xref: /linux-6.15/include/linux/filter.h (revision 1677293e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark call to interpreter with arguments */
76 #define BPF_CALL_ARGS	0xe0
77 
78 /* unused opcode to mark speculation barrier for mitigating
79  * Speculative Store Bypass
80  */
81 #define BPF_NOSPEC	0xc0
82 
83 /* As per nm, we expose JITed images as text (code) section for
84  * kallsyms. That way, tools like perf can find it to match
85  * addresses.
86  */
87 #define BPF_SYM_ELF_TYPE	't'
88 
89 /* BPF program can access up to 512 bytes of stack space. */
90 #define MAX_BPF_STACK	512
91 
92 /* Helper macros for filter block array initializers. */
93 
94 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
95 
96 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = OFF,					\
102 		.imm   = 0 })
103 
104 #define BPF_ALU64_REG(OP, DST, SRC)				\
105 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
106 
107 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
108 	((struct bpf_insn) {					\
109 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
110 		.dst_reg = DST,					\
111 		.src_reg = SRC,					\
112 		.off   = OFF,					\
113 		.imm   = 0 })
114 
115 #define BPF_ALU32_REG(OP, DST, SRC)				\
116 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
117 
118 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
119 
120 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = OFF,					\
126 		.imm   = IMM })
127 #define BPF_ALU64_IMM(OP, DST, IMM)				\
128 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
129 
130 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
131 	((struct bpf_insn) {					\
132 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
133 		.dst_reg = DST,					\
134 		.src_reg = 0,					\
135 		.off   = OFF,					\
136 		.imm   = IMM })
137 #define BPF_ALU32_IMM(OP, DST, IMM)				\
138 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
139 
140 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
141 
142 #define BPF_ENDIAN(TYPE, DST, LEN)				\
143 	((struct bpf_insn) {					\
144 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
145 		.dst_reg = DST,					\
146 		.src_reg = 0,					\
147 		.off   = 0,					\
148 		.imm   = LEN })
149 
150 /* Byte Swap, bswap16/32/64 */
151 
152 #define BPF_BSWAP(DST, LEN)					\
153 	((struct bpf_insn) {					\
154 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
155 		.dst_reg = DST,					\
156 		.src_reg = 0,					\
157 		.off   = 0,					\
158 		.imm   = LEN })
159 
160 /* Short form of mov, dst_reg = src_reg */
161 
162 #define BPF_MOV64_REG(DST, SRC)					\
163 	((struct bpf_insn) {					\
164 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
165 		.dst_reg = DST,					\
166 		.src_reg = SRC,					\
167 		.off   = 0,					\
168 		.imm   = 0 })
169 
170 #define BPF_MOV32_REG(DST, SRC)					\
171 	((struct bpf_insn) {					\
172 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
173 		.dst_reg = DST,					\
174 		.src_reg = SRC,					\
175 		.off   = 0,					\
176 		.imm   = 0 })
177 
178 /* Short form of mov, dst_reg = imm32 */
179 
180 #define BPF_MOV64_IMM(DST, IMM)					\
181 	((struct bpf_insn) {					\
182 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
183 		.dst_reg = DST,					\
184 		.src_reg = 0,					\
185 		.off   = 0,					\
186 		.imm   = IMM })
187 
188 #define BPF_MOV32_IMM(DST, IMM)					\
189 	((struct bpf_insn) {					\
190 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
191 		.dst_reg = DST,					\
192 		.src_reg = 0,					\
193 		.off   = 0,					\
194 		.imm   = IMM })
195 
196 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
197 
198 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
199 	((struct bpf_insn) {					\
200 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
201 		.dst_reg = DST,					\
202 		.src_reg = SRC,					\
203 		.off   = OFF,					\
204 		.imm   = 0 })
205 
206 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
207 	((struct bpf_insn) {					\
208 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
209 		.dst_reg = DST,					\
210 		.src_reg = SRC,					\
211 		.off   = OFF,					\
212 		.imm   = 0 })
213 
214 /* Special form of mov32, used for doing explicit zero extension on dst. */
215 #define BPF_ZEXT_REG(DST)					\
216 	((struct bpf_insn) {					\
217 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
218 		.dst_reg = DST,					\
219 		.src_reg = DST,					\
220 		.off   = 0,					\
221 		.imm   = 1 })
222 
223 static inline bool insn_is_zext(const struct bpf_insn *insn)
224 {
225 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
226 }
227 
228 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
229 #define BPF_LD_IMM64(DST, IMM)					\
230 	BPF_LD_IMM64_RAW(DST, 0, IMM)
231 
232 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
233 	((struct bpf_insn) {					\
234 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
235 		.dst_reg = DST,					\
236 		.src_reg = SRC,					\
237 		.off   = 0,					\
238 		.imm   = (__u32) (IMM) }),			\
239 	((struct bpf_insn) {					\
240 		.code  = 0, /* zero is reserved opcode */	\
241 		.dst_reg = 0,					\
242 		.src_reg = 0,					\
243 		.off   = 0,					\
244 		.imm   = ((__u64) (IMM)) >> 32 })
245 
246 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
247 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
248 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
249 
250 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
251 
252 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
253 	((struct bpf_insn) {					\
254 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
255 		.dst_reg = DST,					\
256 		.src_reg = SRC,					\
257 		.off   = 0,					\
258 		.imm   = IMM })
259 
260 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
261 	((struct bpf_insn) {					\
262 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
263 		.dst_reg = DST,					\
264 		.src_reg = SRC,					\
265 		.off   = 0,					\
266 		.imm   = IMM })
267 
268 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
269 
270 #define BPF_LD_ABS(SIZE, IMM)					\
271 	((struct bpf_insn) {					\
272 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
273 		.dst_reg = 0,					\
274 		.src_reg = 0,					\
275 		.off   = 0,					\
276 		.imm   = IMM })
277 
278 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
