xref: /linux-6.15/include/linux/edac.h (revision bb66fc67)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <[email protected]>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 struct device;
22 
23 #define EDAC_OPSTATE_INVAL	-1
24 #define EDAC_OPSTATE_POLL	0
25 #define EDAC_OPSTATE_NMI	1
26 #define EDAC_OPSTATE_INT	2
27 
28 extern int edac_op_state;
29 extern int edac_err_assert;
30 extern atomic_t edac_handlers;
31 extern struct bus_type edac_subsys;
32 
33 extern int edac_handler_set(void);
34 extern void edac_atomic_assert_error(void);
35 extern struct bus_type *edac_get_sysfs_subsys(void);
36 extern void edac_put_sysfs_subsys(void);
37 
38 enum {
39 	EDAC_REPORTING_ENABLED,
40 	EDAC_REPORTING_DISABLED,
41 	EDAC_REPORTING_FORCE
42 };
43 
44 extern int edac_report_status;
45 #ifdef CONFIG_EDAC
46 static inline int get_edac_report_status(void)
47 {
48 	return edac_report_status;
49 }
50 
51 static inline void set_edac_report_status(int new)
52 {
53 	edac_report_status = new;
54 }
55 #else
56 static inline int get_edac_report_status(void)
57 {
58 	return EDAC_REPORTING_DISABLED;
59 }
60 
61 static inline void set_edac_report_status(int new)
62 {
63 }
64 #endif
65 
66 static inline void opstate_init(void)
67 {
68 	switch (edac_op_state) {
69 	case EDAC_OPSTATE_POLL:
70 	case EDAC_OPSTATE_NMI:
71 		break;
72 	default:
73 		edac_op_state = EDAC_OPSTATE_POLL;
74 	}
75 	return;
76 }
77 
78 /* Max length of a DIMM label*/
79 #define EDAC_MC_LABEL_LEN	31
80 
81 /* Maximum size of the location string */
82 #define LOCATION_SIZE 256
83 
84 /* Defines the maximum number of labels that can be reported */
85 #define EDAC_MAX_LABELS		8
86 
87 /* String used to join two or more labels */
88 #define OTHER_LABEL " or "
89 
90 /**
91  * enum dev_type - describe the type of memory DRAM chips used at the stick
92  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
93  * @DEV_X1:		1 bit for data
94  * @DEV_X2:		2 bits for data
95  * @DEV_X4:		4 bits for data
96  * @DEV_X8:		8 bits for data
97  * @DEV_X16:		16 bits for data
98  * @DEV_X32:		32 bits for data
99  * @DEV_X64:		64 bits for data
100  *
101  * Typical values are x4 and x8.
102  */
103 enum dev_type {
104 	DEV_UNKNOWN = 0,
105 	DEV_X1,
106 	DEV_X2,
107 	DEV_X4,
108 	DEV_X8,
109 	DEV_X16,
110 	DEV_X32,		/* Do these parts exist? */
111 	DEV_X64			/* Do these parts exist? */
112 };
113 
114 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
115 #define DEV_FLAG_X1		BIT(DEV_X1)
116 #define DEV_FLAG_X2		BIT(DEV_X2)
117 #define DEV_FLAG_X4		BIT(DEV_X4)
118 #define DEV_FLAG_X8		BIT(DEV_X8)
119 #define DEV_FLAG_X16		BIT(DEV_X16)
120 #define DEV_FLAG_X32		BIT(DEV_X32)
121 #define DEV_FLAG_X64		BIT(DEV_X64)
122 
123 /**
124  * enum hw_event_mc_err_type - type of the detected error
125  *
126  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
127  *				corrected error was detected
128  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
129  *				can't be corrected by ECC, but it is not
130  *				fatal (maybe it is on an unused memory area,
131  *				or the memory controller could recover from
132  *				it for example, by re-trying the operation).
133  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
134  *				be recovered.
