xref: /linux-6.15/include/linux/edac.h (revision 8fdff1dc)
1 /*
2  * Generic EDAC defs
3  *
4  * Author: Dave Jiang <[email protected]>
5  *
6  * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14 
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/kobject.h>
18 #include <linux/completion.h>
19 #include <linux/workqueue.h>
20 #include <linux/debugfs.h>
21 
22 struct device;
23 
24 #define EDAC_OPSTATE_INVAL	-1
25 #define EDAC_OPSTATE_POLL	0
26 #define EDAC_OPSTATE_NMI	1
27 #define EDAC_OPSTATE_INT	2
28 
29 extern int edac_op_state;
30 extern int edac_err_assert;
31 extern atomic_t edac_handlers;
32 extern struct bus_type edac_subsys;
33 
34 extern int edac_handler_set(void);
35 extern void edac_atomic_assert_error(void);
36 extern struct bus_type *edac_get_sysfs_subsys(void);
37 extern void edac_put_sysfs_subsys(void);
38 
39 static inline void opstate_init(void)
40 {
41 	switch (edac_op_state) {
42 	case EDAC_OPSTATE_POLL:
43 	case EDAC_OPSTATE_NMI:
44 		break;
45 	default:
46 		edac_op_state = EDAC_OPSTATE_POLL;
47 	}
48 	return;
49 }
50 
51 #define EDAC_MC_LABEL_LEN	31
52 #define MC_PROC_NAME_MAX_LEN	7
53 
54 /**
55  * enum dev_type - describe the type of memory DRAM chips used at the stick
56  * @DEV_UNKNOWN:	Can't be determined, or MC doesn't support detect it
57  * @DEV_X1:		1 bit for data
58  * @DEV_X2:		2 bits for data
59  * @DEV_X4:		4 bits for data
60  * @DEV_X8:		8 bits for data
61  * @DEV_X16:		16 bits for data
62  * @DEV_X32:		32 bits for data
63  * @DEV_X64:		64 bits for data
64  *
65  * Typical values are x4 and x8.
66  */
67 enum dev_type {
68 	DEV_UNKNOWN = 0,
69 	DEV_X1,
70 	DEV_X2,
71 	DEV_X4,
72 	DEV_X8,
73 	DEV_X16,
74 	DEV_X32,		/* Do these parts exist? */
75 	DEV_X64			/* Do these parts exist? */
76 };
77 
78 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
79 #define DEV_FLAG_X1		BIT(DEV_X1)
80 #define DEV_FLAG_X2		BIT(DEV_X2)
81 #define DEV_FLAG_X4		BIT(DEV_X4)
82 #define DEV_FLAG_X8		BIT(DEV_X8)
83 #define DEV_FLAG_X16		BIT(DEV_X16)
84 #define DEV_FLAG_X32		BIT(DEV_X32)
85 #define DEV_FLAG_X64		BIT(DEV_X64)
86 
87 /**
88  * enum hw_event_mc_err_type - type of the detected error
89  *
90  * @HW_EVENT_ERR_CORRECTED:	Corrected Error - Indicates that an ECC
91  *				corrected error was detected
92  * @HW_EVENT_ERR_UNCORRECTED:	Uncorrected Error - Indicates an error that
93  *				can't be corrected by ECC, but it is not
94  *				fatal (maybe it is on an unused memory area,
95  *				or the memory controller could recover from
96  *				it for example, by re-trying the operation).
97  * @HW_EVENT_ERR_FATAL:		Fatal Error - Uncorrected error that could not
98  *				be recovered.
99  */
100 enum hw_event_mc_err_type {
101 	HW_EVENT_ERR_CORRECTED,
102 	HW_EVENT_ERR_UNCORRECTED,
103 	HW_EVENT_ERR_FATAL,
104 };
105 
106 /**
107  * enum mem_type - memory types. For a more detailed reference, please see
108  *			http://en.wikipedia.org/wiki/DRAM
109  *
110  * @MEM_EMPTY		Empty csrow
111  * @MEM_RESERVED:	Reserved csrow type
112  * @MEM_UNKNOWN:	Unknown csrow type
113  * @MEM_FPM:		FPM - Fast Page Mode, used on systems up to 1995.
114  * @MEM_EDO:		EDO - Extended data out, used on systems up to 1998.
115  * @MEM_BEDO:		BEDO - Burst Extended data out, an EDO variant.