279 
280 #define BPF_LD_IND(SIZE, SRC, IMM)				\
281 	((struct bpf_insn) {					\
282 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
283 		.dst_reg = 0,					\
284 		.src_reg = SRC,					\
285 		.off   = 0,					\
286 		.imm   = IMM })
287 
288 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
289 
290 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
291 	((struct bpf_insn) {					\
292 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
293 		.dst_reg = DST,					\
294 		.src_reg = SRC,					\
295 		.off   = OFF,					\
296 		.imm   = 0 })
297 
298 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
299 
300 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
301 	((struct bpf_insn) {					\
302 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
303 		.dst_reg = DST,					\
304 		.src_reg = SRC,					\
305 		.off   = OFF,					\
306 		.imm   = 0 })
307 
308 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
309 
310 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
311 	((struct bpf_insn) {					\
312 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
313 		.dst_reg = DST,					\
314 		.src_reg = SRC,					\
315 		.off   = OFF,					\
316 		.imm   = 0 })
317 
318 
319 /*
320  * Atomic operations:
321  *
322  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
323  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
324  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
325  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
326  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
327  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
328  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
329  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
330  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
331  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
332  */
333 
334 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
335 	((struct bpf_insn) {					\
336 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
337 		.dst_reg = DST,					\
338 		.src_reg = SRC,					\
339 		.off   = OFF,					\
340 		.imm   = OP })
341 
342 /* Legacy alias */
343 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
344 
345 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
346 
347 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
348 	((struct bpf_insn) {					\
349 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
350 		.dst_reg = DST,					\
351 		.src_reg = 0,					\
352 		.off   = OFF,					\
353 		.imm   = IMM })
354 
355 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
356 
357 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
358 	((struct bpf_insn) {					\
359 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
360 		.dst_reg = DST,					\
361 		.src_reg = SRC,					\
362 		.off   = OFF,					\
363 		.imm   = 0 })
364 
365 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
366 
367 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
368 	((struct bpf_insn) {					\
369 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
370 		.dst_reg = DST,					\
371 		.src_reg = 0,					\
372 		.off   = OFF,					\
373 		.imm   = IMM })
374 
375 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
376 
377 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
378 	((struct bpf_insn) {					\
379 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
380 		.dst_reg = DST,					\
381 		.src_reg = SRC,					\
382 		.off   = OFF,					\
383 		.imm   = 0 })
384 
385 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
386 
387 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
388 	((struct bpf_insn) {					\
389 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
390 		.dst_reg = DST,					\
391 		.src_reg = 0,					\
392 		.off   = OFF,					\
393 		.imm   = IMM })
394 
395 /* Unconditional jumps, goto pc + off16 */
396 
397 #define BPF_JMP_A(OFF)						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_JMP | BPF_JA,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = OFF,					\
403 		.imm   = 0 })
404 
405 /* Relative call */
406 
407 #define BPF_CALL_REL(TGT)					\
408 	((struct bpf_insn) {					\
409 		.code  = BPF_JMP | BPF_CALL,			\
410 		.dst_reg = 0,					\
411 		.src_reg = BPF_PSEUDO_CALL,			\
412 		.off   = 0,					\
413 		.imm   = TGT })
414 
415 /* Convert function address to BPF immediate */
416 
417 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
418 
419 #define BPF_EMIT_CALL(FUNC)					\
420 	((struct bpf_insn) {					\
421 		.code  = BPF_JMP | BPF_CALL,			\
422 		.dst_reg = 0,					\
423 		.src_reg = 0,					\
424 		.off   = 0,					\
425 		.imm   = BPF_CALL_IMM(FUNC) })
426 
427 /* Raw code statement block */
428 
429 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
430 	((struct bpf_insn) {					\
431 		.code  = CODE,					\
432 		.dst_reg = DST,					\
433 		.src_reg = SRC,					\
434 		.off   = OFF,					\
435 		.imm   = IMM })
436 
437 /* Program exit */
438 
439 #define BPF_EXIT_INSN()						\
440 	((struct bpf_insn) {					\
441 		.code  = BPF_JMP | BPF_EXIT,			\
442 		.dst_reg = 0,					\
443 		.src_reg = 0,					\
444 		.off   = 0,					\
445 		.imm   = 0 })
446 
447 /* Speculation barrier */
448 
449 #define BPF_ST_NOSPEC()						\
450 	((struct bpf_insn) {					\
451 		.code  = BPF_ST | BPF_NOSPEC,			\
452 		.dst_reg = 0,					\
453 		.src_reg = 0,					\
454 		.off   = 0,					\
455 		.imm   = 0 })
456 
457 /* Internal classic blocks for direct assignment */
458 
459 #define __BPF_STMT(CODE, K)					\
460 	((struct sock_filter) BPF_STMT(CODE, K))
461 
462 #define __BPF_JUMP(CODE, K, JT, JF)				\
463 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
464 
465 #define bytes_to_bpf_size(bytes)				\
466 ({								\
467 	int bpf_size = -EINVAL;					\
468 								\
469 	if (bytes == sizeof(u8))				\
470 		bpf_size = BPF_B;				\
471 	else if (bytes == sizeof(u16))				\
472 		bpf_size = BPF_H;				\
473 	else if (bytes == sizeof(u32))				\
474 		bpf_size = BPF_W;				\
475 	else if (bytes == sizeof(u64))				\
476 		bpf_size = BPF_DW;				\
477 								\
478 	bpf_size;						\
479 })
480 
481 #define bpf_size_to_bytes(bpf_size)				\
482 ({								\
483 	int bytes = -EINVAL;					\
484 								\
485 	if (bpf_size == BPF_B)					\
486 		bytes = sizeof(u8);				\
487 	else if (bpf_size == BPF_H)				\