135  */
136 enum hw_event_mc_err_type {
137 	HW_EVENT_ERR_CORRECTED,
138 	HW_EVENT_ERR_UNCORRECTED,
139 	HW_EVENT_ERR_FATAL,
140 	HW_EVENT_ERR_INFO,
141 };
142 
143 static inline char *mc_event_error_type(const unsigned int err_type)
144 {
145 	switch (err_type) {
146 	case HW_EVENT_ERR_CORRECTED:
147 		return "Corrected";
148 	case HW_EVENT_ERR_UNCORRECTED:
149 		return "Uncorrected";
150 	case HW_EVENT_ERR_FATAL:
151 		return "Fatal";
152 	default:
153 	case HW_EVENT_ERR_INFO:
154 		return "Info";
155 	}
156 }
157 
158 /**
159  * enum mem_type - memory types. For a more detailed reference, please see
160  *			http://en.wikipedia.org/wiki/DRAM
161  *
162  * @MEM_EMPTY		Empty csrow
163  * @MEM_RESERVED:	Reserved csrow type
164  * @MEM_UNKNOWN:	Unknown csrow type
165  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
166  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
167  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
168  * @MEM_SDR:		SDR - Single data rate SDRAM
169  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
170  *			They use 3 pins for chip select: Pins 0 and 2 are
171  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
172  *			is dual-rank.
173  * @MEM_RDR:		Registered SDR SDRAM
174  * @MEM_DDR:		Double data rate SDRAM
175  *			http://en.wikipedia.org/wiki/DDR_SDRAM
176  * @MEM_RDDR:		Registered Double data rate SDRAM
177  *			This is a variant of the DDR memories.
178  *			A registered memory has a buffer inside it, hiding
179  *			part of the memory details to the memory controller.
180  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
181  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
182  *			Those memories are labed as "PC2-" instead of "PC" to
183  *			differenciate from DDR.
184  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
185  *			and JESD206.
186  *			Those memories are accessed per DIMM slot, and not by
187  *			a chip select signal.
188  * @MEM_RDDR2:		Registered DDR2 RAM
189  *			This is a variant of the DDR2 memories.
190  * @MEM_XDR:		Rambus XDR
191  *			It is an evolution of the original RAMBUS memories,
192  *			created to compete with DDR2. Weren't used on any
193  *			x86 arch, but cell_edac PPC memory controller uses it.
194  * @MEM_DDR3:		DDR3 RAM
195  * @MEM_RDDR3:		Registered DDR3 RAM
196  *			This is a variant of the DDR3 memories.
197  */
198 enum mem_type {
199 	MEM_EMPTY = 0,
200 	MEM_RESERVED,
201 	MEM_UNKNOWN,
202 	MEM_FPM,
203 	MEM_EDO,
204 	MEM_BEDO,
205 	MEM_SDR,
206 	MEM_RDR,
207 	MEM_DDR,
208 	MEM_RDDR,
209 	MEM_RMBS,
210 	MEM_DDR2,
211 	MEM_FB_DDR2,
212 	MEM_RDDR2,
213 	MEM_XDR,
214 	MEM_DDR3,
215 	MEM_RDDR3,
216 };
217 
218 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
219 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
220 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
221 #define MEM_FLAG_FPM		BIT(MEM_FPM)
222 #define MEM_FLAG_EDO		BIT(MEM_EDO)
223 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
224 #define MEM_FLAG_SDR		BIT(MEM_SDR)
225 #define MEM_FLAG_RDR		BIT(MEM_RDR)
226 #define MEM_FLAG_DDR		BIT(MEM_DDR)
227 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
228 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
229 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
230 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
231 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
232 #define MEM_FLAG_XDR            BIT(MEM_XDR)
233 #define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
234 #define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
235 
236 /**
237  * enum edac-type - Error Detection and Correction capabilities and mode
238  * @EDAC_UNKNOWN:	Unknown if ECC is available
239  * @EDAC_NONE:		Doesn't support ECC
240  * @EDAC_RESERVED:	Reserved ECC type
241  * @EDAC_PARITY:	Detects parity errors
242  * @EDAC_EC:		Error Checking - no correction
243  * @EDAC_SECDED:	Single bit error correction, Double detection
244  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
245  * @EDAC_S4ECD4ED:	Chipkill x4 devices
246  * @EDAC_S8ECD8ED:	Chipkill x8 devices
247  * @EDAC_S16ECD16ED:	Chipkill x16 devices
248  */
249 enum edac_type {
250 	EDAC_UNKNOWN =	0,
251 	EDAC_NONE,
252 	EDAC_RESERVED,
253 	EDAC_PARITY,
254 	EDAC_EC,
255 	EDAC_SECDED,
256 	EDAC_S2ECD2ED,
257 	EDAC_S4ECD4ED,
258 	EDAC_S8ECD8ED,
259 	EDAC_S16ECD16ED,
260 };
261 
262 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
263 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
264 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
265 #define EDAC_FLAG_EC		BIT(EDAC_EC)
266 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
267 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
268 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
269 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
270 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
271 
272 /**
273  * enum scrub_type - scrubbing capabilities
274  * @SCRUB_UNKNOWN		Unknown if scrubber is available
275  * @SCRUB_NONE:			No scrubber
