xref: /linux-6.15/include/linux/edac.h (revision f5e4e7fd)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <[email protected]>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 struct device;
22 
23 #define EDAC_OPSTATE_INVAL	-1
24 #define EDAC_OPSTATE_POLL	0
25 #define EDAC_OPSTATE_NMI	1
26 #define EDAC_OPSTATE_INT	2
27 
28 extern int edac_op_state;
29 extern int edac_err_assert;
30 extern atomic_t edac_handlers;
31 extern struct bus_type edac_subsys;
32 
33 extern int edac_handler_set(void);
34 extern void edac_atomic_assert_error(void);
35 extern struct bus_type *edac_get_sysfs_subsys(void);
36 extern void edac_put_sysfs_subsys(void);
37 
38 static inline void opstate_init(void)
39 {
40 	switch (edac_op_state) {
41 	case EDAC_OPSTATE_POLL:
42 	case EDAC_OPSTATE_NMI:
43 		break;
44 	default:
45 		edac_op_state = EDAC_OPSTATE_POLL;
46 	}
47 	return;
48 }
49 
50 /* Max length of a DIMM label*/
51 #define EDAC_MC_LABEL_LEN	31
52 
53 /* Maximum size of the location string */
54 #define LOCATION_SIZE 80
55 
56 /* Defines the maximum number of labels that can be reported */
57 #define EDAC_MAX_LABELS		8
58 
59 /* String used to join two or more labels */
60 #define OTHER_LABEL " or "
61 
62 /**
63  * enum dev_type - describe the type of memory DRAM chips used at the stick
64  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
65  * @DEV_X1:		1 bit for data
66  * @DEV_X2:		2 bits for data
67  * @DEV_X4:		4 bits for data
68  * @DEV_X8:		8 bits for data
69  * @DEV_X16:		16 bits for data
70  * @DEV_X32:		32 bits for data
71  * @DEV_X64:		64 bits for data
72  *
73  * Typical values are x4 and x8.
74  */
75 enum dev_type {
76 	DEV_UNKNOWN = 0,
77 	DEV_X1,
78 	DEV_X2,
79 	DEV_X4,
80 	DEV_X8,
81 	DEV_X16,
82 	DEV_X32,		/* Do these parts exist? */
83 	DEV_X64			/* Do these parts exist? */
84 };
85 
86 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
87 #define DEV_FLAG_X1		BIT(DEV_X1)
88 #define DEV_FLAG_X2		BIT(DEV_X2)
89 #define DEV_FLAG_X4		BIT(DEV_X4)
90 #define DEV_FLAG_X8		BIT(DEV_X8)
91 #define DEV_FLAG_X16		BIT(DEV_X16)
92 #define DEV_FLAG_X32		BIT(DEV_X32)
93 #define DEV_FLAG_X64		BIT(DEV_X64)
94 
95 /**
96  * enum hw_event_mc_err_type - type of the detected error
97  *
98  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
99  *				corrected error was detected
100  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
101  *				can't be corrected by ECC, but it is not
102  *				fatal (maybe it is on an unused memory area,
103  *				or the memory controller could recover from
104  *				it for example, by re-trying the operation).
105  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
106  *				be recovered.
107  */
108 enum hw_event_mc_err_type {
109 	HW_EVENT_ERR_CORRECTED,
110 	HW_EVENT_ERR_UNCORRECTED,
111 	HW_EVENT_ERR_FATAL,
112 	HW_EVENT_ERR_INFO,
113 };
114 
115 static inline char *mc_event_error_type(const unsigned int err_type)
116 {
117 	switch (err_type) {
118 	case HW_EVENT_ERR_CORRECTED:
119 		return "Corrected";
120 	case HW_EVENT_ERR_UNCORRECTED:
121 		return "Uncorrected";
122 	case HW_EVENT_ERR_FATAL:
123 		return "Fatal";
124 	default:
125 	case HW_EVENT_ERR_INFO:
126 		return "Info";
127 	}
128 }
129 
130 /**
131  * enum mem_type - memory types. For a more detailed reference, please see
132  *			http://en.wikipedia.org/wiki/DRAM
133  *
134  * @MEM_EMPTY		Empty csrow
135  * @MEM_RESERVED:	Reserved csrow type
136  * @MEM_UNKNOWN:	Unknown csrow type
137  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
138  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
139  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
140  * @MEM_SDR:		SDR - Single data rate SDRAM
141  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
142  *			They use 3 pins for chip select: Pins 0 and 2 are
143  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
144  *			is dual-rank.