488 		bytes = sizeof(u16);				\
489 	else if (bpf_size == BPF_W)				\
490 		bytes = sizeof(u32);				\
491 	else if (bpf_size == BPF_DW)				\
492 		bytes = sizeof(u64);				\
493 								\
494 	bytes;							\
495 })
496 
497 #define BPF_SIZEOF(type)					\
498 	({							\
499 		const int __size = bytes_to_bpf_size(sizeof(type)); \
500 		BUILD_BUG_ON(__size < 0);			\
501 		__size;						\
502 	})
503 
504 #define BPF_FIELD_SIZEOF(type, field)				\
505 	({							\
506 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
507 		BUILD_BUG_ON(__size < 0);			\
508 		__size;						\
509 	})
510 
511 #define BPF_LDST_BYTES(insn)					\
512 	({							\
513 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
514 		WARN_ON(__size < 0);				\
515 		__size;						\
516 	})
517 
518 #define __BPF_MAP_0(m, v, ...) v
519 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
520 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
521 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
522 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
523 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
524 
525 #define __BPF_REG_0(...) __BPF_PAD(5)
526 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
527 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
528 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
529 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
530 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
531 
532 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
533 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
534 
535 #define __BPF_CAST(t, a)						       \
536 	(__force t)							       \
537 	(__force							       \
538 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
539 				      (unsigned long)0, (t)0))) a
540 #define __BPF_V void
541 #define __BPF_N
542 
543 #define __BPF_DECL_ARGS(t, a) t   a
544 #define __BPF_DECL_REGS(t, a) u64 a
545 
546 #define __BPF_PAD(n)							       \
547 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
548 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
549 
550 #define BPF_CALL_x(x, attr, name, ...)					       \
551 	static __always_inline						       \
552 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
553 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
554 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
555 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
556 	{								       \
557 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
558 	}								       \
559 	static __always_inline						       \
560 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
561 
562 #define __NOATTR
563 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
564 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
565 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
566 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
567 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
568 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
569 
570 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
571 
572 #define bpf_ctx_range(TYPE, MEMBER)						\
573 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
574 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
575 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
576 #if BITS_PER_LONG == 64
577 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
578 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
579 #else
580 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
581 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
582 #endif /* BITS_PER_LONG == 64 */
583 
584 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
585 	({									\
586 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
587 		*(PTR_SIZE) = (SIZE);						\
588 		offsetof(TYPE, MEMBER);						\
589 	})
590 
591 /* A struct sock_filter is architecture independent. */
592 struct compat_sock_fprog {
593 	u16		len;
594 	compat_uptr_t	filter;	/* struct sock_filter * */
595 };
596 
597 struct sock_fprog_kern {
598 	u16			len;
599 	struct sock_filter	*filter;
600 };
601 
602 /* Some arches need doubleword alignment for their instructions and/or data */
603 #define BPF_IMAGE_ALIGNMENT 8
604 
605 struct bpf_binary_header {
606 	u32 size;
607 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
608 };
609 
610 struct bpf_prog_stats {
611 	u64_stats_t cnt;
612 	u64_stats_t nsecs;
613 	u64_stats_t misses;
614 	struct u64_stats_sync syncp;
615 } __aligned(2 * sizeof(u64));
616 
617 struct sk_filter {
618 	refcount_t	refcnt;
619 	struct rcu_head	rcu;
620 	struct bpf_prog	*prog;
621 };
622 
623 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
624 
625 extern struct mutex nf_conn_btf_access_lock;
626 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
627 				     const struct bpf_reg_state *reg,
628 				     int off, int size);
629 
630 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
631 					  const struct bpf_insn *insnsi,
632 					  unsigned int (*bpf_func)(const void *,
633 								   const struct bpf_insn *));
634 
635 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
636 					  const void *ctx,
637 					  bpf_dispatcher_fn dfunc)
638 {
639 	u32 ret;
640 
641 	cant_migrate();
642 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
643 		struct bpf_prog_stats *stats;
644 		u64 start = sched_clock();
645 		unsigned long flags;
646 
647 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
648 		stats = this_cpu_ptr(prog->stats);
649 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
650 		u64_stats_inc(&stats->cnt);
651 		u64_stats_add(&stats->nsecs, sched_clock() - start);
652 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
653 	} else {
654 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
655 	}
656 	return ret;
657 }
658 
659 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
660 {
661 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
662 }
663 
664 /*
665  * Use in preemptible and therefore migratable context to make sure that
666  * the execution of the BPF program runs on one CPU.
667  *
668  * This uses migrate_disable/enable() explicitly to document that the
669  * invocation of a BPF program does not require reentrancy protection
670  * against a BPF program which is invoked from a preempting task.