276  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
277  * @SCRUB_SW_SRC:		Software scrub only errors
278  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
279  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
280  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
281  * @SCRUB_HW_SRC:		Hardware scrub only errors
282  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
283  * SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
284  */
285 enum scrub_type {
286 	SCRUB_UNKNOWN =	0,
287 	SCRUB_NONE,
288 	SCRUB_SW_PROG,
289 	SCRUB_SW_SRC,
290 	SCRUB_SW_PROG_SRC,
291 	SCRUB_SW_TUNABLE,
292 	SCRUB_HW_PROG,
293 	SCRUB_HW_SRC,
294 	SCRUB_HW_PROG_SRC,
295 	SCRUB_HW_TUNABLE
296 };
297 
298 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
299 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
300 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
301 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
302 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
303 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
304 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
305 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
306 
307 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
308 
309 /* EDAC internal operation states */
310 #define	OP_ALLOC		0x100
311 #define OP_RUNNING_POLL		0x201
312 #define OP_RUNNING_INTERRUPT	0x202
313 #define OP_RUNNING_POLL_INTR	0x203
314 #define OP_OFFLINE		0x300
315 
316 /*
317  * Concepts used at the EDAC subsystem
318  *
319  * There are several things to be aware of that aren't at all obvious:
320  *
321  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
322  *
323  * These are some of the many terms that are thrown about that don't always
324  * mean what people think they mean (Inconceivable!).  In the interest of
325  * creating a common ground for discussion, terms and their definitions
326  * will be established.
327  *
328  * Memory devices:	The individual DRAM chips on a memory stick.  These
329  *			devices commonly output 4 and 8 bits each (x4, x8).
330  *			Grouping several of these in parallel provides the
331  *			number of bits that the memory controller expects:
332  *			typically 72 bits, in order to provide 64 bits +
333  *			8 bits of ECC data.
334  *
335  * Memory Stick:	A printed circuit board that aggregates multiple
336  *			memory devices in parallel.  In general, this is the
337  *			Field Replaceable Unit (FRU) which gets replaced, in
338  *			the case of excessive errors. Most often it is also
339  *			called DIMM (Dual Inline Memory Module).
340  *
341  * Memory Socket:	A physical connector on the motherboard that accepts
342  *			a single memory stick. Also called as "slot" on several
343  *			datasheets.
344  *
345  * Channel:		A memory controller channel, responsible to communicate
346  *			with a group of DIMMs. Each channel has its own
347  *			independent control (command) and data bus, and can
348  *			be used independently or grouped with other channels.
349  *
350  * Branch:		It is typically the highest hierarchy on a
351  *			Fully-Buffered DIMM memory controller.
352  *			Typically, it contains two channels.
353  *			Two channels at the same branch can be used in single
354  *			mode or in lockstep mode.
355  *			When lockstep is enabled, the cacheline is doubled,
356  *			but it generally brings some performance penalty.
357  *			Also, it is generally not possible to point to just one
358  *			memory stick when an error occurs, as the error
359  *			correction code is calculated using two DIMMs instead
360  *			of one. Due to that, it is capable of correcting more
361  *			errors than on single mode.
362  *
363  * Single-channel:	The data accessed by the memory controller is contained
364  *			into one dimm only. E. g. if the data is 64 bits-wide,
365  *			the data flows to the CPU using one 64 bits parallel
366  *			access.
367  *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
368  *			FB-DIMM and RAMBUS use a different concept for channel,
369  *			so this concept doesn't apply there.
370  *
371  * Double-channel:	The data size accessed by the memory controller is
372  *			interlaced into two dimms, accessed at the same time.
373  *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
374  *			the data flows to the CPU using a 128 bits parallel
375  *			access.
376  *
377  * Chip-select row:	This is the name of the DRAM signal used to select the
378  *			DRAM ranks to be accessed. Common chip-select rows for
379  *			single channel are 64 bits, for dual channel 128 bits.
380  *			It may not be visible by the memory controller, as some
381  *			DIMM types have a memory buffer that can hide direct
382  *			access to it from the Memory Controller.
383  *
384  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
385  *			Motherboards commonly drive two chip-select pins to
386  *			a memory stick. A single-ranked stick, will occupy
387  *			only one of those rows. The other will be unused.
