xref: /linux-6.15/include/linux/energy_model.h (revision dd5bdaf2)
127871f7aSQuentin Perret /* SPDX-License-Identifier: GPL-2.0 */
227871f7aSQuentin Perret #ifndef _LINUX_ENERGY_MODEL_H
327871f7aSQuentin Perret #define _LINUX_ENERGY_MODEL_H
427871f7aSQuentin Perret #include <linux/cpumask.h>
57d9895c7SLukasz Luba #include <linux/device.h>
627871f7aSQuentin Perret #include <linux/jump_label.h>
727871f7aSQuentin Perret #include <linux/kobject.h>
8ffcf9bceSLukasz Luba #include <linux/kref.h>
927871f7aSQuentin Perret #include <linux/rcupdate.h>
1027871f7aSQuentin Perret #include <linux/sched/cpufreq.h>
1127871f7aSQuentin Perret #include <linux/sched/topology.h>
1227871f7aSQuentin Perret #include <linux/types.h>
1327871f7aSQuentin Perret 
1427871f7aSQuentin Perret /**
15ca67408aSLukasz Luba  * struct em_perf_state - Performance state of a performance domain
165a367f7bSLukasz Luba  * @performance:	CPU performance (capacity) at a given frequency
171bc138c6SLukasz Luba  * @frequency:	The frequency in KHz, for consistency with CPUFreq
18f2c90b12SLukasz Luba  * @power:	The power consumed at this level (by 1 CPU or by a registered
19f2c90b12SLukasz Luba  *		device). It can be a total power: static and dynamic.
2027871f7aSQuentin Perret  * @cost:	The cost coefficient associated with this level, used during
2127871f7aSQuentin Perret  *		energy calculation. Equal to: power * max_frequency / frequency
22c8ed9953SVincent Donnefort  * @flags:	see "em_perf_state flags" description below.
2327871f7aSQuentin Perret  */
24521b512bSLukasz Luba struct em_perf_state {
255a367f7bSLukasz Luba 	unsigned long performance;
2627871f7aSQuentin Perret 	unsigned long frequency;
2727871f7aSQuentin Perret 	unsigned long power;
2827871f7aSQuentin Perret 	unsigned long cost;
29c8ed9953SVincent Donnefort 	unsigned long flags;
3027871f7aSQuentin Perret };
3127871f7aSQuentin Perret 
32c8ed9953SVincent Donnefort /*
33c8ed9953SVincent Donnefort  * em_perf_state flags:
34c8ed9953SVincent Donnefort  *
35c8ed9953SVincent Donnefort  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
36c8ed9953SVincent Donnefort  * in this em_perf_domain, another performance state with a higher frequency
37c8ed9953SVincent Donnefort  * but a lower or equal power cost. Such inefficient states are ignored when
38c8ed9953SVincent Donnefort  * using em_pd_get_efficient_*() functions.
39c8ed9953SVincent Donnefort  */
40c8ed9953SVincent Donnefort #define EM_PERF_STATE_INEFFICIENT BIT(0)
41c8ed9953SVincent Donnefort 
4227871f7aSQuentin Perret /**
43ca0fc871SLukasz Luba  * struct em_perf_table - Performance states table
44ca0fc871SLukasz Luba  * @rcu:	RCU used for safe access and destruction
45ffcf9bceSLukasz Luba  * @kref:	Reference counter to track the users
46ca0fc871SLukasz Luba  * @state:	List of performance states, in ascending order
47ca0fc871SLukasz Luba  */
48ca0fc871SLukasz Luba struct em_perf_table {
49ca0fc871SLukasz Luba 	struct rcu_head rcu;
50ffcf9bceSLukasz Luba 	struct kref kref;
51ca0fc871SLukasz Luba 	struct em_perf_state state[];
52ca0fc871SLukasz Luba };
53ca0fc871SLukasz Luba 
54ca0fc871SLukasz Luba /**
55ca67408aSLukasz Luba  * struct em_perf_domain - Performance domain
56ca0fc871SLukasz Luba  * @em_table:		Pointer to the runtime modifiable em_perf_table
57521b512bSLukasz Luba  * @nr_perf_states:	Number of performance states
5856092967SLukasz Luba  * @min_perf_state:	Minimum allowed Performance State index
5956092967SLukasz Luba  * @max_perf_state:	Maximum allowed Performance State index
6088f7a895SVincent Donnefort  * @flags:		See "em_perf_domain flags"
611bc138c6SLukasz Luba  * @cpus:		Cpumask covering the CPUs of the domain. It's here
621bc138c6SLukasz Luba  *			for performance reasons to avoid potential cache
631bc138c6SLukasz Luba  *			misses during energy calculations in the scheduler
641bc138c6SLukasz Luba  *			and simplifies allocating/freeing that memory region.