671  */
672 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
673 					  const void *ctx)
674 {
675 	u32 ret;
676 
677 	migrate_disable();
678 	ret = bpf_prog_run(prog, ctx);
679 	migrate_enable();
680 	return ret;
681 }
682 
683 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
684 
685 struct bpf_skb_data_end {
686 	struct qdisc_skb_cb qdisc_cb;
687 	void *data_meta;
688 	void *data_end;
689 };
690 
691 struct bpf_nh_params {
692 	u32 nh_family;
693 	union {
694 		u32 ipv4_nh;
695 		struct in6_addr ipv6_nh;
696 	};
697 };
698 
699 struct bpf_redirect_info {
700 	u64 tgt_index;
701 	void *tgt_value;
702 	struct bpf_map *map;
703 	u32 flags;
704 	u32 kern_flags;
705 	u32 map_id;
706 	enum bpf_map_type map_type;
707 	struct bpf_nh_params nh;
708 };
709 
710 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
711 
712 /* flags for bpf_redirect_info kern_flags */
713 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
714 
715 /* Compute the linear packet data range [data, data_end) which
716  * will be accessed by various program types (cls_bpf, act_bpf,
717  * lwt, ...). Subsystems allowing direct data access must (!)
718  * ensure that cb[] area can be written to when BPF program is
719  * invoked (otherwise cb[] save/restore is necessary).
720  */
721 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
722 {
723 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
724 
725 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
726 	cb->data_meta = skb->data - skb_metadata_len(skb);
727 	cb->data_end  = skb->data + skb_headlen(skb);
728 }
729 
730 /* Similar to bpf_compute_data_pointers(), except that save orginal
731  * data in cb->data and cb->meta_data for restore.
732  */
733 static inline void bpf_compute_and_save_data_end(
734 	struct sk_buff *skb, void **saved_data_end)
735 {
736 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
737 
738 	*saved_data_end = cb->data_end;
739 	cb->data_end  = skb->data + skb_headlen(skb);
740 }
741 
742 /* Restore data saved by bpf_compute_and_save_data_end(). */
743 static inline void bpf_restore_data_end(
744 	struct sk_buff *skb, void *saved_data_end)
745 {
746 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
747 
748 	cb->data_end = saved_data_end;
749 }
750 
751 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
752 {
753 	/* eBPF programs may read/write skb->cb[] area to transfer meta
754 	 * data between tail calls. Since this also needs to work with
755 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
756 	 *
757 	 * In some socket filter cases, the cb unfortunately needs to be
758 	 * saved/restored so that protocol specific skb->cb[] data won't
759 	 * be lost. In any case, due to unpriviledged eBPF programs
760 	 * attached to sockets, we need to clear the bpf_skb_cb() area
761 	 * to not leak previous contents to user space.
762 	 */
763 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
764 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
765 		     sizeof_field(struct qdisc_skb_cb, data));
766 
767 	return qdisc_skb_cb(skb)->data;
768 }
769 
770 /* Must be invoked with migration disabled */
771 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
772 					 const void *ctx)
773 {
774 	const struct sk_buff *skb = ctx;
775 	u8 *cb_data = bpf_skb_cb(skb);
776 	u8 cb_saved[BPF_SKB_CB_LEN];
777 	u32 res;
778 
779 	if (unlikely(prog->cb_access)) {
780 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
781 		memset(cb_data, 0, sizeof(cb_saved));
782 	}
783 
784 	res = bpf_prog_run(prog, skb);
785 
786 	if (unlikely(prog->cb_access))
787 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
788 
789 	return res;
790 }
791 
792 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
793 				       struct sk_buff *skb)
794 {
795 	u32 res;
796 
797 	migrate_disable();
798 	res = __bpf_prog_run_save_cb(prog, skb);
799 	migrate_enable();
800 	return res;
801 }
802 
803 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
804 					struct sk_buff *skb)
805 {
806 	u8 *cb_data = bpf_skb_cb(skb);
807 	u32 res;
808 
809 	if (unlikely(prog->cb_access))
810 		memset(cb_data, 0, BPF_SKB_CB_LEN);
811 
812 	res = bpf_prog_run_pin_on_cpu(prog, skb);
813 	return res;
814 }
815 
816 DECLARE_BPF_DISPATCHER(xdp)
817 
818 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
819 
820 u32 xdp_master_redirect(struct xdp_buff *xdp);
821 
822 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
823 
824 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
825 {
826 	return prog->len * sizeof(struct bpf_insn);
827 }
828 
829 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
830 {
831 	return round_up(bpf_prog_insn_size(prog) +
832 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
833 }
834 
835 static inline unsigned int bpf_prog_size(unsigned int proglen)
836 {
837 	return max(sizeof(struct bpf_prog),
838 		   offsetof(struct bpf_prog, insns[proglen]));
839 }
840 
841 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
842 {
843 	/* When classic BPF programs have been loaded and the arch
844 	 * does not have a classic BPF JIT (anymore), they have been
845 	 * converted via bpf_migrate_filter() to eBPF and thus always
846 	 * have an unspec program type.