116  * @MEM_SDR:		SDR - Single data rate SDRAM
117  *			http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
118  *			They use 3 pins for chip select: Pins 0 and 2 are
119  *			for rank 0; pins 1 and 3 are for rank 1, if the memory
120  *			is dual-rank.
121  * @MEM_RDR:		Registered SDR SDRAM
122  * @MEM_DDR:		Double data rate SDRAM
123  *			http://en.wikipedia.org/wiki/DDR_SDRAM
124  * @MEM_RDDR:		Registered Double data rate SDRAM
125  *			This is a variant of the DDR memories.
126  *			A registered memory has a buffer inside it, hiding
127  *			part of the memory details to the memory controller.
128  * @MEM_RMBS:		Rambus DRAM, used on a few Pentium III/IV controllers.
129  * @MEM_DDR2:		DDR2 RAM, as described at JEDEC JESD79-2F.
130  *			Those memories are labed as "PC2-" instead of "PC" to
131  *			differenciate from DDR.
132  * @MEM_FB_DDR2:	Fully-Buffered DDR2, as described at JEDEC Std No. 205
133  *			and JESD206.
134  *			Those memories are accessed per DIMM slot, and not by
135  *			a chip select signal.
136  * @MEM_RDDR2:		Registered DDR2 RAM
137  *			This is a variant of the DDR2 memories.
138  * @MEM_XDR:		Rambus XDR
139  *			It is an evolution of the original RAMBUS memories,
140  *			created to compete with DDR2. Weren't used on any
141  *			x86 arch, but cell_edac PPC memory controller uses it.
142  * @MEM_DDR3:		DDR3 RAM
143  * @MEM_RDDR3:		Registered DDR3 RAM
144  *			This is a variant of the DDR3 memories.
145  */
146 enum mem_type {
147 	MEM_EMPTY = 0,
148 	MEM_RESERVED,
149 	MEM_UNKNOWN,
150 	MEM_FPM,
151 	MEM_EDO,
152 	MEM_BEDO,
153 	MEM_SDR,
154 	MEM_RDR,
155 	MEM_DDR,
156 	MEM_RDDR,
157 	MEM_RMBS,
158 	MEM_DDR2,
159 	MEM_FB_DDR2,
160 	MEM_RDDR2,
161 	MEM_XDR,
162 	MEM_DDR3,
163 	MEM_RDDR3,
164 };
165 
166 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
167 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
168 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
169 #define MEM_FLAG_FPM		BIT(MEM_FPM)
170 #define MEM_FLAG_EDO		BIT(MEM_EDO)
171 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
172 #define MEM_FLAG_SDR		BIT(MEM_SDR)
173 #define MEM_FLAG_RDR		BIT(MEM_RDR)
174 #define MEM_FLAG_DDR		BIT(MEM_DDR)
175 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
176 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
177 #define MEM_FLAG_DDR2           BIT(MEM_DDR2)
178 #define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
179 #define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
180 #define MEM_FLAG_XDR            BIT(MEM_XDR)
181 #define MEM_FLAG_DDR3		 BIT(MEM_DDR3)
182 #define MEM_FLAG_RDDR3		 BIT(MEM_RDDR3)
183 
184 /**
185  * enum edac-type - Error Detection and Correction capabilities and mode
186  * @EDAC_UNKNOWN:	Unknown if ECC is available
187  * @EDAC_NONE:		Doesn't support ECC
188  * @EDAC_RESERVED:	Reserved ECC type
189  * @EDAC_PARITY:	Detects parity errors
190  * @EDAC_EC:		Error Checking - no correction
191  * @EDAC_SECDED:	Single bit error correction, Double detection
192  * @EDAC_S2ECD2ED:	Chipkill x2 devices - do these exist?