6527871f7aSQuentin Perret  *
661bc138c6SLukasz Luba  * In case of CPU device, a "performance domain" represents a group of CPUs
671bc138c6SLukasz Luba  * whose performance is scaled together. All CPUs of a performance domain
681bc138c6SLukasz Luba  * must have the same micro-architecture. Performance domains often have
691bc138c6SLukasz Luba  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
701bc138c6SLukasz Luba  * field is unused.
7127871f7aSQuentin Perret  */
7227871f7aSQuentin Perret struct em_perf_domain {
73ca0fc871SLukasz Luba 	struct em_perf_table __rcu *em_table;
74521b512bSLukasz Luba 	int nr_perf_states;
7556092967SLukasz Luba 	int min_perf_state;
7656092967SLukasz Luba 	int max_perf_state;
7788f7a895SVincent Donnefort 	unsigned long flags;
78beb69f15SGustavo A. R. Silva 	unsigned long cpus[];
7927871f7aSQuentin Perret };
8027871f7aSQuentin Perret 
8188f7a895SVincent Donnefort /*
8288f7a895SVincent Donnefort  *  em_perf_domain flags:
8388f7a895SVincent Donnefort  *
84ae6ccaa6SLukasz Luba  *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
8588f7a895SVincent Donnefort  *  other scale.
868354eb9eSVincent Donnefort  *
878354eb9eSVincent Donnefort  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
888354eb9eSVincent Donnefort  *  energy consumption.
89fc3a9a98SPierre Gondois  *
90fc3a9a98SPierre Gondois  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
91fc3a9a98SPierre Gondois  *  created by platform missing real power information
9288f7a895SVincent Donnefort  */
93ae6ccaa6SLukasz Luba #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
948354eb9eSVincent Donnefort #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
95fc3a9a98SPierre Gondois #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
9688f7a895SVincent Donnefort 
97521b512bSLukasz Luba #define em_span_cpus(em) (to_cpumask((em)->cpus))
98fc3a9a98SPierre Gondois #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
99521b512bSLukasz Luba 
10027a47e42SQuentin Perret #ifdef CONFIG_ENERGY_MODEL
101ae6ccaa6SLukasz Luba /*
102ae6ccaa6SLukasz Luba  * The max power value in micro-Watts. The limit of 64 Watts is set as
103ae6ccaa6SLukasz Luba  * a safety net to not overflow multiplications on 32bit platforms. The
104ae6ccaa6SLukasz Luba  * 32bit value limit for total Perf Domain power implies a limit of
105ae6ccaa6SLukasz Luba  * maximum CPUs in such domain to 64.
106ae6ccaa6SLukasz Luba  */
107ae6ccaa6SLukasz Luba #define EM_MAX_POWER (64000000) /* 64 Watts */
10827871f7aSQuentin Perret 
1097fcc17d0SLukasz Luba /*
110ae6ccaa6SLukasz Luba  * To avoid possible energy estimation overflow on 32bit machines add
111ae6ccaa6SLukasz Luba  * limits to number of CPUs in the Perf. Domain.
112ae6ccaa6SLukasz Luba  * We are safe on 64bit machine, thus some big number.
