1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_ENERGY_MODEL_H 3 #define _LINUX_ENERGY_MODEL_H 4 #include <linux/cpumask.h> 5 #include <linux/device.h> 6 #include <linux/jump_label.h> 7 #include <linux/kobject.h> 8 #include <linux/kref.h> 9 #include <linux/rcupdate.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/topology.h> 12 #include <linux/types.h> 13 14 /** 15 * struct em_perf_state - Performance state of a performance domain 16 * @frequency: The frequency in KHz, for consistency with CPUFreq 17 * @power: The power consumed at this level (by 1 CPU or by a registered 18 * device). It can be a total power: static and dynamic. 19 * @cost: The cost coefficient associated with this level, used during 20 * energy calculation. Equal to: power * max_frequency / frequency 21 * @flags: see "em_perf_state flags" description below. 22 */ 23 struct em_perf_state { 24 unsigned long frequency; 25 unsigned long power; 26 unsigned long cost; 27 unsigned long flags; 28 }; 29 30 /* 31 * em_perf_state flags: 32 * 33 * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is 34 * in this em_perf_domain, another performance state with a higher frequency 35 * but a lower or equal power cost. Such inefficient states are ignored when 36 * using em_pd_get_efficient_*() functions. 37 */ 38 #define EM_PERF_STATE_INEFFICIENT BIT(0) 39 40 /** 41 * struct em_perf_table - Performance states table 42 * @rcu: RCU used for safe access and destruction 43 * @kref: Reference counter to track the users 44 * @state: List of performance states, in ascending order 45 */ 46 struct em_perf_table { 47 struct rcu_head rcu; 48 struct kref kref; 49 struct em_perf_state state[]; 50 }; 51 52 /** 53 * struct em_perf_domain - Performance domain 54 * @table: List of performance states, in ascending order 55 * @em_table: Pointer to the runtime modifiable em_perf_table 56 * @nr_perf_states: Number of performance states 57 * @flags: See "em_perf_domain flags" 58 * @cpus: Cpumask covering the CPUs of the domain. It's here 59 * for performance reasons to avoid potential cache 60 * misses during energy calculations in the scheduler 61 * and simplifies allocating/freeing that memory region. 62 * 63 * In case of CPU device, a "performance domain" represents a group of CPUs 64 * whose performance is scaled together. All CPUs of a performance domain 65 * must have the same micro-architecture. Performance domains often have 66 * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus 67 * field is unused. 68 */ 69 struct em_perf_domain { 70 struct em_perf_state *table; 71 struct em_perf_table __rcu *em_table; 72 int nr_perf_states; 73 unsigned long flags; 74 unsigned long cpus[]; 75 }; 76 77 /* 78 * em_perf_domain flags: 79 * 80 * EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some 81 * other scale. 82 * 83 * EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating 84 * energy consumption. 85 * 86 * EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be 87 * created by platform missing real power information 88 */ 89 #define EM_PERF_DOMAIN_MICROWATTS BIT(0) 90 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1) 91 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2) 92 93 #define em_span_cpus(em) (to_cpumask((em)->cpus)) 94 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL) 95 96 #ifdef CONFIG_ENERGY_MODEL 97 /* 98 * The max power value in micro-Watts. The limit of 64 Watts is set as 99 * a safety net to not overflow multiplications on 32bit platforms. The 100 * 32bit value limit for total Perf Domain power implies a limit of 101 * maximum CPUs in such domain to 64. 102 */ 103 #define EM_MAX_POWER (64000000) /* 64 Watts */ 104 105 /* 106 * To avoid possible energy estimation overflow on 32bit machines add 107 * limits to number of CPUs in the Perf. Domain. 108 * We are safe on 64bit machine, thus some big number. 109 */ 110 #ifdef CONFIG_64BIT 111 #define EM_MAX_NUM_CPUS 4096 112 #else 113 #define EM_MAX_NUM_CPUS 16 114 #endif 115 116 /* 117 * To avoid an overflow on 32bit machines while calculating the energy 118 * use a different order in the operation. First divide by the 'cpu_scale' 119 * which would reduce big value stored in the 'cost' field, then multiply by 120 * the 'sum_util'. This would allow to handle existing platforms, which have 121 * e.g. power ~1.3 Watt at max freq, so the 'cost' value > 1mln micro-Watts. 