847 	 */
848 	return prog->type == BPF_PROG_TYPE_UNSPEC;
849 }
850 
851 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
852 {
853 	const u32 size_machine = sizeof(unsigned long);
854 
855 	if (size > size_machine && size % size_machine == 0)
856 		size = size_machine;
857 
858 	return size;
859 }
860 
861 static inline bool
862 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
863 {
864 	return size <= size_default && (size & (size - 1)) == 0;
865 }
866 
867 static inline u8
868 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
869 {
870 	u8 access_off = off & (size_default - 1);
871 
872 #ifdef __LITTLE_ENDIAN
873 	return access_off;
874 #else
875 	return size_default - (access_off + size);
876 #endif
877 }
878 
879 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
880 	(size == sizeof(__u64) &&					\
881 	off >= offsetof(type, field) &&					\
882 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
883 	off % sizeof(__u64) == 0)
884 
885 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
886 
887 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
888 {
889 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
890 	if (!fp->jited) {
891 		set_vm_flush_reset_perms(fp);
892 		set_memory_ro((unsigned long)fp, fp->pages);
893 	}
894 #endif
895 }
896 
897 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
898 {
899 	set_vm_flush_reset_perms(hdr);
900 	set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
901 }
902 
903 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
904 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
905 {
906 	return sk_filter_trim_cap(sk, skb, 1);
907 }
908 
909 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
910 void bpf_prog_free(struct bpf_prog *fp);
911 
912 bool bpf_opcode_in_insntable(u8 code);
913 
914 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
915 			       const u32 *insn_to_jit_off);
916 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
917 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
918 
919 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
920 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
921 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
922 				  gfp_t gfp_extra_flags);
923 void __bpf_prog_free(struct bpf_prog *fp);
924 
925 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
926 {
927 	__bpf_prog_free(fp);
928 }
929 
930 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
931 				       unsigned int flen);
932 
933 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
934 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
935 			      bpf_aux_classic_check_t trans, bool save_orig);
936 void bpf_prog_destroy(struct bpf_prog *fp);
937 
938 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
939 int sk_attach_bpf(u32 ufd, struct sock *sk);
940 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
941 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
942 void sk_reuseport_prog_free(struct bpf_prog *prog);
943 int sk_detach_filter(struct sock *sk);
944 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
945 
946 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
947 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
948 
949 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
950 #define __bpf_call_base_args \
951 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
952 	 (void *)__bpf_call_base)
953 
954 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
955 void bpf_jit_compile(struct bpf_prog *prog);
956 bool bpf_jit_needs_zext(void);
957 bool bpf_jit_supports_subprog_tailcalls(void);
958 bool bpf_jit_supports_kfunc_call(void);
959 bool bpf_jit_supports_far_kfunc_call(void);
960 bool bpf_jit_supports_exceptions(void);
961 bool bpf_jit_supports_ptr_xchg(void);
962 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
963 bool bpf_helper_changes_pkt_data(void *func);
964 
965 static inline bool bpf_dump_raw_ok(const struct cred *cred)
966 {
967 	/* Reconstruction of call-sites is dependent on kallsyms,
968 	 * thus make dump the same restriction.
969 	 */
970 	return kallsyms_show_value(cred);
971 }
972 
973 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
974 				       const struct bpf_insn *patch, u32 len);
975 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
976 
977 void bpf_clear_redirect_map(struct bpf_map *map);
978 
979 static inline bool xdp_return_frame_no_direct(void)
980 {
981 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
982 
983 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
984 }
985 
986 static inline void xdp_set_return_frame_no_direct(void)
987 {
988 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
989 
990 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
991 }
992 
993 static inline void xdp_clear_return_frame_no_direct(void)
994 {
995 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
996 
997 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
998 }
999 
1000 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1001 				 unsigned int pktlen)
1002 {
1003 	unsigned int len;
1004 
1005 	if (unlikely(!(fwd->flags & IFF_UP)))
1006 		return -ENETDOWN;
1007 
1008 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1009 	if (pktlen > len)
1010 		return -EMSGSIZE;
1011 
1012 	return 0;
1013 }
1014 
1015 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1016  * same cpu context. Further for best results no more than a single map
1017  * for the do_redirect/do_flush pair should be used. This limitation is
1018  * because we only track one map and force a flush when the map changes.
1019  * This does not appear to be a real limitation for existing software.
1020  */
1021 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1022 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1023 int xdp_do_redirect(struct net_device *dev,
1024 		    struct xdp_buff *xdp,
1025 		    struct bpf_prog *prog);
1026 int xdp_do_redirect_frame(struct net_device *dev,
1027 			  struct xdp_buff *xdp,
1028 			  struct xdp_frame *xdpf,
1029 			  struct bpf_prog *prog);
1030 void xdp_do_flush(void);
1031 
1032 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1033 
1034 #ifdef CONFIG_INET
1035 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1036 				  struct bpf_prog *prog, struct sk_buff *skb,
1037 				  struct sock *migrating_sk,
1038 				  u32 hash);
1039 #else
1040 static inline struct sock *
1041 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1042 		     struct bpf_prog *prog, struct sk_buff *skb,
1043 		     struct sock *migrating_sk,
1044 		     u32 hash)
1045 {
1046 	return NULL;
1047 }
1048 #endif
1049 
1050 #ifdef CONFIG_BPF_JIT
1051 extern int bpf_jit_enable;
1052 extern int bpf_jit_harden;
1053 extern int bpf_jit_kallsyms;
1054 extern long bpf_jit_limit;
1055 extern long bpf_jit_limit_max;
1056 
1057 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1058 
1059 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1060 
1061 struct bpf_binary_header *
1062 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1063 		     unsigned int alignment,
1064 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1065 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1066 u64 bpf_jit_alloc_exec_limit(void);
1067 void *bpf_jit_alloc_exec(unsigned long size);
1068 void bpf_jit_free_exec(void *addr);
1069 void bpf_jit_free(struct bpf_prog *fp);
1070 struct bpf_binary_header *
1071 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1072 
1073 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1074 void bpf_prog_pack_free(void *ptr, u32 size);
1075 
1076 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1077 {
1078 	return list_empty(&fp->aux->ksym.lnode) ||
1079 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1080 }
1081 
1082 struct bpf_binary_header *
1083 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1084 			  unsigned int alignment,
1085 			  struct bpf_binary_header **rw_hdr,
1086 			  u8 **rw_image,
1087 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1088 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1089 				 struct bpf_binary_header *ro_header,
1090 				 struct bpf_binary_header *rw_header);
1091 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1092 			      struct bpf_binary_header *rw_header);
1093 
1094 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1095 				struct bpf_jit_poke_descriptor *poke);
1096 
1097 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1098 			  const struct bpf_insn *insn, bool extra_pass,
1099 			  u64 *func_addr, bool *func_addr_fixed);
1100 
1101 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1102 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1103 
1104 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1105 				u32 pass, void *image)
1106 {
1107 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1108 	       proglen, pass, image, current->comm, task_pid_nr(current));
1109 
1110 	if (image)
1111 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1112 			       16, 1, image, proglen, false);
1113 }
1114 
1115 static inline bool bpf_jit_is_ebpf(void)
1116 {
1117 # ifdef CONFIG_HAVE_EBPF_JIT
1118 	return true;
1119 # else
1120 	return false;
1121 # endif
1122 }
1123 
1124 static inline bool ebpf_jit_enabled(void)
1125 {
1126 	return bpf_jit_enable && bpf_jit_is_ebpf();
1127 }
1128 
1129 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1130 {
1131 	return fp->jited && bpf_jit_is_ebpf();
1132 }
1133 
1134 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1135 {
1136 	/* These are the prerequisites, should someone ever have the
1137 	 * idea to call blinding outside of them, we make sure to
1138 	 * bail out.