1137fcc17d0SLukasz Luba  */
1147fcc17d0SLukasz Luba #ifdef CONFIG_64BIT
115ae6ccaa6SLukasz Luba #define EM_MAX_NUM_CPUS 4096
1167fcc17d0SLukasz Luba #else
117ae6ccaa6SLukasz Luba #define EM_MAX_NUM_CPUS 16
118ae6ccaa6SLukasz Luba #endif
119ae6ccaa6SLukasz Luba 
12027871f7aSQuentin Perret struct em_data_callback {
12127871f7aSQuentin Perret 	/**
122521b512bSLukasz Luba 	 * active_power() - Provide power at the next performance state of
123d0351cc3SLukasz Luba 	 *		a device
12475a3a99aSLukasz Luba 	 * @dev		: Device for which we do this operation (can be a CPU)
125f2c90b12SLukasz Luba 	 * @power	: Active power at the performance state
126521b512bSLukasz Luba 	 *		(modified)
127521b512bSLukasz Luba 	 * @freq	: Frequency at the performance state in kHz
128521b512bSLukasz Luba 	 *		(modified)
12927871f7aSQuentin Perret 	 *
130d0351cc3SLukasz Luba 	 * active_power() must find the lowest performance state of 'dev' above
13127871f7aSQuentin Perret 	 * 'freq' and update 'power' and 'freq' to the matching active power
13227871f7aSQuentin Perret 	 * and frequency.
13327871f7aSQuentin Perret 	 *
134d0351cc3SLukasz Luba 	 * In case of CPUs, the power is the one of a single CPU in the domain,
135ae6ccaa6SLukasz Luba 	 * expressed in micro-Watts or an abstract scale. It is expected to
136f2c90b12SLukasz Luba 	 * fit in the [0, EM_MAX_POWER] range.
13727871f7aSQuentin Perret 	 *
13827871f7aSQuentin Perret 	 * Return 0 on success.
13927871f7aSQuentin Perret 	 */
14075a3a99aSLukasz Luba 	int (*active_power)(struct device *dev, unsigned long *power,
14175a3a99aSLukasz Luba 			    unsigned long *freq);
142bdc21a4dSLukasz Luba 
143bdc21a4dSLukasz Luba 	/**
144bdc21a4dSLukasz Luba 	 * get_cost() - Provide the cost at the given performance state of
145bdc21a4dSLukasz Luba 	 *		a device
146bdc21a4dSLukasz Luba 	 * @dev		: Device for which we do this operation (can be a CPU)
147bdc21a4dSLukasz Luba 	 * @freq	: Frequency at the performance state in kHz
148bdc21a4dSLukasz Luba 	 * @cost	: The cost value for the performance state
149bdc21a4dSLukasz Luba 	 *		(modified)
150bdc21a4dSLukasz Luba 	 *
151bdc21a4dSLukasz Luba 	 * In case of CPUs, the cost is the one of a single CPU in the domain.
152bdc21a4dSLukasz Luba 	 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
153bdc21a4dSLukasz Luba 	 * usage in EAS calculation.
154bdc21a4dSLukasz Luba 	 *
155bdc21a4dSLukasz Luba 	 * Return 0 on success, or appropriate error value in case of failure.