388  *
389  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
390  *			access different sets of memory devices.  The two
391  *			rows cannot be accessed concurrently.
392  *
393  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
394  *			A double-sided stick has two chip-select rows which
395  *			access different sets of memory devices. The two
396  *			rows cannot be accessed concurrently. "Double-sided"
397  *			is irrespective of the memory devices being mounted
398  *			on both sides of the memory stick.
399  *
400  * Socket set:		All of the memory sticks that are required for
401  *			a single memory access or all of the memory sticks
402  *			spanned by a chip-select row.  A single socket set
403  *			has two chip-select rows and if double-sided sticks
404  *			are used these will occupy those chip-select rows.
405  *
406  * Bank:		This term is avoided because it is unclear when
407  *			needing to distinguish between chip-select rows and
408  *			socket sets.
409  *
410  * Controller pages:
411  *
412  * Physical pages:
413  *
414  * Virtual pages:
415  *
416  *
417  * STRUCTURE ORGANIZATION AND CHOICES
418  *
419  *
420  *
421  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
422  */
423 
424 /**
425  * enum edac_mc_layer - memory controller hierarchy layer
426  *
427  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
428  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
429  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
430  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
431  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
432  *				as a single memory area. This is used when
433  *				retrieving errors from a firmware driven driver.
434  *
435  * This enum is used by the drivers to tell edac_mc_sysfs what name should
436  * be used when describing a memory stick location.
437  */
438 enum edac_mc_layer_type {
439 	EDAC_MC_LAYER_BRANCH,
440 	EDAC_MC_LAYER_CHANNEL,
441 	EDAC_MC_LAYER_SLOT,
442 	EDAC_MC_LAYER_CHIP_SELECT,
443 	EDAC_MC_LAYER_ALL_MEM,
444 };
445 
446 /**
447  * struct edac_mc_layer - describes the memory controller hierarchy
448  * @layer:		layer type
449  * @size:		number of components per layer. For example,
450  *			if the channel layer has two channels, size = 2
451  * @is_virt_csrow:	This layer is part of the "csrow" when old API
452  *			compatibility mode is enabled. Otherwise, it is
453  *			a channel
454  */
455 struct edac_mc_layer {
456 	enum edac_mc_layer_type	type;
457 	unsigned		size;
458 	bool			is_virt_csrow;
459 };
460 
461 /*
462  * Maximum number of layers used by the memory controller to uniquely
463  * identify a single memory stick.
464  * NOTE: Changing this constant requires not only to change the constant
465  * below, but also to change the existing code at the core, as there are
466  * some code there that are optimized for 3 layers.
467  */
468 #define EDAC_MAX_LAYERS		3
469 
470 /**
471  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
472  *		   for the element given by [layer0,layer1,layer2] position
473  *
474  * @layers:	a struct edac_mc_layer array, describing how many elements
475  *		were allocated for each layer
476  * @n_layers:	Number of layers at the @layers array
477  * @layer0:	layer0 position
478  * @layer1:	layer1 position. Unused if n_layers < 2
479  * @layer2:	layer2 position. Unused if n_layers < 3
480  *
481  * For 1 layer, this macro returns &var[layer0] - &var
482  * For 2 layers, this macro is similar to allocate a bi-dimensional array
483  *		and to return "&var[layer0][layer1] - &var"
484  * For 3 layers, this macro is similar to allocate a tri-dimensional array
485  *		and to return "&var[layer0][layer1][layer2] - &var"
486  *
487  * A loop could be used here to make it more generic, but, as we only have
488  * 3 layers, this is a little faster.
489  * By design, layers can never be 0 or more than 3. If that ever happens,
490  * a NULL is returned, causing an OOPS during the memory allocation routine,
491  * with would point to the developer that he's doing something wrong.
