xref: /linux-6.15/include/linux/edac.h (revision aff985fd)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <[email protected]>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 
21 #define EDAC_DEVICE_NAME_LEN	31
22 
23 struct device;
24 
25 #define EDAC_OPSTATE_INVAL	-1
26 #define EDAC_OPSTATE_POLL	0
27 #define EDAC_OPSTATE_NMI	1
28 #define EDAC_OPSTATE_INT	2
29 
30 extern int edac_op_state;
31 extern int edac_err_assert;
32 extern atomic_t edac_handlers;
33 
34 extern int edac_handler_set(void);
35 extern void edac_atomic_assert_error(void);
36 extern struct bus_type *edac_get_sysfs_subsys(void);
37 
38 enum {
39 	EDAC_REPORTING_ENABLED,
40 	EDAC_REPORTING_DISABLED,
41 	EDAC_REPORTING_FORCE
42 };
43 
44 extern int edac_report_status;
45 #ifdef CONFIG_EDAC
46 static inline int get_edac_report_status(void)
47 {
48 	return edac_report_status;
49 }
50 
51 static inline void set_edac_report_status(int new)
52 {
53 	edac_report_status = new;
54 }
55 #else
56 static inline int get_edac_report_status(void)
57 {
58 	return EDAC_REPORTING_DISABLED;
59 }
60 
61 static inline void set_edac_report_status(int new)
62 {
63 }
64 #endif
65 
66 static inline void opstate_init(void)
67 {
68 	switch (edac_op_state) {
69 	case EDAC_OPSTATE_POLL:
70 	case EDAC_OPSTATE_NMI:
71 		break;
72 	default:
73 		edac_op_state = EDAC_OPSTATE_POLL;
74 	}
75 	return;
76 }
77 
78 /* Max length of a DIMM label*/
79 #define EDAC_MC_LABEL_LEN	31
80 
81 /* Maximum size of the location string */
82 #define LOCATION_SIZE 256
83 
84 /* Defines the maximum number of labels that can be reported */
85 #define EDAC_MAX_LABELS		8
86 
87 /* String used to join two or more labels */
88 #define OTHER_LABEL " or "
89 
90 /**
91  * enum dev_type - describe the type of memory DRAM chips used at the stick
92  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
93  * @DEV_X1:		1 bit for data
94  * @DEV_X2:		2 bits for data
95  * @DEV_X4:		4 bits for data
96  * @DEV_X8:		8 bits for data
97  * @DEV_X16:		16 bits for data
98  * @DEV_X32:		32 bits for data
99  * @DEV_X64:		64 bits for data
100  *
101  * Typical values are x4 and x8.
102  */
103 enum dev_type {
104 	DEV_UNKNOWN = 0,
105 	DEV_X1,
106 	DEV_X2,
107 	DEV_X4,
108 	DEV_X8,
109 	DEV_X16,
110 	DEV_X32,		/* Do these parts exist? */
111 	DEV_X64			/* Do these parts exist? */
112 };
113 
114 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
115 #define DEV_FLAG_X1		BIT(DEV_X1)
116 #define DEV_FLAG_X2		BIT(DEV_X2)
117 #define DEV_FLAG_X4		BIT(DEV_X4)
118 #define DEV_FLAG_X8		BIT(DEV_X8)
119 #define DEV_FLAG_X16		BIT(DEV_X16)
120 #define DEV_FLAG_X32		BIT(DEV_X32)
121 #define DEV_FLAG_X64		BIT(DEV_X64)
122 
123 /**
124  * enum hw_event_mc_err_type - type of the detected error
125  *
126  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
127  *				corrected error was detected
128  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
129  *				can't be corrected by ECC, but it is not
130  *				fatal (maybe it is on an unused memory area,
131  *				or the memory controller could recover from
132  *				it for example, by re-trying the operation).
133  * @HW_EVENT_ERR_DEFERRED:	Deferred Error - Indicates an uncorrectable
134  *				error whose handling is not urgent. This could
135  *				be due to hardware data poisoning where the
136  *				system can continue operation until the poisoned
137  *				data is consumed. Preemptive measures may also
138  *				be taken, e.g. offlining pages, etc.