156bdc21a4dSLukasz Luba 	 */
157bdc21a4dSLukasz Luba 	int (*get_cost)(struct device *dev, unsigned long freq,
158bdc21a4dSLukasz Luba 			unsigned long *cost);
15927871f7aSQuentin Perret };
160caeea9e6SLukasz Luba #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
161bdc21a4dSLukasz Luba #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)	\
162bdc21a4dSLukasz Luba 	{ .active_power = _active_power_cb,		\
163bdc21a4dSLukasz Luba 	  .get_cost = _cost_cb }
164bdc21a4dSLukasz Luba #define EM_DATA_CB(_active_power_cb)			\
165bdc21a4dSLukasz Luba 		EM_ADV_DATA_CB(_active_power_cb, NULL)
16627871f7aSQuentin Perret 
16727871f7aSQuentin Perret struct em_perf_domain *em_cpu_get(int cpu);
1681bc138c6SLukasz Luba struct em_perf_domain *em_pd_get(struct device *dev);
169977230d5SLukasz Luba int em_dev_update_perf_domain(struct device *dev,
170977230d5SLukasz Luba 			      struct em_perf_table *new_table);
1717d9895c7SLukasz Luba int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
172c250d50fSLukasz Luba 				const struct em_data_callback *cb,
173ae6ccaa6SLukasz Luba 				const cpumask_t *cpus, bool microwatts);
1741bc138c6SLukasz Luba void em_dev_unregister_perf_domain(struct device *dev);
175ffcf9bceSLukasz Luba struct em_perf_table *em_table_alloc(struct em_perf_domain *pd);
176ffcf9bceSLukasz Luba void em_table_free(struct em_perf_table *table);
17722ea0284SLukasz Luba int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
17822ea0284SLukasz Luba 			 int nr_states);
179cf61d53bSLukasz Luba int em_dev_update_chip_binning(struct device *dev);
18056092967SLukasz Luba int em_update_performance_limits(struct em_perf_domain *pd,
18156092967SLukasz Luba 		unsigned long freq_min_khz, unsigned long freq_max_khz);
182*ebeeee39SRafael J. Wysocki void em_rebuild_sched_domains(void);
18327871f7aSQuentin Perret 
18427871f7aSQuentin Perret /**
1858354eb9eSVincent Donnefort  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
186a3c78778SLukasz Luba  * @table:		List of performance states, in ascending order
18756092967SLukasz Luba  * @pd:			performance domain for which this must be done
1885a367f7bSLukasz Luba  * @max_util:		Max utilization to map with the EM
1898354eb9eSVincent Donnefort  *
1908354eb9eSVincent Donnefort  * It is called from the scheduler code quite frequently and as a consequence
1918354eb9eSVincent Donnefort  * doesn't implement any check.
1928354eb9eSVincent Donnefort  *
1935a367f7bSLukasz Luba  * Return: An efficient performance state id, high enough to meet @max_util
1948354eb9eSVincent Donnefort  * requirement.
1958354eb9eSVincent Donnefort  */
196a3c78778SLukasz Luba static inline int
em_pd_get_efficient_state(struct em_perf_state * table,struct em_perf_domain * pd,unsigned long max_util)19756092967SLukasz Luba em_pd_get_efficient_state(struct em_perf_state *table,
19856092967SLukasz Luba 			  struct em_perf_domain *pd, unsigned long max_util)
1998354eb9eSVincent Donnefort {
20056092967SLukasz Luba 	unsigned long pd_flags = pd->flags;
20156092967SLukasz Luba 	int min_ps = pd->min_perf_state;
20256092967SLukasz Luba 	int max_ps = pd->max_perf_state;
2038354eb9eSVincent Donnefort 	struct em_perf_state *ps;
2048354eb9eSVincent Donnefort 	int i;
2058354eb9eSVincent Donnefort 
20656092967SLukasz Luba 	for (i = min_ps; i <= max_ps; i++) {
207a3c78778SLukasz Luba 		ps = &table[i];
2085a367f7bSLukasz Luba 		if (ps->performance >= max_util) {
209a3c78778SLukasz Luba 			if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
2108354eb9eSVincent Donnefort 			    ps->flags & EM_PERF_STATE_INEFFICIENT)
2118354eb9eSVincent Donnefort 				continue;
212a3c78778SLukasz Luba 			return i;
2138354eb9eSVincent Donnefort 		}
2148354eb9eSVincent Donnefort 	}
2158354eb9eSVincent Donnefort 
21656092967SLukasz Luba 	return max_ps;
2178354eb9eSVincent Donnefort }
2188354eb9eSVincent Donnefort 
2198354eb9eSVincent Donnefort /**
220f0b56947SLukasz Luba  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
221ca67408aSLukasz Luba  *		performance domain
22227871f7aSQuentin Perret  * @pd		: performance domain for which energy has to be estimated
22327871f7aSQuentin Perret  * @max_util	: highest utilization among CPUs of the domain
22427871f7aSQuentin Perret  * @sum_util	: sum of the utilization of all CPUs in the domain
2258f1b971bSLukasz Luba  * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
226ca67408aSLukasz Luba  *			  might reflect reduced frequency (due to thermal)
22727871f7aSQuentin Perret  *
228f0b56947SLukasz Luba  * This function must be used only for CPU devices. There is no validation,
229f0b56947SLukasz Luba  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
230f0b56947SLukasz Luba  * the scheduler code quite frequently and that is why there is not checks.