145  * @MEM_RDR:		Registered SDR SDRAM
146  * @MEM_DDR:		Double data rate SDRAM
147  *			http://en.wikipedia.org/wiki/DDR_SDRAM
148  * @MEM_RDDR:		Registered Double data rate SDRAM
149  *			This is a variant of the DDR memories.
150  *			A registered memory has a buffer inside it, hiding
151  *			part of the memory details to the memory controller.
152  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
153  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
154  *			Those memories are labed as "PC2-" instead of "PC" to
155  *			differenciate from DDR.
156  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
157  *			and JESD206.
158  *			Those memories are accessed per DIMM slot, and not by
159  *			a chip select signal.
160  * @MEM_RDDR2:		Registered DDR2 RAM
161  *			This is a variant of the DDR2 memories.
162  * @MEM_XDR:		Rambus XDR
163  *			It is an evolution of the original RAMBUS memories,
164  *			created to compete with DDR2. Weren't used on any
165  *			x86 arch, but cell_edac PPC memory controller uses it.
166  * @MEM_DDR3:		DDR3 RAM
167  * @MEM_RDDR3:		Registered DDR3 RAM
168  *			This is a variant of the DDR3 memories.
169  */
170 enum mem_type {
171 	MEM_EMPTY = 0,
172 	MEM_RESERVED,
173 	MEM_UNKNOWN,
174 	MEM_FPM,
175 	MEM_EDO,
176 	MEM_BEDO,
177 	MEM_SDR,
178 	MEM_RDR,
179 	MEM_DDR,
180 	MEM_RDDR,
181 	MEM_RMBS,
182 	MEM_DDR2,
183 	MEM_FB_DDR2,
184 	MEM_RDDR2,
185 	MEM_XDR,
186 	MEM_DDR3,
187 	MEM_RDDR3,
188 };
189 
190 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
191 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
192 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
193 #define MEM_FLAG_FPM		BIT(MEM_FPM)
194 #define MEM_FLAG_EDO		BIT(MEM_EDO)
195 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
196 #define MEM_FLAG_SDR		BIT(MEM_SDR)
197 #define MEM_FLAG_RDR		BIT(MEM_RDR)
198 #define MEM_FLAG_DDR		BIT(MEM_DDR)
199 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
200 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
201 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
202 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
203 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
204 #define MEM_FLAG_XDR            BIT(MEM_XDR)
205 #define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
206 #define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
207 
208 /**
209  * enum edac-type - Error Detection and Correction capabilities and mode
210  * @EDAC_UNKNOWN:	Unknown if ECC is available
211  * @EDAC_NONE:		Doesn't support ECC
212  * @EDAC_RESERVED:	Reserved ECC type
213  * @EDAC_PARITY:	Detects parity errors
214  * @EDAC_EC:		Error Checking - no correction
215  * @EDAC_SECDED:	Single bit error correction, Double detection
216  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
217  * @EDAC_S4ECD4ED:	Chipkill x4 devices
218  * @EDAC_S8ECD8ED:	Chipkill x8 devices
219  * @EDAC_S16ECD16ED:	Chipkill x16 devices
220  */
221 enum edac_type {
222 	EDAC_UNKNOWN =	0,
223 	EDAC_NONE,
224 	EDAC_RESERVED,
225 	EDAC_PARITY,
226 	EDAC_EC,
227 	EDAC_SECDED,
228 	EDAC_S2ECD2ED,
229 	EDAC_S4ECD4ED,
230 	EDAC_S8ECD8ED,
231 	EDAC_S16ECD16ED,
232 };
233 
234 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
235 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
236 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
237 #define EDAC_FLAG_EC		BIT(EDAC_EC)
238 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
239 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
240 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
241 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
242 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
243 
244 /**
245  * enum scrub_type - scrubbing capabilities
246  * @SCRUB_UNKNOWN		Unknown if scrubber is available
247  * @SCRUB_NONE:			No scrubber
248  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
249  * @SCRUB_SW_SRC:		Software scrub only errors
250  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
251  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
252  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
253  * @SCRUB_HW_SRC:		Hardware scrub only errors
254  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
255  * SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
256  */
257 enum scrub_type {
258 	SCRUB_UNKNOWN =	0,
259 	SCRUB_NONE,
260 	SCRUB_SW_PROG,
261 	SCRUB_SW_SRC,
262 	SCRUB_SW_PROG_SRC,
263 	SCRUB_SW_TUNABLE,
264 	SCRUB_HW_PROG,
265 	SCRUB_HW_SRC,
266 	SCRUB_HW_PROG_SRC,
267 	SCRUB_HW_TUNABLE
268 };
269 
270 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
271 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
272 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
273 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
274 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
275 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
276 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
277 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
278 
279 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
280 
281 /* EDAC internal operation states */
282 #define	OP_ALLOC		0x100
283 #define OP_RUNNING_POLL		0x201
284 #define OP_RUNNING_INTERRUPT	0x202
285 #define OP_RUNNING_POLL_INTR	0x203
286 #define OP_OFFLINE		0x300
287 
288 /*
289  * Concepts used at the EDAC subsystem
290  *
291  * There are several things to be aware of that aren't at all obvious:
292  *
293  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
294  *
295  * These are some of the many terms that are thrown about that don't always
296  * mean what people think they mean (Inconceivable!).  In the interest of
297  * creating a common ground for discussion, terms and their definitions
298  * will be established.