1139 	 */
1140 	if (!bpf_jit_is_ebpf())
1141 		return false;
1142 	if (!prog->jit_requested)
1143 		return false;
1144 	if (!bpf_jit_harden)
1145 		return false;
1146 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1147 		return false;
1148 
1149 	return true;
1150 }
1151 
1152 static inline bool bpf_jit_kallsyms_enabled(void)
1153 {
1154 	/* There are a couple of corner cases where kallsyms should
1155 	 * not be enabled f.e. on hardening.
1156 	 */
1157 	if (bpf_jit_harden)
1158 		return false;
1159 	if (!bpf_jit_kallsyms)
1160 		return false;
1161 	if (bpf_jit_kallsyms == 1)
1162 		return true;
1163 
1164 	return false;
1165 }
1166 
1167 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1168 				 unsigned long *off, char *sym);
1169 bool is_bpf_text_address(unsigned long addr);
1170 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1171 		    char *sym);
1172 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1173 
1174 static inline const char *
1175 bpf_address_lookup(unsigned long addr, unsigned long *size,
1176 		   unsigned long *off, char **modname, char *sym)
1177 {
1178 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1179 
1180 	if (ret && modname)
1181 		*modname = NULL;
1182 	return ret;
1183 }
1184 
1185 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1186 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1187 
1188 #else /* CONFIG_BPF_JIT */
1189 
1190 static inline bool ebpf_jit_enabled(void)
1191 {
1192 	return false;
1193 }
1194 
1195 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1196 {
1197 	return false;
1198 }
1199 
1200 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1201 {
1202 	return false;
1203 }
1204 
1205 static inline int
1206 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1207 			    struct bpf_jit_poke_descriptor *poke)
1208 {
1209 	return -ENOTSUPP;
1210 }
1211 
1212 static inline void bpf_jit_free(struct bpf_prog *fp)
1213 {
1214 	bpf_prog_unlock_free(fp);
1215 }
1216 
1217 static inline bool bpf_jit_kallsyms_enabled(void)
1218 {
1219 	return false;
1220 }
1221 
1222 static inline const char *
1223 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1224 		     unsigned long *off, char *sym)
1225 {
1226 	return NULL;
1227 }
1228 
1229 static inline bool is_bpf_text_address(unsigned long addr)
1230 {
1231 	return false;
1232 }
1233 
1234 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1235 				  char *type, char *sym)
1236 {
1237 	return -ERANGE;
1238 }
1239 
1240 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1241 {
1242 	return NULL;
1243 }
1244 
1245 static inline const char *
1246 bpf_address_lookup(unsigned long addr, unsigned long *size,
1247 		   unsigned long *off, char **modname, char *sym)
1248 {
1249 	return NULL;
1250 }
1251 
1252 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1253 {
1254 }
1255 
1256 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1257 {
1258 }
1259 
1260 #endif /* CONFIG_BPF_JIT */
1261 
1262 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1263 
1264 #define BPF_ANC		BIT(15)
1265 
1266 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1267 {
1268 	switch (first->code) {
1269 	case BPF_RET | BPF_K:
1270 	case BPF_LD | BPF_W | BPF_LEN:
1271 		return false;
1272 
1273 	case BPF_LD | BPF_W | BPF_ABS:
1274 	case BPF_LD | BPF_H | BPF_ABS:
1275 	case BPF_LD | BPF_B | BPF_ABS:
1276 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1277 			return true;
1278 		return false;
1279 
1280 	default:
1281 		return true;
1282 	}
1283 }
1284 
1285 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1286 {
1287 	BUG_ON(ftest->code & BPF_ANC);
1288 
1289 	switch (ftest->code) {
1290 	case BPF_LD | BPF_W | BPF_ABS:
1291 	case BPF_LD | BPF_H | BPF_ABS:
1292 	case BPF_LD | BPF_B | BPF_ABS:
1293 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1294 				return BPF_ANC | SKF_AD_##CODE
1295 		switch (ftest->k) {
1296 		BPF_ANCILLARY(PROTOCOL);
1297 		BPF_ANCILLARY(PKTTYPE);
1298 		BPF_ANCILLARY(IFINDEX);
1299 		BPF_ANCILLARY(NLATTR);
1300 		BPF_ANCILLARY(NLATTR_NEST);