231f0b56947SLukasz Luba  *
23227871f7aSQuentin Perret  * Return: the sum of the energy consumed by the CPUs of the domain assuming
23327871f7aSQuentin Perret  * a capacity state satisfying the max utilization of the domain.
23427871f7aSQuentin Perret  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)235f0b56947SLukasz Luba static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
2368f1b971bSLukasz Luba 				unsigned long max_util, unsigned long sum_util,
2378f1b971bSLukasz Luba 				unsigned long allowed_cpu_cap)
23827871f7aSQuentin Perret {
239aa11a7ebSLukasz Luba 	struct em_perf_table *em_table;
240521b512bSLukasz Luba 	struct em_perf_state *ps;
2411b600da5SLukasz Luba 	int i;
24227871f7aSQuentin Perret 
243aa11a7ebSLukasz Luba 	WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
244aa11a7ebSLukasz Luba 
24510803995SPavankumar Kondeti 	if (!sum_util)
24610803995SPavankumar Kondeti 		return 0;
24710803995SPavankumar Kondeti 
24827871f7aSQuentin Perret 	/*
249521b512bSLukasz Luba 	 * In order to predict the performance state, map the utilization of
250521b512bSLukasz Luba 	 * the most utilized CPU of the performance domain to a requested
2515a367f7bSLukasz Luba 	 * performance, like schedutil. Take also into account that the real
2525a367f7bSLukasz Luba 	 * performance might be set lower (due to thermal capping). Thus, clamp
2538f1b971bSLukasz Luba 	 * max utilization to the allowed CPU capacity before calculating
2545a367f7bSLukasz Luba 	 * effective performance.
25527871f7aSQuentin Perret 	 */
2568f1b971bSLukasz Luba 	max_util = min(max_util, allowed_cpu_cap);
25727871f7aSQuentin Perret 
25827871f7aSQuentin Perret 	/*
259521b512bSLukasz Luba 	 * Find the lowest performance state of the Energy Model above the
2605a367f7bSLukasz Luba 	 * requested performance.
26127871f7aSQuentin Perret 	 */
262aa11a7ebSLukasz Luba 	em_table = rcu_dereference(pd->em_table);
26356092967SLukasz Luba 	i = em_pd_get_efficient_state(em_table->state, pd, max_util);
264aa11a7ebSLukasz Luba 	ps = &em_table->state[i];
26527871f7aSQuentin Perret 
26627871f7aSQuentin Perret 	/*
2671b600da5SLukasz Luba 	 * The performance (capacity) of a CPU in the domain at the performance
2681b600da5SLukasz Luba 	 * state (ps) can be computed as:
26927871f7aSQuentin Perret 	 *
270521b512bSLukasz Luba 	 *                     ps->freq * scale_cpu
2711b600da5SLukasz Luba 	 *   ps->performance = --------------------                  (1)
27227871f7aSQuentin Perret 	 *                         cpu_max_freq
27327871f7aSQuentin Perret 	 *
27427871f7aSQuentin Perret 	 * So, ignoring the costs of idle states (which are not available in
275521b512bSLukasz Luba 	 * the EM), the energy consumed by this CPU at that performance state
276521b512bSLukasz Luba 	 * is estimated as:
27727871f7aSQuentin Perret 	 *
278521b512bSLukasz Luba 	 *             ps->power * cpu_util
27927871f7aSQuentin Perret 	 *   cpu_nrg = --------------------                          (2)
2801b600da5SLukasz Luba 	 *               ps->performance
28127871f7aSQuentin Perret 	 *
2821b600da5SLukasz Luba 	 * since 'cpu_util / ps->performance' represents its percentage of busy
2831b600da5SLukasz Luba 	 * time.
28427871f7aSQuentin Perret 	 *
28527871f7aSQuentin Perret 	 *   NOTE: Although the result of this computation actually is in
28627871f7aSQuentin Perret 	 *         units of power, it can be manipulated as an energy value
28727871f7aSQuentin Perret 	 *         over a scheduling period, since it is assumed to be
28827871f7aSQuentin Perret 	 *         constant during that interval.