299  *
300  * Memory devices:	The individual DRAM chips on a memory stick.  These
301  *			devices commonly output 4 and 8 bits each (x4, x8).
302  *			Grouping several of these in parallel provides the
303  *			number of bits that the memory controller expects:
304  *			typically 72 bits, in order to provide 64 bits +
305  *			8 bits of ECC data.
306  *
307  * Memory Stick:	A printed circuit board that aggregates multiple
308  *			memory devices in parallel.  In general, this is the
309  *			Field Replaceable Unit (FRU) which gets replaced, in
310  *			the case of excessive errors. Most often it is also
311  *			called DIMM (Dual Inline Memory Module).
312  *
313  * Memory Socket:	A physical connector on the motherboard that accepts
314  *			a single memory stick. Also called as "slot" on several
315  *			datasheets.
316  *
317  * Channel:		A memory controller channel, responsible to communicate
318  *			with a group of DIMMs. Each channel has its own
319  *			independent control (command) and data bus, and can
320  *			be used independently or grouped with other channels.
321  *
322  * Branch:		It is typically the highest hierarchy on a
323  *			Fully-Buffered DIMM memory controller.
324  *			Typically, it contains two channels.
325  *			Two channels at the same branch can be used in single
326  *			mode or in lockstep mode.
327  *			When lockstep is enabled, the cacheline is doubled,
328  *			but it generally brings some performance penalty.
329  *			Also, it is generally not possible to point to just one
330  *			memory stick when an error occurs, as the error
331  *			correction code is calculated using two DIMMs instead
332  *			of one. Due to that, it is capable of correcting more
333  *			errors than on single mode.
334  *
335  * Single-channel:	The data accessed by the memory controller is contained
336  *			into one dimm only. E. g. if the data is 64 bits-wide,
337  *			the data flows to the CPU using one 64 bits parallel
338  *			access.
339  *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
340  *			FB-DIMM and RAMBUS use a different concept for channel,
341  *			so this concept doesn't apply there.
342  *
343  * Double-channel:	The data size accessed by the memory controller is
344  *			interlaced into two dimms, accessed at the same time.
345  *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
346  *			the data flows to the CPU using a 128 bits parallel
347  *			access.
348  *
349  * Chip-select row:	This is the name of the DRAM signal used to select the
350  *			DRAM ranks to be accessed. Common chip-select rows for
351  *			single channel are 64 bits, for dual channel 128 bits.
352  *			It may not be visible by the memory controller, as some
353  *			DIMM types have a memory buffer that can hide direct
354  *			access to it from the Memory Controller.
355  *
356  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
357  *			Motherboards commonly drive two chip-select pins to
358  *			a memory stick. A single-ranked stick, will occupy
359  *			only one of those rows. The other will be unused.
360  *
361  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
362  *			access different sets of memory devices.  The two
363  *			rows cannot be accessed concurrently.
364  *
365  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
366  *			A double-sided stick has two chip-select rows which
367  *			access different sets of memory devices. The two
368  *			rows cannot be accessed concurrently. "Double-sided"
369  *			is irrespective of the memory devices being mounted
370  *			on both sides of the memory stick.