139  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
140  *				be recovered.
141  * @HW_EVENT_ERR_INFO:		Informational - The CPER spec defines a forth
142  *				type of error: informational logs.
143  */
144 enum hw_event_mc_err_type {
145 	HW_EVENT_ERR_CORRECTED,
146 	HW_EVENT_ERR_UNCORRECTED,
147 	HW_EVENT_ERR_DEFERRED,
148 	HW_EVENT_ERR_FATAL,
149 	HW_EVENT_ERR_INFO,
150 };
151 
152 static inline char *mc_event_error_type(const unsigned int err_type)
153 {
154 	switch (err_type) {
155 	case HW_EVENT_ERR_CORRECTED:
156 		return "Corrected";
157 	case HW_EVENT_ERR_UNCORRECTED:
158 		return "Uncorrected";
159 	case HW_EVENT_ERR_DEFERRED:
160 		return "Deferred";
161 	case HW_EVENT_ERR_FATAL:
162 		return "Fatal";
163 	default:
164 	case HW_EVENT_ERR_INFO:
165 		return "Info";
166 	}
167 }
168 
169 /**
170  * enum mem_type - memory types. For a more detailed reference, please see
171  *			http://en.wikipedia.org/wiki/DRAM
172  *
173  * @MEM_EMPTY:		Empty csrow
174  * @MEM_RESERVED:	Reserved csrow type
175  * @MEM_UNKNOWN:	Unknown csrow type
176  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
177  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
178  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
179  * @MEM_SDR:		SDR - Single data rate SDRAM
180  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
181  *			They use 3 pins for chip select: Pins 0 and 2 are
182  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
183  *			is dual-rank.
184  * @MEM_RDR:		Registered SDR SDRAM
185  * @MEM_DDR:		Double data rate SDRAM
186  *			http://en.wikipedia.org/wiki/DDR_SDRAM
187  * @MEM_RDDR:		Registered Double data rate SDRAM
188  *			This is a variant of the DDR memories.
189  *			A registered memory has a buffer inside it, hiding
190  *			part of the memory details to the memory controller.
191  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
192  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
193  *			Those memories are labed as "PC2-" instead of "PC" to
194  *			differenciate from DDR.
195  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
196  *			and JESD206.
197  *			Those memories are accessed per DIMM slot, and not by
198  *			a chip select signal.
199  * @MEM_RDDR2:		Registered DDR2 RAM
200  *			This is a variant of the DDR2 memories.
201  * @MEM_XDR:		Rambus XDR
202  *			It is an evolution of the original RAMBUS memories,
203  *			created to compete with DDR2. Weren't used on any
204  *			x86 arch, but cell_edac PPC memory controller uses it.
205  * @MEM_DDR3:		DDR3 RAM
206  * @MEM_RDDR3:		Registered DDR3 RAM
207  *			This is a variant of the DDR3 memories.
208  * @MEM_LRDDR3:		Load-Reduced DDR3 memory.
209  * @MEM_DDR4:		Unbuffered DDR4 RAM
210  * @MEM_RDDR4:		Registered DDR4 RAM
211  *			This is a variant of the DDR4 memories.
212  * @MEM_LRDDR4:		Load-Reduced DDR4 memory.