492  */
493 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
494 	int __i;							\
495 	if ((nlayers) == 1)						\
496 		__i = layer0;						\
497 	else if ((nlayers) == 2)					\
498 		__i = (layer1) + ((layers[1]).size * (layer0));		\
499 	else if ((nlayers) == 3)					\
500 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
501 			    ((layers[1]).size * (layer0))));		\
502 	else								\
503 		__i = -EINVAL;						\
504 	__i;								\
505 })
506 
507 /**
508  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
509  *		   for the element given by [layer0,layer1,layer2] position
510  *
511  * @layers:	a struct edac_mc_layer array, describing how many elements
512  *		were allocated for each layer
513  * @var:	name of the var where we want to get the pointer
514  *		(like mci->dimms)
515  * @n_layers:	Number of layers at the @layers array
516  * @layer0:	layer0 position
517  * @layer1:	layer1 position. Unused if n_layers < 2
518  * @layer2:	layer2 position. Unused if n_layers < 3
519  *
520  * For 1 layer, this macro returns &var[layer0]
521  * For 2 layers, this macro is similar to allocate a bi-dimensional array
522  *		and to return "&var[layer0][layer1]"
523  * For 3 layers, this macro is similar to allocate a tri-dimensional array
524  *		and to return "&var[layer0][layer1][layer2]"
525  */
526 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
527 	typeof(*var) __p;						\
528 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
529 	if (___i < 0)							\
530 		__p = NULL;						\
531 	else								\
532 		__p = (var)[___i];					\
533 	__p;								\
534 })
535 
536 struct dimm_info {
537 	struct device dev;
538 
539 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
540 
541 	/* Memory location data */
542 	unsigned location[EDAC_MAX_LAYERS];
543 
544 	struct mem_ctl_info *mci;	/* the parent */
545 
546 	u32 grain;		/* granularity of reported error in bytes */
547 	enum dev_type dtype;	/* memory device type */
548 	enum mem_type mtype;	/* memory dimm type */
549 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
550 
551 	u32 nr_pages;			/* number of pages on this dimm */
552 
553 	unsigned csrow, cschannel;	/* Points to the old API data */
554 };
555 
556 /**
557  * struct rank_info - contains the information for one DIMM rank
558  *
559  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
560  * @ce_count:	number of correctable errors for this rank
561  * @csrow:	A pointer to the chip select row structure (the parent
562  *		structure). The location of the rank is given by
563  *		the (csrow->csrow_idx, chan_idx) vector.
564  * @dimm:	A pointer to the DIMM structure, where the DIMM label
565  *		information is stored.
566  *
567  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
568  *	  This is a bad assumption, but it makes this patch easier. Later
569  *	  patches in this series will fix this issue.
570  */
571 struct rank_info {
572 	int chan_idx;
573 	struct csrow_info *csrow;
574 	struct dimm_info *dimm;
575 
576 	u32 ce_count;		/* Correctable Errors for this csrow */
577 };
578 
579 struct csrow_info {
580 	struct device dev;
581 
582 	/* Used only by edac_mc_find_csrow_by_page() */
583 	unsigned long first_page;	/* first page number in csrow */
584 	unsigned long last_page;	/* last page number in csrow */
585 	unsigned long page_mask;	/* used for interleaving -
586 					 * 0UL for non intlv */
587 
588 	int csrow_idx;			/* the chip-select row */
589 
590 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
591 	u32 ce_count;		/* Correctable Errors for this csrow */
592 
593 	struct mem_ctl_info *mci;	/* the parent */
594 
595 	/* channel information for this csrow */
596 	u32 nr_channels;
597 	struct rank_info **channels;
598 };
599 
600 /*
601  * struct errcount_attribute - used to store the several error counts
602  */
603 struct errcount_attribute_data {
604 	int n_layers;
605 	int pos[EDAC_MAX_LAYERS];
606 	int layer0, layer1, layer2;
607 };
608 
609 /**
610  * edac_raw_error_desc - Raw error report structure
611  * @grain:			minimum granularity for an error report, in bytes
612  * @error_count:		number of errors of the same type
613  * @top_layer:			top layer of the error (layer[0])
614  * @mid_layer:			middle layer of the error (layer[1])
615  * @low_layer:			low layer of the error (layer[2])
616  * @page_frame_number:		page where the error happened
617  * @offset_in_page:		page offset
618  * @syndrome:			syndrome of the error (or 0 if unknown or if
619  * 				the syndrome is not applicable)
620  * @msg:			error message
621  * @location:			location of the error
622  * @label:			label of the affected DIMM(s)
623  * @other_detail:		other driver-specific detail about the error
624  * @enable_per_layer_report:	if false, the error affects all layers
625  *				(typically, a memory controller error)
626  */
627 struct edac_raw_error_desc {
628 	/*
629 	 * NOTE: everything before grain won't be cleaned by
630 	 * edac_raw_error_desc_clean()
631 	 */
632 	char location[LOCATION_SIZE];
633 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
634 	long grain;
635 
636 	/* the vars below and grain will be cleaned on every new error report */
637 	u16 error_count;
638 	int top_layer;
639 	int mid_layer;
640 	int low_layer;
641 	unsigned long page_frame_number;
642 	unsigned long offset_in_page;
643 	unsigned long syndrome;
644 	const char *msg;
645 	const char *other_detail;
646 	bool enable_per_layer_report;
647 };
648 
649 /* MEMORY controller information structure
650  */
651 struct mem_ctl_info {
652 	struct device			dev;
653 	struct bus_type			*bus;
654 
655 	struct list_head link;	/* for global list of mem_ctl_info structs */
656 
657 	struct module *owner;	/* Module owner of this control struct */
658 
659 	unsigned long mtype_cap;	/* memory types supported by mc */
660 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
661 	unsigned long edac_cap;	/* configuration capabilities - this is
662 				 * closely related to edac_ctl_cap.  The
663 				 * difference is that the controller may be
664 				 * capable of s4ecd4ed which would be listed
665 				 * in edac_ctl_cap, but if channels aren't
666 				 * capable of s4ecd4ed then the edac_cap would
667 				 * not have that capability.