122 * In such scenario, where there are 4 CPUs in the Perf. Domain the 'sum_util' 123 * could be 4096, then multiplication: 'cost' * 'sum_util' would overflow. 124 * This reordering of operations has some limitations, we lose small 125 * precision in the estimation (comparing to 64bit platform w/o reordering). 126 * 127 * We are safe on 64bit machine. 128 */ 129 #ifdef CONFIG_64BIT 130 #define em_estimate_energy(cost, sum_util, scale_cpu) \ 131 (((cost) * (sum_util)) / (scale_cpu)) 132 #else 133 #define em_estimate_energy(cost, sum_util, scale_cpu) \ 134 (((cost) / (scale_cpu)) * (sum_util)) 135 #endif 136 137 struct em_data_callback { 138 /** 139 * active_power() - Provide power at the next performance state of 140 * a device 141 * @dev : Device for which we do this operation (can be a CPU) 142 * @power : Active power at the performance state 143 * (modified) 144 * @freq : Frequency at the performance state in kHz 145 * (modified) 146 * 147 * active_power() must find the lowest performance state of 'dev' above 148 * 'freq' and update 'power' and 'freq' to the matching active power 149 * and frequency. 150 * 151 * In case of CPUs, the power is the one of a single CPU in the domain, 152 * expressed in micro-Watts or an abstract scale. It is expected to 153 * fit in the [0, EM_MAX_POWER] range. 154 * 155 * Return 0 on success. 156 */ 157 int (*active_power)(struct device *dev, unsigned long *power, 158 unsigned long *freq); 159 160 /** 161 * get_cost() - Provide the cost at the given performance state of 162 * a device 163 * @dev : Device for which we do this operation (can be a CPU) 164 * @freq : Frequency at the performance state in kHz 165 * @cost : The cost value for the performance state 166 * (modified) 167 * 168 * In case of CPUs, the cost is the one of a single CPU in the domain. 169 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal 170 * usage in EAS calculation. 171 * 172 * Return 0 on success, or appropriate error value in case of failure. 173 */ 174 int (*get_cost)(struct device *dev, unsigned long freq, 175 unsigned long *cost); 176 }; 177 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb) 178 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) \ 179 { .active_power = _active_power_cb, \ 180 .get_cost = _cost_cb } 181 #define EM_DATA_CB(_active_power_cb) \ 182 EM_ADV_DATA_CB(_active_power_cb, NULL) 183 184 struct em_perf_domain *em_cpu_get(int cpu); 185 struct em_perf_domain *em_pd_get(struct device *dev); 186 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 187 struct em_data_callback *cb, cpumask_t *span, 188 bool microwatts); 189 void em_dev_unregister_perf_domain(struct device *dev); 190 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd); 191 void em_table_free(struct em_perf_table __rcu *table); 192 193 /** 194 * em_pd_get_efficient_state() - Get an efficient performance state from the EM 195 * @table: List of performance states, in ascending order 196 * @nr_perf_states: Number of performance states 197 * @freq: Frequency to map with the EM 198 * @pd_flags: Performance Domain flags 199 * 200 * It is called from the scheduler code quite frequently and as a consequence 201 * doesn't implement any check. 202 * 203 * Return: An efficient performance state id, high enough to meet @freq 204 * requirement. 205 */ 206 static inline int 207 em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states, 208 unsigned long freq, unsigned long pd_flags) 209 { 210 struct em_perf_state *ps; 211 int i; 212 213 for (i = 0; i < nr_perf_states; i++) { 214 ps = &table[i]; 215 if (ps->frequency >= freq) { 216 if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES && 217 ps->flags & EM_PERF_STATE_INEFFICIENT) 218 continue; 219 return i; 220 } 221 } 222 223 return nr_perf_states - 1; 224 } 225 226 /** 227 * em_cpu_energy() - Estimates the energy consumed by the CPUs of a 228 * performance domain 229 * @pd : performance domain for which energy has to be estimated 230 * @max_util : highest utilization among CPUs of the domain 231 * @sum_util : sum of the utilization of all CPUs in the domain 232 * @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which 233 * might reflect reduced frequency (due to thermal) 234 * 235 * This function must be used only for CPU devices. There is no validation, 236 * i.e. if the EM is a CPU type and has cpumask allocated. It is called from 237 * the scheduler code quite frequently and that is why there is not checks. 238 * 239 * Return: the sum of the energy consumed by the CPUs of the domain assuming 240 * a capacity state satisfying the max utilization of the domain. 