371  *
372  * Socket set:		All of the memory sticks that are required for
373  *			a single memory access or all of the memory sticks
374  *			spanned by a chip-select row.  A single socket set
375  *			has two chip-select rows and if double-sided sticks
376  *			are used these will occupy those chip-select rows.
377  *
378  * Bank:		This term is avoided because it is unclear when
379  *			needing to distinguish between chip-select rows and
380  *			socket sets.
381  *
382  * Controller pages:
383  *
384  * Physical pages:
385  *
386  * Virtual pages:
387  *
388  *
389  * STRUCTURE ORGANIZATION AND CHOICES
390  *
391  *
392  *
393  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
394  */
395 
396 /**
397  * enum edac_mc_layer - memory controller hierarchy layer
398  *
399  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
400  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
401  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
402  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
403  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
404  *				as a single memory area. This is used when
405  *				retrieving errors from a firmware driven driver.
406  *
407  * This enum is used by the drivers to tell edac_mc_sysfs what name should
408  * be used when describing a memory stick location.
409  */
410 enum edac_mc_layer_type {
411 	EDAC_MC_LAYER_BRANCH,
412 	EDAC_MC_LAYER_CHANNEL,
413 	EDAC_MC_LAYER_SLOT,
414 	EDAC_MC_LAYER_CHIP_SELECT,
415 	EDAC_MC_LAYER_ALL_MEM,
416 };
417 
418 /**
419  * struct edac_mc_layer - describes the memory controller hierarchy
420  * @layer:		layer type
421  * @size:		number of components per layer. For example,
422  *			if the channel layer has two channels, size = 2
423  * @is_virt_csrow:	This layer is part of the "csrow" when old API
424  *			compatibility mode is enabled. Otherwise, it is
425  *			a channel
426  */
427 struct edac_mc_layer {
428 	enum edac_mc_layer_type	type;
429 	unsigned		size;
430 	bool			is_virt_csrow;
431 };
432 
433 /*
434  * Maximum number of layers used by the memory controller to uniquely
435  * identify a single memory stick.
436  * NOTE: Changing this constant requires not only to change the constant
437  * below, but also to change the existing code at the core, as there are
438  * some code there that are optimized for 3 layers.
439  */
440 #define EDAC_MAX_LAYERS		3
441 
442 /**
443  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
444  *		   for the element given by [layer0,layer1,layer2] position
445  *
446  * @layers:	a struct edac_mc_layer array, describing how many elements
447  *		were allocated for each layer
448  * @n_layers:	Number of layers at the @layers array
449  * @layer0:	layer0 position
450  * @layer1:	layer1 position. Unused if n_layers < 2
451  * @layer2:	layer2 position. Unused if n_layers < 3
452  *
453  * For 1 layer, this macro returns &var[layer0] - &var
454  * For 2 layers, this macro is similar to allocate a bi-dimensional array
455  *		and to return "&var[layer0][layer1] - &var"
456  * For 3 layers, this macro is similar to allocate a tri-dimensional array
457  *		and to return "&var[layer0][layer1][layer2] - &var"
458  *
459  * A loop could be used here to make it more generic, but, as we only have
460  * 3 layers, this is a little faster.
461  * By design, layers can never be 0 or more than 3. If that ever happens,
462  * a NULL is returned, causing an OOPS during the memory allocation routine,
463  * with would point to the developer that he's doing something wrong.