668 				 */
669 	unsigned long scrub_cap;	/* chipset scrub capabilities */
670 	enum scrub_type scrub_mode;	/* current scrub mode */
671 
672 	/* Translates sdram memory scrub rate given in bytes/sec to the
673 	   internal representation and configures whatever else needs
674 	   to be configured.
675 	 */
676 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
677 
678 	/* Get the current sdram memory scrub rate from the internal
679 	   representation and converts it to the closest matching
680 	   bandwidth in bytes/sec.
681 	 */
682 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
683 
684 
685 	/* pointer to edac checking routine */
686 	void (*edac_check) (struct mem_ctl_info * mci);
687 
688 	/*
689 	 * Remaps memory pages: controller pages to physical pages.
690 	 * For most MC's, this will be NULL.
691 	 */
692 	/* FIXME - why not send the phys page to begin with? */
693 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
694 					   unsigned long page);
695 	int mc_idx;
696 	struct csrow_info **csrows;
697 	unsigned nr_csrows, num_cschannel;
698 
699 	/*
700 	 * Memory Controller hierarchy
701 	 *
702 	 * There are basically two types of memory controller: the ones that
703 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
704 	 * All old memory controllers enumerate memories per rank, but most
705 	 * of the recent drivers enumerate memories per DIMM, instead.
706 	 * When the memory controller is per rank, csbased is true.
707 	 */
708 	unsigned n_layers;
709 	struct edac_mc_layer *layers;
710 	bool csbased;
711 
712 	/*
713 	 * DIMM info. Will eventually remove the entire csrows_info some day
714 	 */
715 	unsigned tot_dimms;
716 	struct dimm_info **dimms;
717 
718 	/*
719 	 * FIXME - what about controllers on other busses? - IDs must be
720 	 * unique.  dev pointer should be sufficiently unique, but
721 	 * BUS:SLOT.FUNC numbers may not be unique.
722 	 */
723 	struct device *pdev;
724 	const char *mod_name;
725 	const char *mod_ver;
726 	const char *ctl_name;
727 	const char *dev_name;
728 	void *pvt_info;
729 	unsigned long start_time;	/* mci load start time (in jiffies) */
730 
731 	/*
732 	 * drivers shouldn't access those fields directly, as the core
733 	 * already handles that.
734 	 */
735 	u32 ce_noinfo_count, ue_noinfo_count;
736 	u32 ue_mc, ce_mc;
737 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
738 
739 	struct completion complete;
740 
741 	/* Additional top controller level attributes, but specified
742 	 * by the low level driver.
743 	 *
744 	 * Set by the low level driver to provide attributes at the
745 	 * controller level.
746 	 * An array of structures, NULL terminated
747 	 *
748 	 * If attributes are desired, then set to array of attributes
749 	 * If no attributes are desired, leave NULL
750 	 */
751 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
752 
753 	/* work struct for this MC */
754 	struct delayed_work work;
755 
756 	/*
757 	 * Used to report an error - by being at the global struct
758 	 * makes the memory allocated by the EDAC core
759 	 */
760 	struct edac_raw_error_desc error_desc;
761 
762 	/* the internal state of this controller instance */
763 	int op_state;
764 
765 #ifdef CONFIG_EDAC_DEBUG
766 	struct dentry *debugfs;
767 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
768 	u32 fake_inject_ue;
769 	u16 fake_inject_count;
770 #endif
771 };
772 
773 /*
774  * Maximum number of memory controllers in the coherent fabric.
775  */
776 #define EDAC_MAX_MCS	16
777 
778 #endif
779