241 */ 242 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 243 unsigned long max_util, unsigned long sum_util, 244 unsigned long allowed_cpu_cap) 245 { 246 unsigned long freq, ref_freq, scale_cpu; 247 struct em_perf_table *em_table; 248 struct em_perf_state *ps; 249 int cpu, i; 250 251 #ifdef CONFIG_SCHED_DEBUG 252 WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n"); 253 #endif 254 255 if (!sum_util) 256 return 0; 257 258 /* 259 * In order to predict the performance state, map the utilization of 260 * the most utilized CPU of the performance domain to a requested 261 * frequency, like schedutil. Take also into account that the real 262 * frequency might be set lower (due to thermal capping). Thus, clamp 263 * max utilization to the allowed CPU capacity before calculating 264 * effective frequency. 265 */ 266 cpu = cpumask_first(to_cpumask(pd->cpus)); 267 scale_cpu = arch_scale_cpu_capacity(cpu); 268 ref_freq = arch_scale_freq_ref(cpu); 269 270 max_util = min(max_util, allowed_cpu_cap); 271 freq = map_util_freq(max_util, ref_freq, scale_cpu); 272 273 /* 274 * Find the lowest performance state of the Energy Model above the 275 * requested frequency. 276 */ 277 em_table = rcu_dereference(pd->em_table); 278 i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states, 279 freq, pd->flags); 280 ps = &em_table->state[i]; 281 282 /* 283 * The capacity of a CPU in the domain at the performance state (ps) 284 * can be computed as: 285 * 286 * ps->freq * scale_cpu 287 * ps->cap = -------------------- (1) 288 * cpu_max_freq 289 * 290 * So, ignoring the costs of idle states (which are not available in 291 * the EM), the energy consumed by this CPU at that performance state 292 * is estimated as: 293 * 294 * ps->power * cpu_util 295 * cpu_nrg = -------------------- (2) 296 * ps->cap 297 * 298 * since 'cpu_util / ps->cap' represents its percentage of busy time. 299 * 300 * NOTE: Although the result of this computation actually is in 301 * units of power, it can be manipulated as an energy value 302 * over a scheduling period, since it is assumed to be 303 * constant during that interval. 304 * 305 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product 306 * of two terms: 307 * 308 * ps->power * cpu_max_freq cpu_util 309 * cpu_nrg = ------------------------ * --------- (3) 310 * ps->freq scale_cpu 311 * 312 * The first term is static, and is stored in the em_perf_state struct 313 * as 'ps->cost'. 314 * 315 * Since all CPUs of the domain have the same micro-architecture, they 316 * share the same 'ps->cost', and the same CPU capacity. Hence, the 317 * total energy of the domain (which is the simple sum of the energy of 318 * all of its CPUs) can be factorized as: 319 * 320 * ps->cost * \Sum cpu_util 321 * pd_nrg = ------------------------ (4) 322 * scale_cpu 323 */ 324 return em_estimate_energy(ps->cost, sum_util, scale_cpu); 325 } 326 327 /** 328 * em_pd_nr_perf_states() - Get the number of performance states of a perf. 329 * domain 330 * @pd : performance domain for which this must be done 331 * 332 * Return: the number of performance states in the performance domain table 333 */ 334 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 335 { 336 return pd->nr_perf_states; 337 } 338 339 #else 340 struct em_data_callback {}; 341 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { } 342 #define EM_DATA_CB(_active_power_cb) { } 343 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0) 344 345 static inline 346 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 347 struct em_data_callback *cb, cpumask_t *span, 348 bool microwatts) 349 { 350 return -EINVAL; 351 } 352 static inline void em_dev_unregister_perf_domain(struct device *dev) 353 { 354 } 355 static inline struct em_perf_domain *em_cpu_get(int cpu) 356 { 357 return NULL; 358 } 359 static inline struct em_perf_domain *em_pd_get(struct device *dev) 360 { 361 return NULL; 362 } 363 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 364 unsigned long max_util, unsigned long sum_util, 365 unsigned long allowed_cpu_cap) 366 { 367 return 0; 368 } 369 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 370 { 371 return 0; 372 } 373 static inline 374 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd) 375 { 376 return NULL; 377 } 378 static inline void em_table_free(struct em_perf_table __rcu *table) {} 379 #endif 380 381 #endif 382