28927871f7aSQuentin Perret 	 *
29027871f7aSQuentin Perret 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
29127871f7aSQuentin Perret 	 * of two terms:
29227871f7aSQuentin Perret 	 *
2931b600da5SLukasz Luba 	 *             ps->power * cpu_max_freq
2941b600da5SLukasz Luba 	 *   cpu_nrg = ------------------------ * cpu_util           (3)
2951b600da5SLukasz Luba 	 *               ps->freq * scale_cpu
29627871f7aSQuentin Perret 	 *
297521b512bSLukasz Luba 	 * The first term is static, and is stored in the em_perf_state struct
298521b512bSLukasz Luba 	 * as 'ps->cost'.
29927871f7aSQuentin Perret 	 *
30027871f7aSQuentin Perret 	 * Since all CPUs of the domain have the same micro-architecture, they
301521b512bSLukasz Luba 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
30227871f7aSQuentin Perret 	 * total energy of the domain (which is the simple sum of the energy of
30327871f7aSQuentin Perret 	 * all of its CPUs) can be factorized as:
30427871f7aSQuentin Perret 	 *
3051b600da5SLukasz Luba 	 *   pd_nrg = ps->cost * \Sum cpu_util                       (4)
30627871f7aSQuentin Perret 	 */
3071b600da5SLukasz Luba 	return ps->cost * sum_util;
30827871f7aSQuentin Perret }
30927871f7aSQuentin Perret 
31027871f7aSQuentin Perret /**
311521b512bSLukasz Luba  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
312521b512bSLukasz Luba  *				domain
31327871f7aSQuentin Perret  * @pd		: performance domain for which this must be done
31427871f7aSQuentin Perret  *
315521b512bSLukasz Luba  * Return: the number of performance states in the performance domain table
31627871f7aSQuentin Perret  */
em_pd_nr_perf_states(struct em_perf_domain * pd)317521b512bSLukasz Luba static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
31827871f7aSQuentin Perret {
319521b512bSLukasz Luba 	return pd->nr_perf_states;
32027871f7aSQuentin Perret }
32127871f7aSQuentin Perret 
322ee1a1987SLukasz Luba /**
323ee1a1987SLukasz Luba  * em_perf_state_from_pd() - Get the performance states table of perf.
324ee1a1987SLukasz Luba  *				domain
325ee1a1987SLukasz Luba  * @pd		: performance domain for which this must be done
326ee1a1987SLukasz Luba  *
327ee1a1987SLukasz Luba  * To use this function the rcu_read_lock() should be hold. After the usage
328ee1a1987SLukasz Luba  * of the performance states table is finished, the rcu_read_unlock() should
329ee1a1987SLukasz Luba  * be called.
330ee1a1987SLukasz Luba  *
331ee1a1987SLukasz Luba  * Return: the pointer to performance states table of the performance domain
332ee1a1987SLukasz Luba  */
333ee1a1987SLukasz Luba static inline
em_perf_state_from_pd(struct em_perf_domain * pd)334ee1a1987SLukasz Luba struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
335ee1a1987SLukasz Luba {
336ee1a1987SLukasz Luba 	return rcu_dereference(pd->em_table)->state;
337ee1a1987SLukasz Luba }
338ee1a1987SLukasz Luba 
33927871f7aSQuentin Perret #else
34027871f7aSQuentin Perret struct em_data_callback {};
341bdc21a4dSLukasz Luba #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
34227871f7aSQuentin Perret #define EM_DATA_CB(_active_power_cb) { }
343caeea9e6SLukasz Luba #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
34427871f7aSQuentin Perret 
3457d9895c7SLukasz Luba static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,const struct em_data_callback * cb,const cpumask_t * cpus,bool microwatts)3467d9895c7SLukasz Luba int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
347c250d50fSLukasz Luba 				const struct em_data_callback *cb,