193  * @EDAC_S4ECD4ED:	Chipkill x4 devices
194  * @EDAC_S8ECD8ED:	Chipkill x8 devices
195  * @EDAC_S16ECD16ED:	Chipkill x16 devices
196  */
197 enum edac_type {
198 	EDAC_UNKNOWN =	0,
199 	EDAC_NONE,
200 	EDAC_RESERVED,
201 	EDAC_PARITY,
202 	EDAC_EC,
203 	EDAC_SECDED,
204 	EDAC_S2ECD2ED,
205 	EDAC_S4ECD4ED,
206 	EDAC_S8ECD8ED,
207 	EDAC_S16ECD16ED,
208 };
209 
210 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
211 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
212 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
213 #define EDAC_FLAG_EC		BIT(EDAC_EC)
214 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
215 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
216 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
217 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
218 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
219 
220 /**
221  * enum scrub_type - scrubbing capabilities
222  * @SCRUB_UNKNOWN		Unknown if scrubber is available
223  * @SCRUB_NONE:			No scrubber
224  * @SCRUB_SW_PROG:		SW progressive (sequential) scrubbing
225  * @SCRUB_SW_SRC:		Software scrub only errors
226  * @SCRUB_SW_PROG_SRC:		Progressive software scrub from an error
227  * @SCRUB_SW_TUNABLE:		Software scrub frequency is tunable
228  * @SCRUB_HW_PROG:		HW progressive (sequential) scrubbing
229  * @SCRUB_HW_SRC:		Hardware scrub only errors
230  * @SCRUB_HW_PROG_SRC:		Progressive hardware scrub from an error
231  * SCRUB_HW_TUNABLE:		Hardware scrub frequency is tunable
232  */
233 enum scrub_type {
234 	SCRUB_UNKNOWN =	0,
235 	SCRUB_NONE,
236 	SCRUB_SW_PROG,
237 	SCRUB_SW_SRC,
238 	SCRUB_SW_PROG_SRC,
239 	SCRUB_SW_TUNABLE,
240 	SCRUB_HW_PROG,
241 	SCRUB_HW_SRC,
242 	SCRUB_HW_PROG_SRC,
243 	SCRUB_HW_TUNABLE
244 };
245 
246 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
247 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC)
248 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC)
249 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
250 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
251 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC)
252 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC)
253 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
254 
255 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
256 
257 /* EDAC internal operation states */
258 #define	OP_ALLOC		0x100
259 #define OP_RUNNING_POLL		0x201
260 #define OP_RUNNING_INTERRUPT	0x202
261 #define OP_RUNNING_POLL_INTR	0x203
262 #define OP_OFFLINE		0x300
263 
264 /*
265  * Concepts used at the EDAC subsystem
266  *
267  * There are several things to be aware of that aren't at all obvious:
268  *
269  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
270  *
271  * These are some of the many terms that are thrown about that don't always
272  * mean what people think they mean (Inconceivable!).  In the interest of
273  * creating a common ground for discussion, terms and their definitions
274  * will be established.
275  *
276  * Memory devices:	The individual DRAM chips on a memory stick.  These
277  *			devices commonly output 4 and 8 bits each (x4, x8).
278  *			Grouping several of these in parallel provides the
279  *			number of bits that the memory controller expects:
280  *			typically 72 bits, in order to provide 64 bits +
281  *			8 bits of ECC data.
282  *
283  * Memory Stick:	A printed circuit board that aggregates multiple
284  *			memory devices in parallel.  In general, this is the
285  *			Field Replaceable Unit (FRU) which gets replaced, in
286  *			the case of excessive errors. Most often it is also
287  *			called DIMM (Dual Inline Memory Module).
288  *
289  * Memory Socket:	A physical connector on the motherboard that accepts
290  *			a single memory stick. Also called as "slot" on several
291  *			datasheets.
292  *
293  * Channel:		A memory controller channel, responsible to communicate
294  *			with a group of DIMMs. Each channel has its own
295  *			independent control (command) and data bus, and can
296  *			be used independently or grouped with other channels.
297  *
298  * Branch:		It is typically the highest hierarchy on a
299  *			Fully-Buffered DIMM memory controller.
300  *			Typically, it contains two channels.
301  *			Two channels at the same branch can be used in single
302  *			mode or in lockstep mode.
303  *			When lockstep is enabled, the cacheline is doubled,
304  *			but it generally brings some performance penalty.
305  *			Also, it is generally not possible to point to just one
306  *			memory stick when an error occurs, as the error
307  *			correction code is calculated using two DIMMs instead
308  *			of one. Due to that, it is capable of correcting more
309  *			errors than on single mode.
310  *
311  * Single-channel:	The data accessed by the memory controller is contained
312  *			into one dimm only. E. g. if the data is 64 bits-wide,
313  *			the data flows to the CPU using one 64 bits parallel
314  *			access.
315  *			Typically used with SDR, DDR, DDR2 and DDR3 memories.
316  *			FB-DIMM and RAMBUS use a different concept for channel,
317  *			so this concept doesn't apply there.