1301 		BPF_ANCILLARY(MARK);
1302 		BPF_ANCILLARY(QUEUE);
1303 		BPF_ANCILLARY(HATYPE);
1304 		BPF_ANCILLARY(RXHASH);
1305 		BPF_ANCILLARY(CPU);
1306 		BPF_ANCILLARY(ALU_XOR_X);
1307 		BPF_ANCILLARY(VLAN_TAG);
1308 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1309 		BPF_ANCILLARY(PAY_OFFSET);
1310 		BPF_ANCILLARY(RANDOM);
1311 		BPF_ANCILLARY(VLAN_TPID);
1312 		}
1313 		fallthrough;
1314 	default:
1315 		return ftest->code;
1316 	}
1317 }
1318 
1319 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1320 					   int k, unsigned int size);
1321 
1322 static inline int bpf_tell_extensions(void)
1323 {
1324 	return SKF_AD_MAX;
1325 }
1326 
1327 struct bpf_sock_addr_kern {
1328 	struct sock *sk;
1329 	struct sockaddr *uaddr;
1330 	/* Temporary "register" to make indirect stores to nested structures
1331 	 * defined above. We need three registers to make such a store, but
1332 	 * only two (src and dst) are available at convert_ctx_access time
1333 	 */
1334 	u64 tmp_reg;
1335 	void *t_ctx;	/* Attach type specific context. */
1336 	u32 uaddrlen;
1337 };
1338 
1339 struct bpf_sock_ops_kern {
1340 	struct	sock *sk;
1341 	union {
1342 		u32 args[4];
1343 		u32 reply;
1344 		u32 replylong[4];
1345 	};
1346 	struct sk_buff	*syn_skb;
1347 	struct sk_buff	*skb;
1348 	void	*skb_data_end;
1349 	u8	op;
1350 	u8	is_fullsock;
1351 	u8	remaining_opt_len;
1352 	u64	temp;			/* temp and everything after is not
1353 					 * initialized to 0 before calling
1354 					 * the BPF program. New fields that
1355 					 * should be initialized to 0 should
1356 					 * be inserted before temp.
1357 					 * temp is scratch storage used by
1358 					 * sock_ops_convert_ctx_access
1359 					 * as temporary storage of a register.
1360 					 */
1361 };
1362 
1363 struct bpf_sysctl_kern {
1364 	struct ctl_table_header *head;
1365 	struct ctl_table *table;
1366 	void *cur_val;
1367 	size_t cur_len;
1368 	void *new_val;
1369 	size_t new_len;
1370 	int new_updated;
1371 	int write;
1372 	loff_t *ppos;
1373 	/* Temporary "register" for indirect stores to ppos. */
1374 	u64 tmp_reg;
1375 };
1376 
1377 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1378 struct bpf_sockopt_buf {
1379 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1380 };
1381 
1382 struct bpf_sockopt_kern {
1383 	struct sock	*sk;
1384 	u8		*optval;
1385 	u8		*optval_end;
1386 	s32		level;
1387 	s32		optname;
1388 	s32		optlen;
1389 	/* for retval in struct bpf_cg_run_ctx */
1390 	struct task_struct *current_task;
1391 	/* Temporary "register" for indirect stores to ppos. */
1392 	u64		tmp_reg;
1393 };
1394 
1395 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1396 
1397 struct bpf_sk_lookup_kern {
1398 	u16		family;
1399 	u16		protocol;
1400 	__be16		sport;
1401 	u16		dport;
1402 	struct {
1403 		__be32 saddr;
1404 		__be32 daddr;
1405 	} v4;
1406 	struct {
1407 		const struct in6_addr *saddr;
1408 		const struct in6_addr *daddr;
1409 	} v6;
1410 	struct sock	*selected_sk;
1411 	u32		ingress_ifindex;
1412 	bool		no_reuseport;
1413 };
1414 
1415 extern struct static_key_false bpf_sk_lookup_enabled;
1416 
1417 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1418  *
1419  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1420  * SK_DROP. Their meaning is as follows:
1421  *
1422  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1423  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1424  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1425  *
1426  * This macro aggregates return values and selected sockets from
1427  * multiple BPF programs according to following rules in order:
1428  *
1429  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1430  *     macro result is SK_PASS and last ctx.selected_sk is used.
1431  *  2. If any program returned SK_DROP return value,
1432  *     macro result is SK_DROP.
1433  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1434  *
1435  * Caller must ensure that the prog array is non-NULL, and that the
1436  * array as well as the programs it contains remain valid.