348ae6ccaa6SLukasz Luba 				const cpumask_t *cpus, bool microwatts)
3497d9895c7SLukasz Luba {
3507d9895c7SLukasz Luba 	return -EINVAL;
3517d9895c7SLukasz Luba }
em_dev_unregister_perf_domain(struct device * dev)3521bc138c6SLukasz Luba static inline void em_dev_unregister_perf_domain(struct device *dev)
3531bc138c6SLukasz Luba {
3541bc138c6SLukasz Luba }
em_cpu_get(int cpu)35527871f7aSQuentin Perret static inline struct em_perf_domain *em_cpu_get(int cpu)
35627871f7aSQuentin Perret {
35727871f7aSQuentin Perret 	return NULL;
35827871f7aSQuentin Perret }
em_pd_get(struct device * dev)3591bc138c6SLukasz Luba static inline struct em_perf_domain *em_pd_get(struct device *dev)
3601bc138c6SLukasz Luba {
3611bc138c6SLukasz Luba 	return NULL;
3621bc138c6SLukasz Luba }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)363f0b56947SLukasz Luba static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
3648f1b971bSLukasz Luba 			unsigned long max_util, unsigned long sum_util,
3658f1b971bSLukasz Luba 			unsigned long allowed_cpu_cap)
36627871f7aSQuentin Perret {
36727871f7aSQuentin Perret 	return 0;
36827871f7aSQuentin Perret }
em_pd_nr_perf_states(struct em_perf_domain * pd)369521b512bSLukasz Luba static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
37027871f7aSQuentin Perret {
37127871f7aSQuentin Perret 	return 0;
37227871f7aSQuentin Perret }
373ffcf9bceSLukasz Luba static inline
em_table_alloc(struct em_perf_domain * pd)374ffcf9bceSLukasz Luba struct em_perf_table *em_table_alloc(struct em_perf_domain *pd)
375ffcf9bceSLukasz Luba {
376ffcf9bceSLukasz Luba 	return NULL;
377ffcf9bceSLukasz Luba }
em_table_free(struct em_perf_table * table)378ffcf9bceSLukasz Luba static inline void em_table_free(struct em_perf_table *table) {}
379977230d5SLukasz Luba static inline
em_dev_update_perf_domain(struct device * dev,struct em_perf_table * new_table)380977230d5SLukasz Luba int em_dev_update_perf_domain(struct device *dev,
381977230d5SLukasz Luba 			      struct em_perf_table *new_table)
382977230d5SLukasz Luba {
383977230d5SLukasz Luba 	return -EINVAL;
384977230d5SLukasz Luba }
385ee1a1987SLukasz Luba static inline
em_perf_state_from_pd(struct em_perf_domain * pd)386ee1a1987SLukasz Luba struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
387ee1a1987SLukasz Luba {
388ee1a1987SLukasz Luba 	return NULL;
389ee1a1987SLukasz Luba }
39022ea0284SLukasz Luba static inline
em_dev_compute_costs(struct device * dev,struct em_perf_state * table,int nr_states)39122ea0284SLukasz Luba int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
39222ea0284SLukasz Luba 			 int nr_states)
39322ea0284SLukasz Luba {
39422ea0284SLukasz Luba 	return -EINVAL;
39522ea0284SLukasz Luba }
em_dev_update_chip_binning(struct device * dev)396cf61d53bSLukasz Luba static inline int em_dev_update_chip_binning(struct device *dev)
397cf61d53bSLukasz Luba {
398cf61d53bSLukasz Luba 	return -EINVAL;
399cf61d53bSLukasz Luba }
40056092967SLukasz Luba static inline
em_update_performance_limits(struct em_perf_domain * pd,unsigned long freq_min_khz,unsigned long freq_max_khz)40156092967SLukasz Luba int em_update_performance_limits(struct em_perf_domain *pd,
40256092967SLukasz Luba 		unsigned long freq_min_khz, unsigned long freq_max_khz)
40356092967SLukasz Luba {
40456092967SLukasz Luba 	return -EINVAL;
40556092967SLukasz Luba }
em_rebuild_sched_domains(void)406*ebeeee39SRafael J. Wysocki static inline void em_rebuild_sched_domains(void) {}
40727871f7aSQuentin Perret #endif
40827871f7aSQuentin Perret 
40927871f7aSQuentin Perret #endif
410