318  *
319  * Double-channel:	The data size accessed by the memory controller is
320  *			interlaced into two dimms, accessed at the same time.
321  *			E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
322  *			the data flows to the CPU using a 128 bits parallel
323  *			access.
324  *
325  * Chip-select row:	This is the name of the DRAM signal used to select the
326  *			DRAM ranks to be accessed. Common chip-select rows for
327  *			single channel are 64 bits, for dual channel 128 bits.
328  *			It may not be visible by the memory controller, as some
329  *			DIMM types have a memory buffer that can hide direct
330  *			access to it from the Memory Controller.
331  *
332  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memory.
333  *			Motherboards commonly drive two chip-select pins to
334  *			a memory stick. A single-ranked stick, will occupy
335  *			only one of those rows. The other will be unused.
336  *
337  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
338  *			access different sets of memory devices.  The two
339  *			rows cannot be accessed concurrently.
340  *
341  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
342  *			A double-sided stick has two chip-select rows which
343  *			access different sets of memory devices. The two
344  *			rows cannot be accessed concurrently. "Double-sided"
345  *			is irrespective of the memory devices being mounted
346  *			on both sides of the memory stick.
347  *
348  * Socket set:		All of the memory sticks that are required for
349  *			a single memory access or all of the memory sticks
350  *			spanned by a chip-select row.  A single socket set
351  *			has two chip-select rows and if double-sided sticks
352  *			are used these will occupy those chip-select rows.
353  *
354  * Bank:		This term is avoided because it is unclear when
355  *			needing to distinguish between chip-select rows and
356  *			socket sets.
357  *
358  * Controller pages:
359  *
360  * Physical pages:
361  *
362  * Virtual pages:
363  *
364  *
365  * STRUCTURE ORGANIZATION AND CHOICES
366  *
367  *
368  *
369  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
370  */
371 
372 /**
373  * enum edac_mc_layer - memory controller hierarchy layer
374  *
375  * @EDAC_MC_LAYER_BRANCH:	memory layer is named "branch"
376  * @EDAC_MC_LAYER_CHANNEL:	memory layer is named "channel"
377  * @EDAC_MC_LAYER_SLOT:		memory layer is named "slot"
378  * @EDAC_MC_LAYER_CHIP_SELECT:	memory layer is named "chip select"
379  *
380  * This enum is used by the drivers to tell edac_mc_sysfs what name should
381  * be used when describing a memory stick location.
382  */
383 enum edac_mc_layer_type {
384 	EDAC_MC_LAYER_BRANCH,
385 	EDAC_MC_LAYER_CHANNEL,
386 	EDAC_MC_LAYER_SLOT,
387 	EDAC_MC_LAYER_CHIP_SELECT,
388 };
389 
390 /**
391  * struct edac_mc_layer - describes the memory controller hierarchy
392  * @layer:		layer type
393  * @size:		number of components per layer. For example,
394  *			if the channel layer has two channels, size = 2
395  * @is_virt_csrow:	This layer is part of the "csrow" when old API
396  *			compatibility mode is enabled. Otherwise, it is
397  *			a channel
398  */
399 struct edac_mc_layer {
400 	enum edac_mc_layer_type	type;
401 	unsigned		size;
402 	bool			is_virt_csrow;
403 };
404 
405 /*
406  * Maximum number of layers used by the memory controller to uniquely
407  * identify a single memory stick.
408  * NOTE: Changing this constant requires not only to change the constant
409  * below, but also to change the existing code at the core, as there are
410  * some code there that are optimized for 3 layers.
411  */
412 #define EDAC_MAX_LAYERS		3
413 
414 /**
415  * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
416  *		   for the element given by [layer0,layer1,layer2] position
417  *
418  * @layers:	a struct edac_mc_layer array, describing how many elements
419  *		were allocated for each layer
420  * @n_layers:	Number of layers at the @layers array
421  * @layer0:	layer0 position
422  * @layer1:	layer1 position. Unused if n_layers < 2
423  * @layer2:	layer2 position. Unused if n_layers < 3
424  *
425  * For 1 layer, this macro returns &var[layer0] - &var
426  * For 2 layers, this macro is similar to allocate a bi-dimensional array
427  *		and to return "&var[layer0][layer1] - &var"
428  * For 3 layers, this macro is similar to allocate a tri-dimensional array
429  *		and to return "&var[layer0][layer1][layer2] - &var"
430  *
431  * A loop could be used here to make it more generic, but, as we only have
432  * 3 layers, this is a little faster.
