408 					const __be32 saddr, const __be16 sport,
1409 					const __be32 daddr, const u16 dport,
1410 					struct sock **psk)
1411 {
1412 	struct bpf_prog_array *run_array;
1413 	struct sock *selected_sk = NULL;
1414 	bool no_reuseport = false;
1415 
1416 	rcu_read_lock();
1417 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1418 	if (run_array) {
1419 		struct bpf_sk_lookup_kern ctx = {
1420 			.family		= AF_INET,
1421 			.protocol	= protocol,
1422 			.v4.saddr	= saddr,
1423 			.v4.daddr	= daddr,
1424 			.sport		= sport,
1425 			.dport		= dport,
1426 		};
1427 		u32 act;
1428 
1429 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1430 		if (act == SK_PASS) {
1431 			selected_sk = ctx.selected_sk;
1432 			no_reuseport = ctx.no_reuseport;
1433 		} else {
1434 			selected_sk = ERR_PTR(-ECONNREFUSED);
1435 		}
1436 	}
1437 	rcu_read_unlock();
1438 	*psk = selected_sk;
1439 	return no_reuseport;
1440 }
1441 
1442 #if IS_ENABLED(CONFIG_IPV6)
1443 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1444 					const struct in6_addr *saddr,
1445 					const __be16 sport,
1446 					const struct in6_addr *daddr,
1447 					const u16 dport,
1448 					struct sock **psk)
1449 {
1450 	struct bpf_prog_array *run_array;
1451 	struct sock *selected_sk = NULL;
1452 	bool no_reuseport = false;
1453 
1454 	rcu_read_lock();
1455 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1456 	if (run_array) {
1457 		struct bpf_sk_lookup_kern ctx = {
1458 			.family		= AF_INET6,
1459 			.protocol	= protocol,
1460 			.v6.saddr	= saddr,
1461 			.v6.daddr	= daddr,
1462 			.sport		= sport,
1463 			.dport		= dport,
1464 		};
1465 		u32 act;
1466 
1467 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1468 		if (act == SK_PASS) {
1469 			selected_sk = ctx.selected_sk;
1470 			no_reuseport = ctx.no_reuseport;
1471 		} else {
1472 			selected_sk = ERR_PTR(-ECONNREFUSED);
1473 		}
1474 	}
1475 	rcu_read_unlock();
1476 	*psk = selected_sk;
1477 	return no_reuseport;
1478 }
1479 #endif /* IS_ENABLED(CONFIG_IPV6) */
1480 
1481 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1482 						  u64 flags, const u64 flag_mask,
1483 						  void *lookup_elem(struct bpf_map *map, u32 key))
1484 {
1485 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1486 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1487 
1488 	/* Lower bits of the flags are used as return code on lookup failure */
1489 	if (unlikely(flags & ~(action_mask | flag_mask)))
1490 		return XDP_ABORTED;
1491 
1492 	ri->tgt_value = lookup_elem(map, ifindex);
1493 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1494 		/* If the lookup fails we want to clear out the state in the
1495 		 * redirect_info struct completely, so that if an eBPF program
1496 		 * performs multiple lookups, the last one always takes
1497 		 * precedence.
1498 		 */
1499 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1500 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1501 		return flags & action_mask;
1502 	}
1503 
1504 	ri->tgt_index = ifindex;
1505 	ri->map_id = map->id;
1506 	ri->map_type = map->map_type;
1507 
1508 	if (flags & BPF_F_BROADCAST) {
1509 		WRITE_ONCE(ri->map, map);
1510 		ri->flags = flags;
1511 	} else {
1512 		WRITE_ONCE(ri->map, NULL);
1513 		ri->flags = 0;
1514 	}
1515 
1516 	return XDP_REDIRECT;
1517 }
1518 
1519 #endif /* __LINUX_FILTER_H__ */
1520