464  */
465 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
466 	int __i;							\
467 	if ((nlayers) == 1)						\
468 		__i = layer0;						\
469 	else if ((nlayers) == 2)					\
470 		__i = (layer1) + ((layers[1]).size * (layer0));		\
471 	else if ((nlayers) == 3)					\
472 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
473 			    ((layers[1]).size * (layer0))));		\
474 	else								\
475 		__i = -EINVAL;						\
476 	__i;								\
477 })
478 
479 /**
480  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
481  *		   for the element given by [layer0,layer1,layer2] position
482  *
483  * @layers:	a struct edac_mc_layer array, describing how many elements
484  *		were allocated for each layer
485  * @var:	name of the var where we want to get the pointer
486  *		(like mci->dimms)
487  * @n_layers:	Number of layers at the @layers array
488  * @layer0:	layer0 position
489  * @layer1:	layer1 position. Unused if n_layers < 2
490  * @layer2:	layer2 position. Unused if n_layers < 3
491  *
492  * For 1 layer, this macro returns &var[layer0]
493  * For 2 layers, this macro is similar to allocate a bi-dimensional array
494  *		and to return "&var[layer0][layer1]"
495  * For 3 layers, this macro is similar to allocate a tri-dimensional array
496  *		and to return "&var[layer0][layer1][layer2]"
497  */
498 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
499 	typeof(*var) __p;						\
500 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
501 	if (___i < 0)							\
502 		__p = NULL;						\
503 	else								\
504 		__p = (var)[___i];					\
505 	__p;								\
506 })
507 
508 struct dimm_info {
509 	struct device dev;
510 
511 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
512 
513 	/* Memory location data */
514 	unsigned location[EDAC_MAX_LAYERS];
515 
516 	struct mem_ctl_info *mci;	/* the parent */
517 
518 	u32 grain;		/* granularity of reported error in bytes */
519 	enum dev_type dtype;	/* memory device type */
520 	enum mem_type mtype;	/* memory dimm type */
521 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
522 
523 	u32 nr_pages;			/* number of pages on this dimm */
524 
525 	unsigned csrow, cschannel;	/* Points to the old API data */
526 };
527 
528 /**
529  * struct rank_info - contains the information for one DIMM rank
530  *
531  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
532  * @ce_count:	number of correctable errors for this rank
533  * @csrow:	A pointer to the chip select row structure (the parent
534  *		structure). The location of the rank is given by
535  *		the (csrow->csrow_idx, chan_idx) vector.
536  * @dimm:	A pointer to the DIMM structure, where the DIMM label
537  *		information is stored.
538  *
539  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
540  *	  This is a bad assumption, but it makes this patch easier. Later
541  *	  patches in this series will fix this issue.
542  */
543 struct rank_info {
544 	int chan_idx;
545 	struct csrow_info *csrow;
546 	struct dimm_info *dimm;
547 
548 	u32 ce_count;		/* Correctable Errors for this csrow */
549 };
550 
551 struct csrow_info {
552 	struct device dev;
553 
554 	/* Used only by edac_mc_find_csrow_by_page() */
555 	unsigned long first_page;	/* first page number in csrow */
556 	unsigned long last_page;	/* last page number in csrow */
557 	unsigned long page_mask;	/* used for interleaving -
558 					 * 0UL for non intlv */
559 
560 	int csrow_idx;			/* the chip-select row */
561 
562 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
563 	u32 ce_count;		/* Correctable Errors for this csrow */
564 
565 	struct mem_ctl_info *mci;	/* the parent */
566 
567 	/* channel information for this csrow */
568 	u32 nr_channels;
569 	struct rank_info **channels;
570 };
571 
572 /*
573  * struct errcount_attribute - used to store the several error counts
574  */
575 struct errcount_attribute_data {
576 	int n_layers;
577 	int pos[EDAC_MAX_LAYERS];
578 	int layer0, layer1, layer2;
579 };
580 
581 /**
582  * edac_raw_error_desc - Raw error report structure
583  * @grain:			minimum granularity for an error report, in bytes
584  * @error_count:		number of errors of the same type
585  * @top_layer:			top layer of the error (layer[0])
586  * @mid_layer:			middle layer of the error (layer[1])
587  * @low_layer:			low layer of the error (layer[2])
588  * @page_frame_number:		page where the error happened
589  * @offset_in_page:		page offset
590  * @syndrome:			syndrome of the error (or 0 if unknown or if
591  * 				the syndrome is not applicable)
592  * @msg:			error message
593  * @location:			location of the error
594  * @label:			label of the affected DIMM(s)
595  * @other_detail:		other driver-specific detail about the error
596  * @enable_per_layer_report:	if false, the error affects all layers
597  *				(typically, a memory controller error)
598  */
599 struct edac_raw_error_desc {
600 	/*
601 	 * NOTE: everything before grain won't be cleaned by
602 	 * edac_raw_error_desc_clean()
603 	 */
604 	char location[LOCATION_SIZE];
605 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
606 	long grain;
607 
608 	/* the vars below and grain will be cleaned on every new error report */
609 	u16 error_count;
610 	int top_layer;
611 	int mid_layer;
612 	int low_layer;
613 	unsigned long page_frame_number;
614 	unsigned long offset_in_page;
615 	unsigned long syndrome;
616 	const char *msg;
617 	const char *other_detail;
618 	bool enable_per_layer_report;
619 };
620 
621 /* MEMORY controller information structure
622  */
623 struct mem_ctl_info {
624 	struct device			dev;
625 	struct bus_type			*bus;
626 
627 	struct list_head link;	/* for global list of mem_ctl_info structs */
628 
629 	struct module *owner;	/* Module owner of this control struct */
630 
631 	unsigned long mtype_cap;	/* memory types supported by mc */
632 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
633 	unsigned long edac_cap;	/* configuration capabilities - this is
634 				 * closely related to edac_ctl_cap.  The
635 				 * difference is that the controller may be
636 				 * capable of s4ecd4ed which would be listed
637 				 * in edac_ctl_cap, but if channels aren't
638 				 * capable of s4ecd4ed then the edac_cap would
639 				 * not have that capability.