433  * By design, layers can never be 0 or more than 3. If that ever happens,
434  * a NULL is returned, causing an OOPS during the memory allocation routine,
435  * with would point to the developer that he's doing something wrong.
436  */
437 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({		\
438 	int __i;							\
439 	if ((nlayers) == 1)						\
440 		__i = layer0;						\
441 	else if ((nlayers) == 2)					\
442 		__i = (layer1) + ((layers[1]).size * (layer0));		\
443 	else if ((nlayers) == 3)					\
444 		__i = (layer2) + ((layers[2]).size * ((layer1) +	\
445 			    ((layers[1]).size * (layer0))));		\
446 	else								\
447 		__i = -EINVAL;						\
448 	__i;								\
449 })
450 
451 /**
452  * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
453  *		   for the element given by [layer0,layer1,layer2] position
454  *
455  * @layers:	a struct edac_mc_layer array, describing how many elements
456  *		were allocated for each layer
457  * @var:	name of the var where we want to get the pointer
458  *		(like mci->dimms)
459  * @n_layers:	Number of layers at the @layers array
460  * @layer0:	layer0 position
461  * @layer1:	layer1 position. Unused if n_layers < 2
462  * @layer2:	layer2 position. Unused if n_layers < 3
463  *
464  * For 1 layer, this macro returns &var[layer0]
465  * For 2 layers, this macro is similar to allocate a bi-dimensional array
466  *		and to return "&var[layer0][layer1]"
467  * For 3 layers, this macro is similar to allocate a tri-dimensional array
468  *		and to return "&var[layer0][layer1][layer2]"
469  */
470 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({	\
471 	typeof(*var) __p;						\
472 	int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);	\
473 	if (___i < 0)							\
474 		__p = NULL;						\
475 	else								\
476 		__p = (var)[___i];					\
477 	__p;								\
478 })
479 
480 struct dimm_info {
481 	struct device dev;
482 
483 	char label[EDAC_MC_LABEL_LEN + 1];	/* DIMM label on motherboard */
484 
485 	/* Memory location data */
486 	unsigned location[EDAC_MAX_LAYERS];
487 
488 	struct mem_ctl_info *mci;	/* the parent */
489 
490 	u32 grain;		/* granularity of reported error in bytes */
491 	enum dev_type dtype;	/* memory device type */
492 	enum mem_type mtype;	/* memory dimm type */
493 	enum edac_type edac_mode;	/* EDAC mode for this dimm */
494 
495 	u32 nr_pages;			/* number of pages on this dimm */
496 
497 	unsigned csrow, cschannel;	/* Points to the old API data */
498 };
499 
500 /**
501  * struct rank_info - contains the information for one DIMM rank
502  *
503  * @chan_idx:	channel number where the rank is (typically, 0 or 1)
504  * @ce_count:	number of correctable errors for this rank
505  * @csrow:	A pointer to the chip select row structure (the parent
506  *		structure). The location of the rank is given by
507  *		the (csrow->csrow_idx, chan_idx) vector.
508  * @dimm:	A pointer to the DIMM structure, where the DIMM label
509  *		information is stored.
510  *
511  * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
512  *	  This is a bad assumption, but it makes this patch easier. Later
513  *	  patches in this series will fix this issue.
514  */
515 struct rank_info {
516 	int chan_idx;
517 	struct csrow_info *csrow;
518 	struct dimm_info *dimm;
519 
520 	u32 ce_count;		/* Correctable Errors for this csrow */
521 };
522 
523 struct csrow_info {
524 	struct device dev;
525 
526 	/* Used only by edac_mc_find_csrow_by_page() */
527 	unsigned long first_page;	/* first page number in csrow */
528 	unsigned long last_page;	/* last page number in csrow */
529 	unsigned long page_mask;	/* used for interleaving -
530 					 * 0UL for non intlv */
531 
532 	int csrow_idx;			/* the chip-select row */
533 
534 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
535 	u32 ce_count;		/* Correctable Errors for this csrow */
536 	u32 nr_pages;		/* combined pages count of all channels */
537 
538 	struct mem_ctl_info *mci;	/* the parent */
539 
540 	/* channel information for this csrow */
541 	u32 nr_channels;
542 	struct rank_info **channels;
543 };
544 
545 /*
546  * struct errcount_attribute - used to store the several error counts
547  */
548 struct errcount_attribute_data {
549 	int n_layers;
550 	int pos[EDAC_MAX_LAYERS];
551 	int layer0, layer1, layer2;
552 };
553 
554 /* MEMORY controller information structure
555  */
556 struct mem_ctl_info {
557 	struct device			dev;
558 	struct bus_type			bus;
559 
560 	struct list_head link;	/* for global list of mem_ctl_info structs */
561 
562 	struct module *owner;	/* Module owner of this control struct */
563 
564 	unsigned long mtype_cap;	/* memory types supported by mc */
565 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
566 	unsigned long edac_cap;	/* configuration capabilities - this is
567 				 * closely related to edac_ctl_cap.  The
568 				 * difference is that the controller may be
569 				 * capable of s4ecd4ed which would be listed
570 				 * in edac_ctl_cap, but if channels aren't
571 				 * capable of s4ecd4ed then the edac_cap would
572 				 * not have that capability.