1437  */
1438 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1439 	({								\
1440 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1441 		struct bpf_prog_array_item *_item;			\
1442 		struct sock *_selected_sk = NULL;			\
1443 		bool _no_reuseport = false;				\
1444 		struct bpf_prog *_prog;					\
1445 		bool _all_pass = true;					\
1446 		u32 _ret;						\
1447 									\
1448 		migrate_disable();					\
1449 		_item = &(array)->items[0];				\
1450 		while ((_prog = READ_ONCE(_item->prog))) {		\
1451 			/* restore most recent selection */		\
1452 			_ctx->selected_sk = _selected_sk;		\
1453 			_ctx->no_reuseport = _no_reuseport;		\
1454 									\
1455 			_ret = func(_prog, _ctx);			\
1456 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1457 				/* remember last non-NULL socket */	\
1458 				_selected_sk = _ctx->selected_sk;	\
1459 				_no_reuseport = _ctx->no_reuseport;	\
1460 			} else if (_ret == SK_DROP && _all_pass) {	\
1461 				_all_pass = false;			\
1462 			}						\
1463 			_item++;					\
1464 		}							\
1465 		_ctx->selected_sk = _selected_sk;			\
1466 		_ctx->no_reuseport = _no_reuseport;			\
1467 		migrate_enable();					\
1468 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1469 	 })
1470 
1471 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1472 					const __be32 saddr, const __be16 sport,
1473 					const __be32 daddr, const u16 dport,
1474 					const int ifindex, struct sock **psk)
1475 {
1476 	struct bpf_prog_array *run_array;
1477 	struct sock *selected_sk = NULL;
1478 	bool no_reuseport = false;
1479 
1480 	rcu_read_lock();
1481 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1482 	if (run_array) {
1483 		struct bpf_sk_lookup_kern ctx = {
1484 			.family		= AF_INET,
1485 			.protocol	= protocol,
1486 			.v4.saddr	= saddr,
1487 			.v4.daddr	= daddr,
1488 			.sport		= sport,
1489 			.dport		= dport,
1490 			.ingress_ifindex	= ifindex,
1491 		};
1492 		u32 act;
1493 
1494 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1495 		if (act == SK_PASS) {
1496 			selected_sk = ctx.selected_sk;
1497 			no_reuseport = ctx.no_reuseport;
1498 		} else {
1499 			selected_sk = ERR_PTR(-ECONNREFUSED);
1500 		}
1501 	}
1502 	rcu_read_unlock();
1503 	*psk = selected_sk;
1504 	return no_reuseport;
1505 }
1506 
1507 #if IS_ENABLED(CONFIG_IPV6)
1508 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1509 					const struct in6_addr *saddr,
1510 					const __be16 sport,
1511 					const struct in6_addr *daddr,
1512 					const u16 dport,
1513 					const int ifindex, struct sock **psk)
1514 {
1515 	struct bpf_prog_array *run_array;
1516 	struct sock *selected_sk = NULL;
1517 	bool no_reuseport = false;
1518 
1519 	rcu_read_lock();
1520 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1521 	if (run_array) {
1522 		struct bpf_sk_lookup_kern ctx = {
1523 			.family		= AF_INET6,
1524 			.protocol	= protocol,
1525 			.v6.saddr	= saddr,
1526 			.v6.daddr	= daddr,
1527 			.sport		= sport,
1528 			.dport		= dport,
1529 			.ingress_ifindex	= ifindex,
1530 		};
1531 		u32 act;
1532 
1533 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1534 		if (act == SK_PASS) {
1535 			selected_sk = ctx.selected_sk;
1536 			no_reuseport = ctx.no_reuseport;
1537 		} else {
1538 			selected_sk = ERR_PTR(-ECONNREFUSED);
1539 		}
1540 	}
1541 	rcu_read_unlock();
1542 	*psk = selected_sk;
1543 	return no_reuseport;
1544 }
1545 #endif /* IS_ENABLED(CONFIG_IPV6) */
1546 
1547 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1548 						   u64 flags, const u64 flag_mask,
1549 						   void *lookup_elem(struct bpf_map *map, u32 key))
1550 {
1551 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1552 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1553 
1554 	/* Lower bits of the flags are used as return code on lookup failure */
1555 	if (unlikely(flags & ~(action_mask | flag_mask)))
1556 		return XDP_ABORTED;
1557 
1558 	ri->tgt_value = lookup_elem(map, index);
1559 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1560 		/* If the lookup fails we want to clear out the state in the
1561 		 * redirect_info struct completely, so that if an eBPF program
1562 		 * performs multiple lookups, the last one always takes
1563 		 * precedence.
1564 		 */
1565 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1566 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1567 		return flags & action_mask;
1568 	}
1569 
1570 	ri->tgt_index = index;
1571 	ri->map_id = map->id;
1572 	ri->map_type = map->map_type;
1573 
1574 	if (flags & BPF_F_BROADCAST) {
1575 		WRITE_ONCE(ri->map, map);
1576 		ri->flags = flags;
1577 	} else {
1578 		WRITE_ONCE(ri->map, NULL);
1579 		ri->flags = 0;
1580 	}
1581 
1582 	return XDP_REDIRECT;
1583 }
1584 
1585 #ifdef CONFIG_NET
1586 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1587 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1588 			  u32 len, u64 flags);
1589 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1590 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1591 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1592 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1593 		      void *buf, unsigned long len, bool flush);
1594 #else /* CONFIG_NET */
1595 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1596 				       void *to, u32 len)
1597 {
1598 	return -EOPNOTSUPP;
1599 }
1600 
1601 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1602 					const void *from, u32 len, u64 flags)
1603 {
1604 	return -EOPNOTSUPP;
1605 }
1606 
1607 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1608 				       void *buf, u32 len)
1609 {
1610 	return -EOPNOTSUPP;
1611 }
1612 
1613 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1614 					void *buf, u32 len)
1615 {
1616 	return -EOPNOTSUPP;
1617 }
1618 
1619 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1620 {
1621 	return NULL;
1622 }
1623 
1624 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1625 				    unsigned long len, bool flush)
1626 {
1627 }
1628 #endif /* CONFIG_NET */
1629 
1630 #endif /* __LINUX_FILTER_H__ */
1631