213  */
214 enum mem_type {
215 	MEM_EMPTY = 0,
216 	MEM_RESERVED,
217 	MEM_UNKNOWN,
218 	MEM_FPM,
219 	MEM_EDO,
220 	MEM_BEDO,
221 	MEM_SDR,
222 	MEM_RDR,
223 	MEM_DDR,
224 	MEM_RDDR,
225 	MEM_RMBS,
226 	MEM_DDR2,
227 	MEM_FB_DDR2,
228 	MEM_RDDR2,
229 	MEM_XDR,
230 	MEM_DDR3,
231 	MEM_RDDR3,
232 	MEM_LRDDR3,
233 	MEM_DDR4,
234 	MEM_RDDR4,
235 	MEM_LRDDR4,
236 };
237 
238 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
239 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
240 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
241 #define MEM_FLAG_FPM		BIT(MEM_FPM)
242 #define MEM_FLAG_EDO		BIT(MEM_EDO)
243 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
244 #define MEM_FLAG_SDR		BIT(MEM_SDR)
245 #define MEM_FLAG_RDR		BIT(MEM_RDR)
246 #define MEM_FLAG_DDR		BIT(MEM_DDR)
247 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
248 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
249 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
250 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
251 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
252 #define MEM_FLAG_XDR            BIT(MEM_XDR)
253 #define MEM_FLAG_DDR3           BIT(MEM_DDR3)
254 #define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
255 #define MEM_FLAG_DDR4           BIT(MEM_DDR4)
256 #define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
257 #define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
258 
259 /**
260  * enum edac-type - Error Detection and Correction capabilities and mode
261  * @EDAC_UNKNOWN:	Unknown if ECC is available
262  * @EDAC_NONE:		Doesn't support ECC
263  * @EDAC_RESERVED:	Reserved ECC type
264  * @EDAC_PARITY:	Detects parity errors
265  * @EDAC_EC:		Error Checking - no correction
266  * @EDAC_SECDED:	Single bit error correction, Double detection
267  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
268  * @EDAC_S4ECD4ED:	Chipkill x4 devices
269  * @EDAC_S8ECD8ED:	Chipkill x8 devices
270  * @EDAC_S16ECD16ED:	Chipkill x16 devices
271  */
272 enum edac_type {
273 	EDAC_UNKNOWN =	0,
274 	EDAC_NONE,
275 	EDAC_RESERVED,
276 	EDAC_PARITY,
277 	EDAC_EC,
278 	EDAC_SECDED,
279 	EDAC_S2ECD2ED,
280 	EDAC_S4ECD4ED,
281 	EDAC_S8ECD8ED,
282 	EDAC_S16ECD16ED,
283 };
284 
285 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
286 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
287 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
288 #define EDAC_FLAG_EC		BIT(EDAC_EC)
289 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
290 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
291 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
292 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
293 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
294 
295 /**
296  * enum scrub_type - scrubbing capabilities
297  * @SCRUB_UNKNOWN:		Unknown if scrubber is available
298  * @SCRUB_NONE:			No scrubber
299  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
300  * @SCRUB_SW_SRC:		Software scrub only errors
301  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
302  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
303  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
304  * @SCRUB_HW_SRC:		Hardware scrub only errors
305  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
306  * @SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
307  */
308 enum scrub_type {
309 	SCRUB_UNKNOWN =	0,
310 	SCRUB_NONE,
311 	SCRUB_SW_PROG,
312 	SCRUB_SW_SRC,
313 	SCRUB_SW_PROG_SRC,
314 	SCRUB_SW_TUNABLE,
315 	SCRUB_HW_PROG,
316 	SCRUB_HW_SRC,
317 	SCRUB_HW_PROG_SRC,
318 	SCRUB_HW_TUNABLE
319 };
320 
321 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
322 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
323 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
324 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
325 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
326 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
327 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
328 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
329 
330 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
331 
332 /* EDAC internal operation states */
333 #define	OP_ALLOC		0x100
334 #define OP_RUNNING_POLL		0x201
335 #define OP_RUNNING_INTERRUPT	0x202
336 #define OP_RUNNING_POLL_INTR	0x203
337 #define OP_OFFLINE		0x300
338 
339 /**
340  * enum edac_mc_layer - memory controller hierarchy layer
341  *
342  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
343  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
344  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
345  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
346  * @EDAC_MC_LAYER_ALL_MEM:	memory layout is unknown. All memory is mapped
347  *				as a single memory area. This is used when
348  *				retrieving errors from a firmware driven driver.
349  *
350  * This enum is used by the drivers to tell edac_mc_sysfs what name should
351  * be used when describing a memory stick location.