573 				 */
574 	unsigned long scrub_cap;	/* chipset scrub capabilities */
575 	enum scrub_type scrub_mode;	/* current scrub mode */
576 
577 	/* Translates sdram memory scrub rate given in bytes/sec to the
578 	   internal representation and configures whatever else needs
579 	   to be configured.
580 	 */
581 	int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
582 
583 	/* Get the current sdram memory scrub rate from the internal
584 	   representation and converts it to the closest matching
585 	   bandwidth in bytes/sec.
586 	 */
587 	int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
588 
589 
590 	/* pointer to edac checking routine */
591 	void (*edac_check) (struct mem_ctl_info * mci);
592 
593 	/*
594 	 * Remaps memory pages: controller pages to physical pages.
595 	 * For most MC's, this will be NULL.
596 	 */
597 	/* FIXME - why not send the phys page to begin with? */
598 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
599 					   unsigned long page);
600 	int mc_idx;
601 	struct csrow_info **csrows;
602 	unsigned nr_csrows, num_cschannel;
603 
604 	/*
605 	 * Memory Controller hierarchy
606 	 *
607 	 * There are basically two types of memory controller: the ones that
608 	 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
609 	 * All old memory controllers enumerate memories per rank, but most
610 	 * of the recent drivers enumerate memories per DIMM, instead.
611 	 * When the memory controller is per rank, mem_is_per_rank is true.
612 	 */
613 	unsigned n_layers;
614 	struct edac_mc_layer *layers;
615 	bool mem_is_per_rank;
616 
617 	/*
618 	 * DIMM info. Will eventually remove the entire csrows_info some day
619 	 */
620 	unsigned tot_dimms;
621 	struct dimm_info **dimms;
622 
623 	/*
624 	 * FIXME - what about controllers on other busses? - IDs must be
625 	 * unique.  dev pointer should be sufficiently unique, but
626 	 * BUS:SLOT.FUNC numbers may not be unique.
627 	 */
628 	struct device *pdev;
629 	const char *mod_name;
630 	const char *mod_ver;
631 	const char *ctl_name;
632 	const char *dev_name;
633 	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
634 	void *pvt_info;
635 	unsigned long start_time;	/* mci load start time (in jiffies) */
636 
637 	/*
638 	 * drivers shouldn't access those fields directly, as the core
639 	 * already handles that.
640 	 */
641 	u32 ce_noinfo_count, ue_noinfo_count;
642 	u32 ue_mc, ce_mc;
643 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
644 
645 	struct completion complete;
646 
647 	/* Additional top controller level attributes, but specified
648 	 * by the low level driver.
649 	 *
650 	 * Set by the low level driver to provide attributes at the
651 	 * controller level.
652 	 * An array of structures, NULL terminated
653 	 *
654 	 * If attributes are desired, then set to array of attributes
655 	 * If no attributes are desired, leave NULL
656 	 */
657 	const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
658 
659 	/* work struct for this MC */
660 	struct delayed_work work;
661 
662 	/* the internal state of this controller instance */
663 	int op_state;
664 
665 #ifdef CONFIG_EDAC_DEBUG
666 	struct dentry *debugfs;
667 	u8 fake_inject_layer[EDAC_MAX_LAYERS];
668 	u32 fake_inject_ue;
669 	u16 fake_inject_count;
670 #endif
671 	__u8 csbased : 1,	/* csrow-based memory controller */
672 	     __resv  : 7;
673 };
674 
675 #endif
676