640 				 */
641 	unsigned long scrub_cap;	/* chipset scrub capabilities */
642 	enum scrub_type scrub_mode;	/* current scrub mode */
643 
644 	/* Translates sdram memory scrub rate given in bytes/sec to the
645 	   internal representation and configures whatever else needs
646 	   to be configured.
647 	 */
648 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
649 
650 	/* Get the current sdram memory scrub rate from the internal
651 	   representation and converts it to the closest matching
652 	   bandwidth in bytes/sec.
653 	 */
654 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
655 
656 
657 	/* pointer to edac checking routine */
658 	void (*edac_check) (struct mem_ctl_info * mci);
659 
660 	/*
661 	 * Remaps memory pages: controller pages to physical pages.
662 	 * For most MC's, this will be NULL.
663 	 */
664 	/* FIXME - why not send the phys page to begin with? */
665 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
666 					   unsigned long page);
667 	int mc_idx;
668 	struct csrow_info **csrows;
669 	unsigned nr_csrows, num_cschannel;
670 
671 	/*
672 	 * Memory Controller hierarchy
673 	 *
674 	 * There are basically two types of memory controller: the ones that
675 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
676 	 * All old memory controllers enumerate memories per rank, but most
677 	 * of the recent drivers enumerate memories per DIMM, instead.
678 	 * When the memory controller is per rank, csbased is true.
679 	 */
680 	unsigned n_layers;
681 	struct edac_mc_layer *layers;
682 	bool csbased;
683 
684 	/*
685 	 * DIMM info. Will eventually remove the entire csrows_info some day
686 	 */
687 	unsigned tot_dimms;
688 	struct dimm_info **dimms;
689 
690 	/*
691 	 * FIXME - what about controllers on other busses? - IDs must be
692 	 * unique.  dev pointer should be sufficiently unique, but
693 	 * BUS:SLOT.FUNC numbers may not be unique.
694 	 */
695 	struct device *pdev;
696 	const char *mod_name;
697 	const char *mod_ver;
698 	const char *ctl_name;
699 	const char *dev_name;
700 	void *pvt_info;
701 	unsigned long start_time;	/* mci load start time (in jiffies) */
702 
703 	/*
704 	 * drivers shouldn't access those fields directly, as the core
705 	 * already handles that.
706 	 */
707 	u32 ce_noinfo_count, ue_noinfo_count;
708 	u32 ue_mc, ce_mc;
709 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
710 
711 	struct completion complete;
712 
713 	/* Additional top controller level attributes, but specified
714 	 * by the low level driver.
715 	 *
716 	 * Set by the low level driver to provide attributes at the
717 	 * controller level.
718 	 * An array of structures, NULL terminated
719 	 *
720 	 * If attributes are desired, then set to array of attributes
721 	 * If no attributes are desired, leave NULL
722 	 */
723 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
724 
725 	/* work struct for this MC */
726 	struct delayed_work work;
727 
728 	/*
729 	 * Used to report an error - by being at the global struct
730 	 * makes the memory allocated by the EDAC core
731 	 */
732 	struct edac_raw_error_desc error_desc;
733 
734 	/* the internal state of this controller instance */
735 	int op_state;
736 
737 #ifdef CONFIG_EDAC_DEBUG
738 	struct dentry *debugfs;
739 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
740 	u32 fake_inject_ue;
741 	u16 fake_inject_count;
742 #endif
743 };
744 
745 /*
746  * Maximum number of memory controllers in the coherent fabric.
747  */
748 #define EDAC_MAX_MCS	16
749 
750 #endif
751