352  */
353 enum edac_mc_layer_type {
354 	EDAC_MC_LAYER_BRANCH,
355 	EDAC_MC_LAYER_CHANNEL,
356 	EDAC_MC_LAYER_SLOT,
357 	EDAC_MC_LAYER_CHIP_SELECT,
358 	EDAC_MC_LAYER_ALL_MEM,
359 };
360 
361 /**
362  * struct edac_mc_layer - describes the memory controller hierarchy
363  * @type:		layer type
364  * @size:		number of components per layer. For example,
365  *			if the channel layer has two channels, size = 2
366  * @is_virt_csrow:	This layer is part of the "csrow" when old API
367  *			compatibility mode is enabled. Otherwise, it is
368  *			a channel
369  */
370 struct edac_mc_layer {
371 	enum edac_mc_layer_type	type;
372 	unsigned		size;
373 	bool			is_virt_csrow;
374 };
375 
376 /*
377  * Maximum number of layers used by the memory controller to uniquely
378  * identify a single memory stick.
379  * NOTE: Changing this constant requires not only to change the constant
380  * below, but also to change the existing code at the core, as there are
381  * some code there that are optimized for 3 layers.
382  */
383 #define EDAC_MAX_LAYERS		3
384 
385 /**
386  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
387  *		   array for the element given by [layer0,layer1,layer2]
388  *		   position
389  *
390  * @layers:	a struct edac_mc_layer array, describing how many elements
391  *		were allocated for each layer
392  * @nlayers:	Number of layers at the @layers array
393  * @layer0:	layer0 position
394  * @layer1:	layer1 position. Unused if n_layers < 2
395  * @layer2:	layer2 position. Unused if n_layers < 3
396  *
397  * For 1 layer, this macro returns "var[layer0] - var";
398  *
399  * For 2 layers, this macro is similar to allocate a bi-dimensional array
400  * and to return "var[layer0][layer1] - var";
401  *
402  * For 3 layers, this macro is similar to allocate a tri-dimensional array
403  * and to return "var[layer0][layer1][layer2] - var".
404  *
405  * A loop could be used here to make it more generic, but, as we only have
406  * 3 layers, this is a little faster.
407  *
408  * By design, layers can never be 0 or more than 3. If that ever happens,
409  * a NULL is returned, causing an OOPS during the memory allocation routine,
410  * with would point to the developer that he's doing something wrong.
411  */
412 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
413 	int __i;							\
414 	if ((nlayers) == 1)						\
415 		__i = layer0;						\
416 	else if ((nlayers) == 2)					\
417 		__i = (layer1) + ((layers[1]).size * (layer0));		\
418 	else if ((nlayers) == 3)					\
419 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
420 			    ((layers[1]).size * (layer0))));		\
421 	else								\
422 		__i = -EINVAL;						\
423 	__i;								\
424 })
425 
426 /**
427  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
428  *		   for the element given by [layer0,layer1,layer2] position
429  *
430  * @layers:	a struct edac_mc_layer array, describing how many elements
431  *		were allocated for each layer
432  * @var:	name of the var where we want to get the pointer
433  *		(like mci->dimms)
434  * @nlayers:	Number of layers at the @layers array
435  * @layer0:	layer0 position
436  * @layer1:	layer1 position. Unused if n_layers < 2
437  * @layer2:	layer2 position. Unused if n_layers < 3
438  *
439  * For 1 layer, this macro returns "var[layer0]";
440  *
441  * For 2 layers, this macro is similar to allocate a bi-dimensional array
442  * and to return "var[layer0][layer1]";
443  *
444  * For 3 layers, this macro is similar to allocate a tri-dimensional array
445  * and to return "var[layer0][layer1][layer2]";
446  */
447 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
448 	typeof(*var) __p;						\
449 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
450 	if (___i < 0)							\
451 		__p = NULL;						\
452 	else								\
453 		__p = (var)[___i];					\
454 	__p;								\
455 })
456 
457 struct dimm_info {
458 	struct device dev;
459 
460 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
461 
462 	/* Memory location data */
463 	unsigned location[EDAC_MAX_LAYERS];
464 
465 	struct mem_ctl_info *mci;	/* the parent */
466 
467 	u32 grain;		/* granularity of reported error in bytes */
468 	enum dev_type dtype;	/* memory device type */
469 	enum mem_type mtype;	/* memory dimm type */
470 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
471 
472 	u32 nr_pages;			/* number of pages on this dimm */
473 
474 	unsigned csrow, cschannel;	/* Points to the old API data */
475 };
476 
477 /**
478  * struct rank_info - contains the information for one DIMM rank
479  *
480  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
481  * @ce_count:	number of correctable errors for this rank
482  * @csrow:	A pointer to the chip select row structure (the parent
483  *		structure). The location of the rank is given by
484  *		the (csrow->csrow_idx, chan_idx) vector.
485  * @dimm:	A pointer to the DIMM structure, where the DIMM label
486  *		information is stored.
487  *
488  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
489  *	  This is a bad assumption, but it makes this patch easier. Later
490  *	  patches in this series will fix this issue.
491  */
492 struct rank_info {
493 	int chan_idx;
494 	struct csrow_info *csrow;
495 	struct dimm_info *dimm;
496 
497 	u32 ce_count;		/* Correctable Errors for this csrow */
498 };
499 
500 struct csrow_info {
501 	struct device dev;
502 
503 	/* Used only by edac_mc_find_csrow_by_page() */
504 	unsigned long first_page;	/* first page number in csrow */
505 	unsigned long last_page;	/* last page number in csrow */
506 	unsigned long page_mask;	/* used for interleaving -
507 					 * 0UL for non intlv */
508 
509 	int csrow_idx;			/* the chip-select row */
510 
511 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
512 	u32 ce_count;		/* Correctable Errors for this csrow */
513 
514 	struct mem_ctl_info *mci;	/* the parent */
515 
516 	/* channel information for this csrow */
517 	u32 nr_channels;
518 	struct rank_info **channels;
519 };
520 
521 /*
522  * struct errcount_attribute - used to store the several error counts
523  */
524 struct errcount_attribute_data {
525 	int n_layers;
526 	int pos[EDAC_MAX_LAYERS];
527 	int layer0, layer1, layer2;
528 };
529 
530 /**
531  * struct edac_raw_error_desc - Raw error report structure
532  * @grain:			minimum granularity for an error report, in bytes
533  * @error_count:		number of errors of the same type
534  * @top_layer:			top layer of the error (layer[0])
535  * @mid_layer:			middle layer of the error (layer[1])
536  * @low_layer:			low layer of the error (layer[2])
537  * @page_frame_number:		page where the error happened
538  * @offset_in_page:		page offset
539  * @syndrome:			syndrome of the error (or 0 if unknown or if
540  * 				the syndrome is not applicable)
541  * @msg:			error message
542  * @location:			location of the error
543  * @label:			label of the affected DIMM(s)
544  * @other_detail:		other driver-specific detail about the error
545  * @enable_per_layer_report:	if false, the error affects all layers
546  *				(typically, a memory controller error)
547  */
548 struct edac_raw_error_desc {
549 	/*
550 	 * NOTE: everything before grain won't be cleaned by
551 	 * edac_raw_error_desc_clean()
552 	 */
553 	char location[LOCATION_SIZE];
554 	char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
555 	long grain;
556 
557 	/* the vars below and grain will be cleaned on every new error report */
558 	u16 error_count;
559 	int top_layer;
560 	int mid_layer;
561 	int low_layer;
562 	unsigned long page_frame_number;
563 	unsigned long offset_in_page;
564 	unsigned long syndrome;
565 	const char *msg;
566 	const char *other_detail;
567 	bool enable_per_layer_report;
568 };
569 
570 /* MEMORY controller information structure
571  */
572 struct mem_ctl_info {
573 	struct device			dev;
574 	struct bus_type			*bus;
575 
576 	struct list_head link;	/* for global list of mem_ctl_info structs */
577 
578 	struct module *owner;	/* Module owner of this control struct */
579 
580 	unsigned long mtype_cap;	/* memory types supported by mc */
581 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
582 	unsigned long edac_cap;	/* configuration capabilities - this is
583 				 * closely related to edac_ctl_cap.  The
584 				 * difference is that the controller may be
585 				 * capable of s4ecd4ed which would be listed
586 				 * in edac_ctl_cap, but if channels aren't
587 				 * capable of s4ecd4ed then the edac_cap would
588 				 * not have that capability.
589 				 */
590 	unsigned long scrub_cap;	/* chipset scrub capabilities */
591 	enum scrub_type scrub_mode;	/* current scrub mode */
592 
593 	/* Translates sdram memory scrub rate given in bytes/sec to the
594 	   internal representation and configures whatever else needs
595 	   to be configured.
596 	 */
597 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
598 
599 	/* Get the current sdram memory scrub rate from the internal
600 	   representation and converts it to the closest matching
601 	   bandwidth in bytes/sec.
602 	 */
603 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
604 
605 
606 	/* pointer to edac checking routine */
607 	void (*edac_check) (struct mem_ctl_info * mci);
608 
609 	/*
610 	 * Remaps memory pages: controller pages to physical pages.
611 	 * For most MC's, this will be NULL.
612 	 */
613 	/* FIXME - why not send the phys page to begin with? */
614 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
615 					   unsigned long page);
616 	int mc_idx;
617 	struct csrow_info **csrows;
618 	unsigned nr_csrows, num_cschannel;
619 
620 	/*
621 	 * Memory Controller hierarchy
622 	 *
623 	 * There are basically two types of memory controller: the ones that
624 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
625 	 * All old memory controllers enumerate memories per rank, but most
626 	 * of the recent drivers enumerate memories per DIMM, instead.
627 	 * When the memory controller is per rank, csbased is true.
628 	 */
629 	unsigned n_layers;
630 	struct edac_mc_layer *layers;
631 	bool csbased;
632 
633 	/*
634 	 * DIMM info. Will eventually remove the entire csrows_info some day
635 	 */
636 	unsigned tot_dimms;
637 	struct dimm_info **dimms;
638 
639 	/*
640 	 * FIXME - what about controllers on other busses? - IDs must be
641 	 * unique.  dev pointer should be sufficiently unique, but
642 	 * BUS:SLOT.FUNC numbers may not be unique.
643 	 */
644 	struct device *pdev;
645 	const char *mod_name;
646 	const char *mod_ver;
647 	const char *ctl_name;
648 	const char *dev_name;
649 	void *pvt_info;
650 	unsigned long start_time;	/* mci load start time (in jiffies) */
651 
652 	/*
653 	 * drivers shouldn't access those fields directly, as the core
654 	 * already handles that.
655 	 */
656 	u32 ce_noinfo_count, ue_noinfo_count;
657 	u32 ue_mc, ce_mc;
658 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
659 
660 	struct completion complete;
661 
662 	/* Additional top controller level attributes, but specified
663 	 * by the low level driver.
664 	 *
665 	 * Set by the low level driver to provide attributes at the
666 	 * controller level.
667 	 * An array of structures, NULL terminated
668 	 *
669 	 * If attributes are desired, then set to array of attributes
670 	 * If no attributes are desired, leave NULL
671 	 */
672 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
673 
674 	/* work struct for this MC */
675 	struct delayed_work work;
676 
677 	/*
678 	 * Used to report an error - by being at the global struct
679 	 * makes the memory allocated by the EDAC core
680 	 */
681 	struct edac_raw_error_desc error_desc;
682 
683 	/* the internal state of this controller instance */
684 	int op_state;
685 
686 	struct dentry *debugfs;
687 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
688 	bool fake_inject_ue;
689 	u16 fake_inject_count;
690 };
691 
692 /*
693  * Maximum number of memory controllers in the coherent fabric.
694  */
695 #define EDAC_MAX_MCS	16
696 
697 #endif
698